Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96         int threshold;
97         int watermark_distance;
98
99         /*
100          * As vmstats are not up to date, there is drift between the estimated
101          * and real values. For high thresholds and a high number of CPUs, it
102          * is possible for the min watermark to be breached while the estimated
103          * value looks fine. The pressure threshold is a reduced value such
104          * that even the maximum amount of drift will not accidentally breach
105          * the min watermark
106          */
107         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110         /*
111          * Maximum threshold is 125
112          */
113         threshold = min(125, threshold);
114
115         return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120         int threshold;
121         int mem;        /* memory in 128 MB units */
122
123         /*
124          * The threshold scales with the number of processors and the amount
125          * of memory per zone. More memory means that we can defer updates for
126          * longer, more processors could lead to more contention.
127          * fls() is used to have a cheap way of logarithmic scaling.
128          *
129          * Some sample thresholds:
130          *
131          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
132          * ------------------------------------------------------------------
133          * 8            1               1       0.9-1 GB        4
134          * 16           2               2       0.9-1 GB        4
135          * 20           2               2       1-2 GB          5
136          * 24           2               2       2-4 GB          6
137          * 28           2               2       4-8 GB          7
138          * 32           2               2       8-16 GB         8
139          * 4            2               2       <128M           1
140          * 30           4               3       2-4 GB          5
141          * 48           4               3       8-16 GB         8
142          * 32           8               4       1-2 GB          4
143          * 32           8               4       0.9-1GB         4
144          * 10           16              5       <128M           1
145          * 40           16              5       900M            4
146          * 70           64              7       2-4 GB          5
147          * 84           64              7       4-8 GB          6
148          * 108          512             9       4-8 GB          6
149          * 125          1024            10      8-16 GB         8
150          * 125          1024            10      16-32 GB        9
151          */
152
153         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157         /*
158          * Maximum threshold is 125
159          */
160         threshold = min(125, threshold);
161
162         return threshold;
163 }
164
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170         struct zone *zone;
171         int cpu;
172         int threshold;
173
174         for_each_populated_zone(zone) {
175                 unsigned long max_drift, tolerate_drift;
176
177                 threshold = calculate_normal_threshold(zone);
178
179                 for_each_online_cpu(cpu)
180                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181                                                         = threshold;
182
183                 /*
184                  * Only set percpu_drift_mark if there is a danger that
185                  * NR_FREE_PAGES reports the low watermark is ok when in fact
186                  * the min watermark could be breached by an allocation
187                  */
188                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189                 max_drift = num_online_cpus() * threshold;
190                 if (max_drift > tolerate_drift)
191                         zone->percpu_drift_mark = high_wmark_pages(zone) +
192                                         max_drift;
193         }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197                                 int (*calculate_pressure)(struct zone *))
198 {
199         struct zone *zone;
200         int cpu;
201         int threshold;
202         int i;
203
204         for (i = 0; i < pgdat->nr_zones; i++) {
205                 zone = &pgdat->node_zones[i];
206                 if (!zone->percpu_drift_mark)
207                         continue;
208
209                 threshold = (*calculate_pressure)(zone);
210                 for_each_online_cpu(cpu)
211                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212                                                         = threshold;
213         }
214 }
215
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222                                 int delta)
223 {
224         struct per_cpu_pageset __percpu *pcp = zone->pageset;
225         s8 __percpu *p = pcp->vm_stat_diff + item;
226         long x;
227         long t;
228
229         preempt_disable_rt();
230         x = delta + __this_cpu_read(*p);
231
232         t = __this_cpu_read(pcp->stat_threshold);
233
234         if (unlikely(x > t || x < -t)) {
235                 zone_page_state_add(x, zone, item);
236                 x = 0;
237         }
238         __this_cpu_write(*p, x);
239         preempt_enable_rt();
240 }
241 EXPORT_SYMBOL(__mod_zone_page_state);
242
243 /*
244  * Optimized increment and decrement functions.
245  *
246  * These are only for a single page and therefore can take a struct page *
247  * argument instead of struct zone *. This allows the inclusion of the code
248  * generated for page_zone(page) into the optimized functions.
249  *
250  * No overflow check is necessary and therefore the differential can be
251  * incremented or decremented in place which may allow the compilers to
252  * generate better code.
253  * The increment or decrement is known and therefore one boundary check can
254  * be omitted.
255  *
256  * NOTE: These functions are very performance sensitive. Change only
257  * with care.
258  *
259  * Some processors have inc/dec instructions that are atomic vs an interrupt.
260  * However, the code must first determine the differential location in a zone
261  * based on the processor number and then inc/dec the counter. There is no
262  * guarantee without disabling preemption that the processor will not change
263  * in between and therefore the atomicity vs. interrupt cannot be exploited
264  * in a useful way here.
265  */
266 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
267 {
268         struct per_cpu_pageset __percpu *pcp = zone->pageset;
269         s8 __percpu *p = pcp->vm_stat_diff + item;
270         s8 v, t;
271
272         preempt_disable_rt();
273         v = __this_cpu_inc_return(*p);
274         t = __this_cpu_read(pcp->stat_threshold);
275         if (unlikely(v > t)) {
276                 s8 overstep = t >> 1;
277
278                 zone_page_state_add(v + overstep, zone, item);
279                 __this_cpu_write(*p, -overstep);
280         }
281         preempt_enable_rt();
282 }
283
284 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
285 {
286         __inc_zone_state(page_zone(page), item);
287 }
288 EXPORT_SYMBOL(__inc_zone_page_state);
289
290 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
291 {
292         struct per_cpu_pageset __percpu *pcp = zone->pageset;
293         s8 __percpu *p = pcp->vm_stat_diff + item;
294         s8 v, t;
295
296         preempt_disable_rt();
297         v = __this_cpu_dec_return(*p);
298         t = __this_cpu_read(pcp->stat_threshold);
299         if (unlikely(v < - t)) {
300                 s8 overstep = t >> 1;
301
302                 zone_page_state_add(v - overstep, zone, item);
303                 __this_cpu_write(*p, overstep);
304         }
305         preempt_enable_rt();
306 }
307
308 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
309 {
310         __dec_zone_state(page_zone(page), item);
311 }
312 EXPORT_SYMBOL(__dec_zone_page_state);
313
314 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
315 /*
316  * If we have cmpxchg_local support then we do not need to incur the overhead
317  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
318  *
319  * mod_state() modifies the zone counter state through atomic per cpu
320  * operations.
321  *
322  * Overstep mode specifies how overstep should handled:
323  *     0       No overstepping
324  *     1       Overstepping half of threshold
325  *     -1      Overstepping minus half of threshold
326 */
327 static inline void mod_state(struct zone *zone,
328        enum zone_stat_item item, int delta, int overstep_mode)
329 {
330         struct per_cpu_pageset __percpu *pcp = zone->pageset;
331         s8 __percpu *p = pcp->vm_stat_diff + item;
332         long o, n, t, z;
333
334         do {
335                 z = 0;  /* overflow to zone counters */
336
337                 /*
338                  * The fetching of the stat_threshold is racy. We may apply
339                  * a counter threshold to the wrong the cpu if we get
340                  * rescheduled while executing here. However, the next
341                  * counter update will apply the threshold again and
342                  * therefore bring the counter under the threshold again.
343                  *
344                  * Most of the time the thresholds are the same anyways
345                  * for all cpus in a zone.
346                  */
347                 t = this_cpu_read(pcp->stat_threshold);
348
349                 o = this_cpu_read(*p);
350                 n = delta + o;
351
352                 if (n > t || n < -t) {
353                         int os = overstep_mode * (t >> 1) ;
354
355                         /* Overflow must be added to zone counters */
356                         z = n + os;
357                         n = -os;
358                 }
359         } while (this_cpu_cmpxchg(*p, o, n) != o);
360
361         if (z)
362                 zone_page_state_add(z, zone, item);
363 }
364
365 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
366                                         int delta)
367 {
368         mod_state(zone, item, delta, 0);
369 }
370 EXPORT_SYMBOL(mod_zone_page_state);
371
372 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
373 {
374         mod_state(zone, item, 1, 1);
375 }
376
377 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379         mod_state(page_zone(page), item, 1, 1);
380 }
381 EXPORT_SYMBOL(inc_zone_page_state);
382
383 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
384 {
385         mod_state(page_zone(page), item, -1, -1);
386 }
387 EXPORT_SYMBOL(dec_zone_page_state);
388 #else
389 /*
390  * Use interrupt disable to serialize counter updates
391  */
392 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
393                                         int delta)
394 {
395         unsigned long flags;
396
397         local_irq_save(flags);
398         __mod_zone_page_state(zone, item, delta);
399         local_irq_restore(flags);
400 }
401 EXPORT_SYMBOL(mod_zone_page_state);
402
403 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
404 {
405         unsigned long flags;
406
407         local_irq_save(flags);
408         __inc_zone_state(zone, item);
409         local_irq_restore(flags);
410 }
411
412 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
413 {
414         unsigned long flags;
415         struct zone *zone;
416
417         zone = page_zone(page);
418         local_irq_save(flags);
419         __inc_zone_state(zone, item);
420         local_irq_restore(flags);
421 }
422 EXPORT_SYMBOL(inc_zone_page_state);
423
424 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
425 {
426         unsigned long flags;
427
428         local_irq_save(flags);
429         __dec_zone_page_state(page, item);
430         local_irq_restore(flags);
431 }
432 EXPORT_SYMBOL(dec_zone_page_state);
433 #endif
434
435
436 /*
437  * Fold a differential into the global counters.
438  * Returns the number of counters updated.
439  */
440 static int fold_diff(int *diff)
441 {
442         int i;
443         int changes = 0;
444
445         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446                 if (diff[i]) {
447                         atomic_long_add(diff[i], &vm_stat[i]);
448                         changes++;
449         }
450         return changes;
451 }
452
453 /*
454  * Update the zone counters for the current cpu.
455  *
456  * Note that refresh_cpu_vm_stats strives to only access
457  * node local memory. The per cpu pagesets on remote zones are placed
458  * in the memory local to the processor using that pageset. So the
459  * loop over all zones will access a series of cachelines local to
460  * the processor.
461  *
462  * The call to zone_page_state_add updates the cachelines with the
463  * statistics in the remote zone struct as well as the global cachelines
464  * with the global counters. These could cause remote node cache line
465  * bouncing and will have to be only done when necessary.
466  *
467  * The function returns the number of global counters updated.
468  */
469 static int refresh_cpu_vm_stats(void)
470 {
471         struct zone *zone;
472         int i;
473         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
474         int changes = 0;
475
476         for_each_populated_zone(zone) {
477                 struct per_cpu_pageset __percpu *p = zone->pageset;
478
479                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
480                         int v;
481
482                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
483                         if (v) {
484
485                                 atomic_long_add(v, &zone->vm_stat[i]);
486                                 global_diff[i] += v;
487 #ifdef CONFIG_NUMA
488                                 /* 3 seconds idle till flush */
489                                 __this_cpu_write(p->expire, 3);
490 #endif
491                         }
492                 }
493                 cond_resched();
494 #ifdef CONFIG_NUMA
495                 /*
496                  * Deal with draining the remote pageset of this
497                  * processor
498                  *
499                  * Check if there are pages remaining in this pageset
500                  * if not then there is nothing to expire.
501                  */
502                 if (!__this_cpu_read(p->expire) ||
503                                !__this_cpu_read(p->pcp.count))
504                         continue;
505
506                 /*
507                  * We never drain zones local to this processor.
508                  */
509                 if (zone_to_nid(zone) == numa_node_id()) {
510                         __this_cpu_write(p->expire, 0);
511                         continue;
512                 }
513
514                 if (__this_cpu_dec_return(p->expire))
515                         continue;
516
517                 if (__this_cpu_read(p->pcp.count)) {
518                         drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
519                         changes++;
520                 }
521 #endif
522         }
523         changes += fold_diff(global_diff);
524         return changes;
525 }
526
527 /*
528  * Fold the data for an offline cpu into the global array.
529  * There cannot be any access by the offline cpu and therefore
530  * synchronization is simplified.
531  */
532 void cpu_vm_stats_fold(int cpu)
533 {
534         struct zone *zone;
535         int i;
536         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
537
538         for_each_populated_zone(zone) {
539                 struct per_cpu_pageset *p;
540
541                 p = per_cpu_ptr(zone->pageset, cpu);
542
543                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
544                         if (p->vm_stat_diff[i]) {
545                                 int v;
546
547                                 v = p->vm_stat_diff[i];
548                                 p->vm_stat_diff[i] = 0;
549                                 atomic_long_add(v, &zone->vm_stat[i]);
550                                 global_diff[i] += v;
551                         }
552         }
553
554         fold_diff(global_diff);
555 }
556
557 /*
558  * this is only called if !populated_zone(zone), which implies no other users of
559  * pset->vm_stat_diff[] exsist.
560  */
561 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
562 {
563         int i;
564
565         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
566                 if (pset->vm_stat_diff[i]) {
567                         int v = pset->vm_stat_diff[i];
568                         pset->vm_stat_diff[i] = 0;
569                         atomic_long_add(v, &zone->vm_stat[i]);
570                         atomic_long_add(v, &vm_stat[i]);
571                 }
572 }
573 #endif
574
575 #ifdef CONFIG_NUMA
576 /*
577  * zonelist = the list of zones passed to the allocator
578  * z        = the zone from which the allocation occurred.
579  *
580  * Must be called with interrupts disabled.
581  *
582  * When __GFP_OTHER_NODE is set assume the node of the preferred
583  * zone is the local node. This is useful for daemons who allocate
584  * memory on behalf of other processes.
585  */
586 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
587 {
588         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
589                 __inc_zone_state(z, NUMA_HIT);
590         } else {
591                 __inc_zone_state(z, NUMA_MISS);
592                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
593         }
594         if (z->node == ((flags & __GFP_OTHER_NODE) ?
595                         preferred_zone->node : numa_node_id()))
596                 __inc_zone_state(z, NUMA_LOCAL);
597         else
598                 __inc_zone_state(z, NUMA_OTHER);
599 }
600 #endif
601
602 #ifdef CONFIG_COMPACTION
603
604 struct contig_page_info {
605         unsigned long free_pages;
606         unsigned long free_blocks_total;
607         unsigned long free_blocks_suitable;
608 };
609
610 /*
611  * Calculate the number of free pages in a zone, how many contiguous
612  * pages are free and how many are large enough to satisfy an allocation of
613  * the target size. Note that this function makes no attempt to estimate
614  * how many suitable free blocks there *might* be if MOVABLE pages were
615  * migrated. Calculating that is possible, but expensive and can be
616  * figured out from userspace
617  */
618 static void fill_contig_page_info(struct zone *zone,
619                                 unsigned int suitable_order,
620                                 struct contig_page_info *info)
621 {
622         unsigned int order;
623
624         info->free_pages = 0;
625         info->free_blocks_total = 0;
626         info->free_blocks_suitable = 0;
627
628         for (order = 0; order < MAX_ORDER; order++) {
629                 unsigned long blocks;
630
631                 /* Count number of free blocks */
632                 blocks = zone->free_area[order].nr_free;
633                 info->free_blocks_total += blocks;
634
635                 /* Count free base pages */
636                 info->free_pages += blocks << order;
637
638                 /* Count the suitable free blocks */
639                 if (order >= suitable_order)
640                         info->free_blocks_suitable += blocks <<
641                                                 (order - suitable_order);
642         }
643 }
644
645 /*
646  * A fragmentation index only makes sense if an allocation of a requested
647  * size would fail. If that is true, the fragmentation index indicates
648  * whether external fragmentation or a lack of memory was the problem.
649  * The value can be used to determine if page reclaim or compaction
650  * should be used
651  */
652 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
653 {
654         unsigned long requested = 1UL << order;
655
656         if (!info->free_blocks_total)
657                 return 0;
658
659         /* Fragmentation index only makes sense when a request would fail */
660         if (info->free_blocks_suitable)
661                 return -1000;
662
663         /*
664          * Index is between 0 and 1 so return within 3 decimal places
665          *
666          * 0 => allocation would fail due to lack of memory
667          * 1 => allocation would fail due to fragmentation
668          */
669         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
670 }
671
672 /* Same as __fragmentation index but allocs contig_page_info on stack */
673 int fragmentation_index(struct zone *zone, unsigned int order)
674 {
675         struct contig_page_info info;
676
677         fill_contig_page_info(zone, order, &info);
678         return __fragmentation_index(order, &info);
679 }
680 #endif
681
682 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
683 #ifdef CONFIG_ZONE_DMA
684 #define TEXT_FOR_DMA(xx) xx "_dma",
685 #else
686 #define TEXT_FOR_DMA(xx)
687 #endif
688
689 #ifdef CONFIG_ZONE_DMA32
690 #define TEXT_FOR_DMA32(xx) xx "_dma32",
691 #else
692 #define TEXT_FOR_DMA32(xx)
693 #endif
694
695 #ifdef CONFIG_HIGHMEM
696 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
697 #else
698 #define TEXT_FOR_HIGHMEM(xx)
699 #endif
700
701 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
702                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
703
704 const char * const vmstat_text[] = {
705         /* enum zone_stat_item countes */
706         "nr_free_pages",
707         "nr_alloc_batch",
708         "nr_inactive_anon",
709         "nr_active_anon",
710         "nr_inactive_file",
711         "nr_active_file",
712         "nr_unevictable",
713         "nr_mlock",
714         "nr_anon_pages",
715         "nr_mapped",
716         "nr_file_pages",
717         "nr_dirty",
718         "nr_writeback",
719         "nr_slab_reclaimable",
720         "nr_slab_unreclaimable",
721         "nr_page_table_pages",
722         "nr_kernel_stack",
723         "nr_unstable",
724         "nr_bounce",
725         "nr_vmscan_write",
726         "nr_vmscan_immediate_reclaim",
727         "nr_writeback_temp",
728         "nr_isolated_anon",
729         "nr_isolated_file",
730         "nr_shmem",
731         "nr_dirtied",
732         "nr_written",
733         "nr_pages_scanned",
734
735 #ifdef CONFIG_NUMA
736         "numa_hit",
737         "numa_miss",
738         "numa_foreign",
739         "numa_interleave",
740         "numa_local",
741         "numa_other",
742 #endif
743         "workingset_refault",
744         "workingset_activate",
745         "workingset_nodereclaim",
746         "nr_anon_transparent_hugepages",
747         "nr_free_cma",
748
749         /* enum writeback_stat_item counters */
750         "nr_dirty_threshold",
751         "nr_dirty_background_threshold",
752
753 #ifdef CONFIG_VM_EVENT_COUNTERS
754         /* enum vm_event_item counters */
755         "pgpgin",
756         "pgpgout",
757         "pswpin",
758         "pswpout",
759
760         TEXTS_FOR_ZONES("pgalloc")
761
762         "pgfree",
763         "pgactivate",
764         "pgdeactivate",
765
766         "pgfault",
767         "pgmajfault",
768
769         TEXTS_FOR_ZONES("pgrefill")
770         TEXTS_FOR_ZONES("pgsteal_kswapd")
771         TEXTS_FOR_ZONES("pgsteal_direct")
772         TEXTS_FOR_ZONES("pgscan_kswapd")
773         TEXTS_FOR_ZONES("pgscan_direct")
774         "pgscan_direct_throttle",
775
776 #ifdef CONFIG_NUMA
777         "zone_reclaim_failed",
778 #endif
779         "pginodesteal",
780         "slabs_scanned",
781         "kswapd_inodesteal",
782         "kswapd_low_wmark_hit_quickly",
783         "kswapd_high_wmark_hit_quickly",
784         "pageoutrun",
785         "allocstall",
786
787         "pgrotated",
788
789         "drop_pagecache",
790         "drop_slab",
791
792 #ifdef CONFIG_NUMA_BALANCING
793         "numa_pte_updates",
794         "numa_huge_pte_updates",
795         "numa_hint_faults",
796         "numa_hint_faults_local",
797         "numa_pages_migrated",
798 #endif
799 #ifdef CONFIG_MIGRATION
800         "pgmigrate_success",
801         "pgmigrate_fail",
802 #endif
803 #ifdef CONFIG_COMPACTION
804         "compact_migrate_scanned",
805         "compact_free_scanned",
806         "compact_isolated",
807         "compact_stall",
808         "compact_fail",
809         "compact_success",
810 #endif
811
812 #ifdef CONFIG_HUGETLB_PAGE
813         "htlb_buddy_alloc_success",
814         "htlb_buddy_alloc_fail",
815 #endif
816         "unevictable_pgs_culled",
817         "unevictable_pgs_scanned",
818         "unevictable_pgs_rescued",
819         "unevictable_pgs_mlocked",
820         "unevictable_pgs_munlocked",
821         "unevictable_pgs_cleared",
822         "unevictable_pgs_stranded",
823
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
825         "thp_fault_alloc",
826         "thp_fault_fallback",
827         "thp_collapse_alloc",
828         "thp_collapse_alloc_failed",
829         "thp_split",
830         "thp_zero_page_alloc",
831         "thp_zero_page_alloc_failed",
832 #endif
833 #ifdef CONFIG_MEMORY_BALLOON
834         "balloon_inflate",
835         "balloon_deflate",
836 #ifdef CONFIG_BALLOON_COMPACTION
837         "balloon_migrate",
838 #endif
839 #endif /* CONFIG_MEMORY_BALLOON */
840 #ifdef CONFIG_DEBUG_TLBFLUSH
841 #ifdef CONFIG_SMP
842         "nr_tlb_remote_flush",
843         "nr_tlb_remote_flush_received",
844 #endif /* CONFIG_SMP */
845         "nr_tlb_local_flush_all",
846         "nr_tlb_local_flush_one",
847 #endif /* CONFIG_DEBUG_TLBFLUSH */
848
849 #ifdef CONFIG_DEBUG_VM_VMACACHE
850         "vmacache_find_calls",
851         "vmacache_find_hits",
852         "vmacache_full_flushes",
853 #endif
854 #endif /* CONFIG_VM_EVENTS_COUNTERS */
855 };
856 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
857
858
859 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
860      defined(CONFIG_PROC_FS)
861 static void *frag_start(struct seq_file *m, loff_t *pos)
862 {
863         pg_data_t *pgdat;
864         loff_t node = *pos;
865
866         for (pgdat = first_online_pgdat();
867              pgdat && node;
868              pgdat = next_online_pgdat(pgdat))
869                 --node;
870
871         return pgdat;
872 }
873
874 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
875 {
876         pg_data_t *pgdat = (pg_data_t *)arg;
877
878         (*pos)++;
879         return next_online_pgdat(pgdat);
880 }
881
882 static void frag_stop(struct seq_file *m, void *arg)
883 {
884 }
885
886 /* Walk all the zones in a node and print using a callback */
887 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
888                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
889 {
890         struct zone *zone;
891         struct zone *node_zones = pgdat->node_zones;
892         unsigned long flags;
893
894         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
895                 if (!populated_zone(zone))
896                         continue;
897
898                 spin_lock_irqsave(&zone->lock, flags);
899                 print(m, pgdat, zone);
900                 spin_unlock_irqrestore(&zone->lock, flags);
901         }
902 }
903 #endif
904
905 #ifdef CONFIG_PROC_FS
906 static char * const migratetype_names[MIGRATE_TYPES] = {
907         "Unmovable",
908         "Reclaimable",
909         "Movable",
910         "Reserve",
911 #ifdef CONFIG_CMA
912         "CMA",
913 #endif
914 #ifdef CONFIG_MEMORY_ISOLATION
915         "Isolate",
916 #endif
917 };
918
919 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
920                                                 struct zone *zone)
921 {
922         int order;
923
924         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
925         for (order = 0; order < MAX_ORDER; ++order)
926                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
927         seq_putc(m, '\n');
928 }
929
930 /*
931  * This walks the free areas for each zone.
932  */
933 static int frag_show(struct seq_file *m, void *arg)
934 {
935         pg_data_t *pgdat = (pg_data_t *)arg;
936         walk_zones_in_node(m, pgdat, frag_show_print);
937         return 0;
938 }
939
940 static void pagetypeinfo_showfree_print(struct seq_file *m,
941                                         pg_data_t *pgdat, struct zone *zone)
942 {
943         int order, mtype;
944
945         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
946                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
947                                         pgdat->node_id,
948                                         zone->name,
949                                         migratetype_names[mtype]);
950                 for (order = 0; order < MAX_ORDER; ++order) {
951                         unsigned long freecount = 0;
952                         struct free_area *area;
953                         struct list_head *curr;
954
955                         area = &(zone->free_area[order]);
956
957                         list_for_each(curr, &area->free_list[mtype])
958                                 freecount++;
959                         seq_printf(m, "%6lu ", freecount);
960                 }
961                 seq_putc(m, '\n');
962         }
963 }
964
965 /* Print out the free pages at each order for each migatetype */
966 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
967 {
968         int order;
969         pg_data_t *pgdat = (pg_data_t *)arg;
970
971         /* Print header */
972         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
973         for (order = 0; order < MAX_ORDER; ++order)
974                 seq_printf(m, "%6d ", order);
975         seq_putc(m, '\n');
976
977         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
978
979         return 0;
980 }
981
982 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
983                                         pg_data_t *pgdat, struct zone *zone)
984 {
985         int mtype;
986         unsigned long pfn;
987         unsigned long start_pfn = zone->zone_start_pfn;
988         unsigned long end_pfn = zone_end_pfn(zone);
989         unsigned long count[MIGRATE_TYPES] = { 0, };
990
991         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
992                 struct page *page;
993
994                 if (!pfn_valid(pfn))
995                         continue;
996
997                 page = pfn_to_page(pfn);
998
999                 /* Watch for unexpected holes punched in the memmap */
1000                 if (!memmap_valid_within(pfn, page, zone))
1001                         continue;
1002
1003                 mtype = get_pageblock_migratetype(page);
1004
1005                 if (mtype < MIGRATE_TYPES)
1006                         count[mtype]++;
1007         }
1008
1009         /* Print counts */
1010         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1011         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1012                 seq_printf(m, "%12lu ", count[mtype]);
1013         seq_putc(m, '\n');
1014 }
1015
1016 /* Print out the free pages at each order for each migratetype */
1017 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1018 {
1019         int mtype;
1020         pg_data_t *pgdat = (pg_data_t *)arg;
1021
1022         seq_printf(m, "\n%-23s", "Number of blocks type ");
1023         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1024                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1025         seq_putc(m, '\n');
1026         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1027
1028         return 0;
1029 }
1030
1031 #ifdef CONFIG_PAGE_OWNER
1032 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1033                                                         pg_data_t *pgdat,
1034                                                         struct zone *zone)
1035 {
1036         struct page *page;
1037         struct page_ext *page_ext;
1038         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1039         unsigned long end_pfn = pfn + zone->spanned_pages;
1040         unsigned long count[MIGRATE_TYPES] = { 0, };
1041         int pageblock_mt, page_mt;
1042         int i;
1043
1044         /* Scan block by block. First and last block may be incomplete */
1045         pfn = zone->zone_start_pfn;
1046
1047         /*
1048          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1049          * a zone boundary, it will be double counted between zones. This does
1050          * not matter as the mixed block count will still be correct
1051          */
1052         for (; pfn < end_pfn; ) {
1053                 if (!pfn_valid(pfn)) {
1054                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1055                         continue;
1056                 }
1057
1058                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1059                 block_end_pfn = min(block_end_pfn, end_pfn);
1060
1061                 page = pfn_to_page(pfn);
1062                 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1063
1064                 for (; pfn < block_end_pfn; pfn++) {
1065                         if (!pfn_valid_within(pfn))
1066                                 continue;
1067
1068                         page = pfn_to_page(pfn);
1069                         if (PageBuddy(page)) {
1070                                 pfn += (1UL << page_order(page)) - 1;
1071                                 continue;
1072                         }
1073
1074                         if (PageReserved(page))
1075                                 continue;
1076
1077                         page_ext = lookup_page_ext(page);
1078
1079                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1080                                 continue;
1081
1082                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1083                         if (pageblock_mt != page_mt) {
1084                                 if (is_migrate_cma(pageblock_mt))
1085                                         count[MIGRATE_MOVABLE]++;
1086                                 else
1087                                         count[pageblock_mt]++;
1088
1089                                 pfn = block_end_pfn;
1090                                 break;
1091                         }
1092                         pfn += (1UL << page_ext->order) - 1;
1093                 }
1094         }
1095
1096         /* Print counts */
1097         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1098         for (i = 0; i < MIGRATE_TYPES; i++)
1099                 seq_printf(m, "%12lu ", count[i]);
1100         seq_putc(m, '\n');
1101 }
1102 #endif /* CONFIG_PAGE_OWNER */
1103
1104 /*
1105  * Print out the number of pageblocks for each migratetype that contain pages
1106  * of other types. This gives an indication of how well fallbacks are being
1107  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1108  * to determine what is going on
1109  */
1110 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1111 {
1112 #ifdef CONFIG_PAGE_OWNER
1113         int mtype;
1114
1115         if (!page_owner_inited)
1116                 return;
1117
1118         drain_all_pages(NULL);
1119
1120         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1121         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1122                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1123         seq_putc(m, '\n');
1124
1125         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1126 #endif /* CONFIG_PAGE_OWNER */
1127 }
1128
1129 /*
1130  * This prints out statistics in relation to grouping pages by mobility.
1131  * It is expensive to collect so do not constantly read the file.
1132  */
1133 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1134 {
1135         pg_data_t *pgdat = (pg_data_t *)arg;
1136
1137         /* check memoryless node */
1138         if (!node_state(pgdat->node_id, N_MEMORY))
1139                 return 0;
1140
1141         seq_printf(m, "Page block order: %d\n", pageblock_order);
1142         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1143         seq_putc(m, '\n');
1144         pagetypeinfo_showfree(m, pgdat);
1145         pagetypeinfo_showblockcount(m, pgdat);
1146         pagetypeinfo_showmixedcount(m, pgdat);
1147
1148         return 0;
1149 }
1150
1151 static const struct seq_operations fragmentation_op = {
1152         .start  = frag_start,
1153         .next   = frag_next,
1154         .stop   = frag_stop,
1155         .show   = frag_show,
1156 };
1157
1158 static int fragmentation_open(struct inode *inode, struct file *file)
1159 {
1160         return seq_open(file, &fragmentation_op);
1161 }
1162
1163 static const struct file_operations fragmentation_file_operations = {
1164         .open           = fragmentation_open,
1165         .read           = seq_read,
1166         .llseek         = seq_lseek,
1167         .release        = seq_release,
1168 };
1169
1170 static const struct seq_operations pagetypeinfo_op = {
1171         .start  = frag_start,
1172         .next   = frag_next,
1173         .stop   = frag_stop,
1174         .show   = pagetypeinfo_show,
1175 };
1176
1177 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1178 {
1179         return seq_open(file, &pagetypeinfo_op);
1180 }
1181
1182 static const struct file_operations pagetypeinfo_file_ops = {
1183         .open           = pagetypeinfo_open,
1184         .read           = seq_read,
1185         .llseek         = seq_lseek,
1186         .release        = seq_release,
1187 };
1188
1189 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1190                                                         struct zone *zone)
1191 {
1192         int i;
1193         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1194         seq_printf(m,
1195                    "\n  pages free     %lu"
1196                    "\n        min      %lu"
1197                    "\n        low      %lu"
1198                    "\n        high     %lu"
1199                    "\n        scanned  %lu"
1200                    "\n        spanned  %lu"
1201                    "\n        present  %lu"
1202                    "\n        managed  %lu",
1203                    zone_page_state(zone, NR_FREE_PAGES),
1204                    min_wmark_pages(zone),
1205                    low_wmark_pages(zone),
1206                    high_wmark_pages(zone),
1207                    zone_page_state(zone, NR_PAGES_SCANNED),
1208                    zone->spanned_pages,
1209                    zone->present_pages,
1210                    zone->managed_pages);
1211
1212         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1213                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1214                                 zone_page_state(zone, i));
1215
1216         seq_printf(m,
1217                    "\n        protection: (%ld",
1218                    zone->lowmem_reserve[0]);
1219         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1220                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1221         seq_printf(m,
1222                    ")"
1223                    "\n  pagesets");
1224         for_each_online_cpu(i) {
1225                 struct per_cpu_pageset *pageset;
1226
1227                 pageset = per_cpu_ptr(zone->pageset, i);
1228                 seq_printf(m,
1229                            "\n    cpu: %i"
1230                            "\n              count: %i"
1231                            "\n              high:  %i"
1232                            "\n              batch: %i",
1233                            i,
1234                            pageset->pcp.count,
1235                            pageset->pcp.high,
1236                            pageset->pcp.batch);
1237 #ifdef CONFIG_SMP
1238                 seq_printf(m, "\n  vm stats threshold: %d",
1239                                 pageset->stat_threshold);
1240 #endif
1241         }
1242         seq_printf(m,
1243                    "\n  all_unreclaimable: %u"
1244                    "\n  start_pfn:         %lu"
1245                    "\n  inactive_ratio:    %u",
1246                    !zone_reclaimable(zone),
1247                    zone->zone_start_pfn,
1248                    zone->inactive_ratio);
1249         seq_putc(m, '\n');
1250 }
1251
1252 /*
1253  * Output information about zones in @pgdat.
1254  */
1255 static int zoneinfo_show(struct seq_file *m, void *arg)
1256 {
1257         pg_data_t *pgdat = (pg_data_t *)arg;
1258         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1259         return 0;
1260 }
1261
1262 static const struct seq_operations zoneinfo_op = {
1263         .start  = frag_start, /* iterate over all zones. The same as in
1264                                * fragmentation. */
1265         .next   = frag_next,
1266         .stop   = frag_stop,
1267         .show   = zoneinfo_show,
1268 };
1269
1270 static int zoneinfo_open(struct inode *inode, struct file *file)
1271 {
1272         return seq_open(file, &zoneinfo_op);
1273 }
1274
1275 static const struct file_operations proc_zoneinfo_file_operations = {
1276         .open           = zoneinfo_open,
1277         .read           = seq_read,
1278         .llseek         = seq_lseek,
1279         .release        = seq_release,
1280 };
1281
1282 enum writeback_stat_item {
1283         NR_DIRTY_THRESHOLD,
1284         NR_DIRTY_BG_THRESHOLD,
1285         NR_VM_WRITEBACK_STAT_ITEMS,
1286 };
1287
1288 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1289 {
1290         unsigned long *v;
1291         int i, stat_items_size;
1292
1293         if (*pos >= ARRAY_SIZE(vmstat_text))
1294                 return NULL;
1295         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1296                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1297
1298 #ifdef CONFIG_VM_EVENT_COUNTERS
1299         stat_items_size += sizeof(struct vm_event_state);
1300 #endif
1301
1302         v = kmalloc(stat_items_size, GFP_KERNEL);
1303         m->private = v;
1304         if (!v)
1305                 return ERR_PTR(-ENOMEM);
1306         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1307                 v[i] = global_page_state(i);
1308         v += NR_VM_ZONE_STAT_ITEMS;
1309
1310         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1311                             v + NR_DIRTY_THRESHOLD);
1312         v += NR_VM_WRITEBACK_STAT_ITEMS;
1313
1314 #ifdef CONFIG_VM_EVENT_COUNTERS
1315         all_vm_events(v);
1316         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1317         v[PGPGOUT] /= 2;
1318 #endif
1319         return (unsigned long *)m->private + *pos;
1320 }
1321
1322 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1323 {
1324         (*pos)++;
1325         if (*pos >= ARRAY_SIZE(vmstat_text))
1326                 return NULL;
1327         return (unsigned long *)m->private + *pos;
1328 }
1329
1330 static int vmstat_show(struct seq_file *m, void *arg)
1331 {
1332         unsigned long *l = arg;
1333         unsigned long off = l - (unsigned long *)m->private;
1334
1335         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1336         return 0;
1337 }
1338
1339 static void vmstat_stop(struct seq_file *m, void *arg)
1340 {
1341         kfree(m->private);
1342         m->private = NULL;
1343 }
1344
1345 static const struct seq_operations vmstat_op = {
1346         .start  = vmstat_start,
1347         .next   = vmstat_next,
1348         .stop   = vmstat_stop,
1349         .show   = vmstat_show,
1350 };
1351
1352 static int vmstat_open(struct inode *inode, struct file *file)
1353 {
1354         return seq_open(file, &vmstat_op);
1355 }
1356
1357 static const struct file_operations proc_vmstat_file_operations = {
1358         .open           = vmstat_open,
1359         .read           = seq_read,
1360         .llseek         = seq_lseek,
1361         .release        = seq_release,
1362 };
1363 #endif /* CONFIG_PROC_FS */
1364
1365 #ifdef CONFIG_SMP
1366 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1367 int sysctl_stat_interval __read_mostly = HZ;
1368 static cpumask_var_t cpu_stat_off;
1369
1370 static void vmstat_update(struct work_struct *w)
1371 {
1372         if (refresh_cpu_vm_stats())
1373                 /*
1374                  * Counters were updated so we expect more updates
1375                  * to occur in the future. Keep on running the
1376                  * update worker thread.
1377                  */
1378                 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1379                         round_jiffies_relative(sysctl_stat_interval));
1380         else {
1381                 /*
1382                  * We did not update any counters so the app may be in
1383                  * a mode where it does not cause counter updates.
1384                  * We may be uselessly running vmstat_update.
1385                  * Defer the checking for differentials to the
1386                  * shepherd thread on a different processor.
1387                  */
1388                 int r;
1389                 /*
1390                  * Shepherd work thread does not race since it never
1391                  * changes the bit if its zero but the cpu
1392                  * online / off line code may race if
1393                  * worker threads are still allowed during
1394                  * shutdown / startup.
1395                  */
1396                 r = cpumask_test_and_set_cpu(smp_processor_id(),
1397                         cpu_stat_off);
1398                 VM_BUG_ON(r);
1399         }
1400 }
1401
1402 /*
1403  * Check if the diffs for a certain cpu indicate that
1404  * an update is needed.
1405  */
1406 static bool need_update(int cpu)
1407 {
1408         struct zone *zone;
1409
1410         for_each_populated_zone(zone) {
1411                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1412
1413                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1414                 /*
1415                  * The fast way of checking if there are any vmstat diffs.
1416                  * This works because the diffs are byte sized items.
1417                  */
1418                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1419                         return true;
1420
1421         }
1422         return false;
1423 }
1424
1425
1426 /*
1427  * Shepherd worker thread that checks the
1428  * differentials of processors that have their worker
1429  * threads for vm statistics updates disabled because of
1430  * inactivity.
1431  */
1432 static void vmstat_shepherd(struct work_struct *w);
1433
1434 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1435
1436 static void vmstat_shepherd(struct work_struct *w)
1437 {
1438         int cpu;
1439
1440         get_online_cpus();
1441         /* Check processors whose vmstat worker threads have been disabled */
1442         for_each_cpu(cpu, cpu_stat_off)
1443                 if (need_update(cpu) &&
1444                         cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1445
1446                         schedule_delayed_work_on(cpu,
1447                                 &per_cpu(vmstat_work, cpu), 0);
1448
1449         put_online_cpus();
1450
1451         schedule_delayed_work(&shepherd,
1452                 round_jiffies_relative(sysctl_stat_interval));
1453
1454 }
1455
1456 static void __init start_shepherd_timer(void)
1457 {
1458         int cpu;
1459
1460         for_each_possible_cpu(cpu)
1461                 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1462                         vmstat_update);
1463
1464         if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1465                 BUG();
1466         cpumask_copy(cpu_stat_off, cpu_online_mask);
1467
1468         schedule_delayed_work(&shepherd,
1469                 round_jiffies_relative(sysctl_stat_interval));
1470 }
1471
1472 static void vmstat_cpu_dead(int node)
1473 {
1474         int cpu;
1475
1476         get_online_cpus();
1477         for_each_online_cpu(cpu)
1478                 if (cpu_to_node(cpu) == node)
1479                         goto end;
1480
1481         node_clear_state(node, N_CPU);
1482 end:
1483         put_online_cpus();
1484 }
1485
1486 /*
1487  * Use the cpu notifier to insure that the thresholds are recalculated
1488  * when necessary.
1489  */
1490 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1491                 unsigned long action,
1492                 void *hcpu)
1493 {
1494         long cpu = (long)hcpu;
1495
1496         switch (action) {
1497         case CPU_ONLINE:
1498         case CPU_ONLINE_FROZEN:
1499                 refresh_zone_stat_thresholds();
1500                 node_set_state(cpu_to_node(cpu), N_CPU);
1501                 cpumask_set_cpu(cpu, cpu_stat_off);
1502                 break;
1503         case CPU_DOWN_PREPARE:
1504         case CPU_DOWN_PREPARE_FROZEN:
1505                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1506                 cpumask_clear_cpu(cpu, cpu_stat_off);
1507                 break;
1508         case CPU_DOWN_FAILED:
1509         case CPU_DOWN_FAILED_FROZEN:
1510                 cpumask_set_cpu(cpu, cpu_stat_off);
1511                 break;
1512         case CPU_DEAD:
1513         case CPU_DEAD_FROZEN:
1514                 refresh_zone_stat_thresholds();
1515                 vmstat_cpu_dead(cpu_to_node(cpu));
1516                 break;
1517         default:
1518                 break;
1519         }
1520         return NOTIFY_OK;
1521 }
1522
1523 static struct notifier_block vmstat_notifier =
1524         { &vmstat_cpuup_callback, NULL, 0 };
1525 #endif
1526
1527 static int __init setup_vmstat(void)
1528 {
1529 #ifdef CONFIG_SMP
1530         cpu_notifier_register_begin();
1531         __register_cpu_notifier(&vmstat_notifier);
1532
1533         start_shepherd_timer();
1534         cpu_notifier_register_done();
1535 #endif
1536 #ifdef CONFIG_PROC_FS
1537         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1538         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1539         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1540         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1541 #endif
1542         return 0;
1543 }
1544 module_init(setup_vmstat)
1545
1546 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1547
1548 /*
1549  * Return an index indicating how much of the available free memory is
1550  * unusable for an allocation of the requested size.
1551  */
1552 static int unusable_free_index(unsigned int order,
1553                                 struct contig_page_info *info)
1554 {
1555         /* No free memory is interpreted as all free memory is unusable */
1556         if (info->free_pages == 0)
1557                 return 1000;
1558
1559         /*
1560          * Index should be a value between 0 and 1. Return a value to 3
1561          * decimal places.
1562          *
1563          * 0 => no fragmentation
1564          * 1 => high fragmentation
1565          */
1566         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1567
1568 }
1569
1570 static void unusable_show_print(struct seq_file *m,
1571                                         pg_data_t *pgdat, struct zone *zone)
1572 {
1573         unsigned int order;
1574         int index;
1575         struct contig_page_info info;
1576
1577         seq_printf(m, "Node %d, zone %8s ",
1578                                 pgdat->node_id,
1579                                 zone->name);
1580         for (order = 0; order < MAX_ORDER; ++order) {
1581                 fill_contig_page_info(zone, order, &info);
1582                 index = unusable_free_index(order, &info);
1583                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1584         }
1585
1586         seq_putc(m, '\n');
1587 }
1588
1589 /*
1590  * Display unusable free space index
1591  *
1592  * The unusable free space index measures how much of the available free
1593  * memory cannot be used to satisfy an allocation of a given size and is a
1594  * value between 0 and 1. The higher the value, the more of free memory is
1595  * unusable and by implication, the worse the external fragmentation is. This
1596  * can be expressed as a percentage by multiplying by 100.
1597  */
1598 static int unusable_show(struct seq_file *m, void *arg)
1599 {
1600         pg_data_t *pgdat = (pg_data_t *)arg;
1601
1602         /* check memoryless node */
1603         if (!node_state(pgdat->node_id, N_MEMORY))
1604                 return 0;
1605
1606         walk_zones_in_node(m, pgdat, unusable_show_print);
1607
1608         return 0;
1609 }
1610
1611 static const struct seq_operations unusable_op = {
1612         .start  = frag_start,
1613         .next   = frag_next,
1614         .stop   = frag_stop,
1615         .show   = unusable_show,
1616 };
1617
1618 static int unusable_open(struct inode *inode, struct file *file)
1619 {
1620         return seq_open(file, &unusable_op);
1621 }
1622
1623 static const struct file_operations unusable_file_ops = {
1624         .open           = unusable_open,
1625         .read           = seq_read,
1626         .llseek         = seq_lseek,
1627         .release        = seq_release,
1628 };
1629
1630 static void extfrag_show_print(struct seq_file *m,
1631                                         pg_data_t *pgdat, struct zone *zone)
1632 {
1633         unsigned int order;
1634         int index;
1635
1636         /* Alloc on stack as interrupts are disabled for zone walk */
1637         struct contig_page_info info;
1638
1639         seq_printf(m, "Node %d, zone %8s ",
1640                                 pgdat->node_id,
1641                                 zone->name);
1642         for (order = 0; order < MAX_ORDER; ++order) {
1643                 fill_contig_page_info(zone, order, &info);
1644                 index = __fragmentation_index(order, &info);
1645                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1646         }
1647
1648         seq_putc(m, '\n');
1649 }
1650
1651 /*
1652  * Display fragmentation index for orders that allocations would fail for
1653  */
1654 static int extfrag_show(struct seq_file *m, void *arg)
1655 {
1656         pg_data_t *pgdat = (pg_data_t *)arg;
1657
1658         walk_zones_in_node(m, pgdat, extfrag_show_print);
1659
1660         return 0;
1661 }
1662
1663 static const struct seq_operations extfrag_op = {
1664         .start  = frag_start,
1665         .next   = frag_next,
1666         .stop   = frag_stop,
1667         .show   = extfrag_show,
1668 };
1669
1670 static int extfrag_open(struct inode *inode, struct file *file)
1671 {
1672         return seq_open(file, &extfrag_op);
1673 }
1674
1675 static const struct file_operations extfrag_file_ops = {
1676         .open           = extfrag_open,
1677         .read           = seq_read,
1678         .llseek         = seq_lseek,
1679         .release        = seq_release,
1680 };
1681
1682 static int __init extfrag_debug_init(void)
1683 {
1684         struct dentry *extfrag_debug_root;
1685
1686         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1687         if (!extfrag_debug_root)
1688                 return -ENOMEM;
1689
1690         if (!debugfs_create_file("unusable_index", 0444,
1691                         extfrag_debug_root, NULL, &unusable_file_ops))
1692                 goto fail;
1693
1694         if (!debugfs_create_file("extfrag_index", 0444,
1695                         extfrag_debug_root, NULL, &extfrag_file_ops))
1696                 goto fail;
1697
1698         return 0;
1699 fail:
1700         debugfs_remove_recursive(extfrag_debug_root);
1701         return -ENOMEM;
1702 }
1703
1704 module_init(extfrag_debug_init);
1705 #endif