These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 static void unmap_region(struct mm_struct *mm,
62                 struct vm_area_struct *vma, struct vm_area_struct *prev,
63                 unsigned long start, unsigned long end);
64
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type     prot
70  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
71  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
72  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
73  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
74  *
75  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
76  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
77  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87         return __pgprot(pgprot_val(protection_map[vm_flags &
88                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101         unsigned long vm_flags = vma->vm_flags;
102
103         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104         if (vma_wants_writenotify(vma)) {
105                 vm_flags &= ~VM_SHARED;
106                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107                                                      vm_flags);
108         }
109 }
110
111
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
132 unsigned long vm_memory_committed(void)
133 {
134         return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156         long free, allowed, reserve;
157
158         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159                         -(s64)vm_committed_as_batch * num_online_cpus(),
160                         "memory commitment underflow");
161
162         vm_acct_memory(pages);
163
164         /*
165          * Sometimes we want to use more memory than we have
166          */
167         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168                 return 0;
169
170         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171                 free = global_page_state(NR_FREE_PAGES);
172                 free += global_page_state(NR_FILE_PAGES);
173
174                 /*
175                  * shmem pages shouldn't be counted as free in this
176                  * case, they can't be purged, only swapped out, and
177                  * that won't affect the overall amount of available
178                  * memory in the system.
179                  */
180                 free -= global_page_state(NR_SHMEM);
181
182                 free += get_nr_swap_pages();
183
184                 /*
185                  * Any slabs which are created with the
186                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187                  * which are reclaimable, under pressure.  The dentry
188                  * cache and most inode caches should fall into this
189                  */
190                 free += global_page_state(NR_SLAB_RECLAIMABLE);
191
192                 /*
193                  * Leave reserved pages. The pages are not for anonymous pages.
194                  */
195                 if (free <= totalreserve_pages)
196                         goto error;
197                 else
198                         free -= totalreserve_pages;
199
200                 /*
201                  * Reserve some for root
202                  */
203                 if (!cap_sys_admin)
204                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205
206                 if (free > pages)
207                         return 0;
208
209                 goto error;
210         }
211
212         allowed = vm_commit_limit();
213         /*
214          * Reserve some for root
215          */
216         if (!cap_sys_admin)
217                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219         /*
220          * Don't let a single process grow so big a user can't recover
221          */
222         if (mm) {
223                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224                 allowed -= min_t(long, mm->total_vm / 32, reserve);
225         }
226
227         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228                 return 0;
229 error:
230         vm_unacct_memory(pages);
231
232         return -ENOMEM;
233 }
234
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239                 struct file *file, struct address_space *mapping)
240 {
241         if (vma->vm_flags & VM_DENYWRITE)
242                 atomic_inc(&file_inode(file)->i_writecount);
243         if (vma->vm_flags & VM_SHARED)
244                 mapping_unmap_writable(mapping);
245
246         flush_dcache_mmap_lock(mapping);
247         vma_interval_tree_remove(vma, &mapping->i_mmap);
248         flush_dcache_mmap_unlock(mapping);
249 }
250
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257         struct file *file = vma->vm_file;
258
259         if (file) {
260                 struct address_space *mapping = file->f_mapping;
261                 i_mmap_lock_write(mapping);
262                 __remove_shared_vm_struct(vma, file, mapping);
263                 i_mmap_unlock_write(mapping);
264         }
265 }
266
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272         struct vm_area_struct *next = vma->vm_next;
273
274         might_sleep();
275         if (vma->vm_ops && vma->vm_ops->close)
276                 vma->vm_ops->close(vma);
277         if (vma->vm_file)
278                 fput(vma->vm_file);
279         mpol_put(vma_policy(vma));
280         kmem_cache_free(vm_area_cachep, vma);
281         return next;
282 }
283
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288         unsigned long retval;
289         unsigned long newbrk, oldbrk;
290         struct mm_struct *mm = current->mm;
291         unsigned long min_brk;
292         bool populate;
293
294         down_write(&mm->mmap_sem);
295
296 #ifdef CONFIG_COMPAT_BRK
297         /*
298          * CONFIG_COMPAT_BRK can still be overridden by setting
299          * randomize_va_space to 2, which will still cause mm->start_brk
300          * to be arbitrarily shifted
301          */
302         if (current->brk_randomized)
303                 min_brk = mm->start_brk;
304         else
305                 min_brk = mm->end_data;
306 #else
307         min_brk = mm->start_brk;
308 #endif
309         if (brk < min_brk)
310                 goto out;
311
312         /*
313          * Check against rlimit here. If this check is done later after the test
314          * of oldbrk with newbrk then it can escape the test and let the data
315          * segment grow beyond its set limit the in case where the limit is
316          * not page aligned -Ram Gupta
317          */
318         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319                               mm->end_data, mm->start_data))
320                 goto out;
321
322         newbrk = PAGE_ALIGN(brk);
323         oldbrk = PAGE_ALIGN(mm->brk);
324         if (oldbrk == newbrk)
325                 goto set_brk;
326
327         /* Always allow shrinking brk. */
328         if (brk <= mm->brk) {
329                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330                         goto set_brk;
331                 goto out;
332         }
333
334         /* Check against existing mmap mappings. */
335         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336                 goto out;
337
338         /* Ok, looks good - let it rip. */
339         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340                 goto out;
341
342 set_brk:
343         mm->brk = brk;
344         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345         up_write(&mm->mmap_sem);
346         if (populate)
347                 mm_populate(oldbrk, newbrk - oldbrk);
348         return brk;
349
350 out:
351         retval = mm->brk;
352         up_write(&mm->mmap_sem);
353         return retval;
354 }
355
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358         unsigned long max, subtree_gap;
359         max = vma->vm_start;
360         if (vma->vm_prev)
361                 max -= vma->vm_prev->vm_end;
362         if (vma->vm_rb.rb_left) {
363                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365                 if (subtree_gap > max)
366                         max = subtree_gap;
367         }
368         if (vma->vm_rb.rb_right) {
369                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371                 if (subtree_gap > max)
372                         max = subtree_gap;
373         }
374         return max;
375 }
376
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380         int i = 0, j, bug = 0;
381         struct rb_node *nd, *pn = NULL;
382         unsigned long prev = 0, pend = 0;
383
384         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385                 struct vm_area_struct *vma;
386                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387                 if (vma->vm_start < prev) {
388                         pr_emerg("vm_start %lx < prev %lx\n",
389                                   vma->vm_start, prev);
390                         bug = 1;
391                 }
392                 if (vma->vm_start < pend) {
393                         pr_emerg("vm_start %lx < pend %lx\n",
394                                   vma->vm_start, pend);
395                         bug = 1;
396                 }
397                 if (vma->vm_start > vma->vm_end) {
398                         pr_emerg("vm_start %lx > vm_end %lx\n",
399                                   vma->vm_start, vma->vm_end);
400                         bug = 1;
401                 }
402                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403                         pr_emerg("free gap %lx, correct %lx\n",
404                                vma->rb_subtree_gap,
405                                vma_compute_subtree_gap(vma));
406                         bug = 1;
407                 }
408                 i++;
409                 pn = nd;
410                 prev = vma->vm_start;
411                 pend = vma->vm_end;
412         }
413         j = 0;
414         for (nd = pn; nd; nd = rb_prev(nd))
415                 j++;
416         if (i != j) {
417                 pr_emerg("backwards %d, forwards %d\n", j, i);
418                 bug = 1;
419         }
420         return bug ? -1 : i;
421 }
422
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425         struct rb_node *nd;
426
427         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428                 struct vm_area_struct *vma;
429                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430                 VM_BUG_ON_VMA(vma != ignore &&
431                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432                         vma);
433         }
434 }
435
436 static void validate_mm(struct mm_struct *mm)
437 {
438         int bug = 0;
439         int i = 0;
440         unsigned long highest_address = 0;
441         struct vm_area_struct *vma = mm->mmap;
442
443         while (vma) {
444                 struct anon_vma *anon_vma = vma->anon_vma;
445                 struct anon_vma_chain *avc;
446
447                 if (anon_vma) {
448                         anon_vma_lock_read(anon_vma);
449                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450                                 anon_vma_interval_tree_verify(avc);
451                         anon_vma_unlock_read(anon_vma);
452                 }
453
454                 highest_address = vma->vm_end;
455                 vma = vma->vm_next;
456                 i++;
457         }
458         if (i != mm->map_count) {
459                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
460                 bug = 1;
461         }
462         if (highest_address != mm->highest_vm_end) {
463                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
464                           mm->highest_vm_end, highest_address);
465                 bug = 1;
466         }
467         i = browse_rb(&mm->mm_rb);
468         if (i != mm->map_count) {
469                 if (i != -1)
470                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
471                 bug = 1;
472         }
473         VM_BUG_ON_MM(bug, mm);
474 }
475 #else
476 #define validate_mm_rb(root, ignore) do { } while (0)
477 #define validate_mm(mm) do { } while (0)
478 #endif
479
480 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
481                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
482
483 /*
484  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
485  * vma->vm_prev->vm_end values changed, without modifying the vma's position
486  * in the rbtree.
487  */
488 static void vma_gap_update(struct vm_area_struct *vma)
489 {
490         /*
491          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
492          * function that does exacltly what we want.
493          */
494         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
495 }
496
497 static inline void vma_rb_insert(struct vm_area_struct *vma,
498                                  struct rb_root *root)
499 {
500         /* All rb_subtree_gap values must be consistent prior to insertion */
501         validate_mm_rb(root, NULL);
502
503         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
504 }
505
506 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
507 {
508         /*
509          * All rb_subtree_gap values must be consistent prior to erase,
510          * with the possible exception of the vma being erased.
511          */
512         validate_mm_rb(root, vma);
513
514         /*
515          * Note rb_erase_augmented is a fairly large inline function,
516          * so make sure we instantiate it only once with our desired
517          * augmented rbtree callbacks.
518          */
519         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
520 }
521
522 /*
523  * vma has some anon_vma assigned, and is already inserted on that
524  * anon_vma's interval trees.
525  *
526  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
527  * vma must be removed from the anon_vma's interval trees using
528  * anon_vma_interval_tree_pre_update_vma().
529  *
530  * After the update, the vma will be reinserted using
531  * anon_vma_interval_tree_post_update_vma().
532  *
533  * The entire update must be protected by exclusive mmap_sem and by
534  * the root anon_vma's mutex.
535  */
536 static inline void
537 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
538 {
539         struct anon_vma_chain *avc;
540
541         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
543 }
544
545 static inline void
546 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
547 {
548         struct anon_vma_chain *avc;
549
550         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
551                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
552 }
553
554 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
555                 unsigned long end, struct vm_area_struct **pprev,
556                 struct rb_node ***rb_link, struct rb_node **rb_parent)
557 {
558         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
559
560         __rb_link = &mm->mm_rb.rb_node;
561         rb_prev = __rb_parent = NULL;
562
563         while (*__rb_link) {
564                 struct vm_area_struct *vma_tmp;
565
566                 __rb_parent = *__rb_link;
567                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
568
569                 if (vma_tmp->vm_end > addr) {
570                         /* Fail if an existing vma overlaps the area */
571                         if (vma_tmp->vm_start < end)
572                                 return -ENOMEM;
573                         __rb_link = &__rb_parent->rb_left;
574                 } else {
575                         rb_prev = __rb_parent;
576                         __rb_link = &__rb_parent->rb_right;
577                 }
578         }
579
580         *pprev = NULL;
581         if (rb_prev)
582                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
583         *rb_link = __rb_link;
584         *rb_parent = __rb_parent;
585         return 0;
586 }
587
588 static unsigned long count_vma_pages_range(struct mm_struct *mm,
589                 unsigned long addr, unsigned long end)
590 {
591         unsigned long nr_pages = 0;
592         struct vm_area_struct *vma;
593
594         /* Find first overlaping mapping */
595         vma = find_vma_intersection(mm, addr, end);
596         if (!vma)
597                 return 0;
598
599         nr_pages = (min(end, vma->vm_end) -
600                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
601
602         /* Iterate over the rest of the overlaps */
603         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
604                 unsigned long overlap_len;
605
606                 if (vma->vm_start > end)
607                         break;
608
609                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
610                 nr_pages += overlap_len >> PAGE_SHIFT;
611         }
612
613         return nr_pages;
614 }
615
616 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
617                 struct rb_node **rb_link, struct rb_node *rb_parent)
618 {
619         /* Update tracking information for the gap following the new vma. */
620         if (vma->vm_next)
621                 vma_gap_update(vma->vm_next);
622         else
623                 mm->highest_vm_end = vma->vm_end;
624
625         /*
626          * vma->vm_prev wasn't known when we followed the rbtree to find the
627          * correct insertion point for that vma. As a result, we could not
628          * update the vma vm_rb parents rb_subtree_gap values on the way down.
629          * So, we first insert the vma with a zero rb_subtree_gap value
630          * (to be consistent with what we did on the way down), and then
631          * immediately update the gap to the correct value. Finally we
632          * rebalance the rbtree after all augmented values have been set.
633          */
634         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
635         vma->rb_subtree_gap = 0;
636         vma_gap_update(vma);
637         vma_rb_insert(vma, &mm->mm_rb);
638 }
639
640 static void __vma_link_file(struct vm_area_struct *vma)
641 {
642         struct file *file;
643
644         file = vma->vm_file;
645         if (file) {
646                 struct address_space *mapping = file->f_mapping;
647
648                 if (vma->vm_flags & VM_DENYWRITE)
649                         atomic_dec(&file_inode(file)->i_writecount);
650                 if (vma->vm_flags & VM_SHARED)
651                         atomic_inc(&mapping->i_mmap_writable);
652
653                 flush_dcache_mmap_lock(mapping);
654                 vma_interval_tree_insert(vma, &mapping->i_mmap);
655                 flush_dcache_mmap_unlock(mapping);
656         }
657 }
658
659 static void
660 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
661         struct vm_area_struct *prev, struct rb_node **rb_link,
662         struct rb_node *rb_parent)
663 {
664         __vma_link_list(mm, vma, prev, rb_parent);
665         __vma_link_rb(mm, vma, rb_link, rb_parent);
666 }
667
668 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669                         struct vm_area_struct *prev, struct rb_node **rb_link,
670                         struct rb_node *rb_parent)
671 {
672         struct address_space *mapping = NULL;
673
674         if (vma->vm_file) {
675                 mapping = vma->vm_file->f_mapping;
676                 i_mmap_lock_write(mapping);
677         }
678
679         __vma_link(mm, vma, prev, rb_link, rb_parent);
680         __vma_link_file(vma);
681
682         if (mapping)
683                 i_mmap_unlock_write(mapping);
684
685         mm->map_count++;
686         validate_mm(mm);
687 }
688
689 /*
690  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
691  * mm's list and rbtree.  It has already been inserted into the interval tree.
692  */
693 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695         struct vm_area_struct *prev;
696         struct rb_node **rb_link, *rb_parent;
697
698         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
699                            &prev, &rb_link, &rb_parent))
700                 BUG();
701         __vma_link(mm, vma, prev, rb_link, rb_parent);
702         mm->map_count++;
703 }
704
705 static inline void
706 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
707                 struct vm_area_struct *prev)
708 {
709         struct vm_area_struct *next;
710
711         vma_rb_erase(vma, &mm->mm_rb);
712         prev->vm_next = next = vma->vm_next;
713         if (next)
714                 next->vm_prev = prev;
715
716         /* Kill the cache */
717         vmacache_invalidate(mm);
718 }
719
720 /*
721  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
722  * is already present in an i_mmap tree without adjusting the tree.
723  * The following helper function should be used when such adjustments
724  * are necessary.  The "insert" vma (if any) is to be inserted
725  * before we drop the necessary locks.
726  */
727 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
728         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
729 {
730         struct mm_struct *mm = vma->vm_mm;
731         struct vm_area_struct *next = vma->vm_next;
732         struct vm_area_struct *importer = NULL;
733         struct address_space *mapping = NULL;
734         struct rb_root *root = NULL;
735         struct anon_vma *anon_vma = NULL;
736         struct file *file = vma->vm_file;
737         bool start_changed = false, end_changed = false;
738         long adjust_next = 0;
739         int remove_next = 0;
740
741         if (next && !insert) {
742                 struct vm_area_struct *exporter = NULL;
743
744                 if (end >= next->vm_end) {
745                         /*
746                          * vma expands, overlapping all the next, and
747                          * perhaps the one after too (mprotect case 6).
748                          */
749 again:                  remove_next = 1 + (end > next->vm_end);
750                         end = next->vm_end;
751                         exporter = next;
752                         importer = vma;
753                 } else if (end > next->vm_start) {
754                         /*
755                          * vma expands, overlapping part of the next:
756                          * mprotect case 5 shifting the boundary up.
757                          */
758                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759                         exporter = next;
760                         importer = vma;
761                 } else if (end < vma->vm_end) {
762                         /*
763                          * vma shrinks, and !insert tells it's not
764                          * split_vma inserting another: so it must be
765                          * mprotect case 4 shifting the boundary down.
766                          */
767                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
768                         exporter = vma;
769                         importer = next;
770                 }
771
772                 /*
773                  * Easily overlooked: when mprotect shifts the boundary,
774                  * make sure the expanding vma has anon_vma set if the
775                  * shrinking vma had, to cover any anon pages imported.
776                  */
777                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
778                         int error;
779
780                         importer->anon_vma = exporter->anon_vma;
781                         error = anon_vma_clone(importer, exporter);
782                         if (error)
783                                 return error;
784                 }
785         }
786
787         if (file) {
788                 mapping = file->f_mapping;
789                 root = &mapping->i_mmap;
790                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
791
792                 if (adjust_next)
793                         uprobe_munmap(next, next->vm_start, next->vm_end);
794
795                 i_mmap_lock_write(mapping);
796                 if (insert) {
797                         /*
798                          * Put into interval tree now, so instantiated pages
799                          * are visible to arm/parisc __flush_dcache_page
800                          * throughout; but we cannot insert into address
801                          * space until vma start or end is updated.
802                          */
803                         __vma_link_file(insert);
804                 }
805         }
806
807         vma_adjust_trans_huge(vma, start, end, adjust_next);
808
809         anon_vma = vma->anon_vma;
810         if (!anon_vma && adjust_next)
811                 anon_vma = next->anon_vma;
812         if (anon_vma) {
813                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
814                           anon_vma != next->anon_vma, next);
815                 anon_vma_lock_write(anon_vma);
816                 anon_vma_interval_tree_pre_update_vma(vma);
817                 if (adjust_next)
818                         anon_vma_interval_tree_pre_update_vma(next);
819         }
820
821         if (root) {
822                 flush_dcache_mmap_lock(mapping);
823                 vma_interval_tree_remove(vma, root);
824                 if (adjust_next)
825                         vma_interval_tree_remove(next, root);
826         }
827
828         if (start != vma->vm_start) {
829                 vma->vm_start = start;
830                 start_changed = true;
831         }
832         if (end != vma->vm_end) {
833                 vma->vm_end = end;
834                 end_changed = true;
835         }
836         vma->vm_pgoff = pgoff;
837         if (adjust_next) {
838                 next->vm_start += adjust_next << PAGE_SHIFT;
839                 next->vm_pgoff += adjust_next;
840         }
841
842         if (root) {
843                 if (adjust_next)
844                         vma_interval_tree_insert(next, root);
845                 vma_interval_tree_insert(vma, root);
846                 flush_dcache_mmap_unlock(mapping);
847         }
848
849         if (remove_next) {
850                 /*
851                  * vma_merge has merged next into vma, and needs
852                  * us to remove next before dropping the locks.
853                  */
854                 __vma_unlink(mm, next, vma);
855                 if (file)
856                         __remove_shared_vm_struct(next, file, mapping);
857         } else if (insert) {
858                 /*
859                  * split_vma has split insert from vma, and needs
860                  * us to insert it before dropping the locks
861                  * (it may either follow vma or precede it).
862                  */
863                 __insert_vm_struct(mm, insert);
864         } else {
865                 if (start_changed)
866                         vma_gap_update(vma);
867                 if (end_changed) {
868                         if (!next)
869                                 mm->highest_vm_end = end;
870                         else if (!adjust_next)
871                                 vma_gap_update(next);
872                 }
873         }
874
875         if (anon_vma) {
876                 anon_vma_interval_tree_post_update_vma(vma);
877                 if (adjust_next)
878                         anon_vma_interval_tree_post_update_vma(next);
879                 anon_vma_unlock_write(anon_vma);
880         }
881         if (mapping)
882                 i_mmap_unlock_write(mapping);
883
884         if (root) {
885                 uprobe_mmap(vma);
886
887                 if (adjust_next)
888                         uprobe_mmap(next);
889         }
890
891         if (remove_next) {
892                 if (file) {
893                         uprobe_munmap(next, next->vm_start, next->vm_end);
894                         fput(file);
895                 }
896                 if (next->anon_vma)
897                         anon_vma_merge(vma, next);
898                 mm->map_count--;
899                 mpol_put(vma_policy(next));
900                 kmem_cache_free(vm_area_cachep, next);
901                 /*
902                  * In mprotect's case 6 (see comments on vma_merge),
903                  * we must remove another next too. It would clutter
904                  * up the code too much to do both in one go.
905                  */
906                 next = vma->vm_next;
907                 if (remove_next == 2)
908                         goto again;
909                 else if (next)
910                         vma_gap_update(next);
911                 else
912                         mm->highest_vm_end = end;
913         }
914         if (insert && file)
915                 uprobe_mmap(insert);
916
917         validate_mm(mm);
918
919         return 0;
920 }
921
922 /*
923  * If the vma has a ->close operation then the driver probably needs to release
924  * per-vma resources, so we don't attempt to merge those.
925  */
926 static inline int is_mergeable_vma(struct vm_area_struct *vma,
927                                 struct file *file, unsigned long vm_flags,
928                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
929 {
930         /*
931          * VM_SOFTDIRTY should not prevent from VMA merging, if we
932          * match the flags but dirty bit -- the caller should mark
933          * merged VMA as dirty. If dirty bit won't be excluded from
934          * comparison, we increase pressue on the memory system forcing
935          * the kernel to generate new VMAs when old one could be
936          * extended instead.
937          */
938         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939                 return 0;
940         if (vma->vm_file != file)
941                 return 0;
942         if (vma->vm_ops && vma->vm_ops->close)
943                 return 0;
944         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
945                 return 0;
946         return 1;
947 }
948
949 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
950                                         struct anon_vma *anon_vma2,
951                                         struct vm_area_struct *vma)
952 {
953         /*
954          * The list_is_singular() test is to avoid merging VMA cloned from
955          * parents. This can improve scalability caused by anon_vma lock.
956          */
957         if ((!anon_vma1 || !anon_vma2) && (!vma ||
958                 list_is_singular(&vma->anon_vma_chain)))
959                 return 1;
960         return anon_vma1 == anon_vma2;
961 }
962
963 /*
964  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
965  * in front of (at a lower virtual address and file offset than) the vma.
966  *
967  * We cannot merge two vmas if they have differently assigned (non-NULL)
968  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
969  *
970  * We don't check here for the merged mmap wrapping around the end of pagecache
971  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
972  * wrap, nor mmaps which cover the final page at index -1UL.
973  */
974 static int
975 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
976                      struct anon_vma *anon_vma, struct file *file,
977                      pgoff_t vm_pgoff,
978                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
979 {
980         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
981             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
982                 if (vma->vm_pgoff == vm_pgoff)
983                         return 1;
984         }
985         return 0;
986 }
987
988 /*
989  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
990  * beyond (at a higher virtual address and file offset than) the vma.
991  *
992  * We cannot merge two vmas if they have differently assigned (non-NULL)
993  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
994  */
995 static int
996 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
997                     struct anon_vma *anon_vma, struct file *file,
998                     pgoff_t vm_pgoff,
999                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1000 {
1001         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1002             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1003                 pgoff_t vm_pglen;
1004                 vm_pglen = vma_pages(vma);
1005                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1006                         return 1;
1007         }
1008         return 0;
1009 }
1010
1011 /*
1012  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1013  * whether that can be merged with its predecessor or its successor.
1014  * Or both (it neatly fills a hole).
1015  *
1016  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1017  * certain not to be mapped by the time vma_merge is called; but when
1018  * called for mprotect, it is certain to be already mapped (either at
1019  * an offset within prev, or at the start of next), and the flags of
1020  * this area are about to be changed to vm_flags - and the no-change
1021  * case has already been eliminated.
1022  *
1023  * The following mprotect cases have to be considered, where AAAA is
1024  * the area passed down from mprotect_fixup, never extending beyond one
1025  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1026  *
1027  *     AAAA             AAAA                AAAA          AAAA
1028  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1029  *    cannot merge    might become    might become    might become
1030  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1031  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1032  *    mremap move:                                    PPPPNNNNNNNN 8
1033  *        AAAA
1034  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1035  *    might become    case 1 below    case 2 below    case 3 below
1036  *
1037  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1038  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1039  */
1040 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1041                         struct vm_area_struct *prev, unsigned long addr,
1042                         unsigned long end, unsigned long vm_flags,
1043                         struct anon_vma *anon_vma, struct file *file,
1044                         pgoff_t pgoff, struct mempolicy *policy,
1045                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1046 {
1047         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1048         struct vm_area_struct *area, *next;
1049         int err;
1050
1051         /*
1052          * We later require that vma->vm_flags == vm_flags,
1053          * so this tests vma->vm_flags & VM_SPECIAL, too.
1054          */
1055         if (vm_flags & VM_SPECIAL)
1056                 return NULL;
1057
1058         if (prev)
1059                 next = prev->vm_next;
1060         else
1061                 next = mm->mmap;
1062         area = next;
1063         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1064                 next = next->vm_next;
1065
1066         /*
1067          * Can it merge with the predecessor?
1068          */
1069         if (prev && prev->vm_end == addr &&
1070                         mpol_equal(vma_policy(prev), policy) &&
1071                         can_vma_merge_after(prev, vm_flags,
1072                                             anon_vma, file, pgoff,
1073                                             vm_userfaultfd_ctx)) {
1074                 /*
1075                  * OK, it can.  Can we now merge in the successor as well?
1076                  */
1077                 if (next && end == next->vm_start &&
1078                                 mpol_equal(policy, vma_policy(next)) &&
1079                                 can_vma_merge_before(next, vm_flags,
1080                                                      anon_vma, file,
1081                                                      pgoff+pglen,
1082                                                      vm_userfaultfd_ctx) &&
1083                                 is_mergeable_anon_vma(prev->anon_vma,
1084                                                       next->anon_vma, NULL)) {
1085                                                         /* cases 1, 6 */
1086                         err = vma_adjust(prev, prev->vm_start,
1087                                 next->vm_end, prev->vm_pgoff, NULL);
1088                 } else                                  /* cases 2, 5, 7 */
1089                         err = vma_adjust(prev, prev->vm_start,
1090                                 end, prev->vm_pgoff, NULL);
1091                 if (err)
1092                         return NULL;
1093                 khugepaged_enter_vma_merge(prev, vm_flags);
1094                 return prev;
1095         }
1096
1097         /*
1098          * Can this new request be merged in front of next?
1099          */
1100         if (next && end == next->vm_start &&
1101                         mpol_equal(policy, vma_policy(next)) &&
1102                         can_vma_merge_before(next, vm_flags,
1103                                              anon_vma, file, pgoff+pglen,
1104                                              vm_userfaultfd_ctx)) {
1105                 if (prev && addr < prev->vm_end)        /* case 4 */
1106                         err = vma_adjust(prev, prev->vm_start,
1107                                 addr, prev->vm_pgoff, NULL);
1108                 else                                    /* cases 3, 8 */
1109                         err = vma_adjust(area, addr, next->vm_end,
1110                                 next->vm_pgoff - pglen, NULL);
1111                 if (err)
1112                         return NULL;
1113                 khugepaged_enter_vma_merge(area, vm_flags);
1114                 return area;
1115         }
1116
1117         return NULL;
1118 }
1119
1120 /*
1121  * Rough compatbility check to quickly see if it's even worth looking
1122  * at sharing an anon_vma.
1123  *
1124  * They need to have the same vm_file, and the flags can only differ
1125  * in things that mprotect may change.
1126  *
1127  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1128  * we can merge the two vma's. For example, we refuse to merge a vma if
1129  * there is a vm_ops->close() function, because that indicates that the
1130  * driver is doing some kind of reference counting. But that doesn't
1131  * really matter for the anon_vma sharing case.
1132  */
1133 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135         return a->vm_end == b->vm_start &&
1136                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1137                 a->vm_file == b->vm_file &&
1138                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1139                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1140 }
1141
1142 /*
1143  * Do some basic sanity checking to see if we can re-use the anon_vma
1144  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1145  * the same as 'old', the other will be the new one that is trying
1146  * to share the anon_vma.
1147  *
1148  * NOTE! This runs with mm_sem held for reading, so it is possible that
1149  * the anon_vma of 'old' is concurrently in the process of being set up
1150  * by another page fault trying to merge _that_. But that's ok: if it
1151  * is being set up, that automatically means that it will be a singleton
1152  * acceptable for merging, so we can do all of this optimistically. But
1153  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1154  *
1155  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1156  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1157  * is to return an anon_vma that is "complex" due to having gone through
1158  * a fork).
1159  *
1160  * We also make sure that the two vma's are compatible (adjacent,
1161  * and with the same memory policies). That's all stable, even with just
1162  * a read lock on the mm_sem.
1163  */
1164 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1165 {
1166         if (anon_vma_compatible(a, b)) {
1167                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1168
1169                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1170                         return anon_vma;
1171         }
1172         return NULL;
1173 }
1174
1175 /*
1176  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1177  * neighbouring vmas for a suitable anon_vma, before it goes off
1178  * to allocate a new anon_vma.  It checks because a repetitive
1179  * sequence of mprotects and faults may otherwise lead to distinct
1180  * anon_vmas being allocated, preventing vma merge in subsequent
1181  * mprotect.
1182  */
1183 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1184 {
1185         struct anon_vma *anon_vma;
1186         struct vm_area_struct *near;
1187
1188         near = vma->vm_next;
1189         if (!near)
1190                 goto try_prev;
1191
1192         anon_vma = reusable_anon_vma(near, vma, near);
1193         if (anon_vma)
1194                 return anon_vma;
1195 try_prev:
1196         near = vma->vm_prev;
1197         if (!near)
1198                 goto none;
1199
1200         anon_vma = reusable_anon_vma(near, near, vma);
1201         if (anon_vma)
1202                 return anon_vma;
1203 none:
1204         /*
1205          * There's no absolute need to look only at touching neighbours:
1206          * we could search further afield for "compatible" anon_vmas.
1207          * But it would probably just be a waste of time searching,
1208          * or lead to too many vmas hanging off the same anon_vma.
1209          * We're trying to allow mprotect remerging later on,
1210          * not trying to minimize memory used for anon_vmas.
1211          */
1212         return NULL;
1213 }
1214
1215 #ifdef CONFIG_PROC_FS
1216 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1217                                                 struct file *file, long pages)
1218 {
1219         const unsigned long stack_flags
1220                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1221
1222         mm->total_vm += pages;
1223
1224         if (file) {
1225                 mm->shared_vm += pages;
1226                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1227                         mm->exec_vm += pages;
1228         } else if (flags & stack_flags)
1229                 mm->stack_vm += pages;
1230 }
1231 #endif /* CONFIG_PROC_FS */
1232
1233 /*
1234  * If a hint addr is less than mmap_min_addr change hint to be as
1235  * low as possible but still greater than mmap_min_addr
1236  */
1237 static inline unsigned long round_hint_to_min(unsigned long hint)
1238 {
1239         hint &= PAGE_MASK;
1240         if (((void *)hint != NULL) &&
1241             (hint < mmap_min_addr))
1242                 return PAGE_ALIGN(mmap_min_addr);
1243         return hint;
1244 }
1245
1246 static inline int mlock_future_check(struct mm_struct *mm,
1247                                      unsigned long flags,
1248                                      unsigned long len)
1249 {
1250         unsigned long locked, lock_limit;
1251
1252         /*  mlock MCL_FUTURE? */
1253         if (flags & VM_LOCKED) {
1254                 locked = len >> PAGE_SHIFT;
1255                 locked += mm->locked_vm;
1256                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1257                 lock_limit >>= PAGE_SHIFT;
1258                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1259                         return -EAGAIN;
1260         }
1261         return 0;
1262 }
1263
1264 /*
1265  * The caller must hold down_write(&current->mm->mmap_sem).
1266  */
1267 unsigned long do_mmap(struct file *file, unsigned long addr,
1268                         unsigned long len, unsigned long prot,
1269                         unsigned long flags, vm_flags_t vm_flags,
1270                         unsigned long pgoff, unsigned long *populate)
1271 {
1272         struct mm_struct *mm = current->mm;
1273
1274         *populate = 0;
1275
1276         if (!len)
1277                 return -EINVAL;
1278
1279         /*
1280          * Does the application expect PROT_READ to imply PROT_EXEC?
1281          *
1282          * (the exception is when the underlying filesystem is noexec
1283          *  mounted, in which case we dont add PROT_EXEC.)
1284          */
1285         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1286                 if (!(file && path_noexec(&file->f_path)))
1287                         prot |= PROT_EXEC;
1288
1289         if (!(flags & MAP_FIXED))
1290                 addr = round_hint_to_min(addr);
1291
1292         /* Careful about overflows.. */
1293         len = PAGE_ALIGN(len);
1294         if (!len)
1295                 return -ENOMEM;
1296
1297         /* offset overflow? */
1298         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1299                 return -EOVERFLOW;
1300
1301         /* Too many mappings? */
1302         if (mm->map_count > sysctl_max_map_count)
1303                 return -ENOMEM;
1304
1305         /* Obtain the address to map to. we verify (or select) it and ensure
1306          * that it represents a valid section of the address space.
1307          */
1308         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1309         if (offset_in_page(addr))
1310                 return addr;
1311
1312         /* Do simple checking here so the lower-level routines won't have
1313          * to. we assume access permissions have been handled by the open
1314          * of the memory object, so we don't do any here.
1315          */
1316         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1317                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1318
1319         if (flags & MAP_LOCKED)
1320                 if (!can_do_mlock())
1321                         return -EPERM;
1322
1323         if (mlock_future_check(mm, vm_flags, len))
1324                 return -EAGAIN;
1325
1326         if (file) {
1327                 struct inode *inode = file_inode(file);
1328
1329                 switch (flags & MAP_TYPE) {
1330                 case MAP_SHARED:
1331                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1332                                 return -EACCES;
1333
1334                         /*
1335                          * Make sure we don't allow writing to an append-only
1336                          * file..
1337                          */
1338                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1339                                 return -EACCES;
1340
1341                         /*
1342                          * Make sure there are no mandatory locks on the file.
1343                          */
1344                         if (locks_verify_locked(file))
1345                                 return -EAGAIN;
1346
1347                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1348                         if (!(file->f_mode & FMODE_WRITE))
1349                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1350
1351                         /* fall through */
1352                 case MAP_PRIVATE:
1353                         if (!(file->f_mode & FMODE_READ))
1354                                 return -EACCES;
1355                         if (path_noexec(&file->f_path)) {
1356                                 if (vm_flags & VM_EXEC)
1357                                         return -EPERM;
1358                                 vm_flags &= ~VM_MAYEXEC;
1359                         }
1360
1361                         if (!file->f_op->mmap)
1362                                 return -ENODEV;
1363                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364                                 return -EINVAL;
1365                         break;
1366
1367                 default:
1368                         return -EINVAL;
1369                 }
1370         } else {
1371                 switch (flags & MAP_TYPE) {
1372                 case MAP_SHARED:
1373                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1374                                 return -EINVAL;
1375                         /*
1376                          * Ignore pgoff.
1377                          */
1378                         pgoff = 0;
1379                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1380                         break;
1381                 case MAP_PRIVATE:
1382                         /*
1383                          * Set pgoff according to addr for anon_vma.
1384                          */
1385                         pgoff = addr >> PAGE_SHIFT;
1386                         break;
1387                 default:
1388                         return -EINVAL;
1389                 }
1390         }
1391
1392         /*
1393          * Set 'VM_NORESERVE' if we should not account for the
1394          * memory use of this mapping.
1395          */
1396         if (flags & MAP_NORESERVE) {
1397                 /* We honor MAP_NORESERVE if allowed to overcommit */
1398                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1399                         vm_flags |= VM_NORESERVE;
1400
1401                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402                 if (file && is_file_hugepages(file))
1403                         vm_flags |= VM_NORESERVE;
1404         }
1405
1406         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1407         if (!IS_ERR_VALUE(addr) &&
1408             ((vm_flags & VM_LOCKED) ||
1409              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1410                 *populate = len;
1411         return addr;
1412 }
1413
1414 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1415                 unsigned long, prot, unsigned long, flags,
1416                 unsigned long, fd, unsigned long, pgoff)
1417 {
1418         struct file *file = NULL;
1419         unsigned long retval;
1420
1421         if (!(flags & MAP_ANONYMOUS)) {
1422                 audit_mmap_fd(fd, flags);
1423                 file = fget(fd);
1424                 if (!file)
1425                         return -EBADF;
1426                 if (is_file_hugepages(file))
1427                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1428                 retval = -EINVAL;
1429                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1430                         goto out_fput;
1431         } else if (flags & MAP_HUGETLB) {
1432                 struct user_struct *user = NULL;
1433                 struct hstate *hs;
1434
1435                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1436                 if (!hs)
1437                         return -EINVAL;
1438
1439                 len = ALIGN(len, huge_page_size(hs));
1440                 /*
1441                  * VM_NORESERVE is used because the reservations will be
1442                  * taken when vm_ops->mmap() is called
1443                  * A dummy user value is used because we are not locking
1444                  * memory so no accounting is necessary
1445                  */
1446                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1447                                 VM_NORESERVE,
1448                                 &user, HUGETLB_ANONHUGE_INODE,
1449                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1450                 if (IS_ERR(file))
1451                         return PTR_ERR(file);
1452         }
1453
1454         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1455
1456         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1457 out_fput:
1458         if (file)
1459                 fput(file);
1460         return retval;
1461 }
1462
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct {
1465         unsigned long addr;
1466         unsigned long len;
1467         unsigned long prot;
1468         unsigned long flags;
1469         unsigned long fd;
1470         unsigned long offset;
1471 };
1472
1473 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1474 {
1475         struct mmap_arg_struct a;
1476
1477         if (copy_from_user(&a, arg, sizeof(a)))
1478                 return -EFAULT;
1479         if (offset_in_page(a.offset))
1480                 return -EINVAL;
1481
1482         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1483                               a.offset >> PAGE_SHIFT);
1484 }
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1486
1487 /*
1488  * Some shared mappigns will want the pages marked read-only
1489  * to track write events. If so, we'll downgrade vm_page_prot
1490  * to the private version (using protection_map[] without the
1491  * VM_SHARED bit).
1492  */
1493 int vma_wants_writenotify(struct vm_area_struct *vma)
1494 {
1495         vm_flags_t vm_flags = vma->vm_flags;
1496         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1497
1498         /* If it was private or non-writable, the write bit is already clear */
1499         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1500                 return 0;
1501
1502         /* The backer wishes to know when pages are first written to? */
1503         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1504                 return 1;
1505
1506         /* The open routine did something to the protections that pgprot_modify
1507          * won't preserve? */
1508         if (pgprot_val(vma->vm_page_prot) !=
1509             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1510                 return 0;
1511
1512         /* Do we need to track softdirty? */
1513         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1514                 return 1;
1515
1516         /* Specialty mapping? */
1517         if (vm_flags & VM_PFNMAP)
1518                 return 0;
1519
1520         /* Can the mapping track the dirty pages? */
1521         return vma->vm_file && vma->vm_file->f_mapping &&
1522                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1523 }
1524
1525 /*
1526  * We account for memory if it's a private writeable mapping,
1527  * not hugepages and VM_NORESERVE wasn't set.
1528  */
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531         /*
1532          * hugetlb has its own accounting separate from the core VM
1533          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534          */
1535         if (file && is_file_hugepages(file))
1536                 return 0;
1537
1538         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540
1541 unsigned long mmap_region(struct file *file, unsigned long addr,
1542                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1543 {
1544         struct mm_struct *mm = current->mm;
1545         struct vm_area_struct *vma, *prev;
1546         int error;
1547         struct rb_node **rb_link, *rb_parent;
1548         unsigned long charged = 0;
1549
1550         /* Check against address space limit. */
1551         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1552                 unsigned long nr_pages;
1553
1554                 /*
1555                  * MAP_FIXED may remove pages of mappings that intersects with
1556                  * requested mapping. Account for the pages it would unmap.
1557                  */
1558                 if (!(vm_flags & MAP_FIXED))
1559                         return -ENOMEM;
1560
1561                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1562
1563                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1564                         return -ENOMEM;
1565         }
1566
1567         /* Clear old maps */
1568         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1569                               &rb_parent)) {
1570                 if (do_munmap(mm, addr, len))
1571                         return -ENOMEM;
1572         }
1573
1574         /*
1575          * Private writable mapping: check memory availability
1576          */
1577         if (accountable_mapping(file, vm_flags)) {
1578                 charged = len >> PAGE_SHIFT;
1579                 if (security_vm_enough_memory_mm(mm, charged))
1580                         return -ENOMEM;
1581                 vm_flags |= VM_ACCOUNT;
1582         }
1583
1584         /*
1585          * Can we just expand an old mapping?
1586          */
1587         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1588                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1589         if (vma)
1590                 goto out;
1591
1592         /*
1593          * Determine the object being mapped and call the appropriate
1594          * specific mapper. the address has already been validated, but
1595          * not unmapped, but the maps are removed from the list.
1596          */
1597         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1598         if (!vma) {
1599                 error = -ENOMEM;
1600                 goto unacct_error;
1601         }
1602
1603         vma->vm_mm = mm;
1604         vma->vm_start = addr;
1605         vma->vm_end = addr + len;
1606         vma->vm_flags = vm_flags;
1607         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1608         vma->vm_pgoff = pgoff;
1609         INIT_LIST_HEAD(&vma->anon_vma_chain);
1610
1611         if (file) {
1612                 if (vm_flags & VM_DENYWRITE) {
1613                         error = deny_write_access(file);
1614                         if (error)
1615                                 goto free_vma;
1616                 }
1617                 if (vm_flags & VM_SHARED) {
1618                         error = mapping_map_writable(file->f_mapping);
1619                         if (error)
1620                                 goto allow_write_and_free_vma;
1621                 }
1622
1623                 /* ->mmap() can change vma->vm_file, but must guarantee that
1624                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1625                  * and map writably if VM_SHARED is set. This usually means the
1626                  * new file must not have been exposed to user-space, yet.
1627                  */
1628                 vma->vm_file = get_file(file);
1629                 error = file->f_op->mmap(file, vma);
1630                 if (error)
1631                         goto unmap_and_free_vma;
1632
1633                 /* Can addr have changed??
1634                  *
1635                  * Answer: Yes, several device drivers can do it in their
1636                  *         f_op->mmap method. -DaveM
1637                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1638                  *      be updated for vma_link()
1639                  */
1640                 WARN_ON_ONCE(addr != vma->vm_start);
1641
1642                 addr = vma->vm_start;
1643                 vm_flags = vma->vm_flags;
1644         } else if (vm_flags & VM_SHARED) {
1645                 error = shmem_zero_setup(vma);
1646                 if (error)
1647                         goto free_vma;
1648         }
1649
1650         vma_link(mm, vma, prev, rb_link, rb_parent);
1651         /* Once vma denies write, undo our temporary denial count */
1652         if (file) {
1653                 if (vm_flags & VM_SHARED)
1654                         mapping_unmap_writable(file->f_mapping);
1655                 if (vm_flags & VM_DENYWRITE)
1656                         allow_write_access(file);
1657         }
1658         file = vma->vm_file;
1659 out:
1660         perf_event_mmap(vma);
1661
1662         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1663         if (vm_flags & VM_LOCKED) {
1664                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1665                                         vma == get_gate_vma(current->mm)))
1666                         mm->locked_vm += (len >> PAGE_SHIFT);
1667                 else
1668                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1669         }
1670
1671         if (file)
1672                 uprobe_mmap(vma);
1673
1674         /*
1675          * New (or expanded) vma always get soft dirty status.
1676          * Otherwise user-space soft-dirty page tracker won't
1677          * be able to distinguish situation when vma area unmapped,
1678          * then new mapped in-place (which must be aimed as
1679          * a completely new data area).
1680          */
1681         vma->vm_flags |= VM_SOFTDIRTY;
1682
1683         vma_set_page_prot(vma);
1684
1685         return addr;
1686
1687 unmap_and_free_vma:
1688         vma->vm_file = NULL;
1689         fput(file);
1690
1691         /* Undo any partial mapping done by a device driver. */
1692         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1693         charged = 0;
1694         if (vm_flags & VM_SHARED)
1695                 mapping_unmap_writable(file->f_mapping);
1696 allow_write_and_free_vma:
1697         if (vm_flags & VM_DENYWRITE)
1698                 allow_write_access(file);
1699 free_vma:
1700         kmem_cache_free(vm_area_cachep, vma);
1701 unacct_error:
1702         if (charged)
1703                 vm_unacct_memory(charged);
1704         return error;
1705 }
1706
1707 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1708 {
1709         /*
1710          * We implement the search by looking for an rbtree node that
1711          * immediately follows a suitable gap. That is,
1712          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1713          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1714          * - gap_end - gap_start >= length
1715          */
1716
1717         struct mm_struct *mm = current->mm;
1718         struct vm_area_struct *vma;
1719         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1720
1721         /* Adjust search length to account for worst case alignment overhead */
1722         length = info->length + info->align_mask;
1723         if (length < info->length)
1724                 return -ENOMEM;
1725
1726         /* Adjust search limits by the desired length */
1727         if (info->high_limit < length)
1728                 return -ENOMEM;
1729         high_limit = info->high_limit - length;
1730
1731         if (info->low_limit > high_limit)
1732                 return -ENOMEM;
1733         low_limit = info->low_limit + length;
1734
1735         /* Check if rbtree root looks promising */
1736         if (RB_EMPTY_ROOT(&mm->mm_rb))
1737                 goto check_highest;
1738         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1739         if (vma->rb_subtree_gap < length)
1740                 goto check_highest;
1741
1742         while (true) {
1743                 /* Visit left subtree if it looks promising */
1744                 gap_end = vma->vm_start;
1745                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1746                         struct vm_area_struct *left =
1747                                 rb_entry(vma->vm_rb.rb_left,
1748                                          struct vm_area_struct, vm_rb);
1749                         if (left->rb_subtree_gap >= length) {
1750                                 vma = left;
1751                                 continue;
1752                         }
1753                 }
1754
1755                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1756 check_current:
1757                 /* Check if current node has a suitable gap */
1758                 if (gap_start > high_limit)
1759                         return -ENOMEM;
1760                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1761                         goto found;
1762
1763                 /* Visit right subtree if it looks promising */
1764                 if (vma->vm_rb.rb_right) {
1765                         struct vm_area_struct *right =
1766                                 rb_entry(vma->vm_rb.rb_right,
1767                                          struct vm_area_struct, vm_rb);
1768                         if (right->rb_subtree_gap >= length) {
1769                                 vma = right;
1770                                 continue;
1771                         }
1772                 }
1773
1774                 /* Go back up the rbtree to find next candidate node */
1775                 while (true) {
1776                         struct rb_node *prev = &vma->vm_rb;
1777                         if (!rb_parent(prev))
1778                                 goto check_highest;
1779                         vma = rb_entry(rb_parent(prev),
1780                                        struct vm_area_struct, vm_rb);
1781                         if (prev == vma->vm_rb.rb_left) {
1782                                 gap_start = vma->vm_prev->vm_end;
1783                                 gap_end = vma->vm_start;
1784                                 goto check_current;
1785                         }
1786                 }
1787         }
1788
1789 check_highest:
1790         /* Check highest gap, which does not precede any rbtree node */
1791         gap_start = mm->highest_vm_end;
1792         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1793         if (gap_start > high_limit)
1794                 return -ENOMEM;
1795
1796 found:
1797         /* We found a suitable gap. Clip it with the original low_limit. */
1798         if (gap_start < info->low_limit)
1799                 gap_start = info->low_limit;
1800
1801         /* Adjust gap address to the desired alignment */
1802         gap_start += (info->align_offset - gap_start) & info->align_mask;
1803
1804         VM_BUG_ON(gap_start + info->length > info->high_limit);
1805         VM_BUG_ON(gap_start + info->length > gap_end);
1806         return gap_start;
1807 }
1808
1809 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1810 {
1811         struct mm_struct *mm = current->mm;
1812         struct vm_area_struct *vma;
1813         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1814
1815         /* Adjust search length to account for worst case alignment overhead */
1816         length = info->length + info->align_mask;
1817         if (length < info->length)
1818                 return -ENOMEM;
1819
1820         /*
1821          * Adjust search limits by the desired length.
1822          * See implementation comment at top of unmapped_area().
1823          */
1824         gap_end = info->high_limit;
1825         if (gap_end < length)
1826                 return -ENOMEM;
1827         high_limit = gap_end - length;
1828
1829         if (info->low_limit > high_limit)
1830                 return -ENOMEM;
1831         low_limit = info->low_limit + length;
1832
1833         /* Check highest gap, which does not precede any rbtree node */
1834         gap_start = mm->highest_vm_end;
1835         if (gap_start <= high_limit)
1836                 goto found_highest;
1837
1838         /* Check if rbtree root looks promising */
1839         if (RB_EMPTY_ROOT(&mm->mm_rb))
1840                 return -ENOMEM;
1841         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1842         if (vma->rb_subtree_gap < length)
1843                 return -ENOMEM;
1844
1845         while (true) {
1846                 /* Visit right subtree if it looks promising */
1847                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1848                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1849                         struct vm_area_struct *right =
1850                                 rb_entry(vma->vm_rb.rb_right,
1851                                          struct vm_area_struct, vm_rb);
1852                         if (right->rb_subtree_gap >= length) {
1853                                 vma = right;
1854                                 continue;
1855                         }
1856                 }
1857
1858 check_current:
1859                 /* Check if current node has a suitable gap */
1860                 gap_end = vma->vm_start;
1861                 if (gap_end < low_limit)
1862                         return -ENOMEM;
1863                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1864                         goto found;
1865
1866                 /* Visit left subtree if it looks promising */
1867                 if (vma->vm_rb.rb_left) {
1868                         struct vm_area_struct *left =
1869                                 rb_entry(vma->vm_rb.rb_left,
1870                                          struct vm_area_struct, vm_rb);
1871                         if (left->rb_subtree_gap >= length) {
1872                                 vma = left;
1873                                 continue;
1874                         }
1875                 }
1876
1877                 /* Go back up the rbtree to find next candidate node */
1878                 while (true) {
1879                         struct rb_node *prev = &vma->vm_rb;
1880                         if (!rb_parent(prev))
1881                                 return -ENOMEM;
1882                         vma = rb_entry(rb_parent(prev),
1883                                        struct vm_area_struct, vm_rb);
1884                         if (prev == vma->vm_rb.rb_right) {
1885                                 gap_start = vma->vm_prev ?
1886                                         vma->vm_prev->vm_end : 0;
1887                                 goto check_current;
1888                         }
1889                 }
1890         }
1891
1892 found:
1893         /* We found a suitable gap. Clip it with the original high_limit. */
1894         if (gap_end > info->high_limit)
1895                 gap_end = info->high_limit;
1896
1897 found_highest:
1898         /* Compute highest gap address at the desired alignment */
1899         gap_end -= info->length;
1900         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1901
1902         VM_BUG_ON(gap_end < info->low_limit);
1903         VM_BUG_ON(gap_end < gap_start);
1904         return gap_end;
1905 }
1906
1907 /* Get an address range which is currently unmapped.
1908  * For shmat() with addr=0.
1909  *
1910  * Ugly calling convention alert:
1911  * Return value with the low bits set means error value,
1912  * ie
1913  *      if (ret & ~PAGE_MASK)
1914  *              error = ret;
1915  *
1916  * This function "knows" that -ENOMEM has the bits set.
1917  */
1918 #ifndef HAVE_ARCH_UNMAPPED_AREA
1919 unsigned long
1920 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1921                 unsigned long len, unsigned long pgoff, unsigned long flags)
1922 {
1923         struct mm_struct *mm = current->mm;
1924         struct vm_area_struct *vma;
1925         struct vm_unmapped_area_info info;
1926
1927         if (len > TASK_SIZE - mmap_min_addr)
1928                 return -ENOMEM;
1929
1930         if (flags & MAP_FIXED)
1931                 return addr;
1932
1933         if (addr) {
1934                 addr = PAGE_ALIGN(addr);
1935                 vma = find_vma(mm, addr);
1936                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1937                     (!vma || addr + len <= vma->vm_start))
1938                         return addr;
1939         }
1940
1941         info.flags = 0;
1942         info.length = len;
1943         info.low_limit = mm->mmap_base;
1944         info.high_limit = TASK_SIZE;
1945         info.align_mask = 0;
1946         return vm_unmapped_area(&info);
1947 }
1948 #endif
1949
1950 /*
1951  * This mmap-allocator allocates new areas top-down from below the
1952  * stack's low limit (the base):
1953  */
1954 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1955 unsigned long
1956 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1957                           const unsigned long len, const unsigned long pgoff,
1958                           const unsigned long flags)
1959 {
1960         struct vm_area_struct *vma;
1961         struct mm_struct *mm = current->mm;
1962         unsigned long addr = addr0;
1963         struct vm_unmapped_area_info info;
1964
1965         /* requested length too big for entire address space */
1966         if (len > TASK_SIZE - mmap_min_addr)
1967                 return -ENOMEM;
1968
1969         if (flags & MAP_FIXED)
1970                 return addr;
1971
1972         /* requesting a specific address */
1973         if (addr) {
1974                 addr = PAGE_ALIGN(addr);
1975                 vma = find_vma(mm, addr);
1976                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1977                                 (!vma || addr + len <= vma->vm_start))
1978                         return addr;
1979         }
1980
1981         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1982         info.length = len;
1983         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1984         info.high_limit = mm->mmap_base;
1985         info.align_mask = 0;
1986         addr = vm_unmapped_area(&info);
1987
1988         /*
1989          * A failed mmap() very likely causes application failure,
1990          * so fall back to the bottom-up function here. This scenario
1991          * can happen with large stack limits and large mmap()
1992          * allocations.
1993          */
1994         if (offset_in_page(addr)) {
1995                 VM_BUG_ON(addr != -ENOMEM);
1996                 info.flags = 0;
1997                 info.low_limit = TASK_UNMAPPED_BASE;
1998                 info.high_limit = TASK_SIZE;
1999                 addr = vm_unmapped_area(&info);
2000         }
2001
2002         return addr;
2003 }
2004 #endif
2005
2006 unsigned long
2007 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2008                 unsigned long pgoff, unsigned long flags)
2009 {
2010         unsigned long (*get_area)(struct file *, unsigned long,
2011                                   unsigned long, unsigned long, unsigned long);
2012
2013         unsigned long error = arch_mmap_check(addr, len, flags);
2014         if (error)
2015                 return error;
2016
2017         /* Careful about overflows.. */
2018         if (len > TASK_SIZE)
2019                 return -ENOMEM;
2020
2021         get_area = current->mm->get_unmapped_area;
2022         if (file && file->f_op->get_unmapped_area)
2023                 get_area = file->f_op->get_unmapped_area;
2024         addr = get_area(file, addr, len, pgoff, flags);
2025         if (IS_ERR_VALUE(addr))
2026                 return addr;
2027
2028         if (addr > TASK_SIZE - len)
2029                 return -ENOMEM;
2030         if (offset_in_page(addr))
2031                 return -EINVAL;
2032
2033         addr = arch_rebalance_pgtables(addr, len);
2034         error = security_mmap_addr(addr);
2035         return error ? error : addr;
2036 }
2037
2038 EXPORT_SYMBOL(get_unmapped_area);
2039
2040 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2041 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2042 {
2043         struct rb_node *rb_node;
2044         struct vm_area_struct *vma;
2045
2046         /* Check the cache first. */
2047         vma = vmacache_find(mm, addr);
2048         if (likely(vma))
2049                 return vma;
2050
2051         rb_node = mm->mm_rb.rb_node;
2052
2053         while (rb_node) {
2054                 struct vm_area_struct *tmp;
2055
2056                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2057
2058                 if (tmp->vm_end > addr) {
2059                         vma = tmp;
2060                         if (tmp->vm_start <= addr)
2061                                 break;
2062                         rb_node = rb_node->rb_left;
2063                 } else
2064                         rb_node = rb_node->rb_right;
2065         }
2066
2067         if (vma)
2068                 vmacache_update(addr, vma);
2069         return vma;
2070 }
2071
2072 EXPORT_SYMBOL(find_vma);
2073
2074 /*
2075  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2076  */
2077 struct vm_area_struct *
2078 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2079                         struct vm_area_struct **pprev)
2080 {
2081         struct vm_area_struct *vma;
2082
2083         vma = find_vma(mm, addr);
2084         if (vma) {
2085                 *pprev = vma->vm_prev;
2086         } else {
2087                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2088                 *pprev = NULL;
2089                 while (rb_node) {
2090                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2091                         rb_node = rb_node->rb_right;
2092                 }
2093         }
2094         return vma;
2095 }
2096
2097 /*
2098  * Verify that the stack growth is acceptable and
2099  * update accounting. This is shared with both the
2100  * grow-up and grow-down cases.
2101  */
2102 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2103 {
2104         struct mm_struct *mm = vma->vm_mm;
2105         struct rlimit *rlim = current->signal->rlim;
2106         unsigned long new_start, actual_size;
2107
2108         /* address space limit tests */
2109         if (!may_expand_vm(mm, grow))
2110                 return -ENOMEM;
2111
2112         /* Stack limit test */
2113         actual_size = size;
2114         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2115                 actual_size -= PAGE_SIZE;
2116         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2117                 return -ENOMEM;
2118
2119         /* mlock limit tests */
2120         if (vma->vm_flags & VM_LOCKED) {
2121                 unsigned long locked;
2122                 unsigned long limit;
2123                 locked = mm->locked_vm + grow;
2124                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2125                 limit >>= PAGE_SHIFT;
2126                 if (locked > limit && !capable(CAP_IPC_LOCK))
2127                         return -ENOMEM;
2128         }
2129
2130         /* Check to ensure the stack will not grow into a hugetlb-only region */
2131         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2132                         vma->vm_end - size;
2133         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2134                 return -EFAULT;
2135
2136         /*
2137          * Overcommit..  This must be the final test, as it will
2138          * update security statistics.
2139          */
2140         if (security_vm_enough_memory_mm(mm, grow))
2141                 return -ENOMEM;
2142
2143         return 0;
2144 }
2145
2146 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2147 /*
2148  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2149  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2150  */
2151 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2152 {
2153         struct mm_struct *mm = vma->vm_mm;
2154         int error = 0;
2155
2156         if (!(vma->vm_flags & VM_GROWSUP))
2157                 return -EFAULT;
2158
2159         /* Guard against wrapping around to address 0. */
2160         if (address < PAGE_ALIGN(address+4))
2161                 address = PAGE_ALIGN(address+4);
2162         else
2163                 return -ENOMEM;
2164
2165         /* We must make sure the anon_vma is allocated. */
2166         if (unlikely(anon_vma_prepare(vma)))
2167                 return -ENOMEM;
2168
2169         /*
2170          * vma->vm_start/vm_end cannot change under us because the caller
2171          * is required to hold the mmap_sem in read mode.  We need the
2172          * anon_vma lock to serialize against concurrent expand_stacks.
2173          */
2174         anon_vma_lock_write(vma->anon_vma);
2175
2176         /* Somebody else might have raced and expanded it already */
2177         if (address > vma->vm_end) {
2178                 unsigned long size, grow;
2179
2180                 size = address - vma->vm_start;
2181                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2182
2183                 error = -ENOMEM;
2184                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2185                         error = acct_stack_growth(vma, size, grow);
2186                         if (!error) {
2187                                 /*
2188                                  * vma_gap_update() doesn't support concurrent
2189                                  * updates, but we only hold a shared mmap_sem
2190                                  * lock here, so we need to protect against
2191                                  * concurrent vma expansions.
2192                                  * anon_vma_lock_write() doesn't help here, as
2193                                  * we don't guarantee that all growable vmas
2194                                  * in a mm share the same root anon vma.
2195                                  * So, we reuse mm->page_table_lock to guard
2196                                  * against concurrent vma expansions.
2197                                  */
2198                                 spin_lock(&mm->page_table_lock);
2199                                 if (vma->vm_flags & VM_LOCKED)
2200                                         mm->locked_vm += grow;
2201                                 vm_stat_account(mm, vma->vm_flags,
2202                                                 vma->vm_file, grow);
2203                                 anon_vma_interval_tree_pre_update_vma(vma);
2204                                 vma->vm_end = address;
2205                                 anon_vma_interval_tree_post_update_vma(vma);
2206                                 if (vma->vm_next)
2207                                         vma_gap_update(vma->vm_next);
2208                                 else
2209                                         mm->highest_vm_end = address;
2210                                 spin_unlock(&mm->page_table_lock);
2211
2212                                 perf_event_mmap(vma);
2213                         }
2214                 }
2215         }
2216         anon_vma_unlock_write(vma->anon_vma);
2217         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2218         validate_mm(mm);
2219         return error;
2220 }
2221 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2222
2223 /*
2224  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2225  */
2226 int expand_downwards(struct vm_area_struct *vma,
2227                                    unsigned long address)
2228 {
2229         struct mm_struct *mm = vma->vm_mm;
2230         int error;
2231
2232         address &= PAGE_MASK;
2233         error = security_mmap_addr(address);
2234         if (error)
2235                 return error;
2236
2237         /* We must make sure the anon_vma is allocated. */
2238         if (unlikely(anon_vma_prepare(vma)))
2239                 return -ENOMEM;
2240
2241         /*
2242          * vma->vm_start/vm_end cannot change under us because the caller
2243          * is required to hold the mmap_sem in read mode.  We need the
2244          * anon_vma lock to serialize against concurrent expand_stacks.
2245          */
2246         anon_vma_lock_write(vma->anon_vma);
2247
2248         /* Somebody else might have raced and expanded it already */
2249         if (address < vma->vm_start) {
2250                 unsigned long size, grow;
2251
2252                 size = vma->vm_end - address;
2253                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2254
2255                 error = -ENOMEM;
2256                 if (grow <= vma->vm_pgoff) {
2257                         error = acct_stack_growth(vma, size, grow);
2258                         if (!error) {
2259                                 /*
2260                                  * vma_gap_update() doesn't support concurrent
2261                                  * updates, but we only hold a shared mmap_sem
2262                                  * lock here, so we need to protect against
2263                                  * concurrent vma expansions.
2264                                  * anon_vma_lock_write() doesn't help here, as
2265                                  * we don't guarantee that all growable vmas
2266                                  * in a mm share the same root anon vma.
2267                                  * So, we reuse mm->page_table_lock to guard
2268                                  * against concurrent vma expansions.
2269                                  */
2270                                 spin_lock(&mm->page_table_lock);
2271                                 if (vma->vm_flags & VM_LOCKED)
2272                                         mm->locked_vm += grow;
2273                                 vm_stat_account(mm, vma->vm_flags,
2274                                                 vma->vm_file, grow);
2275                                 anon_vma_interval_tree_pre_update_vma(vma);
2276                                 vma->vm_start = address;
2277                                 vma->vm_pgoff -= grow;
2278                                 anon_vma_interval_tree_post_update_vma(vma);
2279                                 vma_gap_update(vma);
2280                                 spin_unlock(&mm->page_table_lock);
2281
2282                                 perf_event_mmap(vma);
2283                         }
2284                 }
2285         }
2286         anon_vma_unlock_write(vma->anon_vma);
2287         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2288         validate_mm(mm);
2289         return error;
2290 }
2291
2292 /*
2293  * Note how expand_stack() refuses to expand the stack all the way to
2294  * abut the next virtual mapping, *unless* that mapping itself is also
2295  * a stack mapping. We want to leave room for a guard page, after all
2296  * (the guard page itself is not added here, that is done by the
2297  * actual page faulting logic)
2298  *
2299  * This matches the behavior of the guard page logic (see mm/memory.c:
2300  * check_stack_guard_page()), which only allows the guard page to be
2301  * removed under these circumstances.
2302  */
2303 #ifdef CONFIG_STACK_GROWSUP
2304 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2305 {
2306         struct vm_area_struct *next;
2307
2308         address &= PAGE_MASK;
2309         next = vma->vm_next;
2310         if (next && next->vm_start == address + PAGE_SIZE) {
2311                 if (!(next->vm_flags & VM_GROWSUP))
2312                         return -ENOMEM;
2313         }
2314         return expand_upwards(vma, address);
2315 }
2316
2317 struct vm_area_struct *
2318 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2319 {
2320         struct vm_area_struct *vma, *prev;
2321
2322         addr &= PAGE_MASK;
2323         vma = find_vma_prev(mm, addr, &prev);
2324         if (vma && (vma->vm_start <= addr))
2325                 return vma;
2326         if (!prev || expand_stack(prev, addr))
2327                 return NULL;
2328         if (prev->vm_flags & VM_LOCKED)
2329                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2330         return prev;
2331 }
2332 #else
2333 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2334 {
2335         struct vm_area_struct *prev;
2336
2337         address &= PAGE_MASK;
2338         prev = vma->vm_prev;
2339         if (prev && prev->vm_end == address) {
2340                 if (!(prev->vm_flags & VM_GROWSDOWN))
2341                         return -ENOMEM;
2342         }
2343         return expand_downwards(vma, address);
2344 }
2345
2346 struct vm_area_struct *
2347 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2348 {
2349         struct vm_area_struct *vma;
2350         unsigned long start;
2351
2352         addr &= PAGE_MASK;
2353         vma = find_vma(mm, addr);
2354         if (!vma)
2355                 return NULL;
2356         if (vma->vm_start <= addr)
2357                 return vma;
2358         if (!(vma->vm_flags & VM_GROWSDOWN))
2359                 return NULL;
2360         start = vma->vm_start;
2361         if (expand_stack(vma, addr))
2362                 return NULL;
2363         if (vma->vm_flags & VM_LOCKED)
2364                 populate_vma_page_range(vma, addr, start, NULL);
2365         return vma;
2366 }
2367 #endif
2368
2369 EXPORT_SYMBOL_GPL(find_extend_vma);
2370
2371 /*
2372  * Ok - we have the memory areas we should free on the vma list,
2373  * so release them, and do the vma updates.
2374  *
2375  * Called with the mm semaphore held.
2376  */
2377 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2378 {
2379         unsigned long nr_accounted = 0;
2380
2381         /* Update high watermark before we lower total_vm */
2382         update_hiwater_vm(mm);
2383         do {
2384                 long nrpages = vma_pages(vma);
2385
2386                 if (vma->vm_flags & VM_ACCOUNT)
2387                         nr_accounted += nrpages;
2388                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2389                 vma = remove_vma(vma);
2390         } while (vma);
2391         vm_unacct_memory(nr_accounted);
2392         validate_mm(mm);
2393 }
2394
2395 /*
2396  * Get rid of page table information in the indicated region.
2397  *
2398  * Called with the mm semaphore held.
2399  */
2400 static void unmap_region(struct mm_struct *mm,
2401                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2402                 unsigned long start, unsigned long end)
2403 {
2404         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2405         struct mmu_gather tlb;
2406
2407         lru_add_drain();
2408         tlb_gather_mmu(&tlb, mm, start, end);
2409         update_hiwater_rss(mm);
2410         unmap_vmas(&tlb, vma, start, end);
2411         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2412                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2413         tlb_finish_mmu(&tlb, start, end);
2414 }
2415
2416 /*
2417  * Create a list of vma's touched by the unmap, removing them from the mm's
2418  * vma list as we go..
2419  */
2420 static void
2421 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2422         struct vm_area_struct *prev, unsigned long end)
2423 {
2424         struct vm_area_struct **insertion_point;
2425         struct vm_area_struct *tail_vma = NULL;
2426
2427         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2428         vma->vm_prev = NULL;
2429         do {
2430                 vma_rb_erase(vma, &mm->mm_rb);
2431                 mm->map_count--;
2432                 tail_vma = vma;
2433                 vma = vma->vm_next;
2434         } while (vma && vma->vm_start < end);
2435         *insertion_point = vma;
2436         if (vma) {
2437                 vma->vm_prev = prev;
2438                 vma_gap_update(vma);
2439         } else
2440                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2441         tail_vma->vm_next = NULL;
2442
2443         /* Kill the cache */
2444         vmacache_invalidate(mm);
2445 }
2446
2447 /*
2448  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2449  * munmap path where it doesn't make sense to fail.
2450  */
2451 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2452               unsigned long addr, int new_below)
2453 {
2454         struct vm_area_struct *new;
2455         int err;
2456
2457         if (is_vm_hugetlb_page(vma) && (addr &
2458                                         ~(huge_page_mask(hstate_vma(vma)))))
2459                 return -EINVAL;
2460
2461         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2462         if (!new)
2463                 return -ENOMEM;
2464
2465         /* most fields are the same, copy all, and then fixup */
2466         *new = *vma;
2467
2468         INIT_LIST_HEAD(&new->anon_vma_chain);
2469
2470         if (new_below)
2471                 new->vm_end = addr;
2472         else {
2473                 new->vm_start = addr;
2474                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2475         }
2476
2477         err = vma_dup_policy(vma, new);
2478         if (err)
2479                 goto out_free_vma;
2480
2481         err = anon_vma_clone(new, vma);
2482         if (err)
2483                 goto out_free_mpol;
2484
2485         if (new->vm_file)
2486                 get_file(new->vm_file);
2487
2488         if (new->vm_ops && new->vm_ops->open)
2489                 new->vm_ops->open(new);
2490
2491         if (new_below)
2492                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2493                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2494         else
2495                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2496
2497         /* Success. */
2498         if (!err)
2499                 return 0;
2500
2501         /* Clean everything up if vma_adjust failed. */
2502         if (new->vm_ops && new->vm_ops->close)
2503                 new->vm_ops->close(new);
2504         if (new->vm_file)
2505                 fput(new->vm_file);
2506         unlink_anon_vmas(new);
2507  out_free_mpol:
2508         mpol_put(vma_policy(new));
2509  out_free_vma:
2510         kmem_cache_free(vm_area_cachep, new);
2511         return err;
2512 }
2513
2514 /*
2515  * Split a vma into two pieces at address 'addr', a new vma is allocated
2516  * either for the first part or the tail.
2517  */
2518 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2519               unsigned long addr, int new_below)
2520 {
2521         if (mm->map_count >= sysctl_max_map_count)
2522                 return -ENOMEM;
2523
2524         return __split_vma(mm, vma, addr, new_below);
2525 }
2526
2527 /* Munmap is split into 2 main parts -- this part which finds
2528  * what needs doing, and the areas themselves, which do the
2529  * work.  This now handles partial unmappings.
2530  * Jeremy Fitzhardinge <jeremy@goop.org>
2531  */
2532 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2533 {
2534         unsigned long end;
2535         struct vm_area_struct *vma, *prev, *last;
2536
2537         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2538                 return -EINVAL;
2539
2540         len = PAGE_ALIGN(len);
2541         if (len == 0)
2542                 return -EINVAL;
2543
2544         /* Find the first overlapping VMA */
2545         vma = find_vma(mm, start);
2546         if (!vma)
2547                 return 0;
2548         prev = vma->vm_prev;
2549         /* we have  start < vma->vm_end  */
2550
2551         /* if it doesn't overlap, we have nothing.. */
2552         end = start + len;
2553         if (vma->vm_start >= end)
2554                 return 0;
2555
2556         /*
2557          * If we need to split any vma, do it now to save pain later.
2558          *
2559          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2560          * unmapped vm_area_struct will remain in use: so lower split_vma
2561          * places tmp vma above, and higher split_vma places tmp vma below.
2562          */
2563         if (start > vma->vm_start) {
2564                 int error;
2565
2566                 /*
2567                  * Make sure that map_count on return from munmap() will
2568                  * not exceed its limit; but let map_count go just above
2569                  * its limit temporarily, to help free resources as expected.
2570                  */
2571                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2572                         return -ENOMEM;
2573
2574                 error = __split_vma(mm, vma, start, 0);
2575                 if (error)
2576                         return error;
2577                 prev = vma;
2578         }
2579
2580         /* Does it split the last one? */
2581         last = find_vma(mm, end);
2582         if (last && end > last->vm_start) {
2583                 int error = __split_vma(mm, last, end, 1);
2584                 if (error)
2585                         return error;
2586         }
2587         vma = prev ? prev->vm_next : mm->mmap;
2588
2589         /*
2590          * unlock any mlock()ed ranges before detaching vmas
2591          */
2592         if (mm->locked_vm) {
2593                 struct vm_area_struct *tmp = vma;
2594                 while (tmp && tmp->vm_start < end) {
2595                         if (tmp->vm_flags & VM_LOCKED) {
2596                                 mm->locked_vm -= vma_pages(tmp);
2597                                 munlock_vma_pages_all(tmp);
2598                         }
2599                         tmp = tmp->vm_next;
2600                 }
2601         }
2602
2603         /*
2604          * Remove the vma's, and unmap the actual pages
2605          */
2606         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2607         unmap_region(mm, vma, prev, start, end);
2608
2609         arch_unmap(mm, vma, start, end);
2610
2611         /* Fix up all other VM information */
2612         remove_vma_list(mm, vma);
2613
2614         return 0;
2615 }
2616
2617 int vm_munmap(unsigned long start, size_t len)
2618 {
2619         int ret;
2620         struct mm_struct *mm = current->mm;
2621
2622         down_write(&mm->mmap_sem);
2623         ret = do_munmap(mm, start, len);
2624         up_write(&mm->mmap_sem);
2625         return ret;
2626 }
2627 EXPORT_SYMBOL(vm_munmap);
2628
2629 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2630 {
2631         profile_munmap(addr);
2632         return vm_munmap(addr, len);
2633 }
2634
2635
2636 /*
2637  * Emulation of deprecated remap_file_pages() syscall.
2638  */
2639 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2640                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2641 {
2642
2643         struct mm_struct *mm = current->mm;
2644         struct vm_area_struct *vma;
2645         unsigned long populate = 0;
2646         unsigned long ret = -EINVAL;
2647         struct file *file;
2648
2649         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2650                         "See Documentation/vm/remap_file_pages.txt.\n",
2651                         current->comm, current->pid);
2652
2653         if (prot)
2654                 return ret;
2655         start = start & PAGE_MASK;
2656         size = size & PAGE_MASK;
2657
2658         if (start + size <= start)
2659                 return ret;
2660
2661         /* Does pgoff wrap? */
2662         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2663                 return ret;
2664
2665         down_write(&mm->mmap_sem);
2666         vma = find_vma(mm, start);
2667
2668         if (!vma || !(vma->vm_flags & VM_SHARED))
2669                 goto out;
2670
2671         if (start < vma->vm_start)
2672                 goto out;
2673
2674         if (start + size > vma->vm_end) {
2675                 struct vm_area_struct *next;
2676
2677                 for (next = vma->vm_next; next; next = next->vm_next) {
2678                         /* hole between vmas ? */
2679                         if (next->vm_start != next->vm_prev->vm_end)
2680                                 goto out;
2681
2682                         if (next->vm_file != vma->vm_file)
2683                                 goto out;
2684
2685                         if (next->vm_flags != vma->vm_flags)
2686                                 goto out;
2687
2688                         if (start + size <= next->vm_end)
2689                                 break;
2690                 }
2691
2692                 if (!next)
2693                         goto out;
2694         }
2695
2696         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2697         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2698         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2699
2700         flags &= MAP_NONBLOCK;
2701         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2702         if (vma->vm_flags & VM_LOCKED) {
2703                 struct vm_area_struct *tmp;
2704                 flags |= MAP_LOCKED;
2705
2706                 /* drop PG_Mlocked flag for over-mapped range */
2707                 for (tmp = vma; tmp->vm_start >= start + size;
2708                                 tmp = tmp->vm_next) {
2709                         munlock_vma_pages_range(tmp,
2710                                         max(tmp->vm_start, start),
2711                                         min(tmp->vm_end, start + size));
2712                 }
2713         }
2714
2715         file = get_file(vma->vm_file);
2716         ret = do_mmap_pgoff(vma->vm_file, start, size,
2717                         prot, flags, pgoff, &populate);
2718         fput(file);
2719 out:
2720         up_write(&mm->mmap_sem);
2721         if (populate)
2722                 mm_populate(ret, populate);
2723         if (!IS_ERR_VALUE(ret))
2724                 ret = 0;
2725         return ret;
2726 }
2727
2728 static inline void verify_mm_writelocked(struct mm_struct *mm)
2729 {
2730 #ifdef CONFIG_DEBUG_VM
2731         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2732                 WARN_ON(1);
2733                 up_read(&mm->mmap_sem);
2734         }
2735 #endif
2736 }
2737
2738 /*
2739  *  this is really a simplified "do_mmap".  it only handles
2740  *  anonymous maps.  eventually we may be able to do some
2741  *  brk-specific accounting here.
2742  */
2743 static unsigned long do_brk(unsigned long addr, unsigned long len)
2744 {
2745         struct mm_struct *mm = current->mm;
2746         struct vm_area_struct *vma, *prev;
2747         unsigned long flags;
2748         struct rb_node **rb_link, *rb_parent;
2749         pgoff_t pgoff = addr >> PAGE_SHIFT;
2750         int error;
2751
2752         len = PAGE_ALIGN(len);
2753         if (!len)
2754                 return addr;
2755
2756         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2757
2758         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2759         if (offset_in_page(error))
2760                 return error;
2761
2762         error = mlock_future_check(mm, mm->def_flags, len);
2763         if (error)
2764                 return error;
2765
2766         /*
2767          * mm->mmap_sem is required to protect against another thread
2768          * changing the mappings in case we sleep.
2769          */
2770         verify_mm_writelocked(mm);
2771
2772         /*
2773          * Clear old maps.  this also does some error checking for us
2774          */
2775         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2776                               &rb_parent)) {
2777                 if (do_munmap(mm, addr, len))
2778                         return -ENOMEM;
2779         }
2780
2781         /* Check against address space limits *after* clearing old maps... */
2782         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2783                 return -ENOMEM;
2784
2785         if (mm->map_count > sysctl_max_map_count)
2786                 return -ENOMEM;
2787
2788         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2789                 return -ENOMEM;
2790
2791         /* Can we just expand an old private anonymous mapping? */
2792         vma = vma_merge(mm, prev, addr, addr + len, flags,
2793                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2794         if (vma)
2795                 goto out;
2796
2797         /*
2798          * create a vma struct for an anonymous mapping
2799          */
2800         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2801         if (!vma) {
2802                 vm_unacct_memory(len >> PAGE_SHIFT);
2803                 return -ENOMEM;
2804         }
2805
2806         INIT_LIST_HEAD(&vma->anon_vma_chain);
2807         vma->vm_mm = mm;
2808         vma->vm_start = addr;
2809         vma->vm_end = addr + len;
2810         vma->vm_pgoff = pgoff;
2811         vma->vm_flags = flags;
2812         vma->vm_page_prot = vm_get_page_prot(flags);
2813         vma_link(mm, vma, prev, rb_link, rb_parent);
2814 out:
2815         perf_event_mmap(vma);
2816         mm->total_vm += len >> PAGE_SHIFT;
2817         if (flags & VM_LOCKED)
2818                 mm->locked_vm += (len >> PAGE_SHIFT);
2819         vma->vm_flags |= VM_SOFTDIRTY;
2820         return addr;
2821 }
2822
2823 unsigned long vm_brk(unsigned long addr, unsigned long len)
2824 {
2825         struct mm_struct *mm = current->mm;
2826         unsigned long ret;
2827         bool populate;
2828
2829         down_write(&mm->mmap_sem);
2830         ret = do_brk(addr, len);
2831         populate = ((mm->def_flags & VM_LOCKED) != 0);
2832         up_write(&mm->mmap_sem);
2833         if (populate)
2834                 mm_populate(addr, len);
2835         return ret;
2836 }
2837 EXPORT_SYMBOL(vm_brk);
2838
2839 /* Release all mmaps. */
2840 void exit_mmap(struct mm_struct *mm)
2841 {
2842         struct mmu_gather tlb;
2843         struct vm_area_struct *vma;
2844         unsigned long nr_accounted = 0;
2845
2846         /* mm's last user has gone, and its about to be pulled down */
2847         mmu_notifier_release(mm);
2848
2849         if (mm->locked_vm) {
2850                 vma = mm->mmap;
2851                 while (vma) {
2852                         if (vma->vm_flags & VM_LOCKED)
2853                                 munlock_vma_pages_all(vma);
2854                         vma = vma->vm_next;
2855                 }
2856         }
2857
2858         arch_exit_mmap(mm);
2859
2860         vma = mm->mmap;
2861         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2862                 return;
2863
2864         lru_add_drain();
2865         flush_cache_mm(mm);
2866         tlb_gather_mmu(&tlb, mm, 0, -1);
2867         /* update_hiwater_rss(mm) here? but nobody should be looking */
2868         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2869         unmap_vmas(&tlb, vma, 0, -1);
2870
2871         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2872         tlb_finish_mmu(&tlb, 0, -1);
2873
2874         /*
2875          * Walk the list again, actually closing and freeing it,
2876          * with preemption enabled, without holding any MM locks.
2877          */
2878         while (vma) {
2879                 if (vma->vm_flags & VM_ACCOUNT)
2880                         nr_accounted += vma_pages(vma);
2881                 vma = remove_vma(vma);
2882         }
2883         vm_unacct_memory(nr_accounted);
2884 }
2885
2886 /* Insert vm structure into process list sorted by address
2887  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2888  * then i_mmap_rwsem is taken here.
2889  */
2890 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2891 {
2892         struct vm_area_struct *prev;
2893         struct rb_node **rb_link, *rb_parent;
2894
2895         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2896                            &prev, &rb_link, &rb_parent))
2897                 return -ENOMEM;
2898         if ((vma->vm_flags & VM_ACCOUNT) &&
2899              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2900                 return -ENOMEM;
2901
2902         /*
2903          * The vm_pgoff of a purely anonymous vma should be irrelevant
2904          * until its first write fault, when page's anon_vma and index
2905          * are set.  But now set the vm_pgoff it will almost certainly
2906          * end up with (unless mremap moves it elsewhere before that
2907          * first wfault), so /proc/pid/maps tells a consistent story.
2908          *
2909          * By setting it to reflect the virtual start address of the
2910          * vma, merges and splits can happen in a seamless way, just
2911          * using the existing file pgoff checks and manipulations.
2912          * Similarly in do_mmap_pgoff and in do_brk.
2913          */
2914         if (vma_is_anonymous(vma)) {
2915                 BUG_ON(vma->anon_vma);
2916                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2917         }
2918
2919         vma_link(mm, vma, prev, rb_link, rb_parent);
2920         return 0;
2921 }
2922
2923 /*
2924  * Copy the vma structure to a new location in the same mm,
2925  * prior to moving page table entries, to effect an mremap move.
2926  */
2927 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2928         unsigned long addr, unsigned long len, pgoff_t pgoff,
2929         bool *need_rmap_locks)
2930 {
2931         struct vm_area_struct *vma = *vmap;
2932         unsigned long vma_start = vma->vm_start;
2933         struct mm_struct *mm = vma->vm_mm;
2934         struct vm_area_struct *new_vma, *prev;
2935         struct rb_node **rb_link, *rb_parent;
2936         bool faulted_in_anon_vma = true;
2937
2938         /*
2939          * If anonymous vma has not yet been faulted, update new pgoff
2940          * to match new location, to increase its chance of merging.
2941          */
2942         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2943                 pgoff = addr >> PAGE_SHIFT;
2944                 faulted_in_anon_vma = false;
2945         }
2946
2947         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2948                 return NULL;    /* should never get here */
2949         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2950                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2951                             vma->vm_userfaultfd_ctx);
2952         if (new_vma) {
2953                 /*
2954                  * Source vma may have been merged into new_vma
2955                  */
2956                 if (unlikely(vma_start >= new_vma->vm_start &&
2957                              vma_start < new_vma->vm_end)) {
2958                         /*
2959                          * The only way we can get a vma_merge with
2960                          * self during an mremap is if the vma hasn't
2961                          * been faulted in yet and we were allowed to
2962                          * reset the dst vma->vm_pgoff to the
2963                          * destination address of the mremap to allow
2964                          * the merge to happen. mremap must change the
2965                          * vm_pgoff linearity between src and dst vmas
2966                          * (in turn preventing a vma_merge) to be
2967                          * safe. It is only safe to keep the vm_pgoff
2968                          * linear if there are no pages mapped yet.
2969                          */
2970                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2971                         *vmap = vma = new_vma;
2972                 }
2973                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2974         } else {
2975                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2976                 if (!new_vma)
2977                         goto out;
2978                 *new_vma = *vma;
2979                 new_vma->vm_start = addr;
2980                 new_vma->vm_end = addr + len;
2981                 new_vma->vm_pgoff = pgoff;
2982                 if (vma_dup_policy(vma, new_vma))
2983                         goto out_free_vma;
2984                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2985                 if (anon_vma_clone(new_vma, vma))
2986                         goto out_free_mempol;
2987                 if (new_vma->vm_file)
2988                         get_file(new_vma->vm_file);
2989                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2990                         new_vma->vm_ops->open(new_vma);
2991                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2992                 *need_rmap_locks = false;
2993         }
2994         return new_vma;
2995
2996 out_free_mempol:
2997         mpol_put(vma_policy(new_vma));
2998 out_free_vma:
2999         kmem_cache_free(vm_area_cachep, new_vma);
3000 out:
3001         return NULL;
3002 }
3003
3004 /*
3005  * Return true if the calling process may expand its vm space by the passed
3006  * number of pages
3007  */
3008 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3009 {
3010         unsigned long cur = mm->total_vm;       /* pages */
3011         unsigned long lim;
3012
3013         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3014
3015         if (cur + npages > lim)
3016                 return 0;
3017         return 1;
3018 }
3019
3020 static int special_mapping_fault(struct vm_area_struct *vma,
3021                                  struct vm_fault *vmf);
3022
3023 /*
3024  * Having a close hook prevents vma merging regardless of flags.
3025  */
3026 static void special_mapping_close(struct vm_area_struct *vma)
3027 {
3028 }
3029
3030 static const char *special_mapping_name(struct vm_area_struct *vma)
3031 {
3032         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3033 }
3034
3035 static const struct vm_operations_struct special_mapping_vmops = {
3036         .close = special_mapping_close,
3037         .fault = special_mapping_fault,
3038         .name = special_mapping_name,
3039 };
3040
3041 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3042         .close = special_mapping_close,
3043         .fault = special_mapping_fault,
3044 };
3045
3046 static int special_mapping_fault(struct vm_area_struct *vma,
3047                                 struct vm_fault *vmf)
3048 {
3049         pgoff_t pgoff;
3050         struct page **pages;
3051
3052         if (vma->vm_ops == &legacy_special_mapping_vmops)
3053                 pages = vma->vm_private_data;
3054         else
3055                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3056                         pages;
3057
3058         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3059                 pgoff--;
3060
3061         if (*pages) {
3062                 struct page *page = *pages;
3063                 get_page(page);
3064                 vmf->page = page;
3065                 return 0;
3066         }
3067
3068         return VM_FAULT_SIGBUS;
3069 }
3070
3071 static struct vm_area_struct *__install_special_mapping(
3072         struct mm_struct *mm,
3073         unsigned long addr, unsigned long len,
3074         unsigned long vm_flags, void *priv,
3075         const struct vm_operations_struct *ops)
3076 {
3077         int ret;
3078         struct vm_area_struct *vma;
3079
3080         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3081         if (unlikely(vma == NULL))
3082                 return ERR_PTR(-ENOMEM);
3083
3084         INIT_LIST_HEAD(&vma->anon_vma_chain);
3085         vma->vm_mm = mm;
3086         vma->vm_start = addr;
3087         vma->vm_end = addr + len;
3088
3089         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3090         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3091
3092         vma->vm_ops = ops;
3093         vma->vm_private_data = priv;
3094
3095         ret = insert_vm_struct(mm, vma);
3096         if (ret)
3097                 goto out;
3098
3099         mm->total_vm += len >> PAGE_SHIFT;
3100
3101         perf_event_mmap(vma);
3102
3103         return vma;
3104
3105 out:
3106         kmem_cache_free(vm_area_cachep, vma);
3107         return ERR_PTR(ret);
3108 }
3109
3110 /*
3111  * Called with mm->mmap_sem held for writing.
3112  * Insert a new vma covering the given region, with the given flags.
3113  * Its pages are supplied by the given array of struct page *.
3114  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3115  * The region past the last page supplied will always produce SIGBUS.
3116  * The array pointer and the pages it points to are assumed to stay alive
3117  * for as long as this mapping might exist.
3118  */
3119 struct vm_area_struct *_install_special_mapping(
3120         struct mm_struct *mm,
3121         unsigned long addr, unsigned long len,
3122         unsigned long vm_flags, const struct vm_special_mapping *spec)
3123 {
3124         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3125                                         &special_mapping_vmops);
3126 }
3127
3128 int install_special_mapping(struct mm_struct *mm,
3129                             unsigned long addr, unsigned long len,
3130                             unsigned long vm_flags, struct page **pages)
3131 {
3132         struct vm_area_struct *vma = __install_special_mapping(
3133                 mm, addr, len, vm_flags, (void *)pages,
3134                 &legacy_special_mapping_vmops);
3135
3136         return PTR_ERR_OR_ZERO(vma);
3137 }
3138
3139 static DEFINE_MUTEX(mm_all_locks_mutex);
3140
3141 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3142 {
3143         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3144                 /*
3145                  * The LSB of head.next can't change from under us
3146                  * because we hold the mm_all_locks_mutex.
3147                  */
3148                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3149                 /*
3150                  * We can safely modify head.next after taking the
3151                  * anon_vma->root->rwsem. If some other vma in this mm shares
3152                  * the same anon_vma we won't take it again.
3153                  *
3154                  * No need of atomic instructions here, head.next
3155                  * can't change from under us thanks to the
3156                  * anon_vma->root->rwsem.
3157                  */
3158                 if (__test_and_set_bit(0, (unsigned long *)
3159                                        &anon_vma->root->rb_root.rb_node))
3160                         BUG();
3161         }
3162 }
3163
3164 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3165 {
3166         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3167                 /*
3168                  * AS_MM_ALL_LOCKS can't change from under us because
3169                  * we hold the mm_all_locks_mutex.
3170                  *
3171                  * Operations on ->flags have to be atomic because
3172                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3173                  * mm_all_locks_mutex, there may be other cpus
3174                  * changing other bitflags in parallel to us.
3175                  */
3176                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3177                         BUG();
3178                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3179         }
3180 }
3181
3182 /*
3183  * This operation locks against the VM for all pte/vma/mm related
3184  * operations that could ever happen on a certain mm. This includes
3185  * vmtruncate, try_to_unmap, and all page faults.
3186  *
3187  * The caller must take the mmap_sem in write mode before calling
3188  * mm_take_all_locks(). The caller isn't allowed to release the
3189  * mmap_sem until mm_drop_all_locks() returns.
3190  *
3191  * mmap_sem in write mode is required in order to block all operations
3192  * that could modify pagetables and free pages without need of
3193  * altering the vma layout. It's also needed in write mode to avoid new
3194  * anon_vmas to be associated with existing vmas.
3195  *
3196  * A single task can't take more than one mm_take_all_locks() in a row
3197  * or it would deadlock.
3198  *
3199  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3200  * mapping->flags avoid to take the same lock twice, if more than one
3201  * vma in this mm is backed by the same anon_vma or address_space.
3202  *
3203  * We can take all the locks in random order because the VM code
3204  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3205  * takes more than one of them in a row. Secondly we're protected
3206  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3207  *
3208  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3209  * that may have to take thousand of locks.
3210  *
3211  * mm_take_all_locks() can fail if it's interrupted by signals.
3212  */
3213 int mm_take_all_locks(struct mm_struct *mm)
3214 {
3215         struct vm_area_struct *vma;
3216         struct anon_vma_chain *avc;
3217
3218         BUG_ON(down_read_trylock(&mm->mmap_sem));
3219
3220         mutex_lock(&mm_all_locks_mutex);
3221
3222         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3223                 if (signal_pending(current))
3224                         goto out_unlock;
3225                 if (vma->vm_file && vma->vm_file->f_mapping)
3226                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3227         }
3228
3229         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3230                 if (signal_pending(current))
3231                         goto out_unlock;
3232                 if (vma->anon_vma)
3233                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3234                                 vm_lock_anon_vma(mm, avc->anon_vma);
3235         }
3236
3237         return 0;
3238
3239 out_unlock:
3240         mm_drop_all_locks(mm);
3241         return -EINTR;
3242 }
3243
3244 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3245 {
3246         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3247                 /*
3248                  * The LSB of head.next can't change to 0 from under
3249                  * us because we hold the mm_all_locks_mutex.
3250                  *
3251                  * We must however clear the bitflag before unlocking
3252                  * the vma so the users using the anon_vma->rb_root will
3253                  * never see our bitflag.
3254                  *
3255                  * No need of atomic instructions here, head.next
3256                  * can't change from under us until we release the
3257                  * anon_vma->root->rwsem.
3258                  */
3259                 if (!__test_and_clear_bit(0, (unsigned long *)
3260                                           &anon_vma->root->rb_root.rb_node))
3261                         BUG();
3262                 anon_vma_unlock_write(anon_vma);
3263         }
3264 }
3265
3266 static void vm_unlock_mapping(struct address_space *mapping)
3267 {
3268         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3269                 /*
3270                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3271                  * because we hold the mm_all_locks_mutex.
3272                  */
3273                 i_mmap_unlock_write(mapping);
3274                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3275                                         &mapping->flags))
3276                         BUG();
3277         }
3278 }
3279
3280 /*
3281  * The mmap_sem cannot be released by the caller until
3282  * mm_drop_all_locks() returns.
3283  */
3284 void mm_drop_all_locks(struct mm_struct *mm)
3285 {
3286         struct vm_area_struct *vma;
3287         struct anon_vma_chain *avc;
3288
3289         BUG_ON(down_read_trylock(&mm->mmap_sem));
3290         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3291
3292         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3293                 if (vma->anon_vma)
3294                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3295                                 vm_unlock_anon_vma(avc->anon_vma);
3296                 if (vma->vm_file && vma->vm_file->f_mapping)
3297                         vm_unlock_mapping(vma->vm_file->f_mapping);
3298         }
3299
3300         mutex_unlock(&mm_all_locks_mutex);
3301 }
3302
3303 /*
3304  * initialise the VMA slab
3305  */
3306 void __init mmap_init(void)
3307 {
3308         int ret;
3309
3310         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3311         VM_BUG_ON(ret);
3312 }
3313
3314 /*
3315  * Initialise sysctl_user_reserve_kbytes.
3316  *
3317  * This is intended to prevent a user from starting a single memory hogging
3318  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3319  * mode.
3320  *
3321  * The default value is min(3% of free memory, 128MB)
3322  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3323  */
3324 static int init_user_reserve(void)
3325 {
3326         unsigned long free_kbytes;
3327
3328         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3329
3330         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3331         return 0;
3332 }
3333 subsys_initcall(init_user_reserve);
3334
3335 /*
3336  * Initialise sysctl_admin_reserve_kbytes.
3337  *
3338  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3339  * to log in and kill a memory hogging process.
3340  *
3341  * Systems with more than 256MB will reserve 8MB, enough to recover
3342  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3343  * only reserve 3% of free pages by default.
3344  */
3345 static int init_admin_reserve(void)
3346 {
3347         unsigned long free_kbytes;
3348
3349         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3350
3351         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3352         return 0;
3353 }
3354 subsys_initcall(init_admin_reserve);
3355
3356 /*
3357  * Reinititalise user and admin reserves if memory is added or removed.
3358  *
3359  * The default user reserve max is 128MB, and the default max for the
3360  * admin reserve is 8MB. These are usually, but not always, enough to
3361  * enable recovery from a memory hogging process using login/sshd, a shell,
3362  * and tools like top. It may make sense to increase or even disable the
3363  * reserve depending on the existence of swap or variations in the recovery
3364  * tools. So, the admin may have changed them.
3365  *
3366  * If memory is added and the reserves have been eliminated or increased above
3367  * the default max, then we'll trust the admin.
3368  *
3369  * If memory is removed and there isn't enough free memory, then we
3370  * need to reset the reserves.
3371  *
3372  * Otherwise keep the reserve set by the admin.
3373  */
3374 static int reserve_mem_notifier(struct notifier_block *nb,
3375                              unsigned long action, void *data)
3376 {
3377         unsigned long tmp, free_kbytes;
3378
3379         switch (action) {
3380         case MEM_ONLINE:
3381                 /* Default max is 128MB. Leave alone if modified by operator. */
3382                 tmp = sysctl_user_reserve_kbytes;
3383                 if (0 < tmp && tmp < (1UL << 17))
3384                         init_user_reserve();
3385
3386                 /* Default max is 8MB.  Leave alone if modified by operator. */
3387                 tmp = sysctl_admin_reserve_kbytes;
3388                 if (0 < tmp && tmp < (1UL << 13))
3389                         init_admin_reserve();
3390
3391                 break;
3392         case MEM_OFFLINE:
3393                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3394
3395                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3396                         init_user_reserve();
3397                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3398                                 sysctl_user_reserve_kbytes);
3399                 }
3400
3401                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3402                         init_admin_reserve();
3403                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3404                                 sysctl_admin_reserve_kbytes);
3405                 }
3406                 break;
3407         default:
3408                 break;
3409         }
3410         return NOTIFY_OK;
3411 }
3412
3413 static struct notifier_block reserve_mem_nb = {
3414         .notifier_call = reserve_mem_notifier,
3415 };
3416
3417 static int __meminit init_reserve_notifier(void)
3418 {
3419         if (register_hotmemory_notifier(&reserve_mem_nb))
3420                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3421
3422         return 0;
3423 }
3424 subsys_initcall(init_reserve_notifier);