Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE               16      /* stack trace length */
110 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
112 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER       sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119                                            __GFP_NOACCOUNT)) | \
120                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
121                                  __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125         struct hlist_node node;
126         unsigned long start;
127         size_t size;
128 };
129
130 #define KMEMLEAK_GREY   0
131 #define KMEMLEAK_BLACK  -1
132
133 /*
134  * Structure holding the metadata for each allocated memory block.
135  * Modifications to such objects should be made while holding the
136  * object->lock. Insertions or deletions from object_list, gray_list or
137  * rb_node are already protected by the corresponding locks or mutex (see
138  * the notes on locking above). These objects are reference-counted
139  * (use_count) and freed using the RCU mechanism.
140  */
141 struct kmemleak_object {
142         spinlock_t lock;
143         unsigned long flags;            /* object status flags */
144         struct list_head object_list;
145         struct list_head gray_list;
146         struct rb_node rb_node;
147         struct rcu_head rcu;            /* object_list lockless traversal */
148         /* object usage count; object freed when use_count == 0 */
149         atomic_t use_count;
150         unsigned long pointer;
151         size_t size;
152         /* minimum number of a pointers found before it is considered leak */
153         int min_count;
154         /* the total number of pointers found pointing to this object */
155         int count;
156         /* checksum for detecting modified objects */
157         u32 checksum;
158         /* memory ranges to be scanned inside an object (empty for all) */
159         struct hlist_head area_list;
160         unsigned long trace[MAX_TRACE];
161         unsigned int trace_len;
162         unsigned long jiffies;          /* creation timestamp */
163         pid_t pid;                      /* pid of the current task */
164         char comm[TASK_COMM_LEN];       /* executable name */
165 };
166
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED        (1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED         (1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN          (1 << 2)
173
174 /* number of bytes to print per line; must be 16 or 32 */
175 #define HEX_ROW_SIZE            16
176 /* number of bytes to print at a time (1, 2, 4, 8) */
177 #define HEX_GROUP_SIZE          1
178 /* include ASCII after the hex output */
179 #define HEX_ASCII               1
180 /* max number of lines to be printed */
181 #define HEX_MAX_LINES           2
182
183 /* the list of all allocated objects */
184 static LIST_HEAD(object_list);
185 /* the list of gray-colored objects (see color_gray comment below) */
186 static LIST_HEAD(gray_list);
187 /* search tree for object boundaries */
188 static struct rb_root object_tree_root = RB_ROOT;
189 /* rw_lock protecting the access to object_list and object_tree_root */
190 static DEFINE_RWLOCK(kmemleak_lock);
191
192 /* allocation caches for kmemleak internal data */
193 static struct kmem_cache *object_cache;
194 static struct kmem_cache *scan_area_cache;
195
196 /* set if tracing memory operations is enabled */
197 static int kmemleak_enabled;
198 /* same as above but only for the kmemleak_free() callback */
199 static int kmemleak_free_enabled;
200 /* set in the late_initcall if there were no errors */
201 static int kmemleak_initialized;
202 /* enables or disables early logging of the memory operations */
203 static int kmemleak_early_log = 1;
204 /* set if a kmemleak warning was issued */
205 static int kmemleak_warning;
206 /* set if a fatal kmemleak error has occurred */
207 static int kmemleak_error;
208
209 /* minimum and maximum address that may be valid pointers */
210 static unsigned long min_addr = ULONG_MAX;
211 static unsigned long max_addr;
212
213 static struct task_struct *scan_thread;
214 /* used to avoid reporting of recently allocated objects */
215 static unsigned long jiffies_min_age;
216 static unsigned long jiffies_last_scan;
217 /* delay between automatic memory scannings */
218 static signed long jiffies_scan_wait;
219 /* enables or disables the task stacks scanning */
220 static int kmemleak_stack_scan = 1;
221 /* protects the memory scanning, parameters and debug/kmemleak file access */
222 static DEFINE_MUTEX(scan_mutex);
223 /* setting kmemleak=on, will set this var, skipping the disable */
224 static int kmemleak_skip_disable;
225 /* If there are leaks that can be reported */
226 static bool kmemleak_found_leaks;
227
228 /*
229  * Early object allocation/freeing logging. Kmemleak is initialized after the
230  * kernel allocator. However, both the kernel allocator and kmemleak may
231  * allocate memory blocks which need to be tracked. Kmemleak defines an
232  * arbitrary buffer to hold the allocation/freeing information before it is
233  * fully initialized.
234  */
235
236 /* kmemleak operation type for early logging */
237 enum {
238         KMEMLEAK_ALLOC,
239         KMEMLEAK_ALLOC_PERCPU,
240         KMEMLEAK_FREE,
241         KMEMLEAK_FREE_PART,
242         KMEMLEAK_FREE_PERCPU,
243         KMEMLEAK_NOT_LEAK,
244         KMEMLEAK_IGNORE,
245         KMEMLEAK_SCAN_AREA,
246         KMEMLEAK_NO_SCAN
247 };
248
249 /*
250  * Structure holding the information passed to kmemleak callbacks during the
251  * early logging.
252  */
253 struct early_log {
254         int op_type;                    /* kmemleak operation type */
255         const void *ptr;                /* allocated/freed memory block */
256         size_t size;                    /* memory block size */
257         int min_count;                  /* minimum reference count */
258         unsigned long trace[MAX_TRACE]; /* stack trace */
259         unsigned int trace_len;         /* stack trace length */
260 };
261
262 /* early logging buffer and current position */
263 static struct early_log
264         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
265 static int crt_early_log __initdata;
266
267 static void kmemleak_disable(void);
268
269 /*
270  * Print a warning and dump the stack trace.
271  */
272 #define kmemleak_warn(x...)     do {            \
273         pr_warning(x);                          \
274         dump_stack();                           \
275         kmemleak_warning = 1;                   \
276 } while (0)
277
278 /*
279  * Macro invoked when a serious kmemleak condition occurred and cannot be
280  * recovered from. Kmemleak will be disabled and further allocation/freeing
281  * tracing no longer available.
282  */
283 #define kmemleak_stop(x...)     do {    \
284         kmemleak_warn(x);               \
285         kmemleak_disable();             \
286 } while (0)
287
288 /*
289  * Printing of the objects hex dump to the seq file. The number of lines to be
290  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
291  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
292  * with the object->lock held.
293  */
294 static void hex_dump_object(struct seq_file *seq,
295                             struct kmemleak_object *object)
296 {
297         const u8 *ptr = (const u8 *)object->pointer;
298         int i, len, remaining;
299         unsigned char linebuf[HEX_ROW_SIZE * 5];
300
301         /* limit the number of lines to HEX_MAX_LINES */
302         remaining = len =
303                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
304
305         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
306         for (i = 0; i < len; i += HEX_ROW_SIZE) {
307                 int linelen = min(remaining, HEX_ROW_SIZE);
308
309                 remaining -= HEX_ROW_SIZE;
310                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
311                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
312                                    HEX_ASCII);
313                 seq_printf(seq, "    %s\n", linebuf);
314         }
315 }
316
317 /*
318  * Object colors, encoded with count and min_count:
319  * - white - orphan object, not enough references to it (count < min_count)
320  * - gray  - not orphan, not marked as false positive (min_count == 0) or
321  *              sufficient references to it (count >= min_count)
322  * - black - ignore, it doesn't contain references (e.g. text section)
323  *              (min_count == -1). No function defined for this color.
324  * Newly created objects don't have any color assigned (object->count == -1)
325  * before the next memory scan when they become white.
326  */
327 static bool color_white(const struct kmemleak_object *object)
328 {
329         return object->count != KMEMLEAK_BLACK &&
330                 object->count < object->min_count;
331 }
332
333 static bool color_gray(const struct kmemleak_object *object)
334 {
335         return object->min_count != KMEMLEAK_BLACK &&
336                 object->count >= object->min_count;
337 }
338
339 /*
340  * Objects are considered unreferenced only if their color is white, they have
341  * not be deleted and have a minimum age to avoid false positives caused by
342  * pointers temporarily stored in CPU registers.
343  */
344 static bool unreferenced_object(struct kmemleak_object *object)
345 {
346         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
347                 time_before_eq(object->jiffies + jiffies_min_age,
348                                jiffies_last_scan);
349 }
350
351 /*
352  * Printing of the unreferenced objects information to the seq file. The
353  * print_unreferenced function must be called with the object->lock held.
354  */
355 static void print_unreferenced(struct seq_file *seq,
356                                struct kmemleak_object *object)
357 {
358         int i;
359         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
360
361         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                    object->pointer, object->size);
363         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                    object->comm, object->pid, object->jiffies,
365                    msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < object->trace_len; i++) {
370                 void *ptr = (void *)object->trace[i];
371                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         struct stack_trace trace;
383
384         trace.nr_entries = object->trace_len;
385         trace.entries = object->trace;
386
387         pr_notice("Object 0x%08lx (size %zu):\n",
388                   object->pointer, object->size);
389         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
390                   object->comm, object->pid, object->jiffies);
391         pr_notice("  min_count = %d\n", object->min_count);
392         pr_notice("  count = %d\n", object->count);
393         pr_notice("  flags = 0x%lx\n", object->flags);
394         pr_notice("  checksum = %u\n", object->checksum);
395         pr_notice("  backtrace:\n");
396         print_stack_trace(&trace, 4);
397 }
398
399 /*
400  * Look-up a memory block metadata (kmemleak_object) in the object search
401  * tree based on a pointer value. If alias is 0, only values pointing to the
402  * beginning of the memory block are allowed. The kmemleak_lock must be held
403  * when calling this function.
404  */
405 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
406 {
407         struct rb_node *rb = object_tree_root.rb_node;
408
409         while (rb) {
410                 struct kmemleak_object *object =
411                         rb_entry(rb, struct kmemleak_object, rb_node);
412                 if (ptr < object->pointer)
413                         rb = object->rb_node.rb_left;
414                 else if (object->pointer + object->size <= ptr)
415                         rb = object->rb_node.rb_right;
416                 else if (object->pointer == ptr || alias)
417                         return object;
418                 else {
419                         kmemleak_warn("Found object by alias at 0x%08lx\n",
420                                       ptr);
421                         dump_object_info(object);
422                         break;
423                 }
424         }
425         return NULL;
426 }
427
428 /*
429  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
430  * that once an object's use_count reached 0, the RCU freeing was already
431  * registered and the object should no longer be used. This function must be
432  * called under the protection of rcu_read_lock().
433  */
434 static int get_object(struct kmemleak_object *object)
435 {
436         return atomic_inc_not_zero(&object->use_count);
437 }
438
439 /*
440  * RCU callback to free a kmemleak_object.
441  */
442 static void free_object_rcu(struct rcu_head *rcu)
443 {
444         struct hlist_node *tmp;
445         struct kmemleak_scan_area *area;
446         struct kmemleak_object *object =
447                 container_of(rcu, struct kmemleak_object, rcu);
448
449         /*
450          * Once use_count is 0 (guaranteed by put_object), there is no other
451          * code accessing this object, hence no need for locking.
452          */
453         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
454                 hlist_del(&area->node);
455                 kmem_cache_free(scan_area_cache, area);
456         }
457         kmem_cache_free(object_cache, object);
458 }
459
460 /*
461  * Decrement the object use_count. Once the count is 0, free the object using
462  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
463  * delete_object() path, the delayed RCU freeing ensures that there is no
464  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
465  * is also possible.
466  */
467 static void put_object(struct kmemleak_object *object)
468 {
469         if (!atomic_dec_and_test(&object->use_count))
470                 return;
471
472         /* should only get here after delete_object was called */
473         WARN_ON(object->flags & OBJECT_ALLOCATED);
474
475         call_rcu(&object->rcu, free_object_rcu);
476 }
477
478 /*
479  * Look up an object in the object search tree and increase its use_count.
480  */
481 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
482 {
483         unsigned long flags;
484         struct kmemleak_object *object = NULL;
485
486         rcu_read_lock();
487         read_lock_irqsave(&kmemleak_lock, flags);
488         if (ptr >= min_addr && ptr < max_addr)
489                 object = lookup_object(ptr, alias);
490         read_unlock_irqrestore(&kmemleak_lock, flags);
491
492         /* check whether the object is still available */
493         if (object && !get_object(object))
494                 object = NULL;
495         rcu_read_unlock();
496
497         return object;
498 }
499
500 /*
501  * Save stack trace to the given array of MAX_TRACE size.
502  */
503 static int __save_stack_trace(unsigned long *trace)
504 {
505         struct stack_trace stack_trace;
506
507         stack_trace.max_entries = MAX_TRACE;
508         stack_trace.nr_entries = 0;
509         stack_trace.entries = trace;
510         stack_trace.skip = 2;
511         save_stack_trace(&stack_trace);
512
513         return stack_trace.nr_entries;
514 }
515
516 /*
517  * Create the metadata (struct kmemleak_object) corresponding to an allocated
518  * memory block and add it to the object_list and object_tree_root.
519  */
520 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
521                                              int min_count, gfp_t gfp)
522 {
523         unsigned long flags;
524         struct kmemleak_object *object, *parent;
525         struct rb_node **link, *rb_parent;
526
527         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
528         if (!object) {
529                 pr_warning("Cannot allocate a kmemleak_object structure\n");
530                 kmemleak_disable();
531                 return NULL;
532         }
533
534         INIT_LIST_HEAD(&object->object_list);
535         INIT_LIST_HEAD(&object->gray_list);
536         INIT_HLIST_HEAD(&object->area_list);
537         spin_lock_init(&object->lock);
538         atomic_set(&object->use_count, 1);
539         object->flags = OBJECT_ALLOCATED;
540         object->pointer = ptr;
541         object->size = size;
542         object->min_count = min_count;
543         object->count = 0;                      /* white color initially */
544         object->jiffies = jiffies;
545         object->checksum = 0;
546
547         /* task information */
548         if (in_irq()) {
549                 object->pid = 0;
550                 strncpy(object->comm, "hardirq", sizeof(object->comm));
551         } else if (in_softirq()) {
552                 object->pid = 0;
553                 strncpy(object->comm, "softirq", sizeof(object->comm));
554         } else {
555                 object->pid = current->pid;
556                 /*
557                  * There is a small chance of a race with set_task_comm(),
558                  * however using get_task_comm() here may cause locking
559                  * dependency issues with current->alloc_lock. In the worst
560                  * case, the command line is not correct.
561                  */
562                 strncpy(object->comm, current->comm, sizeof(object->comm));
563         }
564
565         /* kernel backtrace */
566         object->trace_len = __save_stack_trace(object->trace);
567
568         write_lock_irqsave(&kmemleak_lock, flags);
569
570         min_addr = min(min_addr, ptr);
571         max_addr = max(max_addr, ptr + size);
572         link = &object_tree_root.rb_node;
573         rb_parent = NULL;
574         while (*link) {
575                 rb_parent = *link;
576                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
577                 if (ptr + size <= parent->pointer)
578                         link = &parent->rb_node.rb_left;
579                 else if (parent->pointer + parent->size <= ptr)
580                         link = &parent->rb_node.rb_right;
581                 else {
582                         kmemleak_stop("Cannot insert 0x%lx into the object "
583                                       "search tree (overlaps existing)\n",
584                                       ptr);
585                         kmem_cache_free(object_cache, object);
586                         object = parent;
587                         spin_lock(&object->lock);
588                         dump_object_info(object);
589                         spin_unlock(&object->lock);
590                         goto out;
591                 }
592         }
593         rb_link_node(&object->rb_node, rb_parent, link);
594         rb_insert_color(&object->rb_node, &object_tree_root);
595
596         list_add_tail_rcu(&object->object_list, &object_list);
597 out:
598         write_unlock_irqrestore(&kmemleak_lock, flags);
599         return object;
600 }
601
602 /*
603  * Remove the metadata (struct kmemleak_object) for a memory block from the
604  * object_list and object_tree_root and decrement its use_count.
605  */
606 static void __delete_object(struct kmemleak_object *object)
607 {
608         unsigned long flags;
609
610         write_lock_irqsave(&kmemleak_lock, flags);
611         rb_erase(&object->rb_node, &object_tree_root);
612         list_del_rcu(&object->object_list);
613         write_unlock_irqrestore(&kmemleak_lock, flags);
614
615         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
616         WARN_ON(atomic_read(&object->use_count) < 2);
617
618         /*
619          * Locking here also ensures that the corresponding memory block
620          * cannot be freed when it is being scanned.
621          */
622         spin_lock_irqsave(&object->lock, flags);
623         object->flags &= ~OBJECT_ALLOCATED;
624         spin_unlock_irqrestore(&object->lock, flags);
625         put_object(object);
626 }
627
628 /*
629  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
630  * delete it.
631  */
632 static void delete_object_full(unsigned long ptr)
633 {
634         struct kmemleak_object *object;
635
636         object = find_and_get_object(ptr, 0);
637         if (!object) {
638 #ifdef DEBUG
639                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
640                               ptr);
641 #endif
642                 return;
643         }
644         __delete_object(object);
645         put_object(object);
646 }
647
648 /*
649  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
650  * delete it. If the memory block is partially freed, the function may create
651  * additional metadata for the remaining parts of the block.
652  */
653 static void delete_object_part(unsigned long ptr, size_t size)
654 {
655         struct kmemleak_object *object;
656         unsigned long start, end;
657
658         object = find_and_get_object(ptr, 1);
659         if (!object) {
660 #ifdef DEBUG
661                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
662                               "(size %zu)\n", ptr, size);
663 #endif
664                 return;
665         }
666         __delete_object(object);
667
668         /*
669          * Create one or two objects that may result from the memory block
670          * split. Note that partial freeing is only done by free_bootmem() and
671          * this happens before kmemleak_init() is called. The path below is
672          * only executed during early log recording in kmemleak_init(), so
673          * GFP_KERNEL is enough.
674          */
675         start = object->pointer;
676         end = object->pointer + object->size;
677         if (ptr > start)
678                 create_object(start, ptr - start, object->min_count,
679                               GFP_KERNEL);
680         if (ptr + size < end)
681                 create_object(ptr + size, end - ptr - size, object->min_count,
682                               GFP_KERNEL);
683
684         put_object(object);
685 }
686
687 static void __paint_it(struct kmemleak_object *object, int color)
688 {
689         object->min_count = color;
690         if (color == KMEMLEAK_BLACK)
691                 object->flags |= OBJECT_NO_SCAN;
692 }
693
694 static void paint_it(struct kmemleak_object *object, int color)
695 {
696         unsigned long flags;
697
698         spin_lock_irqsave(&object->lock, flags);
699         __paint_it(object, color);
700         spin_unlock_irqrestore(&object->lock, flags);
701 }
702
703 static void paint_ptr(unsigned long ptr, int color)
704 {
705         struct kmemleak_object *object;
706
707         object = find_and_get_object(ptr, 0);
708         if (!object) {
709                 kmemleak_warn("Trying to color unknown object "
710                               "at 0x%08lx as %s\n", ptr,
711                               (color == KMEMLEAK_GREY) ? "Grey" :
712                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
713                 return;
714         }
715         paint_it(object, color);
716         put_object(object);
717 }
718
719 /*
720  * Mark an object permanently as gray-colored so that it can no longer be
721  * reported as a leak. This is used in general to mark a false positive.
722  */
723 static void make_gray_object(unsigned long ptr)
724 {
725         paint_ptr(ptr, KMEMLEAK_GREY);
726 }
727
728 /*
729  * Mark the object as black-colored so that it is ignored from scans and
730  * reporting.
731  */
732 static void make_black_object(unsigned long ptr)
733 {
734         paint_ptr(ptr, KMEMLEAK_BLACK);
735 }
736
737 /*
738  * Add a scanning area to the object. If at least one such area is added,
739  * kmemleak will only scan these ranges rather than the whole memory block.
740  */
741 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
742 {
743         unsigned long flags;
744         struct kmemleak_object *object;
745         struct kmemleak_scan_area *area;
746
747         object = find_and_get_object(ptr, 1);
748         if (!object) {
749                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
750                               ptr);
751                 return;
752         }
753
754         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
755         if (!area) {
756                 pr_warning("Cannot allocate a scan area\n");
757                 goto out;
758         }
759
760         spin_lock_irqsave(&object->lock, flags);
761         if (size == SIZE_MAX) {
762                 size = object->pointer + object->size - ptr;
763         } else if (ptr + size > object->pointer + object->size) {
764                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
765                 dump_object_info(object);
766                 kmem_cache_free(scan_area_cache, area);
767                 goto out_unlock;
768         }
769
770         INIT_HLIST_NODE(&area->node);
771         area->start = ptr;
772         area->size = size;
773
774         hlist_add_head(&area->node, &object->area_list);
775 out_unlock:
776         spin_unlock_irqrestore(&object->lock, flags);
777 out:
778         put_object(object);
779 }
780
781 /*
782  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
783  * pointer. Such object will not be scanned by kmemleak but references to it
784  * are searched.
785  */
786 static void object_no_scan(unsigned long ptr)
787 {
788         unsigned long flags;
789         struct kmemleak_object *object;
790
791         object = find_and_get_object(ptr, 0);
792         if (!object) {
793                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
794                 return;
795         }
796
797         spin_lock_irqsave(&object->lock, flags);
798         object->flags |= OBJECT_NO_SCAN;
799         spin_unlock_irqrestore(&object->lock, flags);
800         put_object(object);
801 }
802
803 /*
804  * Log an early kmemleak_* call to the early_log buffer. These calls will be
805  * processed later once kmemleak is fully initialized.
806  */
807 static void __init log_early(int op_type, const void *ptr, size_t size,
808                              int min_count)
809 {
810         unsigned long flags;
811         struct early_log *log;
812
813         if (kmemleak_error) {
814                 /* kmemleak stopped recording, just count the requests */
815                 crt_early_log++;
816                 return;
817         }
818
819         if (crt_early_log >= ARRAY_SIZE(early_log)) {
820                 kmemleak_disable();
821                 return;
822         }
823
824         /*
825          * There is no need for locking since the kernel is still in UP mode
826          * at this stage. Disabling the IRQs is enough.
827          */
828         local_irq_save(flags);
829         log = &early_log[crt_early_log];
830         log->op_type = op_type;
831         log->ptr = ptr;
832         log->size = size;
833         log->min_count = min_count;
834         log->trace_len = __save_stack_trace(log->trace);
835         crt_early_log++;
836         local_irq_restore(flags);
837 }
838
839 /*
840  * Log an early allocated block and populate the stack trace.
841  */
842 static void early_alloc(struct early_log *log)
843 {
844         struct kmemleak_object *object;
845         unsigned long flags;
846         int i;
847
848         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
849                 return;
850
851         /*
852          * RCU locking needed to ensure object is not freed via put_object().
853          */
854         rcu_read_lock();
855         object = create_object((unsigned long)log->ptr, log->size,
856                                log->min_count, GFP_ATOMIC);
857         if (!object)
858                 goto out;
859         spin_lock_irqsave(&object->lock, flags);
860         for (i = 0; i < log->trace_len; i++)
861                 object->trace[i] = log->trace[i];
862         object->trace_len = log->trace_len;
863         spin_unlock_irqrestore(&object->lock, flags);
864 out:
865         rcu_read_unlock();
866 }
867
868 /*
869  * Log an early allocated block and populate the stack trace.
870  */
871 static void early_alloc_percpu(struct early_log *log)
872 {
873         unsigned int cpu;
874         const void __percpu *ptr = log->ptr;
875
876         for_each_possible_cpu(cpu) {
877                 log->ptr = per_cpu_ptr(ptr, cpu);
878                 early_alloc(log);
879         }
880 }
881
882 /**
883  * kmemleak_alloc - register a newly allocated object
884  * @ptr:        pointer to beginning of the object
885  * @size:       size of the object
886  * @min_count:  minimum number of references to this object. If during memory
887  *              scanning a number of references less than @min_count is found,
888  *              the object is reported as a memory leak. If @min_count is 0,
889  *              the object is never reported as a leak. If @min_count is -1,
890  *              the object is ignored (not scanned and not reported as a leak)
891  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
892  *
893  * This function is called from the kernel allocators when a new object
894  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
895  */
896 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
897                           gfp_t gfp)
898 {
899         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
900
901         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
902                 create_object((unsigned long)ptr, size, min_count, gfp);
903         else if (kmemleak_early_log)
904                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
905 }
906 EXPORT_SYMBOL_GPL(kmemleak_alloc);
907
908 /**
909  * kmemleak_alloc_percpu - register a newly allocated __percpu object
910  * @ptr:        __percpu pointer to beginning of the object
911  * @size:       size of the object
912  * @gfp:        flags used for kmemleak internal memory allocations
913  *
914  * This function is called from the kernel percpu allocator when a new object
915  * (memory block) is allocated (alloc_percpu).
916  */
917 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
918                                  gfp_t gfp)
919 {
920         unsigned int cpu;
921
922         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
923
924         /*
925          * Percpu allocations are only scanned and not reported as leaks
926          * (min_count is set to 0).
927          */
928         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
929                 for_each_possible_cpu(cpu)
930                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
931                                       size, 0, gfp);
932         else if (kmemleak_early_log)
933                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
934 }
935 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
936
937 /**
938  * kmemleak_free - unregister a previously registered object
939  * @ptr:        pointer to beginning of the object
940  *
941  * This function is called from the kernel allocators when an object (memory
942  * block) is freed (kmem_cache_free, kfree, vfree etc.).
943  */
944 void __ref kmemleak_free(const void *ptr)
945 {
946         pr_debug("%s(0x%p)\n", __func__, ptr);
947
948         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
949                 delete_object_full((unsigned long)ptr);
950         else if (kmemleak_early_log)
951                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
952 }
953 EXPORT_SYMBOL_GPL(kmemleak_free);
954
955 /**
956  * kmemleak_free_part - partially unregister a previously registered object
957  * @ptr:        pointer to the beginning or inside the object. This also
958  *              represents the start of the range to be freed
959  * @size:       size to be unregistered
960  *
961  * This function is called when only a part of a memory block is freed
962  * (usually from the bootmem allocator).
963  */
964 void __ref kmemleak_free_part(const void *ptr, size_t size)
965 {
966         pr_debug("%s(0x%p)\n", __func__, ptr);
967
968         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
969                 delete_object_part((unsigned long)ptr, size);
970         else if (kmemleak_early_log)
971                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
972 }
973 EXPORT_SYMBOL_GPL(kmemleak_free_part);
974
975 /**
976  * kmemleak_free_percpu - unregister a previously registered __percpu object
977  * @ptr:        __percpu pointer to beginning of the object
978  *
979  * This function is called from the kernel percpu allocator when an object
980  * (memory block) is freed (free_percpu).
981  */
982 void __ref kmemleak_free_percpu(const void __percpu *ptr)
983 {
984         unsigned int cpu;
985
986         pr_debug("%s(0x%p)\n", __func__, ptr);
987
988         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
989                 for_each_possible_cpu(cpu)
990                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
991                                                                       cpu));
992         else if (kmemleak_early_log)
993                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
994 }
995 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
996
997 /**
998  * kmemleak_update_trace - update object allocation stack trace
999  * @ptr:        pointer to beginning of the object
1000  *
1001  * Override the object allocation stack trace for cases where the actual
1002  * allocation place is not always useful.
1003  */
1004 void __ref kmemleak_update_trace(const void *ptr)
1005 {
1006         struct kmemleak_object *object;
1007         unsigned long flags;
1008
1009         pr_debug("%s(0x%p)\n", __func__, ptr);
1010
1011         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1012                 return;
1013
1014         object = find_and_get_object((unsigned long)ptr, 1);
1015         if (!object) {
1016 #ifdef DEBUG
1017                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1018                               ptr);
1019 #endif
1020                 return;
1021         }
1022
1023         spin_lock_irqsave(&object->lock, flags);
1024         object->trace_len = __save_stack_trace(object->trace);
1025         spin_unlock_irqrestore(&object->lock, flags);
1026
1027         put_object(object);
1028 }
1029 EXPORT_SYMBOL(kmemleak_update_trace);
1030
1031 /**
1032  * kmemleak_not_leak - mark an allocated object as false positive
1033  * @ptr:        pointer to beginning of the object
1034  *
1035  * Calling this function on an object will cause the memory block to no longer
1036  * be reported as leak and always be scanned.
1037  */
1038 void __ref kmemleak_not_leak(const void *ptr)
1039 {
1040         pr_debug("%s(0x%p)\n", __func__, ptr);
1041
1042         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1043                 make_gray_object((unsigned long)ptr);
1044         else if (kmemleak_early_log)
1045                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1046 }
1047 EXPORT_SYMBOL(kmemleak_not_leak);
1048
1049 /**
1050  * kmemleak_ignore - ignore an allocated object
1051  * @ptr:        pointer to beginning of the object
1052  *
1053  * Calling this function on an object will cause the memory block to be
1054  * ignored (not scanned and not reported as a leak). This is usually done when
1055  * it is known that the corresponding block is not a leak and does not contain
1056  * any references to other allocated memory blocks.
1057  */
1058 void __ref kmemleak_ignore(const void *ptr)
1059 {
1060         pr_debug("%s(0x%p)\n", __func__, ptr);
1061
1062         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1063                 make_black_object((unsigned long)ptr);
1064         else if (kmemleak_early_log)
1065                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1066 }
1067 EXPORT_SYMBOL(kmemleak_ignore);
1068
1069 /**
1070  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1071  * @ptr:        pointer to beginning or inside the object. This also
1072  *              represents the start of the scan area
1073  * @size:       size of the scan area
1074  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1075  *
1076  * This function is used when it is known that only certain parts of an object
1077  * contain references to other objects. Kmemleak will only scan these areas
1078  * reducing the number false negatives.
1079  */
1080 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1081 {
1082         pr_debug("%s(0x%p)\n", __func__, ptr);
1083
1084         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1085                 add_scan_area((unsigned long)ptr, size, gfp);
1086         else if (kmemleak_early_log)
1087                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1088 }
1089 EXPORT_SYMBOL(kmemleak_scan_area);
1090
1091 /**
1092  * kmemleak_no_scan - do not scan an allocated object
1093  * @ptr:        pointer to beginning of the object
1094  *
1095  * This function notifies kmemleak not to scan the given memory block. Useful
1096  * in situations where it is known that the given object does not contain any
1097  * references to other objects. Kmemleak will not scan such objects reducing
1098  * the number of false negatives.
1099  */
1100 void __ref kmemleak_no_scan(const void *ptr)
1101 {
1102         pr_debug("%s(0x%p)\n", __func__, ptr);
1103
1104         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105                 object_no_scan((unsigned long)ptr);
1106         else if (kmemleak_early_log)
1107                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1108 }
1109 EXPORT_SYMBOL(kmemleak_no_scan);
1110
1111 /*
1112  * Update an object's checksum and return true if it was modified.
1113  */
1114 static bool update_checksum(struct kmemleak_object *object)
1115 {
1116         u32 old_csum = object->checksum;
1117
1118         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1119                 return false;
1120
1121         kasan_disable_current();
1122         object->checksum = crc32(0, (void *)object->pointer, object->size);
1123         kasan_enable_current();
1124
1125         return object->checksum != old_csum;
1126 }
1127
1128 /*
1129  * Memory scanning is a long process and it needs to be interruptable. This
1130  * function checks whether such interrupt condition occurred.
1131  */
1132 static int scan_should_stop(void)
1133 {
1134         if (!kmemleak_enabled)
1135                 return 1;
1136
1137         /*
1138          * This function may be called from either process or kthread context,
1139          * hence the need to check for both stop conditions.
1140          */
1141         if (current->mm)
1142                 return signal_pending(current);
1143         else
1144                 return kthread_should_stop();
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * Scan a memory block (exclusive range) for valid pointers and add those
1151  * found to the gray list.
1152  */
1153 static void scan_block(void *_start, void *_end,
1154                        struct kmemleak_object *scanned, int allow_resched)
1155 {
1156         unsigned long *ptr;
1157         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1158         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1159
1160         for (ptr = start; ptr < end; ptr++) {
1161                 struct kmemleak_object *object;
1162                 unsigned long flags;
1163                 unsigned long pointer;
1164
1165                 if (allow_resched)
1166                         cond_resched();
1167                 if (scan_should_stop())
1168                         break;
1169
1170                 /* don't scan uninitialized memory */
1171                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1172                                                   BYTES_PER_POINTER))
1173                         continue;
1174
1175                 kasan_disable_current();
1176                 pointer = *ptr;
1177                 kasan_enable_current();
1178
1179                 object = find_and_get_object(pointer, 1);
1180                 if (!object)
1181                         continue;
1182                 if (object == scanned) {
1183                         /* self referenced, ignore */
1184                         put_object(object);
1185                         continue;
1186                 }
1187
1188                 /*
1189                  * Avoid the lockdep recursive warning on object->lock being
1190                  * previously acquired in scan_object(). These locks are
1191                  * enclosed by scan_mutex.
1192                  */
1193                 spin_lock_irqsave_nested(&object->lock, flags,
1194                                          SINGLE_DEPTH_NESTING);
1195                 if (!color_white(object)) {
1196                         /* non-orphan, ignored or new */
1197                         spin_unlock_irqrestore(&object->lock, flags);
1198                         put_object(object);
1199                         continue;
1200                 }
1201
1202                 /*
1203                  * Increase the object's reference count (number of pointers
1204                  * to the memory block). If this count reaches the required
1205                  * minimum, the object's color will become gray and it will be
1206                  * added to the gray_list.
1207                  */
1208                 object->count++;
1209                 if (color_gray(object)) {
1210                         list_add_tail(&object->gray_list, &gray_list);
1211                         spin_unlock_irqrestore(&object->lock, flags);
1212                         continue;
1213                 }
1214
1215                 spin_unlock_irqrestore(&object->lock, flags);
1216                 put_object(object);
1217         }
1218 }
1219
1220 /*
1221  * Scan a memory block corresponding to a kmemleak_object. A condition is
1222  * that object->use_count >= 1.
1223  */
1224 static void scan_object(struct kmemleak_object *object)
1225 {
1226         struct kmemleak_scan_area *area;
1227         unsigned long flags;
1228
1229         /*
1230          * Once the object->lock is acquired, the corresponding memory block
1231          * cannot be freed (the same lock is acquired in delete_object).
1232          */
1233         spin_lock_irqsave(&object->lock, flags);
1234         if (object->flags & OBJECT_NO_SCAN)
1235                 goto out;
1236         if (!(object->flags & OBJECT_ALLOCATED))
1237                 /* already freed object */
1238                 goto out;
1239         if (hlist_empty(&object->area_list)) {
1240                 void *start = (void *)object->pointer;
1241                 void *end = (void *)(object->pointer + object->size);
1242
1243                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1244                        !(object->flags & OBJECT_NO_SCAN)) {
1245                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
1246                                    object, 0);
1247                         start += MAX_SCAN_SIZE;
1248
1249                         spin_unlock_irqrestore(&object->lock, flags);
1250                         cond_resched();
1251                         spin_lock_irqsave(&object->lock, flags);
1252                 }
1253         } else
1254                 hlist_for_each_entry(area, &object->area_list, node)
1255                         scan_block((void *)area->start,
1256                                    (void *)(area->start + area->size),
1257                                    object, 0);
1258 out:
1259         spin_unlock_irqrestore(&object->lock, flags);
1260 }
1261
1262 /*
1263  * Scan the objects already referenced (gray objects). More objects will be
1264  * referenced and, if there are no memory leaks, all the objects are scanned.
1265  */
1266 static void scan_gray_list(void)
1267 {
1268         struct kmemleak_object *object, *tmp;
1269
1270         /*
1271          * The list traversal is safe for both tail additions and removals
1272          * from inside the loop. The kmemleak objects cannot be freed from
1273          * outside the loop because their use_count was incremented.
1274          */
1275         object = list_entry(gray_list.next, typeof(*object), gray_list);
1276         while (&object->gray_list != &gray_list) {
1277                 cond_resched();
1278
1279                 /* may add new objects to the list */
1280                 if (!scan_should_stop())
1281                         scan_object(object);
1282
1283                 tmp = list_entry(object->gray_list.next, typeof(*object),
1284                                  gray_list);
1285
1286                 /* remove the object from the list and release it */
1287                 list_del(&object->gray_list);
1288                 put_object(object);
1289
1290                 object = tmp;
1291         }
1292         WARN_ON(!list_empty(&gray_list));
1293 }
1294
1295 /*
1296  * Scan data sections and all the referenced memory blocks allocated via the
1297  * kernel's standard allocators. This function must be called with the
1298  * scan_mutex held.
1299  */
1300 static void kmemleak_scan(void)
1301 {
1302         unsigned long flags;
1303         struct kmemleak_object *object;
1304         int i;
1305         int new_leaks = 0;
1306
1307         jiffies_last_scan = jiffies;
1308
1309         /* prepare the kmemleak_object's */
1310         rcu_read_lock();
1311         list_for_each_entry_rcu(object, &object_list, object_list) {
1312                 spin_lock_irqsave(&object->lock, flags);
1313 #ifdef DEBUG
1314                 /*
1315                  * With a few exceptions there should be a maximum of
1316                  * 1 reference to any object at this point.
1317                  */
1318                 if (atomic_read(&object->use_count) > 1) {
1319                         pr_debug("object->use_count = %d\n",
1320                                  atomic_read(&object->use_count));
1321                         dump_object_info(object);
1322                 }
1323 #endif
1324                 /* reset the reference count (whiten the object) */
1325                 object->count = 0;
1326                 if (color_gray(object) && get_object(object))
1327                         list_add_tail(&object->gray_list, &gray_list);
1328
1329                 spin_unlock_irqrestore(&object->lock, flags);
1330         }
1331         rcu_read_unlock();
1332
1333         /* data/bss scanning */
1334         scan_block(_sdata, _edata, NULL, 1);
1335         scan_block(__bss_start, __bss_stop, NULL, 1);
1336
1337 #ifdef CONFIG_SMP
1338         /* per-cpu sections scanning */
1339         for_each_possible_cpu(i)
1340                 scan_block(__per_cpu_start + per_cpu_offset(i),
1341                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
1342 #endif
1343
1344         /*
1345          * Struct page scanning for each node.
1346          */
1347         get_online_mems();
1348         for_each_online_node(i) {
1349                 unsigned long start_pfn = node_start_pfn(i);
1350                 unsigned long end_pfn = node_end_pfn(i);
1351                 unsigned long pfn;
1352
1353                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1354                         struct page *page;
1355
1356                         if (!pfn_valid(pfn))
1357                                 continue;
1358                         page = pfn_to_page(pfn);
1359                         /* only scan if page is in use */
1360                         if (page_count(page) == 0)
1361                                 continue;
1362                         scan_block(page, page + 1, NULL, 1);
1363                 }
1364         }
1365         put_online_mems();
1366
1367         /*
1368          * Scanning the task stacks (may introduce false negatives).
1369          */
1370         if (kmemleak_stack_scan) {
1371                 struct task_struct *p, *g;
1372
1373                 read_lock(&tasklist_lock);
1374                 do_each_thread(g, p) {
1375                         scan_block(task_stack_page(p), task_stack_page(p) +
1376                                    THREAD_SIZE, NULL, 0);
1377                 } while_each_thread(g, p);
1378                 read_unlock(&tasklist_lock);
1379         }
1380
1381         /*
1382          * Scan the objects already referenced from the sections scanned
1383          * above.
1384          */
1385         scan_gray_list();
1386
1387         /*
1388          * Check for new or unreferenced objects modified since the previous
1389          * scan and color them gray until the next scan.
1390          */
1391         rcu_read_lock();
1392         list_for_each_entry_rcu(object, &object_list, object_list) {
1393                 spin_lock_irqsave(&object->lock, flags);
1394                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1395                     && update_checksum(object) && get_object(object)) {
1396                         /* color it gray temporarily */
1397                         object->count = object->min_count;
1398                         list_add_tail(&object->gray_list, &gray_list);
1399                 }
1400                 spin_unlock_irqrestore(&object->lock, flags);
1401         }
1402         rcu_read_unlock();
1403
1404         /*
1405          * Re-scan the gray list for modified unreferenced objects.
1406          */
1407         scan_gray_list();
1408
1409         /*
1410          * If scanning was stopped do not report any new unreferenced objects.
1411          */
1412         if (scan_should_stop())
1413                 return;
1414
1415         /*
1416          * Scanning result reporting.
1417          */
1418         rcu_read_lock();
1419         list_for_each_entry_rcu(object, &object_list, object_list) {
1420                 spin_lock_irqsave(&object->lock, flags);
1421                 if (unreferenced_object(object) &&
1422                     !(object->flags & OBJECT_REPORTED)) {
1423                         object->flags |= OBJECT_REPORTED;
1424                         new_leaks++;
1425                 }
1426                 spin_unlock_irqrestore(&object->lock, flags);
1427         }
1428         rcu_read_unlock();
1429
1430         if (new_leaks) {
1431                 kmemleak_found_leaks = true;
1432
1433                 pr_info("%d new suspected memory leaks (see "
1434                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
1435         }
1436
1437 }
1438
1439 /*
1440  * Thread function performing automatic memory scanning. Unreferenced objects
1441  * at the end of a memory scan are reported but only the first time.
1442  */
1443 static int kmemleak_scan_thread(void *arg)
1444 {
1445         static int first_run = 1;
1446
1447         pr_info("Automatic memory scanning thread started\n");
1448         set_user_nice(current, 10);
1449
1450         /*
1451          * Wait before the first scan to allow the system to fully initialize.
1452          */
1453         if (first_run) {
1454                 first_run = 0;
1455                 ssleep(SECS_FIRST_SCAN);
1456         }
1457
1458         while (!kthread_should_stop()) {
1459                 signed long timeout = jiffies_scan_wait;
1460
1461                 mutex_lock(&scan_mutex);
1462                 kmemleak_scan();
1463                 mutex_unlock(&scan_mutex);
1464
1465                 /* wait before the next scan */
1466                 while (timeout && !kthread_should_stop())
1467                         timeout = schedule_timeout_interruptible(timeout);
1468         }
1469
1470         pr_info("Automatic memory scanning thread ended\n");
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * Start the automatic memory scanning thread. This function must be called
1477  * with the scan_mutex held.
1478  */
1479 static void start_scan_thread(void)
1480 {
1481         if (scan_thread)
1482                 return;
1483         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1484         if (IS_ERR(scan_thread)) {
1485                 pr_warning("Failed to create the scan thread\n");
1486                 scan_thread = NULL;
1487         }
1488 }
1489
1490 /*
1491  * Stop the automatic memory scanning thread. This function must be called
1492  * with the scan_mutex held.
1493  */
1494 static void stop_scan_thread(void)
1495 {
1496         if (scan_thread) {
1497                 kthread_stop(scan_thread);
1498                 scan_thread = NULL;
1499         }
1500 }
1501
1502 /*
1503  * Iterate over the object_list and return the first valid object at or after
1504  * the required position with its use_count incremented. The function triggers
1505  * a memory scanning when the pos argument points to the first position.
1506  */
1507 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1508 {
1509         struct kmemleak_object *object;
1510         loff_t n = *pos;
1511         int err;
1512
1513         err = mutex_lock_interruptible(&scan_mutex);
1514         if (err < 0)
1515                 return ERR_PTR(err);
1516
1517         rcu_read_lock();
1518         list_for_each_entry_rcu(object, &object_list, object_list) {
1519                 if (n-- > 0)
1520                         continue;
1521                 if (get_object(object))
1522                         goto out;
1523         }
1524         object = NULL;
1525 out:
1526         return object;
1527 }
1528
1529 /*
1530  * Return the next object in the object_list. The function decrements the
1531  * use_count of the previous object and increases that of the next one.
1532  */
1533 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1534 {
1535         struct kmemleak_object *prev_obj = v;
1536         struct kmemleak_object *next_obj = NULL;
1537         struct kmemleak_object *obj = prev_obj;
1538
1539         ++(*pos);
1540
1541         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1542                 if (get_object(obj)) {
1543                         next_obj = obj;
1544                         break;
1545                 }
1546         }
1547
1548         put_object(prev_obj);
1549         return next_obj;
1550 }
1551
1552 /*
1553  * Decrement the use_count of the last object required, if any.
1554  */
1555 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1556 {
1557         if (!IS_ERR(v)) {
1558                 /*
1559                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1560                  * waiting was interrupted, so only release it if !IS_ERR.
1561                  */
1562                 rcu_read_unlock();
1563                 mutex_unlock(&scan_mutex);
1564                 if (v)
1565                         put_object(v);
1566         }
1567 }
1568
1569 /*
1570  * Print the information for an unreferenced object to the seq file.
1571  */
1572 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1573 {
1574         struct kmemleak_object *object = v;
1575         unsigned long flags;
1576
1577         spin_lock_irqsave(&object->lock, flags);
1578         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1579                 print_unreferenced(seq, object);
1580         spin_unlock_irqrestore(&object->lock, flags);
1581         return 0;
1582 }
1583
1584 static const struct seq_operations kmemleak_seq_ops = {
1585         .start = kmemleak_seq_start,
1586         .next  = kmemleak_seq_next,
1587         .stop  = kmemleak_seq_stop,
1588         .show  = kmemleak_seq_show,
1589 };
1590
1591 static int kmemleak_open(struct inode *inode, struct file *file)
1592 {
1593         return seq_open(file, &kmemleak_seq_ops);
1594 }
1595
1596 static int dump_str_object_info(const char *str)
1597 {
1598         unsigned long flags;
1599         struct kmemleak_object *object;
1600         unsigned long addr;
1601
1602         if (kstrtoul(str, 0, &addr))
1603                 return -EINVAL;
1604         object = find_and_get_object(addr, 0);
1605         if (!object) {
1606                 pr_info("Unknown object at 0x%08lx\n", addr);
1607                 return -EINVAL;
1608         }
1609
1610         spin_lock_irqsave(&object->lock, flags);
1611         dump_object_info(object);
1612         spin_unlock_irqrestore(&object->lock, flags);
1613
1614         put_object(object);
1615         return 0;
1616 }
1617
1618 /*
1619  * We use grey instead of black to ensure we can do future scans on the same
1620  * objects. If we did not do future scans these black objects could
1621  * potentially contain references to newly allocated objects in the future and
1622  * we'd end up with false positives.
1623  */
1624 static void kmemleak_clear(void)
1625 {
1626         struct kmemleak_object *object;
1627         unsigned long flags;
1628
1629         rcu_read_lock();
1630         list_for_each_entry_rcu(object, &object_list, object_list) {
1631                 spin_lock_irqsave(&object->lock, flags);
1632                 if ((object->flags & OBJECT_REPORTED) &&
1633                     unreferenced_object(object))
1634                         __paint_it(object, KMEMLEAK_GREY);
1635                 spin_unlock_irqrestore(&object->lock, flags);
1636         }
1637         rcu_read_unlock();
1638
1639         kmemleak_found_leaks = false;
1640 }
1641
1642 static void __kmemleak_do_cleanup(void);
1643
1644 /*
1645  * File write operation to configure kmemleak at run-time. The following
1646  * commands can be written to the /sys/kernel/debug/kmemleak file:
1647  *   off        - disable kmemleak (irreversible)
1648  *   stack=on   - enable the task stacks scanning
1649  *   stack=off  - disable the tasks stacks scanning
1650  *   scan=on    - start the automatic memory scanning thread
1651  *   scan=off   - stop the automatic memory scanning thread
1652  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1653  *                disable it)
1654  *   scan       - trigger a memory scan
1655  *   clear      - mark all current reported unreferenced kmemleak objects as
1656  *                grey to ignore printing them, or free all kmemleak objects
1657  *                if kmemleak has been disabled.
1658  *   dump=...   - dump information about the object found at the given address
1659  */
1660 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1661                               size_t size, loff_t *ppos)
1662 {
1663         char buf[64];
1664         int buf_size;
1665         int ret;
1666
1667         buf_size = min(size, (sizeof(buf) - 1));
1668         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1669                 return -EFAULT;
1670         buf[buf_size] = 0;
1671
1672         ret = mutex_lock_interruptible(&scan_mutex);
1673         if (ret < 0)
1674                 return ret;
1675
1676         if (strncmp(buf, "clear", 5) == 0) {
1677                 if (kmemleak_enabled)
1678                         kmemleak_clear();
1679                 else
1680                         __kmemleak_do_cleanup();
1681                 goto out;
1682         }
1683
1684         if (!kmemleak_enabled) {
1685                 ret = -EBUSY;
1686                 goto out;
1687         }
1688
1689         if (strncmp(buf, "off", 3) == 0)
1690                 kmemleak_disable();
1691         else if (strncmp(buf, "stack=on", 8) == 0)
1692                 kmemleak_stack_scan = 1;
1693         else if (strncmp(buf, "stack=off", 9) == 0)
1694                 kmemleak_stack_scan = 0;
1695         else if (strncmp(buf, "scan=on", 7) == 0)
1696                 start_scan_thread();
1697         else if (strncmp(buf, "scan=off", 8) == 0)
1698                 stop_scan_thread();
1699         else if (strncmp(buf, "scan=", 5) == 0) {
1700                 unsigned long secs;
1701
1702                 ret = kstrtoul(buf + 5, 0, &secs);
1703                 if (ret < 0)
1704                         goto out;
1705                 stop_scan_thread();
1706                 if (secs) {
1707                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1708                         start_scan_thread();
1709                 }
1710         } else if (strncmp(buf, "scan", 4) == 0)
1711                 kmemleak_scan();
1712         else if (strncmp(buf, "dump=", 5) == 0)
1713                 ret = dump_str_object_info(buf + 5);
1714         else
1715                 ret = -EINVAL;
1716
1717 out:
1718         mutex_unlock(&scan_mutex);
1719         if (ret < 0)
1720                 return ret;
1721
1722         /* ignore the rest of the buffer, only one command at a time */
1723         *ppos += size;
1724         return size;
1725 }
1726
1727 static const struct file_operations kmemleak_fops = {
1728         .owner          = THIS_MODULE,
1729         .open           = kmemleak_open,
1730         .read           = seq_read,
1731         .write          = kmemleak_write,
1732         .llseek         = seq_lseek,
1733         .release        = seq_release,
1734 };
1735
1736 static void __kmemleak_do_cleanup(void)
1737 {
1738         struct kmemleak_object *object;
1739
1740         rcu_read_lock();
1741         list_for_each_entry_rcu(object, &object_list, object_list)
1742                 delete_object_full(object->pointer);
1743         rcu_read_unlock();
1744 }
1745
1746 /*
1747  * Stop the memory scanning thread and free the kmemleak internal objects if
1748  * no previous scan thread (otherwise, kmemleak may still have some useful
1749  * information on memory leaks).
1750  */
1751 static void kmemleak_do_cleanup(struct work_struct *work)
1752 {
1753         mutex_lock(&scan_mutex);
1754         stop_scan_thread();
1755
1756         /*
1757          * Once the scan thread has stopped, it is safe to no longer track
1758          * object freeing. Ordering of the scan thread stopping and the memory
1759          * accesses below is guaranteed by the kthread_stop() function.
1760          */
1761         kmemleak_free_enabled = 0;
1762
1763         if (!kmemleak_found_leaks)
1764                 __kmemleak_do_cleanup();
1765         else
1766                 pr_info("Kmemleak disabled without freeing internal data. "
1767                         "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1768         mutex_unlock(&scan_mutex);
1769 }
1770
1771 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1772
1773 /*
1774  * Disable kmemleak. No memory allocation/freeing will be traced once this
1775  * function is called. Disabling kmemleak is an irreversible operation.
1776  */
1777 static void kmemleak_disable(void)
1778 {
1779         /* atomically check whether it was already invoked */
1780         if (cmpxchg(&kmemleak_error, 0, 1))
1781                 return;
1782
1783         /* stop any memory operation tracing */
1784         kmemleak_enabled = 0;
1785
1786         /* check whether it is too early for a kernel thread */
1787         if (kmemleak_initialized)
1788                 schedule_work(&cleanup_work);
1789         else
1790                 kmemleak_free_enabled = 0;
1791
1792         pr_info("Kernel memory leak detector disabled\n");
1793 }
1794
1795 /*
1796  * Allow boot-time kmemleak disabling (enabled by default).
1797  */
1798 static int kmemleak_boot_config(char *str)
1799 {
1800         if (!str)
1801                 return -EINVAL;
1802         if (strcmp(str, "off") == 0)
1803                 kmemleak_disable();
1804         else if (strcmp(str, "on") == 0)
1805                 kmemleak_skip_disable = 1;
1806         else
1807                 return -EINVAL;
1808         return 0;
1809 }
1810 early_param("kmemleak", kmemleak_boot_config);
1811
1812 static void __init print_log_trace(struct early_log *log)
1813 {
1814         struct stack_trace trace;
1815
1816         trace.nr_entries = log->trace_len;
1817         trace.entries = log->trace;
1818
1819         pr_notice("Early log backtrace:\n");
1820         print_stack_trace(&trace, 2);
1821 }
1822
1823 /*
1824  * Kmemleak initialization.
1825  */
1826 void __init kmemleak_init(void)
1827 {
1828         int i;
1829         unsigned long flags;
1830
1831 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1832         if (!kmemleak_skip_disable) {
1833                 kmemleak_early_log = 0;
1834                 kmemleak_disable();
1835                 return;
1836         }
1837 #endif
1838
1839         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1840         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1841
1842         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1843         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1844
1845         if (crt_early_log >= ARRAY_SIZE(early_log))
1846                 pr_warning("Early log buffer exceeded (%d), please increase "
1847                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1848
1849         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1850         local_irq_save(flags);
1851         kmemleak_early_log = 0;
1852         if (kmemleak_error) {
1853                 local_irq_restore(flags);
1854                 return;
1855         } else {
1856                 kmemleak_enabled = 1;
1857                 kmemleak_free_enabled = 1;
1858         }
1859         local_irq_restore(flags);
1860
1861         /*
1862          * This is the point where tracking allocations is safe. Automatic
1863          * scanning is started during the late initcall. Add the early logged
1864          * callbacks to the kmemleak infrastructure.
1865          */
1866         for (i = 0; i < crt_early_log; i++) {
1867                 struct early_log *log = &early_log[i];
1868
1869                 switch (log->op_type) {
1870                 case KMEMLEAK_ALLOC:
1871                         early_alloc(log);
1872                         break;
1873                 case KMEMLEAK_ALLOC_PERCPU:
1874                         early_alloc_percpu(log);
1875                         break;
1876                 case KMEMLEAK_FREE:
1877                         kmemleak_free(log->ptr);
1878                         break;
1879                 case KMEMLEAK_FREE_PART:
1880                         kmemleak_free_part(log->ptr, log->size);
1881                         break;
1882                 case KMEMLEAK_FREE_PERCPU:
1883                         kmemleak_free_percpu(log->ptr);
1884                         break;
1885                 case KMEMLEAK_NOT_LEAK:
1886                         kmemleak_not_leak(log->ptr);
1887                         break;
1888                 case KMEMLEAK_IGNORE:
1889                         kmemleak_ignore(log->ptr);
1890                         break;
1891                 case KMEMLEAK_SCAN_AREA:
1892                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1893                         break;
1894                 case KMEMLEAK_NO_SCAN:
1895                         kmemleak_no_scan(log->ptr);
1896                         break;
1897                 default:
1898                         kmemleak_warn("Unknown early log operation: %d\n",
1899                                       log->op_type);
1900                 }
1901
1902                 if (kmemleak_warning) {
1903                         print_log_trace(log);
1904                         kmemleak_warning = 0;
1905                 }
1906         }
1907 }
1908
1909 /*
1910  * Late initialization function.
1911  */
1912 static int __init kmemleak_late_init(void)
1913 {
1914         struct dentry *dentry;
1915
1916         kmemleak_initialized = 1;
1917
1918         if (kmemleak_error) {
1919                 /*
1920                  * Some error occurred and kmemleak was disabled. There is a
1921                  * small chance that kmemleak_disable() was called immediately
1922                  * after setting kmemleak_initialized and we may end up with
1923                  * two clean-up threads but serialized by scan_mutex.
1924                  */
1925                 schedule_work(&cleanup_work);
1926                 return -ENOMEM;
1927         }
1928
1929         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1930                                      &kmemleak_fops);
1931         if (!dentry)
1932                 pr_warning("Failed to create the debugfs kmemleak file\n");
1933         mutex_lock(&scan_mutex);
1934         start_scan_thread();
1935         mutex_unlock(&scan_mutex);
1936
1937         pr_info("Kernel memory leak detector initialized\n");
1938
1939         return 0;
1940 }
1941 late_initcall(kmemleak_late_init);