Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and
221  * protected by a resv_map's lock
222  */
223 struct file_region {
224         struct list_head link;
225         long from;
226         long to;
227 };
228
229 static long region_add(struct resv_map *resv, long f, long t)
230 {
231         struct list_head *head = &resv->regions;
232         struct file_region *rg, *nrg, *trg;
233
234         spin_lock(&resv->lock);
235         /* Locate the region we are either in or before. */
236         list_for_each_entry(rg, head, link)
237                 if (f <= rg->to)
238                         break;
239
240         /* Round our left edge to the current segment if it encloses us. */
241         if (f > rg->from)
242                 f = rg->from;
243
244         /* Check for and consume any regions we now overlap with. */
245         nrg = rg;
246         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
247                 if (&rg->link == head)
248                         break;
249                 if (rg->from > t)
250                         break;
251
252                 /* If this area reaches higher then extend our area to
253                  * include it completely.  If this is not the first area
254                  * which we intend to reuse, free it. */
255                 if (rg->to > t)
256                         t = rg->to;
257                 if (rg != nrg) {
258                         list_del(&rg->link);
259                         kfree(rg);
260                 }
261         }
262         nrg->from = f;
263         nrg->to = t;
264         spin_unlock(&resv->lock);
265         return 0;
266 }
267
268 static long region_chg(struct resv_map *resv, long f, long t)
269 {
270         struct list_head *head = &resv->regions;
271         struct file_region *rg, *nrg = NULL;
272         long chg = 0;
273
274 retry:
275         spin_lock(&resv->lock);
276         /* Locate the region we are before or in. */
277         list_for_each_entry(rg, head, link)
278                 if (f <= rg->to)
279                         break;
280
281         /* If we are below the current region then a new region is required.
282          * Subtle, allocate a new region at the position but make it zero
283          * size such that we can guarantee to record the reservation. */
284         if (&rg->link == head || t < rg->from) {
285                 if (!nrg) {
286                         spin_unlock(&resv->lock);
287                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
288                         if (!nrg)
289                                 return -ENOMEM;
290
291                         nrg->from = f;
292                         nrg->to   = f;
293                         INIT_LIST_HEAD(&nrg->link);
294                         goto retry;
295                 }
296
297                 list_add(&nrg->link, rg->link.prev);
298                 chg = t - f;
299                 goto out_nrg;
300         }
301
302         /* Round our left edge to the current segment if it encloses us. */
303         if (f > rg->from)
304                 f = rg->from;
305         chg = t - f;
306
307         /* Check for and consume any regions we now overlap with. */
308         list_for_each_entry(rg, rg->link.prev, link) {
309                 if (&rg->link == head)
310                         break;
311                 if (rg->from > t)
312                         goto out;
313
314                 /* We overlap with this area, if it extends further than
315                  * us then we must extend ourselves.  Account for its
316                  * existing reservation. */
317                 if (rg->to > t) {
318                         chg += rg->to - t;
319                         t = rg->to;
320                 }
321                 chg -= rg->to - rg->from;
322         }
323
324 out:
325         spin_unlock(&resv->lock);
326         /*  We already know we raced and no longer need the new region */
327         kfree(nrg);
328         return chg;
329 out_nrg:
330         spin_unlock(&resv->lock);
331         return chg;
332 }
333
334 static long region_truncate(struct resv_map *resv, long end)
335 {
336         struct list_head *head = &resv->regions;
337         struct file_region *rg, *trg;
338         long chg = 0;
339
340         spin_lock(&resv->lock);
341         /* Locate the region we are either in or before. */
342         list_for_each_entry(rg, head, link)
343                 if (end <= rg->to)
344                         break;
345         if (&rg->link == head)
346                 goto out;
347
348         /* If we are in the middle of a region then adjust it. */
349         if (end > rg->from) {
350                 chg = rg->to - end;
351                 rg->to = end;
352                 rg = list_entry(rg->link.next, typeof(*rg), link);
353         }
354
355         /* Drop any remaining regions. */
356         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
357                 if (&rg->link == head)
358                         break;
359                 chg += rg->to - rg->from;
360                 list_del(&rg->link);
361                 kfree(rg);
362         }
363
364 out:
365         spin_unlock(&resv->lock);
366         return chg;
367 }
368
369 static long region_count(struct resv_map *resv, long f, long t)
370 {
371         struct list_head *head = &resv->regions;
372         struct file_region *rg;
373         long chg = 0;
374
375         spin_lock(&resv->lock);
376         /* Locate each segment we overlap with, and count that overlap. */
377         list_for_each_entry(rg, head, link) {
378                 long seg_from;
379                 long seg_to;
380
381                 if (rg->to <= f)
382                         continue;
383                 if (rg->from >= t)
384                         break;
385
386                 seg_from = max(rg->from, f);
387                 seg_to = min(rg->to, t);
388
389                 chg += seg_to - seg_from;
390         }
391         spin_unlock(&resv->lock);
392
393         return chg;
394 }
395
396 /*
397  * Convert the address within this vma to the page offset within
398  * the mapping, in pagecache page units; huge pages here.
399  */
400 static pgoff_t vma_hugecache_offset(struct hstate *h,
401                         struct vm_area_struct *vma, unsigned long address)
402 {
403         return ((address - vma->vm_start) >> huge_page_shift(h)) +
404                         (vma->vm_pgoff >> huge_page_order(h));
405 }
406
407 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
408                                      unsigned long address)
409 {
410         return vma_hugecache_offset(hstate_vma(vma), vma, address);
411 }
412
413 /*
414  * Return the size of the pages allocated when backing a VMA. In the majority
415  * cases this will be same size as used by the page table entries.
416  */
417 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
418 {
419         struct hstate *hstate;
420
421         if (!is_vm_hugetlb_page(vma))
422                 return PAGE_SIZE;
423
424         hstate = hstate_vma(vma);
425
426         return 1UL << huge_page_shift(hstate);
427 }
428 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
429
430 /*
431  * Return the page size being used by the MMU to back a VMA. In the majority
432  * of cases, the page size used by the kernel matches the MMU size. On
433  * architectures where it differs, an architecture-specific version of this
434  * function is required.
435  */
436 #ifndef vma_mmu_pagesize
437 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
438 {
439         return vma_kernel_pagesize(vma);
440 }
441 #endif
442
443 /*
444  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
445  * bits of the reservation map pointer, which are always clear due to
446  * alignment.
447  */
448 #define HPAGE_RESV_OWNER    (1UL << 0)
449 #define HPAGE_RESV_UNMAPPED (1UL << 1)
450 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
451
452 /*
453  * These helpers are used to track how many pages are reserved for
454  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
455  * is guaranteed to have their future faults succeed.
456  *
457  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
458  * the reserve counters are updated with the hugetlb_lock held. It is safe
459  * to reset the VMA at fork() time as it is not in use yet and there is no
460  * chance of the global counters getting corrupted as a result of the values.
461  *
462  * The private mapping reservation is represented in a subtly different
463  * manner to a shared mapping.  A shared mapping has a region map associated
464  * with the underlying file, this region map represents the backing file
465  * pages which have ever had a reservation assigned which this persists even
466  * after the page is instantiated.  A private mapping has a region map
467  * associated with the original mmap which is attached to all VMAs which
468  * reference it, this region map represents those offsets which have consumed
469  * reservation ie. where pages have been instantiated.
470  */
471 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
472 {
473         return (unsigned long)vma->vm_private_data;
474 }
475
476 static void set_vma_private_data(struct vm_area_struct *vma,
477                                                         unsigned long value)
478 {
479         vma->vm_private_data = (void *)value;
480 }
481
482 struct resv_map *resv_map_alloc(void)
483 {
484         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
485         if (!resv_map)
486                 return NULL;
487
488         kref_init(&resv_map->refs);
489         spin_lock_init(&resv_map->lock);
490         INIT_LIST_HEAD(&resv_map->regions);
491
492         return resv_map;
493 }
494
495 void resv_map_release(struct kref *ref)
496 {
497         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
498
499         /* Clear out any active regions before we release the map. */
500         region_truncate(resv_map, 0);
501         kfree(resv_map);
502 }
503
504 static inline struct resv_map *inode_resv_map(struct inode *inode)
505 {
506         return inode->i_mapping->private_data;
507 }
508
509 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
510 {
511         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
512         if (vma->vm_flags & VM_MAYSHARE) {
513                 struct address_space *mapping = vma->vm_file->f_mapping;
514                 struct inode *inode = mapping->host;
515
516                 return inode_resv_map(inode);
517
518         } else {
519                 return (struct resv_map *)(get_vma_private_data(vma) &
520                                                         ~HPAGE_RESV_MASK);
521         }
522 }
523
524 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
525 {
526         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
527         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
528
529         set_vma_private_data(vma, (get_vma_private_data(vma) &
530                                 HPAGE_RESV_MASK) | (unsigned long)map);
531 }
532
533 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
534 {
535         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
536         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
537
538         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
539 }
540
541 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
542 {
543         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
544
545         return (get_vma_private_data(vma) & flag) != 0;
546 }
547
548 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
549 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
550 {
551         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
552         if (!(vma->vm_flags & VM_MAYSHARE))
553                 vma->vm_private_data = (void *)0;
554 }
555
556 /* Returns true if the VMA has associated reserve pages */
557 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
558 {
559         if (vma->vm_flags & VM_NORESERVE) {
560                 /*
561                  * This address is already reserved by other process(chg == 0),
562                  * so, we should decrement reserved count. Without decrementing,
563                  * reserve count remains after releasing inode, because this
564                  * allocated page will go into page cache and is regarded as
565                  * coming from reserved pool in releasing step.  Currently, we
566                  * don't have any other solution to deal with this situation
567                  * properly, so add work-around here.
568                  */
569                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
570                         return 1;
571                 else
572                         return 0;
573         }
574
575         /* Shared mappings always use reserves */
576         if (vma->vm_flags & VM_MAYSHARE)
577                 return 1;
578
579         /*
580          * Only the process that called mmap() has reserves for
581          * private mappings.
582          */
583         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
584                 return 1;
585
586         return 0;
587 }
588
589 static void enqueue_huge_page(struct hstate *h, struct page *page)
590 {
591         int nid = page_to_nid(page);
592         list_move(&page->lru, &h->hugepage_freelists[nid]);
593         h->free_huge_pages++;
594         h->free_huge_pages_node[nid]++;
595 }
596
597 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
598 {
599         struct page *page;
600
601         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
602                 if (!is_migrate_isolate_page(page))
603                         break;
604         /*
605          * if 'non-isolated free hugepage' not found on the list,
606          * the allocation fails.
607          */
608         if (&h->hugepage_freelists[nid] == &page->lru)
609                 return NULL;
610         list_move(&page->lru, &h->hugepage_activelist);
611         set_page_refcounted(page);
612         h->free_huge_pages--;
613         h->free_huge_pages_node[nid]--;
614         return page;
615 }
616
617 /* Movability of hugepages depends on migration support. */
618 static inline gfp_t htlb_alloc_mask(struct hstate *h)
619 {
620         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
621                 return GFP_HIGHUSER_MOVABLE;
622         else
623                 return GFP_HIGHUSER;
624 }
625
626 static struct page *dequeue_huge_page_vma(struct hstate *h,
627                                 struct vm_area_struct *vma,
628                                 unsigned long address, int avoid_reserve,
629                                 long chg)
630 {
631         struct page *page = NULL;
632         struct mempolicy *mpol;
633         nodemask_t *nodemask;
634         struct zonelist *zonelist;
635         struct zone *zone;
636         struct zoneref *z;
637         unsigned int cpuset_mems_cookie;
638
639         /*
640          * A child process with MAP_PRIVATE mappings created by their parent
641          * have no page reserves. This check ensures that reservations are
642          * not "stolen". The child may still get SIGKILLed
643          */
644         if (!vma_has_reserves(vma, chg) &&
645                         h->free_huge_pages - h->resv_huge_pages == 0)
646                 goto err;
647
648         /* If reserves cannot be used, ensure enough pages are in the pool */
649         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
650                 goto err;
651
652 retry_cpuset:
653         cpuset_mems_cookie = read_mems_allowed_begin();
654         zonelist = huge_zonelist(vma, address,
655                                         htlb_alloc_mask(h), &mpol, &nodemask);
656
657         for_each_zone_zonelist_nodemask(zone, z, zonelist,
658                                                 MAX_NR_ZONES - 1, nodemask) {
659                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
660                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
661                         if (page) {
662                                 if (avoid_reserve)
663                                         break;
664                                 if (!vma_has_reserves(vma, chg))
665                                         break;
666
667                                 SetPagePrivate(page);
668                                 h->resv_huge_pages--;
669                                 break;
670                         }
671                 }
672         }
673
674         mpol_cond_put(mpol);
675         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
676                 goto retry_cpuset;
677         return page;
678
679 err:
680         return NULL;
681 }
682
683 /*
684  * common helper functions for hstate_next_node_to_{alloc|free}.
685  * We may have allocated or freed a huge page based on a different
686  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687  * be outside of *nodes_allowed.  Ensure that we use an allowed
688  * node for alloc or free.
689  */
690 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
691 {
692         nid = next_node(nid, *nodes_allowed);
693         if (nid == MAX_NUMNODES)
694                 nid = first_node(*nodes_allowed);
695         VM_BUG_ON(nid >= MAX_NUMNODES);
696
697         return nid;
698 }
699
700 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
701 {
702         if (!node_isset(nid, *nodes_allowed))
703                 nid = next_node_allowed(nid, nodes_allowed);
704         return nid;
705 }
706
707 /*
708  * returns the previously saved node ["this node"] from which to
709  * allocate a persistent huge page for the pool and advance the
710  * next node from which to allocate, handling wrap at end of node
711  * mask.
712  */
713 static int hstate_next_node_to_alloc(struct hstate *h,
714                                         nodemask_t *nodes_allowed)
715 {
716         int nid;
717
718         VM_BUG_ON(!nodes_allowed);
719
720         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
721         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
722
723         return nid;
724 }
725
726 /*
727  * helper for free_pool_huge_page() - return the previously saved
728  * node ["this node"] from which to free a huge page.  Advance the
729  * next node id whether or not we find a free huge page to free so
730  * that the next attempt to free addresses the next node.
731  */
732 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
733 {
734         int nid;
735
736         VM_BUG_ON(!nodes_allowed);
737
738         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
739         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
740
741         return nid;
742 }
743
744 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
745         for (nr_nodes = nodes_weight(*mask);                            \
746                 nr_nodes > 0 &&                                         \
747                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
748                 nr_nodes--)
749
750 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
751         for (nr_nodes = nodes_weight(*mask);                            \
752                 nr_nodes > 0 &&                                         \
753                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
754                 nr_nodes--)
755
756 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
757 static void destroy_compound_gigantic_page(struct page *page,
758                                         unsigned long order)
759 {
760         int i;
761         int nr_pages = 1 << order;
762         struct page *p = page + 1;
763
764         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
765                 __ClearPageTail(p);
766                 set_page_refcounted(p);
767                 p->first_page = NULL;
768         }
769
770         set_compound_order(page, 0);
771         __ClearPageHead(page);
772 }
773
774 static void free_gigantic_page(struct page *page, unsigned order)
775 {
776         free_contig_range(page_to_pfn(page), 1 << order);
777 }
778
779 static int __alloc_gigantic_page(unsigned long start_pfn,
780                                 unsigned long nr_pages)
781 {
782         unsigned long end_pfn = start_pfn + nr_pages;
783         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
784 }
785
786 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
787                                 unsigned long nr_pages)
788 {
789         unsigned long i, end_pfn = start_pfn + nr_pages;
790         struct page *page;
791
792         for (i = start_pfn; i < end_pfn; i++) {
793                 if (!pfn_valid(i))
794                         return false;
795
796                 page = pfn_to_page(i);
797
798                 if (PageReserved(page))
799                         return false;
800
801                 if (page_count(page) > 0)
802                         return false;
803
804                 if (PageHuge(page))
805                         return false;
806         }
807
808         return true;
809 }
810
811 static bool zone_spans_last_pfn(const struct zone *zone,
812                         unsigned long start_pfn, unsigned long nr_pages)
813 {
814         unsigned long last_pfn = start_pfn + nr_pages - 1;
815         return zone_spans_pfn(zone, last_pfn);
816 }
817
818 static struct page *alloc_gigantic_page(int nid, unsigned order)
819 {
820         unsigned long nr_pages = 1 << order;
821         unsigned long ret, pfn, flags;
822         struct zone *z;
823
824         z = NODE_DATA(nid)->node_zones;
825         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
826                 spin_lock_irqsave(&z->lock, flags);
827
828                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
829                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
830                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
831                                 /*
832                                  * We release the zone lock here because
833                                  * alloc_contig_range() will also lock the zone
834                                  * at some point. If there's an allocation
835                                  * spinning on this lock, it may win the race
836                                  * and cause alloc_contig_range() to fail...
837                                  */
838                                 spin_unlock_irqrestore(&z->lock, flags);
839                                 ret = __alloc_gigantic_page(pfn, nr_pages);
840                                 if (!ret)
841                                         return pfn_to_page(pfn);
842                                 spin_lock_irqsave(&z->lock, flags);
843                         }
844                         pfn += nr_pages;
845                 }
846
847                 spin_unlock_irqrestore(&z->lock, flags);
848         }
849
850         return NULL;
851 }
852
853 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
854 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
855
856 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
857 {
858         struct page *page;
859
860         page = alloc_gigantic_page(nid, huge_page_order(h));
861         if (page) {
862                 prep_compound_gigantic_page(page, huge_page_order(h));
863                 prep_new_huge_page(h, page, nid);
864         }
865
866         return page;
867 }
868
869 static int alloc_fresh_gigantic_page(struct hstate *h,
870                                 nodemask_t *nodes_allowed)
871 {
872         struct page *page = NULL;
873         int nr_nodes, node;
874
875         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
876                 page = alloc_fresh_gigantic_page_node(h, node);
877                 if (page)
878                         return 1;
879         }
880
881         return 0;
882 }
883
884 static inline bool gigantic_page_supported(void) { return true; }
885 #else
886 static inline bool gigantic_page_supported(void) { return false; }
887 static inline void free_gigantic_page(struct page *page, unsigned order) { }
888 static inline void destroy_compound_gigantic_page(struct page *page,
889                                                 unsigned long order) { }
890 static inline int alloc_fresh_gigantic_page(struct hstate *h,
891                                         nodemask_t *nodes_allowed) { return 0; }
892 #endif
893
894 static void update_and_free_page(struct hstate *h, struct page *page)
895 {
896         int i;
897
898         if (hstate_is_gigantic(h) && !gigantic_page_supported())
899                 return;
900
901         h->nr_huge_pages--;
902         h->nr_huge_pages_node[page_to_nid(page)]--;
903         for (i = 0; i < pages_per_huge_page(h); i++) {
904                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
905                                 1 << PG_referenced | 1 << PG_dirty |
906                                 1 << PG_active | 1 << PG_private |
907                                 1 << PG_writeback);
908         }
909         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
910         set_compound_page_dtor(page, NULL);
911         set_page_refcounted(page);
912         if (hstate_is_gigantic(h)) {
913                 destroy_compound_gigantic_page(page, huge_page_order(h));
914                 free_gigantic_page(page, huge_page_order(h));
915         } else {
916                 arch_release_hugepage(page);
917                 __free_pages(page, huge_page_order(h));
918         }
919 }
920
921 struct hstate *size_to_hstate(unsigned long size)
922 {
923         struct hstate *h;
924
925         for_each_hstate(h) {
926                 if (huge_page_size(h) == size)
927                         return h;
928         }
929         return NULL;
930 }
931
932 /*
933  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
934  * to hstate->hugepage_activelist.)
935  *
936  * This function can be called for tail pages, but never returns true for them.
937  */
938 bool page_huge_active(struct page *page)
939 {
940         VM_BUG_ON_PAGE(!PageHuge(page), page);
941         return PageHead(page) && PagePrivate(&page[1]);
942 }
943
944 /* never called for tail page */
945 static void set_page_huge_active(struct page *page)
946 {
947         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
948         SetPagePrivate(&page[1]);
949 }
950
951 static void clear_page_huge_active(struct page *page)
952 {
953         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
954         ClearPagePrivate(&page[1]);
955 }
956
957 void free_huge_page(struct page *page)
958 {
959         /*
960          * Can't pass hstate in here because it is called from the
961          * compound page destructor.
962          */
963         struct hstate *h = page_hstate(page);
964         int nid = page_to_nid(page);
965         struct hugepage_subpool *spool =
966                 (struct hugepage_subpool *)page_private(page);
967         bool restore_reserve;
968
969         set_page_private(page, 0);
970         page->mapping = NULL;
971         BUG_ON(page_count(page));
972         BUG_ON(page_mapcount(page));
973         restore_reserve = PagePrivate(page);
974         ClearPagePrivate(page);
975
976         /*
977          * A return code of zero implies that the subpool will be under its
978          * minimum size if the reservation is not restored after page is free.
979          * Therefore, force restore_reserve operation.
980          */
981         if (hugepage_subpool_put_pages(spool, 1) == 0)
982                 restore_reserve = true;
983
984         spin_lock(&hugetlb_lock);
985         clear_page_huge_active(page);
986         hugetlb_cgroup_uncharge_page(hstate_index(h),
987                                      pages_per_huge_page(h), page);
988         if (restore_reserve)
989                 h->resv_huge_pages++;
990
991         if (h->surplus_huge_pages_node[nid]) {
992                 /* remove the page from active list */
993                 list_del(&page->lru);
994                 update_and_free_page(h, page);
995                 h->surplus_huge_pages--;
996                 h->surplus_huge_pages_node[nid]--;
997         } else {
998                 arch_clear_hugepage_flags(page);
999                 enqueue_huge_page(h, page);
1000         }
1001         spin_unlock(&hugetlb_lock);
1002 }
1003
1004 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1005 {
1006         INIT_LIST_HEAD(&page->lru);
1007         set_compound_page_dtor(page, free_huge_page);
1008         spin_lock(&hugetlb_lock);
1009         set_hugetlb_cgroup(page, NULL);
1010         h->nr_huge_pages++;
1011         h->nr_huge_pages_node[nid]++;
1012         spin_unlock(&hugetlb_lock);
1013         put_page(page); /* free it into the hugepage allocator */
1014 }
1015
1016 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1017 {
1018         int i;
1019         int nr_pages = 1 << order;
1020         struct page *p = page + 1;
1021
1022         /* we rely on prep_new_huge_page to set the destructor */
1023         set_compound_order(page, order);
1024         __SetPageHead(page);
1025         __ClearPageReserved(page);
1026         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1027                 /*
1028                  * For gigantic hugepages allocated through bootmem at
1029                  * boot, it's safer to be consistent with the not-gigantic
1030                  * hugepages and clear the PG_reserved bit from all tail pages
1031                  * too.  Otherwse drivers using get_user_pages() to access tail
1032                  * pages may get the reference counting wrong if they see
1033                  * PG_reserved set on a tail page (despite the head page not
1034                  * having PG_reserved set).  Enforcing this consistency between
1035                  * head and tail pages allows drivers to optimize away a check
1036                  * on the head page when they need know if put_page() is needed
1037                  * after get_user_pages().
1038                  */
1039                 __ClearPageReserved(p);
1040                 set_page_count(p, 0);
1041                 p->first_page = page;
1042                 /* Make sure p->first_page is always valid for PageTail() */
1043                 smp_wmb();
1044                 __SetPageTail(p);
1045         }
1046 }
1047
1048 /*
1049  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1050  * transparent huge pages.  See the PageTransHuge() documentation for more
1051  * details.
1052  */
1053 int PageHuge(struct page *page)
1054 {
1055         if (!PageCompound(page))
1056                 return 0;
1057
1058         page = compound_head(page);
1059         return get_compound_page_dtor(page) == free_huge_page;
1060 }
1061 EXPORT_SYMBOL_GPL(PageHuge);
1062
1063 /*
1064  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1065  * normal or transparent huge pages.
1066  */
1067 int PageHeadHuge(struct page *page_head)
1068 {
1069         if (!PageHead(page_head))
1070                 return 0;
1071
1072         return get_compound_page_dtor(page_head) == free_huge_page;
1073 }
1074
1075 pgoff_t __basepage_index(struct page *page)
1076 {
1077         struct page *page_head = compound_head(page);
1078         pgoff_t index = page_index(page_head);
1079         unsigned long compound_idx;
1080
1081         if (!PageHuge(page_head))
1082                 return page_index(page);
1083
1084         if (compound_order(page_head) >= MAX_ORDER)
1085                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1086         else
1087                 compound_idx = page - page_head;
1088
1089         return (index << compound_order(page_head)) + compound_idx;
1090 }
1091
1092 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1093 {
1094         struct page *page;
1095
1096         page = alloc_pages_exact_node(nid,
1097                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1098                                                 __GFP_REPEAT|__GFP_NOWARN,
1099                 huge_page_order(h));
1100         if (page) {
1101                 if (arch_prepare_hugepage(page)) {
1102                         __free_pages(page, huge_page_order(h));
1103                         return NULL;
1104                 }
1105                 prep_new_huge_page(h, page, nid);
1106         }
1107
1108         return page;
1109 }
1110
1111 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1112 {
1113         struct page *page;
1114         int nr_nodes, node;
1115         int ret = 0;
1116
1117         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1118                 page = alloc_fresh_huge_page_node(h, node);
1119                 if (page) {
1120                         ret = 1;
1121                         break;
1122                 }
1123         }
1124
1125         if (ret)
1126                 count_vm_event(HTLB_BUDDY_PGALLOC);
1127         else
1128                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1129
1130         return ret;
1131 }
1132
1133 /*
1134  * Free huge page from pool from next node to free.
1135  * Attempt to keep persistent huge pages more or less
1136  * balanced over allowed nodes.
1137  * Called with hugetlb_lock locked.
1138  */
1139 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1140                                                          bool acct_surplus)
1141 {
1142         int nr_nodes, node;
1143         int ret = 0;
1144
1145         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1146                 /*
1147                  * If we're returning unused surplus pages, only examine
1148                  * nodes with surplus pages.
1149                  */
1150                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1151                     !list_empty(&h->hugepage_freelists[node])) {
1152                         struct page *page =
1153                                 list_entry(h->hugepage_freelists[node].next,
1154                                           struct page, lru);
1155                         list_del(&page->lru);
1156                         h->free_huge_pages--;
1157                         h->free_huge_pages_node[node]--;
1158                         if (acct_surplus) {
1159                                 h->surplus_huge_pages--;
1160                                 h->surplus_huge_pages_node[node]--;
1161                         }
1162                         update_and_free_page(h, page);
1163                         ret = 1;
1164                         break;
1165                 }
1166         }
1167
1168         return ret;
1169 }
1170
1171 /*
1172  * Dissolve a given free hugepage into free buddy pages. This function does
1173  * nothing for in-use (including surplus) hugepages.
1174  */
1175 static void dissolve_free_huge_page(struct page *page)
1176 {
1177         spin_lock(&hugetlb_lock);
1178         if (PageHuge(page) && !page_count(page)) {
1179                 struct hstate *h = page_hstate(page);
1180                 int nid = page_to_nid(page);
1181                 list_del(&page->lru);
1182                 h->free_huge_pages--;
1183                 h->free_huge_pages_node[nid]--;
1184                 update_and_free_page(h, page);
1185         }
1186         spin_unlock(&hugetlb_lock);
1187 }
1188
1189 /*
1190  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1191  * make specified memory blocks removable from the system.
1192  * Note that start_pfn should aligned with (minimum) hugepage size.
1193  */
1194 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1195 {
1196         unsigned long pfn;
1197
1198         if (!hugepages_supported())
1199                 return;
1200
1201         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1202         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1203                 dissolve_free_huge_page(pfn_to_page(pfn));
1204 }
1205
1206 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1207 {
1208         struct page *page;
1209         unsigned int r_nid;
1210
1211         if (hstate_is_gigantic(h))
1212                 return NULL;
1213
1214         /*
1215          * Assume we will successfully allocate the surplus page to
1216          * prevent racing processes from causing the surplus to exceed
1217          * overcommit
1218          *
1219          * This however introduces a different race, where a process B
1220          * tries to grow the static hugepage pool while alloc_pages() is
1221          * called by process A. B will only examine the per-node
1222          * counters in determining if surplus huge pages can be
1223          * converted to normal huge pages in adjust_pool_surplus(). A
1224          * won't be able to increment the per-node counter, until the
1225          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1226          * no more huge pages can be converted from surplus to normal
1227          * state (and doesn't try to convert again). Thus, we have a
1228          * case where a surplus huge page exists, the pool is grown, and
1229          * the surplus huge page still exists after, even though it
1230          * should just have been converted to a normal huge page. This
1231          * does not leak memory, though, as the hugepage will be freed
1232          * once it is out of use. It also does not allow the counters to
1233          * go out of whack in adjust_pool_surplus() as we don't modify
1234          * the node values until we've gotten the hugepage and only the
1235          * per-node value is checked there.
1236          */
1237         spin_lock(&hugetlb_lock);
1238         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1239                 spin_unlock(&hugetlb_lock);
1240                 return NULL;
1241         } else {
1242                 h->nr_huge_pages++;
1243                 h->surplus_huge_pages++;
1244         }
1245         spin_unlock(&hugetlb_lock);
1246
1247         if (nid == NUMA_NO_NODE)
1248                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1249                                    __GFP_REPEAT|__GFP_NOWARN,
1250                                    huge_page_order(h));
1251         else
1252                 page = alloc_pages_exact_node(nid,
1253                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1254                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1255
1256         if (page && arch_prepare_hugepage(page)) {
1257                 __free_pages(page, huge_page_order(h));
1258                 page = NULL;
1259         }
1260
1261         spin_lock(&hugetlb_lock);
1262         if (page) {
1263                 INIT_LIST_HEAD(&page->lru);
1264                 r_nid = page_to_nid(page);
1265                 set_compound_page_dtor(page, free_huge_page);
1266                 set_hugetlb_cgroup(page, NULL);
1267                 /*
1268                  * We incremented the global counters already
1269                  */
1270                 h->nr_huge_pages_node[r_nid]++;
1271                 h->surplus_huge_pages_node[r_nid]++;
1272                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1273         } else {
1274                 h->nr_huge_pages--;
1275                 h->surplus_huge_pages--;
1276                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1277         }
1278         spin_unlock(&hugetlb_lock);
1279
1280         return page;
1281 }
1282
1283 /*
1284  * This allocation function is useful in the context where vma is irrelevant.
1285  * E.g. soft-offlining uses this function because it only cares physical
1286  * address of error page.
1287  */
1288 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1289 {
1290         struct page *page = NULL;
1291
1292         spin_lock(&hugetlb_lock);
1293         if (h->free_huge_pages - h->resv_huge_pages > 0)
1294                 page = dequeue_huge_page_node(h, nid);
1295         spin_unlock(&hugetlb_lock);
1296
1297         if (!page)
1298                 page = alloc_buddy_huge_page(h, nid);
1299
1300         return page;
1301 }
1302
1303 /*
1304  * Increase the hugetlb pool such that it can accommodate a reservation
1305  * of size 'delta'.
1306  */
1307 static int gather_surplus_pages(struct hstate *h, int delta)
1308 {
1309         struct list_head surplus_list;
1310         struct page *page, *tmp;
1311         int ret, i;
1312         int needed, allocated;
1313         bool alloc_ok = true;
1314
1315         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1316         if (needed <= 0) {
1317                 h->resv_huge_pages += delta;
1318                 return 0;
1319         }
1320
1321         allocated = 0;
1322         INIT_LIST_HEAD(&surplus_list);
1323
1324         ret = -ENOMEM;
1325 retry:
1326         spin_unlock(&hugetlb_lock);
1327         for (i = 0; i < needed; i++) {
1328                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1329                 if (!page) {
1330                         alloc_ok = false;
1331                         break;
1332                 }
1333                 list_add(&page->lru, &surplus_list);
1334         }
1335         allocated += i;
1336
1337         /*
1338          * After retaking hugetlb_lock, we need to recalculate 'needed'
1339          * because either resv_huge_pages or free_huge_pages may have changed.
1340          */
1341         spin_lock(&hugetlb_lock);
1342         needed = (h->resv_huge_pages + delta) -
1343                         (h->free_huge_pages + allocated);
1344         if (needed > 0) {
1345                 if (alloc_ok)
1346                         goto retry;
1347                 /*
1348                  * We were not able to allocate enough pages to
1349                  * satisfy the entire reservation so we free what
1350                  * we've allocated so far.
1351                  */
1352                 goto free;
1353         }
1354         /*
1355          * The surplus_list now contains _at_least_ the number of extra pages
1356          * needed to accommodate the reservation.  Add the appropriate number
1357          * of pages to the hugetlb pool and free the extras back to the buddy
1358          * allocator.  Commit the entire reservation here to prevent another
1359          * process from stealing the pages as they are added to the pool but
1360          * before they are reserved.
1361          */
1362         needed += allocated;
1363         h->resv_huge_pages += delta;
1364         ret = 0;
1365
1366         /* Free the needed pages to the hugetlb pool */
1367         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1368                 if ((--needed) < 0)
1369                         break;
1370                 /*
1371                  * This page is now managed by the hugetlb allocator and has
1372                  * no users -- drop the buddy allocator's reference.
1373                  */
1374                 put_page_testzero(page);
1375                 VM_BUG_ON_PAGE(page_count(page), page);
1376                 enqueue_huge_page(h, page);
1377         }
1378 free:
1379         spin_unlock(&hugetlb_lock);
1380
1381         /* Free unnecessary surplus pages to the buddy allocator */
1382         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1383                 put_page(page);
1384         spin_lock(&hugetlb_lock);
1385
1386         return ret;
1387 }
1388
1389 /*
1390  * When releasing a hugetlb pool reservation, any surplus pages that were
1391  * allocated to satisfy the reservation must be explicitly freed if they were
1392  * never used.
1393  * Called with hugetlb_lock held.
1394  */
1395 static void return_unused_surplus_pages(struct hstate *h,
1396                                         unsigned long unused_resv_pages)
1397 {
1398         unsigned long nr_pages;
1399
1400         /* Uncommit the reservation */
1401         h->resv_huge_pages -= unused_resv_pages;
1402
1403         /* Cannot return gigantic pages currently */
1404         if (hstate_is_gigantic(h))
1405                 return;
1406
1407         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1408
1409         /*
1410          * We want to release as many surplus pages as possible, spread
1411          * evenly across all nodes with memory. Iterate across these nodes
1412          * until we can no longer free unreserved surplus pages. This occurs
1413          * when the nodes with surplus pages have no free pages.
1414          * free_pool_huge_page() will balance the the freed pages across the
1415          * on-line nodes with memory and will handle the hstate accounting.
1416          */
1417         while (nr_pages--) {
1418                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1419                         break;
1420                 cond_resched_lock(&hugetlb_lock);
1421         }
1422 }
1423
1424 /*
1425  * Determine if the huge page at addr within the vma has an associated
1426  * reservation.  Where it does not we will need to logically increase
1427  * reservation and actually increase subpool usage before an allocation
1428  * can occur.  Where any new reservation would be required the
1429  * reservation change is prepared, but not committed.  Once the page
1430  * has been allocated from the subpool and instantiated the change should
1431  * be committed via vma_commit_reservation.  No action is required on
1432  * failure.
1433  */
1434 static long vma_needs_reservation(struct hstate *h,
1435                         struct vm_area_struct *vma, unsigned long addr)
1436 {
1437         struct resv_map *resv;
1438         pgoff_t idx;
1439         long chg;
1440
1441         resv = vma_resv_map(vma);
1442         if (!resv)
1443                 return 1;
1444
1445         idx = vma_hugecache_offset(h, vma, addr);
1446         chg = region_chg(resv, idx, idx + 1);
1447
1448         if (vma->vm_flags & VM_MAYSHARE)
1449                 return chg;
1450         else
1451                 return chg < 0 ? chg : 0;
1452 }
1453 static void vma_commit_reservation(struct hstate *h,
1454                         struct vm_area_struct *vma, unsigned long addr)
1455 {
1456         struct resv_map *resv;
1457         pgoff_t idx;
1458
1459         resv = vma_resv_map(vma);
1460         if (!resv)
1461                 return;
1462
1463         idx = vma_hugecache_offset(h, vma, addr);
1464         region_add(resv, idx, idx + 1);
1465 }
1466
1467 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1468                                     unsigned long addr, int avoid_reserve)
1469 {
1470         struct hugepage_subpool *spool = subpool_vma(vma);
1471         struct hstate *h = hstate_vma(vma);
1472         struct page *page;
1473         long chg;
1474         int ret, idx;
1475         struct hugetlb_cgroup *h_cg;
1476
1477         idx = hstate_index(h);
1478         /*
1479          * Processes that did not create the mapping will have no
1480          * reserves and will not have accounted against subpool
1481          * limit. Check that the subpool limit can be made before
1482          * satisfying the allocation MAP_NORESERVE mappings may also
1483          * need pages and subpool limit allocated allocated if no reserve
1484          * mapping overlaps.
1485          */
1486         chg = vma_needs_reservation(h, vma, addr);
1487         if (chg < 0)
1488                 return ERR_PTR(-ENOMEM);
1489         if (chg || avoid_reserve)
1490                 if (hugepage_subpool_get_pages(spool, 1) < 0)
1491                         return ERR_PTR(-ENOSPC);
1492
1493         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1494         if (ret)
1495                 goto out_subpool_put;
1496
1497         spin_lock(&hugetlb_lock);
1498         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1499         if (!page) {
1500                 spin_unlock(&hugetlb_lock);
1501                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1502                 if (!page)
1503                         goto out_uncharge_cgroup;
1504
1505                 spin_lock(&hugetlb_lock);
1506                 list_move(&page->lru, &h->hugepage_activelist);
1507                 /* Fall through */
1508         }
1509         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1510         spin_unlock(&hugetlb_lock);
1511
1512         set_page_private(page, (unsigned long)spool);
1513
1514         vma_commit_reservation(h, vma, addr);
1515         return page;
1516
1517 out_uncharge_cgroup:
1518         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1519 out_subpool_put:
1520         if (chg || avoid_reserve)
1521                 hugepage_subpool_put_pages(spool, 1);
1522         return ERR_PTR(-ENOSPC);
1523 }
1524
1525 /*
1526  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1527  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1528  * where no ERR_VALUE is expected to be returned.
1529  */
1530 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1531                                 unsigned long addr, int avoid_reserve)
1532 {
1533         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1534         if (IS_ERR(page))
1535                 page = NULL;
1536         return page;
1537 }
1538
1539 int __weak alloc_bootmem_huge_page(struct hstate *h)
1540 {
1541         struct huge_bootmem_page *m;
1542         int nr_nodes, node;
1543
1544         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1545                 void *addr;
1546
1547                 addr = memblock_virt_alloc_try_nid_nopanic(
1548                                 huge_page_size(h), huge_page_size(h),
1549                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1550                 if (addr) {
1551                         /*
1552                          * Use the beginning of the huge page to store the
1553                          * huge_bootmem_page struct (until gather_bootmem
1554                          * puts them into the mem_map).
1555                          */
1556                         m = addr;
1557                         goto found;
1558                 }
1559         }
1560         return 0;
1561
1562 found:
1563         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1564         /* Put them into a private list first because mem_map is not up yet */
1565         list_add(&m->list, &huge_boot_pages);
1566         m->hstate = h;
1567         return 1;
1568 }
1569
1570 static void __init prep_compound_huge_page(struct page *page, int order)
1571 {
1572         if (unlikely(order > (MAX_ORDER - 1)))
1573                 prep_compound_gigantic_page(page, order);
1574         else
1575                 prep_compound_page(page, order);
1576 }
1577
1578 /* Put bootmem huge pages into the standard lists after mem_map is up */
1579 static void __init gather_bootmem_prealloc(void)
1580 {
1581         struct huge_bootmem_page *m;
1582
1583         list_for_each_entry(m, &huge_boot_pages, list) {
1584                 struct hstate *h = m->hstate;
1585                 struct page *page;
1586
1587 #ifdef CONFIG_HIGHMEM
1588                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1589                 memblock_free_late(__pa(m),
1590                                    sizeof(struct huge_bootmem_page));
1591 #else
1592                 page = virt_to_page(m);
1593 #endif
1594                 WARN_ON(page_count(page) != 1);
1595                 prep_compound_huge_page(page, h->order);
1596                 WARN_ON(PageReserved(page));
1597                 prep_new_huge_page(h, page, page_to_nid(page));
1598                 /*
1599                  * If we had gigantic hugepages allocated at boot time, we need
1600                  * to restore the 'stolen' pages to totalram_pages in order to
1601                  * fix confusing memory reports from free(1) and another
1602                  * side-effects, like CommitLimit going negative.
1603                  */
1604                 if (hstate_is_gigantic(h))
1605                         adjust_managed_page_count(page, 1 << h->order);
1606         }
1607 }
1608
1609 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1610 {
1611         unsigned long i;
1612
1613         for (i = 0; i < h->max_huge_pages; ++i) {
1614                 if (hstate_is_gigantic(h)) {
1615                         if (!alloc_bootmem_huge_page(h))
1616                                 break;
1617                 } else if (!alloc_fresh_huge_page(h,
1618                                          &node_states[N_MEMORY]))
1619                         break;
1620         }
1621         h->max_huge_pages = i;
1622 }
1623
1624 static void __init hugetlb_init_hstates(void)
1625 {
1626         struct hstate *h;
1627
1628         for_each_hstate(h) {
1629                 if (minimum_order > huge_page_order(h))
1630                         minimum_order = huge_page_order(h);
1631
1632                 /* oversize hugepages were init'ed in early boot */
1633                 if (!hstate_is_gigantic(h))
1634                         hugetlb_hstate_alloc_pages(h);
1635         }
1636         VM_BUG_ON(minimum_order == UINT_MAX);
1637 }
1638
1639 static char * __init memfmt(char *buf, unsigned long n)
1640 {
1641         if (n >= (1UL << 30))
1642                 sprintf(buf, "%lu GB", n >> 30);
1643         else if (n >= (1UL << 20))
1644                 sprintf(buf, "%lu MB", n >> 20);
1645         else
1646                 sprintf(buf, "%lu KB", n >> 10);
1647         return buf;
1648 }
1649
1650 static void __init report_hugepages(void)
1651 {
1652         struct hstate *h;
1653
1654         for_each_hstate(h) {
1655                 char buf[32];
1656                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1657                         memfmt(buf, huge_page_size(h)),
1658                         h->free_huge_pages);
1659         }
1660 }
1661
1662 #ifdef CONFIG_HIGHMEM
1663 static void try_to_free_low(struct hstate *h, unsigned long count,
1664                                                 nodemask_t *nodes_allowed)
1665 {
1666         int i;
1667
1668         if (hstate_is_gigantic(h))
1669                 return;
1670
1671         for_each_node_mask(i, *nodes_allowed) {
1672                 struct page *page, *next;
1673                 struct list_head *freel = &h->hugepage_freelists[i];
1674                 list_for_each_entry_safe(page, next, freel, lru) {
1675                         if (count >= h->nr_huge_pages)
1676                                 return;
1677                         if (PageHighMem(page))
1678                                 continue;
1679                         list_del(&page->lru);
1680                         update_and_free_page(h, page);
1681                         h->free_huge_pages--;
1682                         h->free_huge_pages_node[page_to_nid(page)]--;
1683                 }
1684         }
1685 }
1686 #else
1687 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1688                                                 nodemask_t *nodes_allowed)
1689 {
1690 }
1691 #endif
1692
1693 /*
1694  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1695  * balanced by operating on them in a round-robin fashion.
1696  * Returns 1 if an adjustment was made.
1697  */
1698 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1699                                 int delta)
1700 {
1701         int nr_nodes, node;
1702
1703         VM_BUG_ON(delta != -1 && delta != 1);
1704
1705         if (delta < 0) {
1706                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1707                         if (h->surplus_huge_pages_node[node])
1708                                 goto found;
1709                 }
1710         } else {
1711                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1712                         if (h->surplus_huge_pages_node[node] <
1713                                         h->nr_huge_pages_node[node])
1714                                 goto found;
1715                 }
1716         }
1717         return 0;
1718
1719 found:
1720         h->surplus_huge_pages += delta;
1721         h->surplus_huge_pages_node[node] += delta;
1722         return 1;
1723 }
1724
1725 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1726 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1727                                                 nodemask_t *nodes_allowed)
1728 {
1729         unsigned long min_count, ret;
1730
1731         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1732                 return h->max_huge_pages;
1733
1734         /*
1735          * Increase the pool size
1736          * First take pages out of surplus state.  Then make up the
1737          * remaining difference by allocating fresh huge pages.
1738          *
1739          * We might race with alloc_buddy_huge_page() here and be unable
1740          * to convert a surplus huge page to a normal huge page. That is
1741          * not critical, though, it just means the overall size of the
1742          * pool might be one hugepage larger than it needs to be, but
1743          * within all the constraints specified by the sysctls.
1744          */
1745         spin_lock(&hugetlb_lock);
1746         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1747                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1748                         break;
1749         }
1750
1751         while (count > persistent_huge_pages(h)) {
1752                 /*
1753                  * If this allocation races such that we no longer need the
1754                  * page, free_huge_page will handle it by freeing the page
1755                  * and reducing the surplus.
1756                  */
1757                 spin_unlock(&hugetlb_lock);
1758                 if (hstate_is_gigantic(h))
1759                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1760                 else
1761                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1762                 spin_lock(&hugetlb_lock);
1763                 if (!ret)
1764                         goto out;
1765
1766                 /* Bail for signals. Probably ctrl-c from user */
1767                 if (signal_pending(current))
1768                         goto out;
1769         }
1770
1771         /*
1772          * Decrease the pool size
1773          * First return free pages to the buddy allocator (being careful
1774          * to keep enough around to satisfy reservations).  Then place
1775          * pages into surplus state as needed so the pool will shrink
1776          * to the desired size as pages become free.
1777          *
1778          * By placing pages into the surplus state independent of the
1779          * overcommit value, we are allowing the surplus pool size to
1780          * exceed overcommit. There are few sane options here. Since
1781          * alloc_buddy_huge_page() is checking the global counter,
1782          * though, we'll note that we're not allowed to exceed surplus
1783          * and won't grow the pool anywhere else. Not until one of the
1784          * sysctls are changed, or the surplus pages go out of use.
1785          */
1786         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1787         min_count = max(count, min_count);
1788         try_to_free_low(h, min_count, nodes_allowed);
1789         while (min_count < persistent_huge_pages(h)) {
1790                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1791                         break;
1792                 cond_resched_lock(&hugetlb_lock);
1793         }
1794         while (count < persistent_huge_pages(h)) {
1795                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1796                         break;
1797         }
1798 out:
1799         ret = persistent_huge_pages(h);
1800         spin_unlock(&hugetlb_lock);
1801         return ret;
1802 }
1803
1804 #define HSTATE_ATTR_RO(_name) \
1805         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1806
1807 #define HSTATE_ATTR(_name) \
1808         static struct kobj_attribute _name##_attr = \
1809                 __ATTR(_name, 0644, _name##_show, _name##_store)
1810
1811 static struct kobject *hugepages_kobj;
1812 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1813
1814 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1815
1816 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1817 {
1818         int i;
1819
1820         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1821                 if (hstate_kobjs[i] == kobj) {
1822                         if (nidp)
1823                                 *nidp = NUMA_NO_NODE;
1824                         return &hstates[i];
1825                 }
1826
1827         return kobj_to_node_hstate(kobj, nidp);
1828 }
1829
1830 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1831                                         struct kobj_attribute *attr, char *buf)
1832 {
1833         struct hstate *h;
1834         unsigned long nr_huge_pages;
1835         int nid;
1836
1837         h = kobj_to_hstate(kobj, &nid);
1838         if (nid == NUMA_NO_NODE)
1839                 nr_huge_pages = h->nr_huge_pages;
1840         else
1841                 nr_huge_pages = h->nr_huge_pages_node[nid];
1842
1843         return sprintf(buf, "%lu\n", nr_huge_pages);
1844 }
1845
1846 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1847                                            struct hstate *h, int nid,
1848                                            unsigned long count, size_t len)
1849 {
1850         int err;
1851         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1852
1853         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1854                 err = -EINVAL;
1855                 goto out;
1856         }
1857
1858         if (nid == NUMA_NO_NODE) {
1859                 /*
1860                  * global hstate attribute
1861                  */
1862                 if (!(obey_mempolicy &&
1863                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1864                         NODEMASK_FREE(nodes_allowed);
1865                         nodes_allowed = &node_states[N_MEMORY];
1866                 }
1867         } else if (nodes_allowed) {
1868                 /*
1869                  * per node hstate attribute: adjust count to global,
1870                  * but restrict alloc/free to the specified node.
1871                  */
1872                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1873                 init_nodemask_of_node(nodes_allowed, nid);
1874         } else
1875                 nodes_allowed = &node_states[N_MEMORY];
1876
1877         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1878
1879         if (nodes_allowed != &node_states[N_MEMORY])
1880                 NODEMASK_FREE(nodes_allowed);
1881
1882         return len;
1883 out:
1884         NODEMASK_FREE(nodes_allowed);
1885         return err;
1886 }
1887
1888 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1889                                          struct kobject *kobj, const char *buf,
1890                                          size_t len)
1891 {
1892         struct hstate *h;
1893         unsigned long count;
1894         int nid;
1895         int err;
1896
1897         err = kstrtoul(buf, 10, &count);
1898         if (err)
1899                 return err;
1900
1901         h = kobj_to_hstate(kobj, &nid);
1902         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1903 }
1904
1905 static ssize_t nr_hugepages_show(struct kobject *kobj,
1906                                        struct kobj_attribute *attr, char *buf)
1907 {
1908         return nr_hugepages_show_common(kobj, attr, buf);
1909 }
1910
1911 static ssize_t nr_hugepages_store(struct kobject *kobj,
1912                struct kobj_attribute *attr, const char *buf, size_t len)
1913 {
1914         return nr_hugepages_store_common(false, kobj, buf, len);
1915 }
1916 HSTATE_ATTR(nr_hugepages);
1917
1918 #ifdef CONFIG_NUMA
1919
1920 /*
1921  * hstate attribute for optionally mempolicy-based constraint on persistent
1922  * huge page alloc/free.
1923  */
1924 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1925                                        struct kobj_attribute *attr, char *buf)
1926 {
1927         return nr_hugepages_show_common(kobj, attr, buf);
1928 }
1929
1930 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1931                struct kobj_attribute *attr, const char *buf, size_t len)
1932 {
1933         return nr_hugepages_store_common(true, kobj, buf, len);
1934 }
1935 HSTATE_ATTR(nr_hugepages_mempolicy);
1936 #endif
1937
1938
1939 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1940                                         struct kobj_attribute *attr, char *buf)
1941 {
1942         struct hstate *h = kobj_to_hstate(kobj, NULL);
1943         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1944 }
1945
1946 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1947                 struct kobj_attribute *attr, const char *buf, size_t count)
1948 {
1949         int err;
1950         unsigned long input;
1951         struct hstate *h = kobj_to_hstate(kobj, NULL);
1952
1953         if (hstate_is_gigantic(h))
1954                 return -EINVAL;
1955
1956         err = kstrtoul(buf, 10, &input);
1957         if (err)
1958                 return err;
1959
1960         spin_lock(&hugetlb_lock);
1961         h->nr_overcommit_huge_pages = input;
1962         spin_unlock(&hugetlb_lock);
1963
1964         return count;
1965 }
1966 HSTATE_ATTR(nr_overcommit_hugepages);
1967
1968 static ssize_t free_hugepages_show(struct kobject *kobj,
1969                                         struct kobj_attribute *attr, char *buf)
1970 {
1971         struct hstate *h;
1972         unsigned long free_huge_pages;
1973         int nid;
1974
1975         h = kobj_to_hstate(kobj, &nid);
1976         if (nid == NUMA_NO_NODE)
1977                 free_huge_pages = h->free_huge_pages;
1978         else
1979                 free_huge_pages = h->free_huge_pages_node[nid];
1980
1981         return sprintf(buf, "%lu\n", free_huge_pages);
1982 }
1983 HSTATE_ATTR_RO(free_hugepages);
1984
1985 static ssize_t resv_hugepages_show(struct kobject *kobj,
1986                                         struct kobj_attribute *attr, char *buf)
1987 {
1988         struct hstate *h = kobj_to_hstate(kobj, NULL);
1989         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1990 }
1991 HSTATE_ATTR_RO(resv_hugepages);
1992
1993 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1994                                         struct kobj_attribute *attr, char *buf)
1995 {
1996         struct hstate *h;
1997         unsigned long surplus_huge_pages;
1998         int nid;
1999
2000         h = kobj_to_hstate(kobj, &nid);
2001         if (nid == NUMA_NO_NODE)
2002                 surplus_huge_pages = h->surplus_huge_pages;
2003         else
2004                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2005
2006         return sprintf(buf, "%lu\n", surplus_huge_pages);
2007 }
2008 HSTATE_ATTR_RO(surplus_hugepages);
2009
2010 static struct attribute *hstate_attrs[] = {
2011         &nr_hugepages_attr.attr,
2012         &nr_overcommit_hugepages_attr.attr,
2013         &free_hugepages_attr.attr,
2014         &resv_hugepages_attr.attr,
2015         &surplus_hugepages_attr.attr,
2016 #ifdef CONFIG_NUMA
2017         &nr_hugepages_mempolicy_attr.attr,
2018 #endif
2019         NULL,
2020 };
2021
2022 static struct attribute_group hstate_attr_group = {
2023         .attrs = hstate_attrs,
2024 };
2025
2026 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2027                                     struct kobject **hstate_kobjs,
2028                                     struct attribute_group *hstate_attr_group)
2029 {
2030         int retval;
2031         int hi = hstate_index(h);
2032
2033         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2034         if (!hstate_kobjs[hi])
2035                 return -ENOMEM;
2036
2037         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2038         if (retval)
2039                 kobject_put(hstate_kobjs[hi]);
2040
2041         return retval;
2042 }
2043
2044 static void __init hugetlb_sysfs_init(void)
2045 {
2046         struct hstate *h;
2047         int err;
2048
2049         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2050         if (!hugepages_kobj)
2051                 return;
2052
2053         for_each_hstate(h) {
2054                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2055                                          hstate_kobjs, &hstate_attr_group);
2056                 if (err)
2057                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2058         }
2059 }
2060
2061 #ifdef CONFIG_NUMA
2062
2063 /*
2064  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2065  * with node devices in node_devices[] using a parallel array.  The array
2066  * index of a node device or _hstate == node id.
2067  * This is here to avoid any static dependency of the node device driver, in
2068  * the base kernel, on the hugetlb module.
2069  */
2070 struct node_hstate {
2071         struct kobject          *hugepages_kobj;
2072         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2073 };
2074 struct node_hstate node_hstates[MAX_NUMNODES];
2075
2076 /*
2077  * A subset of global hstate attributes for node devices
2078  */
2079 static struct attribute *per_node_hstate_attrs[] = {
2080         &nr_hugepages_attr.attr,
2081         &free_hugepages_attr.attr,
2082         &surplus_hugepages_attr.attr,
2083         NULL,
2084 };
2085
2086 static struct attribute_group per_node_hstate_attr_group = {
2087         .attrs = per_node_hstate_attrs,
2088 };
2089
2090 /*
2091  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2092  * Returns node id via non-NULL nidp.
2093  */
2094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2095 {
2096         int nid;
2097
2098         for (nid = 0; nid < nr_node_ids; nid++) {
2099                 struct node_hstate *nhs = &node_hstates[nid];
2100                 int i;
2101                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2102                         if (nhs->hstate_kobjs[i] == kobj) {
2103                                 if (nidp)
2104                                         *nidp = nid;
2105                                 return &hstates[i];
2106                         }
2107         }
2108
2109         BUG();
2110         return NULL;
2111 }
2112
2113 /*
2114  * Unregister hstate attributes from a single node device.
2115  * No-op if no hstate attributes attached.
2116  */
2117 static void hugetlb_unregister_node(struct node *node)
2118 {
2119         struct hstate *h;
2120         struct node_hstate *nhs = &node_hstates[node->dev.id];
2121
2122         if (!nhs->hugepages_kobj)
2123                 return;         /* no hstate attributes */
2124
2125         for_each_hstate(h) {
2126                 int idx = hstate_index(h);
2127                 if (nhs->hstate_kobjs[idx]) {
2128                         kobject_put(nhs->hstate_kobjs[idx]);
2129                         nhs->hstate_kobjs[idx] = NULL;
2130                 }
2131         }
2132
2133         kobject_put(nhs->hugepages_kobj);
2134         nhs->hugepages_kobj = NULL;
2135 }
2136
2137 /*
2138  * hugetlb module exit:  unregister hstate attributes from node devices
2139  * that have them.
2140  */
2141 static void hugetlb_unregister_all_nodes(void)
2142 {
2143         int nid;
2144
2145         /*
2146          * disable node device registrations.
2147          */
2148         register_hugetlbfs_with_node(NULL, NULL);
2149
2150         /*
2151          * remove hstate attributes from any nodes that have them.
2152          */
2153         for (nid = 0; nid < nr_node_ids; nid++)
2154                 hugetlb_unregister_node(node_devices[nid]);
2155 }
2156
2157 /*
2158  * Register hstate attributes for a single node device.
2159  * No-op if attributes already registered.
2160  */
2161 static void hugetlb_register_node(struct node *node)
2162 {
2163         struct hstate *h;
2164         struct node_hstate *nhs = &node_hstates[node->dev.id];
2165         int err;
2166
2167         if (nhs->hugepages_kobj)
2168                 return;         /* already allocated */
2169
2170         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2171                                                         &node->dev.kobj);
2172         if (!nhs->hugepages_kobj)
2173                 return;
2174
2175         for_each_hstate(h) {
2176                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2177                                                 nhs->hstate_kobjs,
2178                                                 &per_node_hstate_attr_group);
2179                 if (err) {
2180                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2181                                 h->name, node->dev.id);
2182                         hugetlb_unregister_node(node);
2183                         break;
2184                 }
2185         }
2186 }
2187
2188 /*
2189  * hugetlb init time:  register hstate attributes for all registered node
2190  * devices of nodes that have memory.  All on-line nodes should have
2191  * registered their associated device by this time.
2192  */
2193 static void __init hugetlb_register_all_nodes(void)
2194 {
2195         int nid;
2196
2197         for_each_node_state(nid, N_MEMORY) {
2198                 struct node *node = node_devices[nid];
2199                 if (node->dev.id == nid)
2200                         hugetlb_register_node(node);
2201         }
2202
2203         /*
2204          * Let the node device driver know we're here so it can
2205          * [un]register hstate attributes on node hotplug.
2206          */
2207         register_hugetlbfs_with_node(hugetlb_register_node,
2208                                      hugetlb_unregister_node);
2209 }
2210 #else   /* !CONFIG_NUMA */
2211
2212 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2213 {
2214         BUG();
2215         if (nidp)
2216                 *nidp = -1;
2217         return NULL;
2218 }
2219
2220 static void hugetlb_unregister_all_nodes(void) { }
2221
2222 static void hugetlb_register_all_nodes(void) { }
2223
2224 #endif
2225
2226 static void __exit hugetlb_exit(void)
2227 {
2228         struct hstate *h;
2229
2230         hugetlb_unregister_all_nodes();
2231
2232         for_each_hstate(h) {
2233                 kobject_put(hstate_kobjs[hstate_index(h)]);
2234         }
2235
2236         kobject_put(hugepages_kobj);
2237         kfree(htlb_fault_mutex_table);
2238 }
2239 module_exit(hugetlb_exit);
2240
2241 static int __init hugetlb_init(void)
2242 {
2243         int i;
2244
2245         if (!hugepages_supported())
2246                 return 0;
2247
2248         if (!size_to_hstate(default_hstate_size)) {
2249                 default_hstate_size = HPAGE_SIZE;
2250                 if (!size_to_hstate(default_hstate_size))
2251                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2252         }
2253         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2254         if (default_hstate_max_huge_pages)
2255                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2256
2257         hugetlb_init_hstates();
2258         gather_bootmem_prealloc();
2259         report_hugepages();
2260
2261         hugetlb_sysfs_init();
2262         hugetlb_register_all_nodes();
2263         hugetlb_cgroup_file_init();
2264
2265 #ifdef CONFIG_SMP
2266         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2267 #else
2268         num_fault_mutexes = 1;
2269 #endif
2270         htlb_fault_mutex_table =
2271                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2272         BUG_ON(!htlb_fault_mutex_table);
2273
2274         for (i = 0; i < num_fault_mutexes; i++)
2275                 mutex_init(&htlb_fault_mutex_table[i]);
2276         return 0;
2277 }
2278 module_init(hugetlb_init);
2279
2280 /* Should be called on processing a hugepagesz=... option */
2281 void __init hugetlb_add_hstate(unsigned order)
2282 {
2283         struct hstate *h;
2284         unsigned long i;
2285
2286         if (size_to_hstate(PAGE_SIZE << order)) {
2287                 pr_warning("hugepagesz= specified twice, ignoring\n");
2288                 return;
2289         }
2290         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2291         BUG_ON(order == 0);
2292         h = &hstates[hugetlb_max_hstate++];
2293         h->order = order;
2294         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2295         h->nr_huge_pages = 0;
2296         h->free_huge_pages = 0;
2297         for (i = 0; i < MAX_NUMNODES; ++i)
2298                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2299         INIT_LIST_HEAD(&h->hugepage_activelist);
2300         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2301         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2302         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2303                                         huge_page_size(h)/1024);
2304
2305         parsed_hstate = h;
2306 }
2307
2308 static int __init hugetlb_nrpages_setup(char *s)
2309 {
2310         unsigned long *mhp;
2311         static unsigned long *last_mhp;
2312
2313         /*
2314          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2315          * so this hugepages= parameter goes to the "default hstate".
2316          */
2317         if (!hugetlb_max_hstate)
2318                 mhp = &default_hstate_max_huge_pages;
2319         else
2320                 mhp = &parsed_hstate->max_huge_pages;
2321
2322         if (mhp == last_mhp) {
2323                 pr_warning("hugepages= specified twice without "
2324                            "interleaving hugepagesz=, ignoring\n");
2325                 return 1;
2326         }
2327
2328         if (sscanf(s, "%lu", mhp) <= 0)
2329                 *mhp = 0;
2330
2331         /*
2332          * Global state is always initialized later in hugetlb_init.
2333          * But we need to allocate >= MAX_ORDER hstates here early to still
2334          * use the bootmem allocator.
2335          */
2336         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2337                 hugetlb_hstate_alloc_pages(parsed_hstate);
2338
2339         last_mhp = mhp;
2340
2341         return 1;
2342 }
2343 __setup("hugepages=", hugetlb_nrpages_setup);
2344
2345 static int __init hugetlb_default_setup(char *s)
2346 {
2347         default_hstate_size = memparse(s, &s);
2348         return 1;
2349 }
2350 __setup("default_hugepagesz=", hugetlb_default_setup);
2351
2352 static unsigned int cpuset_mems_nr(unsigned int *array)
2353 {
2354         int node;
2355         unsigned int nr = 0;
2356
2357         for_each_node_mask(node, cpuset_current_mems_allowed)
2358                 nr += array[node];
2359
2360         return nr;
2361 }
2362
2363 #ifdef CONFIG_SYSCTL
2364 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2365                          struct ctl_table *table, int write,
2366                          void __user *buffer, size_t *length, loff_t *ppos)
2367 {
2368         struct hstate *h = &default_hstate;
2369         unsigned long tmp = h->max_huge_pages;
2370         int ret;
2371
2372         if (!hugepages_supported())
2373                 return -ENOTSUPP;
2374
2375         table->data = &tmp;
2376         table->maxlen = sizeof(unsigned long);
2377         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2378         if (ret)
2379                 goto out;
2380
2381         if (write)
2382                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2383                                                   NUMA_NO_NODE, tmp, *length);
2384 out:
2385         return ret;
2386 }
2387
2388 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2389                           void __user *buffer, size_t *length, loff_t *ppos)
2390 {
2391
2392         return hugetlb_sysctl_handler_common(false, table, write,
2393                                                         buffer, length, ppos);
2394 }
2395
2396 #ifdef CONFIG_NUMA
2397 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2398                           void __user *buffer, size_t *length, loff_t *ppos)
2399 {
2400         return hugetlb_sysctl_handler_common(true, table, write,
2401                                                         buffer, length, ppos);
2402 }
2403 #endif /* CONFIG_NUMA */
2404
2405 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2406                         void __user *buffer,
2407                         size_t *length, loff_t *ppos)
2408 {
2409         struct hstate *h = &default_hstate;
2410         unsigned long tmp;
2411         int ret;
2412
2413         if (!hugepages_supported())
2414                 return -ENOTSUPP;
2415
2416         tmp = h->nr_overcommit_huge_pages;
2417
2418         if (write && hstate_is_gigantic(h))
2419                 return -EINVAL;
2420
2421         table->data = &tmp;
2422         table->maxlen = sizeof(unsigned long);
2423         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2424         if (ret)
2425                 goto out;
2426
2427         if (write) {
2428                 spin_lock(&hugetlb_lock);
2429                 h->nr_overcommit_huge_pages = tmp;
2430                 spin_unlock(&hugetlb_lock);
2431         }
2432 out:
2433         return ret;
2434 }
2435
2436 #endif /* CONFIG_SYSCTL */
2437
2438 void hugetlb_report_meminfo(struct seq_file *m)
2439 {
2440         struct hstate *h = &default_hstate;
2441         if (!hugepages_supported())
2442                 return;
2443         seq_printf(m,
2444                         "HugePages_Total:   %5lu\n"
2445                         "HugePages_Free:    %5lu\n"
2446                         "HugePages_Rsvd:    %5lu\n"
2447                         "HugePages_Surp:    %5lu\n"
2448                         "Hugepagesize:   %8lu kB\n",
2449                         h->nr_huge_pages,
2450                         h->free_huge_pages,
2451                         h->resv_huge_pages,
2452                         h->surplus_huge_pages,
2453                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2454 }
2455
2456 int hugetlb_report_node_meminfo(int nid, char *buf)
2457 {
2458         struct hstate *h = &default_hstate;
2459         if (!hugepages_supported())
2460                 return 0;
2461         return sprintf(buf,
2462                 "Node %d HugePages_Total: %5u\n"
2463                 "Node %d HugePages_Free:  %5u\n"
2464                 "Node %d HugePages_Surp:  %5u\n",
2465                 nid, h->nr_huge_pages_node[nid],
2466                 nid, h->free_huge_pages_node[nid],
2467                 nid, h->surplus_huge_pages_node[nid]);
2468 }
2469
2470 void hugetlb_show_meminfo(void)
2471 {
2472         struct hstate *h;
2473         int nid;
2474
2475         if (!hugepages_supported())
2476                 return;
2477
2478         for_each_node_state(nid, N_MEMORY)
2479                 for_each_hstate(h)
2480                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2481                                 nid,
2482                                 h->nr_huge_pages_node[nid],
2483                                 h->free_huge_pages_node[nid],
2484                                 h->surplus_huge_pages_node[nid],
2485                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2486 }
2487
2488 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2489 unsigned long hugetlb_total_pages(void)
2490 {
2491         struct hstate *h;
2492         unsigned long nr_total_pages = 0;
2493
2494         for_each_hstate(h)
2495                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2496         return nr_total_pages;
2497 }
2498
2499 static int hugetlb_acct_memory(struct hstate *h, long delta)
2500 {
2501         int ret = -ENOMEM;
2502
2503         spin_lock(&hugetlb_lock);
2504         /*
2505          * When cpuset is configured, it breaks the strict hugetlb page
2506          * reservation as the accounting is done on a global variable. Such
2507          * reservation is completely rubbish in the presence of cpuset because
2508          * the reservation is not checked against page availability for the
2509          * current cpuset. Application can still potentially OOM'ed by kernel
2510          * with lack of free htlb page in cpuset that the task is in.
2511          * Attempt to enforce strict accounting with cpuset is almost
2512          * impossible (or too ugly) because cpuset is too fluid that
2513          * task or memory node can be dynamically moved between cpusets.
2514          *
2515          * The change of semantics for shared hugetlb mapping with cpuset is
2516          * undesirable. However, in order to preserve some of the semantics,
2517          * we fall back to check against current free page availability as
2518          * a best attempt and hopefully to minimize the impact of changing
2519          * semantics that cpuset has.
2520          */
2521         if (delta > 0) {
2522                 if (gather_surplus_pages(h, delta) < 0)
2523                         goto out;
2524
2525                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2526                         return_unused_surplus_pages(h, delta);
2527                         goto out;
2528                 }
2529         }
2530
2531         ret = 0;
2532         if (delta < 0)
2533                 return_unused_surplus_pages(h, (unsigned long) -delta);
2534
2535 out:
2536         spin_unlock(&hugetlb_lock);
2537         return ret;
2538 }
2539
2540 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2541 {
2542         struct resv_map *resv = vma_resv_map(vma);
2543
2544         /*
2545          * This new VMA should share its siblings reservation map if present.
2546          * The VMA will only ever have a valid reservation map pointer where
2547          * it is being copied for another still existing VMA.  As that VMA
2548          * has a reference to the reservation map it cannot disappear until
2549          * after this open call completes.  It is therefore safe to take a
2550          * new reference here without additional locking.
2551          */
2552         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2553                 kref_get(&resv->refs);
2554 }
2555
2556 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2557 {
2558         struct hstate *h = hstate_vma(vma);
2559         struct resv_map *resv = vma_resv_map(vma);
2560         struct hugepage_subpool *spool = subpool_vma(vma);
2561         unsigned long reserve, start, end;
2562         long gbl_reserve;
2563
2564         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2565                 return;
2566
2567         start = vma_hugecache_offset(h, vma, vma->vm_start);
2568         end = vma_hugecache_offset(h, vma, vma->vm_end);
2569
2570         reserve = (end - start) - region_count(resv, start, end);
2571
2572         kref_put(&resv->refs, resv_map_release);
2573
2574         if (reserve) {
2575                 /*
2576                  * Decrement reserve counts.  The global reserve count may be
2577                  * adjusted if the subpool has a minimum size.
2578                  */
2579                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2580                 hugetlb_acct_memory(h, -gbl_reserve);
2581         }
2582 }
2583
2584 /*
2585  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2586  * handle_mm_fault() to try to instantiate regular-sized pages in the
2587  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2588  * this far.
2589  */
2590 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2591 {
2592         BUG();
2593         return 0;
2594 }
2595
2596 const struct vm_operations_struct hugetlb_vm_ops = {
2597         .fault = hugetlb_vm_op_fault,
2598         .open = hugetlb_vm_op_open,
2599         .close = hugetlb_vm_op_close,
2600 };
2601
2602 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2603                                 int writable)
2604 {
2605         pte_t entry;
2606
2607         if (writable) {
2608                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2609                                          vma->vm_page_prot)));
2610         } else {
2611                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2612                                            vma->vm_page_prot));
2613         }
2614         entry = pte_mkyoung(entry);
2615         entry = pte_mkhuge(entry);
2616         entry = arch_make_huge_pte(entry, vma, page, writable);
2617
2618         return entry;
2619 }
2620
2621 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2622                                    unsigned long address, pte_t *ptep)
2623 {
2624         pte_t entry;
2625
2626         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2627         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2628                 update_mmu_cache(vma, address, ptep);
2629 }
2630
2631 static int is_hugetlb_entry_migration(pte_t pte)
2632 {
2633         swp_entry_t swp;
2634
2635         if (huge_pte_none(pte) || pte_present(pte))
2636                 return 0;
2637         swp = pte_to_swp_entry(pte);
2638         if (non_swap_entry(swp) && is_migration_entry(swp))
2639                 return 1;
2640         else
2641                 return 0;
2642 }
2643
2644 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2645 {
2646         swp_entry_t swp;
2647
2648         if (huge_pte_none(pte) || pte_present(pte))
2649                 return 0;
2650         swp = pte_to_swp_entry(pte);
2651         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2652                 return 1;
2653         else
2654                 return 0;
2655 }
2656
2657 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2658                             struct vm_area_struct *vma)
2659 {
2660         pte_t *src_pte, *dst_pte, entry;
2661         struct page *ptepage;
2662         unsigned long addr;
2663         int cow;
2664         struct hstate *h = hstate_vma(vma);
2665         unsigned long sz = huge_page_size(h);
2666         unsigned long mmun_start;       /* For mmu_notifiers */
2667         unsigned long mmun_end;         /* For mmu_notifiers */
2668         int ret = 0;
2669
2670         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2671
2672         mmun_start = vma->vm_start;
2673         mmun_end = vma->vm_end;
2674         if (cow)
2675                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2676
2677         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2678                 spinlock_t *src_ptl, *dst_ptl;
2679                 src_pte = huge_pte_offset(src, addr);
2680                 if (!src_pte)
2681                         continue;
2682                 dst_pte = huge_pte_alloc(dst, addr, sz);
2683                 if (!dst_pte) {
2684                         ret = -ENOMEM;
2685                         break;
2686                 }
2687
2688                 /* If the pagetables are shared don't copy or take references */
2689                 if (dst_pte == src_pte)
2690                         continue;
2691
2692                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2693                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2694                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2695                 entry = huge_ptep_get(src_pte);
2696                 if (huge_pte_none(entry)) { /* skip none entry */
2697                         ;
2698                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2699                                     is_hugetlb_entry_hwpoisoned(entry))) {
2700                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2701
2702                         if (is_write_migration_entry(swp_entry) && cow) {
2703                                 /*
2704                                  * COW mappings require pages in both
2705                                  * parent and child to be set to read.
2706                                  */
2707                                 make_migration_entry_read(&swp_entry);
2708                                 entry = swp_entry_to_pte(swp_entry);
2709                                 set_huge_pte_at(src, addr, src_pte, entry);
2710                         }
2711                         set_huge_pte_at(dst, addr, dst_pte, entry);
2712                 } else {
2713                         if (cow) {
2714                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2715                                 mmu_notifier_invalidate_range(src, mmun_start,
2716                                                                    mmun_end);
2717                         }
2718                         entry = huge_ptep_get(src_pte);
2719                         ptepage = pte_page(entry);
2720                         get_page(ptepage);
2721                         page_dup_rmap(ptepage);
2722                         set_huge_pte_at(dst, addr, dst_pte, entry);
2723                 }
2724                 spin_unlock(src_ptl);
2725                 spin_unlock(dst_ptl);
2726         }
2727
2728         if (cow)
2729                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2730
2731         return ret;
2732 }
2733
2734 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2735                             unsigned long start, unsigned long end,
2736                             struct page *ref_page)
2737 {
2738         int force_flush = 0;
2739         struct mm_struct *mm = vma->vm_mm;
2740         unsigned long address;
2741         pte_t *ptep;
2742         pte_t pte;
2743         spinlock_t *ptl;
2744         struct page *page;
2745         struct hstate *h = hstate_vma(vma);
2746         unsigned long sz = huge_page_size(h);
2747         const unsigned long mmun_start = start; /* For mmu_notifiers */
2748         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2749
2750         WARN_ON(!is_vm_hugetlb_page(vma));
2751         BUG_ON(start & ~huge_page_mask(h));
2752         BUG_ON(end & ~huge_page_mask(h));
2753
2754         tlb_start_vma(tlb, vma);
2755         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2756         address = start;
2757 again:
2758         for (; address < end; address += sz) {
2759                 ptep = huge_pte_offset(mm, address);
2760                 if (!ptep)
2761                         continue;
2762
2763                 ptl = huge_pte_lock(h, mm, ptep);
2764                 if (huge_pmd_unshare(mm, &address, ptep))
2765                         goto unlock;
2766
2767                 pte = huge_ptep_get(ptep);
2768                 if (huge_pte_none(pte))
2769                         goto unlock;
2770
2771                 /*
2772                  * Migrating hugepage or HWPoisoned hugepage is already
2773                  * unmapped and its refcount is dropped, so just clear pte here.
2774                  */
2775                 if (unlikely(!pte_present(pte))) {
2776                         huge_pte_clear(mm, address, ptep);
2777                         goto unlock;
2778                 }
2779
2780                 page = pte_page(pte);
2781                 /*
2782                  * If a reference page is supplied, it is because a specific
2783                  * page is being unmapped, not a range. Ensure the page we
2784                  * are about to unmap is the actual page of interest.
2785                  */
2786                 if (ref_page) {
2787                         if (page != ref_page)
2788                                 goto unlock;
2789
2790                         /*
2791                          * Mark the VMA as having unmapped its page so that
2792                          * future faults in this VMA will fail rather than
2793                          * looking like data was lost
2794                          */
2795                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2796                 }
2797
2798                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2799                 tlb_remove_tlb_entry(tlb, ptep, address);
2800                 if (huge_pte_dirty(pte))
2801                         set_page_dirty(page);
2802
2803                 page_remove_rmap(page);
2804                 force_flush = !__tlb_remove_page(tlb, page);
2805                 if (force_flush) {
2806                         address += sz;
2807                         spin_unlock(ptl);
2808                         break;
2809                 }
2810                 /* Bail out after unmapping reference page if supplied */
2811                 if (ref_page) {
2812                         spin_unlock(ptl);
2813                         break;
2814                 }
2815 unlock:
2816                 spin_unlock(ptl);
2817         }
2818         /*
2819          * mmu_gather ran out of room to batch pages, we break out of
2820          * the PTE lock to avoid doing the potential expensive TLB invalidate
2821          * and page-free while holding it.
2822          */
2823         if (force_flush) {
2824                 force_flush = 0;
2825                 tlb_flush_mmu(tlb);
2826                 if (address < end && !ref_page)
2827                         goto again;
2828         }
2829         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2830         tlb_end_vma(tlb, vma);
2831 }
2832
2833 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2834                           struct vm_area_struct *vma, unsigned long start,
2835                           unsigned long end, struct page *ref_page)
2836 {
2837         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2838
2839         /*
2840          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2841          * test will fail on a vma being torn down, and not grab a page table
2842          * on its way out.  We're lucky that the flag has such an appropriate
2843          * name, and can in fact be safely cleared here. We could clear it
2844          * before the __unmap_hugepage_range above, but all that's necessary
2845          * is to clear it before releasing the i_mmap_rwsem. This works
2846          * because in the context this is called, the VMA is about to be
2847          * destroyed and the i_mmap_rwsem is held.
2848          */
2849         vma->vm_flags &= ~VM_MAYSHARE;
2850 }
2851
2852 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2853                           unsigned long end, struct page *ref_page)
2854 {
2855         struct mm_struct *mm;
2856         struct mmu_gather tlb;
2857
2858         mm = vma->vm_mm;
2859
2860         tlb_gather_mmu(&tlb, mm, start, end);
2861         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2862         tlb_finish_mmu(&tlb, start, end);
2863 }
2864
2865 /*
2866  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2867  * mappping it owns the reserve page for. The intention is to unmap the page
2868  * from other VMAs and let the children be SIGKILLed if they are faulting the
2869  * same region.
2870  */
2871 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2872                               struct page *page, unsigned long address)
2873 {
2874         struct hstate *h = hstate_vma(vma);
2875         struct vm_area_struct *iter_vma;
2876         struct address_space *mapping;
2877         pgoff_t pgoff;
2878
2879         /*
2880          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2881          * from page cache lookup which is in HPAGE_SIZE units.
2882          */
2883         address = address & huge_page_mask(h);
2884         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2885                         vma->vm_pgoff;
2886         mapping = file_inode(vma->vm_file)->i_mapping;
2887
2888         /*
2889          * Take the mapping lock for the duration of the table walk. As
2890          * this mapping should be shared between all the VMAs,
2891          * __unmap_hugepage_range() is called as the lock is already held
2892          */
2893         i_mmap_lock_write(mapping);
2894         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2895                 /* Do not unmap the current VMA */
2896                 if (iter_vma == vma)
2897                         continue;
2898
2899                 /*
2900                  * Unmap the page from other VMAs without their own reserves.
2901                  * They get marked to be SIGKILLed if they fault in these
2902                  * areas. This is because a future no-page fault on this VMA
2903                  * could insert a zeroed page instead of the data existing
2904                  * from the time of fork. This would look like data corruption
2905                  */
2906                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2907                         unmap_hugepage_range(iter_vma, address,
2908                                              address + huge_page_size(h), page);
2909         }
2910         i_mmap_unlock_write(mapping);
2911 }
2912
2913 /*
2914  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2915  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2916  * cannot race with other handlers or page migration.
2917  * Keep the pte_same checks anyway to make transition from the mutex easier.
2918  */
2919 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2920                         unsigned long address, pte_t *ptep, pte_t pte,
2921                         struct page *pagecache_page, spinlock_t *ptl)
2922 {
2923         struct hstate *h = hstate_vma(vma);
2924         struct page *old_page, *new_page;
2925         int ret = 0, outside_reserve = 0;
2926         unsigned long mmun_start;       /* For mmu_notifiers */
2927         unsigned long mmun_end;         /* For mmu_notifiers */
2928
2929         old_page = pte_page(pte);
2930
2931 retry_avoidcopy:
2932         /* If no-one else is actually using this page, avoid the copy
2933          * and just make the page writable */
2934         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2935                 page_move_anon_rmap(old_page, vma, address);
2936                 set_huge_ptep_writable(vma, address, ptep);
2937                 return 0;
2938         }
2939
2940         /*
2941          * If the process that created a MAP_PRIVATE mapping is about to
2942          * perform a COW due to a shared page count, attempt to satisfy
2943          * the allocation without using the existing reserves. The pagecache
2944          * page is used to determine if the reserve at this address was
2945          * consumed or not. If reserves were used, a partial faulted mapping
2946          * at the time of fork() could consume its reserves on COW instead
2947          * of the full address range.
2948          */
2949         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2950                         old_page != pagecache_page)
2951                 outside_reserve = 1;
2952
2953         page_cache_get(old_page);
2954
2955         /*
2956          * Drop page table lock as buddy allocator may be called. It will
2957          * be acquired again before returning to the caller, as expected.
2958          */
2959         spin_unlock(ptl);
2960         new_page = alloc_huge_page(vma, address, outside_reserve);
2961
2962         if (IS_ERR(new_page)) {
2963                 /*
2964                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2965                  * it is due to references held by a child and an insufficient
2966                  * huge page pool. To guarantee the original mappers
2967                  * reliability, unmap the page from child processes. The child
2968                  * may get SIGKILLed if it later faults.
2969                  */
2970                 if (outside_reserve) {
2971                         page_cache_release(old_page);
2972                         BUG_ON(huge_pte_none(pte));
2973                         unmap_ref_private(mm, vma, old_page, address);
2974                         BUG_ON(huge_pte_none(pte));
2975                         spin_lock(ptl);
2976                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2977                         if (likely(ptep &&
2978                                    pte_same(huge_ptep_get(ptep), pte)))
2979                                 goto retry_avoidcopy;
2980                         /*
2981                          * race occurs while re-acquiring page table
2982                          * lock, and our job is done.
2983                          */
2984                         return 0;
2985                 }
2986
2987                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2988                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
2989                 goto out_release_old;
2990         }
2991
2992         /*
2993          * When the original hugepage is shared one, it does not have
2994          * anon_vma prepared.
2995          */
2996         if (unlikely(anon_vma_prepare(vma))) {
2997                 ret = VM_FAULT_OOM;
2998                 goto out_release_all;
2999         }
3000
3001         copy_user_huge_page(new_page, old_page, address, vma,
3002                             pages_per_huge_page(h));
3003         __SetPageUptodate(new_page);
3004         set_page_huge_active(new_page);
3005
3006         mmun_start = address & huge_page_mask(h);
3007         mmun_end = mmun_start + huge_page_size(h);
3008         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3009
3010         /*
3011          * Retake the page table lock to check for racing updates
3012          * before the page tables are altered
3013          */
3014         spin_lock(ptl);
3015         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3016         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3017                 ClearPagePrivate(new_page);
3018
3019                 /* Break COW */
3020                 huge_ptep_clear_flush(vma, address, ptep);
3021                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3022                 set_huge_pte_at(mm, address, ptep,
3023                                 make_huge_pte(vma, new_page, 1));
3024                 page_remove_rmap(old_page);
3025                 hugepage_add_new_anon_rmap(new_page, vma, address);
3026                 /* Make the old page be freed below */
3027                 new_page = old_page;
3028         }
3029         spin_unlock(ptl);
3030         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3031 out_release_all:
3032         page_cache_release(new_page);
3033 out_release_old:
3034         page_cache_release(old_page);
3035
3036         spin_lock(ptl); /* Caller expects lock to be held */
3037         return ret;
3038 }
3039
3040 /* Return the pagecache page at a given address within a VMA */
3041 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3042                         struct vm_area_struct *vma, unsigned long address)
3043 {
3044         struct address_space *mapping;
3045         pgoff_t idx;
3046
3047         mapping = vma->vm_file->f_mapping;
3048         idx = vma_hugecache_offset(h, vma, address);
3049
3050         return find_lock_page(mapping, idx);
3051 }
3052
3053 /*
3054  * Return whether there is a pagecache page to back given address within VMA.
3055  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3056  */
3057 static bool hugetlbfs_pagecache_present(struct hstate *h,
3058                         struct vm_area_struct *vma, unsigned long address)
3059 {
3060         struct address_space *mapping;
3061         pgoff_t idx;
3062         struct page *page;
3063
3064         mapping = vma->vm_file->f_mapping;
3065         idx = vma_hugecache_offset(h, vma, address);
3066
3067         page = find_get_page(mapping, idx);
3068         if (page)
3069                 put_page(page);
3070         return page != NULL;
3071 }
3072
3073 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3074                            struct address_space *mapping, pgoff_t idx,
3075                            unsigned long address, pte_t *ptep, unsigned int flags)
3076 {
3077         struct hstate *h = hstate_vma(vma);
3078         int ret = VM_FAULT_SIGBUS;
3079         int anon_rmap = 0;
3080         unsigned long size;
3081         struct page *page;
3082         pte_t new_pte;
3083         spinlock_t *ptl;
3084
3085         /*
3086          * Currently, we are forced to kill the process in the event the
3087          * original mapper has unmapped pages from the child due to a failed
3088          * COW. Warn that such a situation has occurred as it may not be obvious
3089          */
3090         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3091                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3092                            current->pid);
3093                 return ret;
3094         }
3095
3096         /*
3097          * Use page lock to guard against racing truncation
3098          * before we get page_table_lock.
3099          */
3100 retry:
3101         page = find_lock_page(mapping, idx);
3102         if (!page) {
3103                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3104                 if (idx >= size)
3105                         goto out;
3106                 page = alloc_huge_page(vma, address, 0);
3107                 if (IS_ERR(page)) {
3108                         ret = PTR_ERR(page);
3109                         if (ret == -ENOMEM)
3110                                 ret = VM_FAULT_OOM;
3111                         else
3112                                 ret = VM_FAULT_SIGBUS;
3113                         goto out;
3114                 }
3115                 clear_huge_page(page, address, pages_per_huge_page(h));
3116                 __SetPageUptodate(page);
3117                 set_page_huge_active(page);
3118
3119                 if (vma->vm_flags & VM_MAYSHARE) {
3120                         int err;
3121                         struct inode *inode = mapping->host;
3122
3123                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3124                         if (err) {
3125                                 put_page(page);
3126                                 if (err == -EEXIST)
3127                                         goto retry;
3128                                 goto out;
3129                         }
3130                         ClearPagePrivate(page);
3131
3132                         spin_lock(&inode->i_lock);
3133                         inode->i_blocks += blocks_per_huge_page(h);
3134                         spin_unlock(&inode->i_lock);
3135                 } else {
3136                         lock_page(page);
3137                         if (unlikely(anon_vma_prepare(vma))) {
3138                                 ret = VM_FAULT_OOM;
3139                                 goto backout_unlocked;
3140                         }
3141                         anon_rmap = 1;
3142                 }
3143         } else {
3144                 /*
3145                  * If memory error occurs between mmap() and fault, some process
3146                  * don't have hwpoisoned swap entry for errored virtual address.
3147                  * So we need to block hugepage fault by PG_hwpoison bit check.
3148                  */
3149                 if (unlikely(PageHWPoison(page))) {
3150                         ret = VM_FAULT_HWPOISON |
3151                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3152                         goto backout_unlocked;
3153                 }
3154         }
3155
3156         /*
3157          * If we are going to COW a private mapping later, we examine the
3158          * pending reservations for this page now. This will ensure that
3159          * any allocations necessary to record that reservation occur outside
3160          * the spinlock.
3161          */
3162         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3163                 if (vma_needs_reservation(h, vma, address) < 0) {
3164                         ret = VM_FAULT_OOM;
3165                         goto backout_unlocked;
3166                 }
3167
3168         ptl = huge_pte_lockptr(h, mm, ptep);
3169         spin_lock(ptl);
3170         size = i_size_read(mapping->host) >> huge_page_shift(h);
3171         if (idx >= size)
3172                 goto backout;
3173
3174         ret = 0;
3175         if (!huge_pte_none(huge_ptep_get(ptep)))
3176                 goto backout;
3177
3178         if (anon_rmap) {
3179                 ClearPagePrivate(page);
3180                 hugepage_add_new_anon_rmap(page, vma, address);
3181         } else
3182                 page_dup_rmap(page);
3183         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3184                                 && (vma->vm_flags & VM_SHARED)));
3185         set_huge_pte_at(mm, address, ptep, new_pte);
3186
3187         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3188                 /* Optimization, do the COW without a second fault */
3189                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3190         }
3191
3192         spin_unlock(ptl);
3193         unlock_page(page);
3194 out:
3195         return ret;
3196
3197 backout:
3198         spin_unlock(ptl);
3199 backout_unlocked:
3200         unlock_page(page);
3201         put_page(page);
3202         goto out;
3203 }
3204
3205 #ifdef CONFIG_SMP
3206 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3207                             struct vm_area_struct *vma,
3208                             struct address_space *mapping,
3209                             pgoff_t idx, unsigned long address)
3210 {
3211         unsigned long key[2];
3212         u32 hash;
3213
3214         if (vma->vm_flags & VM_SHARED) {
3215                 key[0] = (unsigned long) mapping;
3216                 key[1] = idx;
3217         } else {
3218                 key[0] = (unsigned long) mm;
3219                 key[1] = address >> huge_page_shift(h);
3220         }
3221
3222         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3223
3224         return hash & (num_fault_mutexes - 1);
3225 }
3226 #else
3227 /*
3228  * For uniprocesor systems we always use a single mutex, so just
3229  * return 0 and avoid the hashing overhead.
3230  */
3231 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3232                             struct vm_area_struct *vma,
3233                             struct address_space *mapping,
3234                             pgoff_t idx, unsigned long address)
3235 {
3236         return 0;
3237 }
3238 #endif
3239
3240 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3241                         unsigned long address, unsigned int flags)
3242 {
3243         pte_t *ptep, entry;
3244         spinlock_t *ptl;
3245         int ret;
3246         u32 hash;
3247         pgoff_t idx;
3248         struct page *page = NULL;
3249         struct page *pagecache_page = NULL;
3250         struct hstate *h = hstate_vma(vma);
3251         struct address_space *mapping;
3252         int need_wait_lock = 0;
3253
3254         address &= huge_page_mask(h);
3255
3256         ptep = huge_pte_offset(mm, address);
3257         if (ptep) {
3258                 entry = huge_ptep_get(ptep);
3259                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3260                         migration_entry_wait_huge(vma, mm, ptep);
3261                         return 0;
3262                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3263                         return VM_FAULT_HWPOISON_LARGE |
3264                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3265         }
3266
3267         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3268         if (!ptep)
3269                 return VM_FAULT_OOM;
3270
3271         mapping = vma->vm_file->f_mapping;
3272         idx = vma_hugecache_offset(h, vma, address);
3273
3274         /*
3275          * Serialize hugepage allocation and instantiation, so that we don't
3276          * get spurious allocation failures if two CPUs race to instantiate
3277          * the same page in the page cache.
3278          */
3279         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3280         mutex_lock(&htlb_fault_mutex_table[hash]);
3281
3282         entry = huge_ptep_get(ptep);
3283         if (huge_pte_none(entry)) {
3284                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3285                 goto out_mutex;
3286         }
3287
3288         ret = 0;
3289
3290         /*
3291          * entry could be a migration/hwpoison entry at this point, so this
3292          * check prevents the kernel from going below assuming that we have
3293          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3294          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3295          * handle it.
3296          */
3297         if (!pte_present(entry))
3298                 goto out_mutex;
3299
3300         /*
3301          * If we are going to COW the mapping later, we examine the pending
3302          * reservations for this page now. This will ensure that any
3303          * allocations necessary to record that reservation occur outside the
3304          * spinlock. For private mappings, we also lookup the pagecache
3305          * page now as it is used to determine if a reservation has been
3306          * consumed.
3307          */
3308         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3309                 if (vma_needs_reservation(h, vma, address) < 0) {
3310                         ret = VM_FAULT_OOM;
3311                         goto out_mutex;
3312                 }
3313
3314                 if (!(vma->vm_flags & VM_MAYSHARE))
3315                         pagecache_page = hugetlbfs_pagecache_page(h,
3316                                                                 vma, address);
3317         }
3318
3319         ptl = huge_pte_lock(h, mm, ptep);
3320
3321         /* Check for a racing update before calling hugetlb_cow */
3322         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3323                 goto out_ptl;
3324
3325         /*
3326          * hugetlb_cow() requires page locks of pte_page(entry) and
3327          * pagecache_page, so here we need take the former one
3328          * when page != pagecache_page or !pagecache_page.
3329          */
3330         page = pte_page(entry);
3331         if (page != pagecache_page)
3332                 if (!trylock_page(page)) {
3333                         need_wait_lock = 1;
3334                         goto out_ptl;
3335                 }
3336
3337         get_page(page);
3338
3339         if (flags & FAULT_FLAG_WRITE) {
3340                 if (!huge_pte_write(entry)) {
3341                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3342                                         pagecache_page, ptl);
3343                         goto out_put_page;
3344                 }
3345                 entry = huge_pte_mkdirty(entry);
3346         }
3347         entry = pte_mkyoung(entry);
3348         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3349                                                 flags & FAULT_FLAG_WRITE))
3350                 update_mmu_cache(vma, address, ptep);
3351 out_put_page:
3352         if (page != pagecache_page)
3353                 unlock_page(page);
3354         put_page(page);
3355 out_ptl:
3356         spin_unlock(ptl);
3357
3358         if (pagecache_page) {
3359                 unlock_page(pagecache_page);
3360                 put_page(pagecache_page);
3361         }
3362 out_mutex:
3363         mutex_unlock(&htlb_fault_mutex_table[hash]);
3364         /*
3365          * Generally it's safe to hold refcount during waiting page lock. But
3366          * here we just wait to defer the next page fault to avoid busy loop and
3367          * the page is not used after unlocked before returning from the current
3368          * page fault. So we are safe from accessing freed page, even if we wait
3369          * here without taking refcount.
3370          */
3371         if (need_wait_lock)
3372                 wait_on_page_locked(page);
3373         return ret;
3374 }
3375
3376 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3377                          struct page **pages, struct vm_area_struct **vmas,
3378                          unsigned long *position, unsigned long *nr_pages,
3379                          long i, unsigned int flags)
3380 {
3381         unsigned long pfn_offset;
3382         unsigned long vaddr = *position;
3383         unsigned long remainder = *nr_pages;
3384         struct hstate *h = hstate_vma(vma);
3385
3386         while (vaddr < vma->vm_end && remainder) {
3387                 pte_t *pte;
3388                 spinlock_t *ptl = NULL;
3389                 int absent;
3390                 struct page *page;
3391
3392                 /*
3393                  * If we have a pending SIGKILL, don't keep faulting pages and
3394                  * potentially allocating memory.
3395                  */
3396                 if (unlikely(fatal_signal_pending(current))) {
3397                         remainder = 0;
3398                         break;
3399                 }
3400
3401                 /*
3402                  * Some archs (sparc64, sh*) have multiple pte_ts to
3403                  * each hugepage.  We have to make sure we get the
3404                  * first, for the page indexing below to work.
3405                  *
3406                  * Note that page table lock is not held when pte is null.
3407                  */
3408                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3409                 if (pte)
3410                         ptl = huge_pte_lock(h, mm, pte);
3411                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3412
3413                 /*
3414                  * When coredumping, it suits get_dump_page if we just return
3415                  * an error where there's an empty slot with no huge pagecache
3416                  * to back it.  This way, we avoid allocating a hugepage, and
3417                  * the sparse dumpfile avoids allocating disk blocks, but its
3418                  * huge holes still show up with zeroes where they need to be.
3419                  */
3420                 if (absent && (flags & FOLL_DUMP) &&
3421                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3422                         if (pte)
3423                                 spin_unlock(ptl);
3424                         remainder = 0;
3425                         break;
3426                 }
3427
3428                 /*
3429                  * We need call hugetlb_fault for both hugepages under migration
3430                  * (in which case hugetlb_fault waits for the migration,) and
3431                  * hwpoisoned hugepages (in which case we need to prevent the
3432                  * caller from accessing to them.) In order to do this, we use
3433                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3434                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3435                  * both cases, and because we can't follow correct pages
3436                  * directly from any kind of swap entries.
3437                  */
3438                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3439                     ((flags & FOLL_WRITE) &&
3440                       !huge_pte_write(huge_ptep_get(pte)))) {
3441                         int ret;
3442
3443                         if (pte)
3444                                 spin_unlock(ptl);
3445                         ret = hugetlb_fault(mm, vma, vaddr,
3446                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3447                         if (!(ret & VM_FAULT_ERROR))
3448                                 continue;
3449
3450                         remainder = 0;
3451                         break;
3452                 }
3453
3454                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3455                 page = pte_page(huge_ptep_get(pte));
3456 same_page:
3457                 if (pages) {
3458                         pages[i] = mem_map_offset(page, pfn_offset);
3459                         get_page_foll(pages[i]);
3460                 }
3461
3462                 if (vmas)
3463                         vmas[i] = vma;
3464
3465                 vaddr += PAGE_SIZE;
3466                 ++pfn_offset;
3467                 --remainder;
3468                 ++i;
3469                 if (vaddr < vma->vm_end && remainder &&
3470                                 pfn_offset < pages_per_huge_page(h)) {
3471                         /*
3472                          * We use pfn_offset to avoid touching the pageframes
3473                          * of this compound page.
3474                          */
3475                         goto same_page;
3476                 }
3477                 spin_unlock(ptl);
3478         }
3479         *nr_pages = remainder;
3480         *position = vaddr;
3481
3482         return i ? i : -EFAULT;
3483 }
3484
3485 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3486                 unsigned long address, unsigned long end, pgprot_t newprot)
3487 {
3488         struct mm_struct *mm = vma->vm_mm;
3489         unsigned long start = address;
3490         pte_t *ptep;
3491         pte_t pte;
3492         struct hstate *h = hstate_vma(vma);
3493         unsigned long pages = 0;
3494
3495         BUG_ON(address >= end);
3496         flush_cache_range(vma, address, end);
3497
3498         mmu_notifier_invalidate_range_start(mm, start, end);
3499         i_mmap_lock_write(vma->vm_file->f_mapping);
3500         for (; address < end; address += huge_page_size(h)) {
3501                 spinlock_t *ptl;
3502                 ptep = huge_pte_offset(mm, address);
3503                 if (!ptep)
3504                         continue;
3505                 ptl = huge_pte_lock(h, mm, ptep);
3506                 if (huge_pmd_unshare(mm, &address, ptep)) {
3507                         pages++;
3508                         spin_unlock(ptl);
3509                         continue;
3510                 }
3511                 pte = huge_ptep_get(ptep);
3512                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3513                         spin_unlock(ptl);
3514                         continue;
3515                 }
3516                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3517                         swp_entry_t entry = pte_to_swp_entry(pte);
3518
3519                         if (is_write_migration_entry(entry)) {
3520                                 pte_t newpte;
3521
3522                                 make_migration_entry_read(&entry);
3523                                 newpte = swp_entry_to_pte(entry);
3524                                 set_huge_pte_at(mm, address, ptep, newpte);
3525                                 pages++;
3526                         }
3527                         spin_unlock(ptl);
3528                         continue;
3529                 }
3530                 if (!huge_pte_none(pte)) {
3531                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3532                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3533                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3534                         set_huge_pte_at(mm, address, ptep, pte);
3535                         pages++;
3536                 }
3537                 spin_unlock(ptl);
3538         }
3539         /*
3540          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3541          * may have cleared our pud entry and done put_page on the page table:
3542          * once we release i_mmap_rwsem, another task can do the final put_page
3543          * and that page table be reused and filled with junk.
3544          */
3545         flush_tlb_range(vma, start, end);
3546         mmu_notifier_invalidate_range(mm, start, end);
3547         i_mmap_unlock_write(vma->vm_file->f_mapping);
3548         mmu_notifier_invalidate_range_end(mm, start, end);
3549
3550         return pages << h->order;
3551 }
3552
3553 int hugetlb_reserve_pages(struct inode *inode,
3554                                         long from, long to,
3555                                         struct vm_area_struct *vma,
3556                                         vm_flags_t vm_flags)
3557 {
3558         long ret, chg;
3559         struct hstate *h = hstate_inode(inode);
3560         struct hugepage_subpool *spool = subpool_inode(inode);
3561         struct resv_map *resv_map;
3562         long gbl_reserve;
3563
3564         /*
3565          * Only apply hugepage reservation if asked. At fault time, an
3566          * attempt will be made for VM_NORESERVE to allocate a page
3567          * without using reserves
3568          */
3569         if (vm_flags & VM_NORESERVE)
3570                 return 0;
3571
3572         /*
3573          * Shared mappings base their reservation on the number of pages that
3574          * are already allocated on behalf of the file. Private mappings need
3575          * to reserve the full area even if read-only as mprotect() may be
3576          * called to make the mapping read-write. Assume !vma is a shm mapping
3577          */
3578         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3579                 resv_map = inode_resv_map(inode);
3580
3581                 chg = region_chg(resv_map, from, to);
3582
3583         } else {
3584                 resv_map = resv_map_alloc();
3585                 if (!resv_map)
3586                         return -ENOMEM;
3587
3588                 chg = to - from;
3589
3590                 set_vma_resv_map(vma, resv_map);
3591                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3592         }
3593
3594         if (chg < 0) {
3595                 ret = chg;
3596                 goto out_err;
3597         }
3598
3599         /*
3600          * There must be enough pages in the subpool for the mapping. If
3601          * the subpool has a minimum size, there may be some global
3602          * reservations already in place (gbl_reserve).
3603          */
3604         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3605         if (gbl_reserve < 0) {
3606                 ret = -ENOSPC;
3607                 goto out_err;
3608         }
3609
3610         /*
3611          * Check enough hugepages are available for the reservation.
3612          * Hand the pages back to the subpool if there are not
3613          */
3614         ret = hugetlb_acct_memory(h, gbl_reserve);
3615         if (ret < 0) {
3616                 /* put back original number of pages, chg */
3617                 (void)hugepage_subpool_put_pages(spool, chg);
3618                 goto out_err;
3619         }
3620
3621         /*
3622          * Account for the reservations made. Shared mappings record regions
3623          * that have reservations as they are shared by multiple VMAs.
3624          * When the last VMA disappears, the region map says how much
3625          * the reservation was and the page cache tells how much of
3626          * the reservation was consumed. Private mappings are per-VMA and
3627          * only the consumed reservations are tracked. When the VMA
3628          * disappears, the original reservation is the VMA size and the
3629          * consumed reservations are stored in the map. Hence, nothing
3630          * else has to be done for private mappings here
3631          */
3632         if (!vma || vma->vm_flags & VM_MAYSHARE)
3633                 region_add(resv_map, from, to);
3634         return 0;
3635 out_err:
3636         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3637                 kref_put(&resv_map->refs, resv_map_release);
3638         return ret;
3639 }
3640
3641 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3642 {
3643         struct hstate *h = hstate_inode(inode);
3644         struct resv_map *resv_map = inode_resv_map(inode);
3645         long chg = 0;
3646         struct hugepage_subpool *spool = subpool_inode(inode);
3647         long gbl_reserve;
3648
3649         if (resv_map)
3650                 chg = region_truncate(resv_map, offset);
3651         spin_lock(&inode->i_lock);
3652         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3653         spin_unlock(&inode->i_lock);
3654
3655         /*
3656          * If the subpool has a minimum size, the number of global
3657          * reservations to be released may be adjusted.
3658          */
3659         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3660         hugetlb_acct_memory(h, -gbl_reserve);
3661 }
3662
3663 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3664 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3665                                 struct vm_area_struct *vma,
3666                                 unsigned long addr, pgoff_t idx)
3667 {
3668         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3669                                 svma->vm_start;
3670         unsigned long sbase = saddr & PUD_MASK;
3671         unsigned long s_end = sbase + PUD_SIZE;
3672
3673         /* Allow segments to share if only one is marked locked */
3674         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3675         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3676
3677         /*
3678          * match the virtual addresses, permission and the alignment of the
3679          * page table page.
3680          */
3681         if (pmd_index(addr) != pmd_index(saddr) ||
3682             vm_flags != svm_flags ||
3683             sbase < svma->vm_start || svma->vm_end < s_end)
3684                 return 0;
3685
3686         return saddr;
3687 }
3688
3689 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3690 {
3691         unsigned long base = addr & PUD_MASK;
3692         unsigned long end = base + PUD_SIZE;
3693
3694         /*
3695          * check on proper vm_flags and page table alignment
3696          */
3697         if (vma->vm_flags & VM_MAYSHARE &&
3698             vma->vm_start <= base && end <= vma->vm_end)
3699                 return 1;
3700         return 0;
3701 }
3702
3703 /*
3704  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3705  * and returns the corresponding pte. While this is not necessary for the
3706  * !shared pmd case because we can allocate the pmd later as well, it makes the
3707  * code much cleaner. pmd allocation is essential for the shared case because
3708  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3709  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3710  * bad pmd for sharing.
3711  */
3712 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3713 {
3714         struct vm_area_struct *vma = find_vma(mm, addr);
3715         struct address_space *mapping = vma->vm_file->f_mapping;
3716         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3717                         vma->vm_pgoff;
3718         struct vm_area_struct *svma;
3719         unsigned long saddr;
3720         pte_t *spte = NULL;
3721         pte_t *pte;
3722         spinlock_t *ptl;
3723
3724         if (!vma_shareable(vma, addr))
3725                 return (pte_t *)pmd_alloc(mm, pud, addr);
3726
3727         i_mmap_lock_write(mapping);
3728         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3729                 if (svma == vma)
3730                         continue;
3731
3732                 saddr = page_table_shareable(svma, vma, addr, idx);
3733                 if (saddr) {
3734                         spte = huge_pte_offset(svma->vm_mm, saddr);
3735                         if (spte) {
3736                                 mm_inc_nr_pmds(mm);
3737                                 get_page(virt_to_page(spte));
3738                                 break;
3739                         }
3740                 }
3741         }
3742
3743         if (!spte)
3744                 goto out;
3745
3746         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3747         spin_lock(ptl);
3748         if (pud_none(*pud)) {
3749                 pud_populate(mm, pud,
3750                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3751         } else {
3752                 put_page(virt_to_page(spte));
3753                 mm_inc_nr_pmds(mm);
3754         }
3755         spin_unlock(ptl);
3756 out:
3757         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3758         i_mmap_unlock_write(mapping);
3759         return pte;
3760 }
3761
3762 /*
3763  * unmap huge page backed by shared pte.
3764  *
3765  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3766  * indicated by page_count > 1, unmap is achieved by clearing pud and
3767  * decrementing the ref count. If count == 1, the pte page is not shared.
3768  *
3769  * called with page table lock held.
3770  *
3771  * returns: 1 successfully unmapped a shared pte page
3772  *          0 the underlying pte page is not shared, or it is the last user
3773  */
3774 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3775 {
3776         pgd_t *pgd = pgd_offset(mm, *addr);
3777         pud_t *pud = pud_offset(pgd, *addr);
3778
3779         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3780         if (page_count(virt_to_page(ptep)) == 1)
3781                 return 0;
3782
3783         pud_clear(pud);
3784         put_page(virt_to_page(ptep));
3785         mm_dec_nr_pmds(mm);
3786         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3787         return 1;
3788 }
3789 #define want_pmd_share()        (1)
3790 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3791 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3792 {
3793         return NULL;
3794 }
3795 #define want_pmd_share()        (0)
3796 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3797
3798 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3799 pte_t *huge_pte_alloc(struct mm_struct *mm,
3800                         unsigned long addr, unsigned long sz)
3801 {
3802         pgd_t *pgd;
3803         pud_t *pud;
3804         pte_t *pte = NULL;
3805
3806         pgd = pgd_offset(mm, addr);
3807         pud = pud_alloc(mm, pgd, addr);
3808         if (pud) {
3809                 if (sz == PUD_SIZE) {
3810                         pte = (pte_t *)pud;
3811                 } else {
3812                         BUG_ON(sz != PMD_SIZE);
3813                         if (want_pmd_share() && pud_none(*pud))
3814                                 pte = huge_pmd_share(mm, addr, pud);
3815                         else
3816                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3817                 }
3818         }
3819         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3820
3821         return pte;
3822 }
3823
3824 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3825 {
3826         pgd_t *pgd;
3827         pud_t *pud;
3828         pmd_t *pmd = NULL;
3829
3830         pgd = pgd_offset(mm, addr);
3831         if (pgd_present(*pgd)) {
3832                 pud = pud_offset(pgd, addr);
3833                 if (pud_present(*pud)) {
3834                         if (pud_huge(*pud))
3835                                 return (pte_t *)pud;
3836                         pmd = pmd_offset(pud, addr);
3837                 }
3838         }
3839         return (pte_t *) pmd;
3840 }
3841
3842 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3843
3844 /*
3845  * These functions are overwritable if your architecture needs its own
3846  * behavior.
3847  */
3848 struct page * __weak
3849 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3850                               int write)
3851 {
3852         return ERR_PTR(-EINVAL);
3853 }
3854
3855 struct page * __weak
3856 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3857                 pmd_t *pmd, int flags)
3858 {
3859         struct page *page = NULL;
3860         spinlock_t *ptl;
3861 retry:
3862         ptl = pmd_lockptr(mm, pmd);
3863         spin_lock(ptl);
3864         /*
3865          * make sure that the address range covered by this pmd is not
3866          * unmapped from other threads.
3867          */
3868         if (!pmd_huge(*pmd))
3869                 goto out;
3870         if (pmd_present(*pmd)) {
3871                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3872                 if (flags & FOLL_GET)
3873                         get_page(page);
3874         } else {
3875                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3876                         spin_unlock(ptl);
3877                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3878                         goto retry;
3879                 }
3880                 /*
3881                  * hwpoisoned entry is treated as no_page_table in
3882                  * follow_page_mask().
3883                  */
3884         }
3885 out:
3886         spin_unlock(ptl);
3887         return page;
3888 }
3889
3890 struct page * __weak
3891 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3892                 pud_t *pud, int flags)
3893 {
3894         if (flags & FOLL_GET)
3895                 return NULL;
3896
3897         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3898 }
3899
3900 #ifdef CONFIG_MEMORY_FAILURE
3901
3902 /*
3903  * This function is called from memory failure code.
3904  * Assume the caller holds page lock of the head page.
3905  */
3906 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3907 {
3908         struct hstate *h = page_hstate(hpage);
3909         int nid = page_to_nid(hpage);
3910         int ret = -EBUSY;
3911
3912         spin_lock(&hugetlb_lock);
3913         /*
3914          * Just checking !page_huge_active is not enough, because that could be
3915          * an isolated/hwpoisoned hugepage (which have >0 refcount).
3916          */
3917         if (!page_huge_active(hpage) && !page_count(hpage)) {
3918                 /*
3919                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3920                  * but dangling hpage->lru can trigger list-debug warnings
3921                  * (this happens when we call unpoison_memory() on it),
3922                  * so let it point to itself with list_del_init().
3923                  */
3924                 list_del_init(&hpage->lru);
3925                 set_page_refcounted(hpage);
3926                 h->free_huge_pages--;
3927                 h->free_huge_pages_node[nid]--;
3928                 ret = 0;
3929         }
3930         spin_unlock(&hugetlb_lock);
3931         return ret;
3932 }
3933 #endif
3934
3935 bool isolate_huge_page(struct page *page, struct list_head *list)
3936 {
3937         bool ret = true;
3938
3939         VM_BUG_ON_PAGE(!PageHead(page), page);
3940         spin_lock(&hugetlb_lock);
3941         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3942                 ret = false;
3943                 goto unlock;
3944         }
3945         clear_page_huge_active(page);
3946         list_move_tail(&page->lru, list);
3947 unlock:
3948         spin_unlock(&hugetlb_lock);
3949         return ret;
3950 }
3951
3952 void putback_active_hugepage(struct page *page)
3953 {
3954         VM_BUG_ON_PAGE(!PageHead(page), page);
3955         spin_lock(&hugetlb_lock);
3956         set_page_huge_active(page);
3957         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3958         spin_unlock(&hugetlb_lock);
3959         put_page(page);
3960 }