These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113                                    struct page *page, void *shadow)
114 {
115         struct radix_tree_node *node;
116         unsigned long index;
117         unsigned int offset;
118         unsigned int tag;
119         void **slot;
120
121         VM_BUG_ON(!PageLocked(page));
122
123         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125         if (shadow) {
126                 mapping->nrshadows++;
127                 /*
128                  * Make sure the nrshadows update is committed before
129                  * the nrpages update so that final truncate racing
130                  * with reclaim does not see both counters 0 at the
131                  * same time and miss a shadow entry.
132                  */
133                 smp_wmb();
134         }
135         mapping->nrpages--;
136
137         if (!node) {
138                 /* Clear direct pointer tags in root node */
139                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140                 radix_tree_replace_slot(slot, shadow);
141                 return;
142         }
143
144         /* Clear tree tags for the removed page */
145         index = page->index;
146         offset = index & RADIX_TREE_MAP_MASK;
147         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148                 if (test_bit(offset, node->tags[tag]))
149                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
150         }
151
152         /* Delete page, swap shadow entry */
153         radix_tree_replace_slot(slot, shadow);
154         workingset_node_pages_dec(node);
155         if (shadow)
156                 workingset_node_shadows_inc(node);
157         else
158                 if (__radix_tree_delete_node(&mapping->page_tree, node))
159                         return;
160
161         /*
162          * Track node that only contains shadow entries.
163          *
164          * Avoid acquiring the list_lru lock if already tracked.  The
165          * list_empty() test is safe as node->private_list is
166          * protected by mapping->tree_lock.
167          */
168         if (!workingset_node_pages(node) &&
169             list_empty(&node->private_list)) {
170                 node->private_data = mapping;
171                 local_lock(workingset_shadow_lock);
172                 list_lru_add(&__workingset_shadow_nodes, &node->private_list);
173                 local_unlock(workingset_shadow_lock);
174         }
175 }
176
177 /*
178  * Delete a page from the page cache and free it. Caller has to make
179  * sure the page is locked and that nobody else uses it - or that usage
180  * is safe.  The caller must hold the mapping's tree_lock and
181  * mem_cgroup_begin_page_stat().
182  */
183 void __delete_from_page_cache(struct page *page, void *shadow,
184                               struct mem_cgroup *memcg)
185 {
186         struct address_space *mapping = page->mapping;
187
188         trace_mm_filemap_delete_from_page_cache(page);
189         /*
190          * if we're uptodate, flush out into the cleancache, otherwise
191          * invalidate any existing cleancache entries.  We can't leave
192          * stale data around in the cleancache once our page is gone
193          */
194         if (PageUptodate(page) && PageMappedToDisk(page))
195                 cleancache_put_page(page);
196         else
197                 cleancache_invalidate_page(mapping, page);
198
199         page_cache_tree_delete(mapping, page, shadow);
200
201         page->mapping = NULL;
202         /* Leave page->index set: truncation lookup relies upon it */
203
204         /* hugetlb pages do not participate in page cache accounting. */
205         if (!PageHuge(page))
206                 __dec_zone_page_state(page, NR_FILE_PAGES);
207         if (PageSwapBacked(page))
208                 __dec_zone_page_state(page, NR_SHMEM);
209         BUG_ON(page_mapped(page));
210
211         /*
212          * At this point page must be either written or cleaned by truncate.
213          * Dirty page here signals a bug and loss of unwritten data.
214          *
215          * This fixes dirty accounting after removing the page entirely but
216          * leaves PageDirty set: it has no effect for truncated page and
217          * anyway will be cleared before returning page into buddy allocator.
218          */
219         if (WARN_ON_ONCE(PageDirty(page)))
220                 account_page_cleaned(page, mapping, memcg,
221                                      inode_to_wb(mapping->host));
222 }
223
224 /**
225  * delete_from_page_cache - delete page from page cache
226  * @page: the page which the kernel is trying to remove from page cache
227  *
228  * This must be called only on pages that have been verified to be in the page
229  * cache and locked.  It will never put the page into the free list, the caller
230  * has a reference on the page.
231  */
232 void delete_from_page_cache(struct page *page)
233 {
234         struct address_space *mapping = page->mapping;
235         struct mem_cgroup *memcg;
236         unsigned long flags;
237
238         void (*freepage)(struct page *);
239
240         BUG_ON(!PageLocked(page));
241
242         freepage = mapping->a_ops->freepage;
243
244         memcg = mem_cgroup_begin_page_stat(page);
245         spin_lock_irqsave(&mapping->tree_lock, flags);
246         __delete_from_page_cache(page, NULL, memcg);
247         spin_unlock_irqrestore(&mapping->tree_lock, flags);
248         mem_cgroup_end_page_stat(memcg);
249
250         if (freepage)
251                 freepage(page);
252         page_cache_release(page);
253 }
254 EXPORT_SYMBOL(delete_from_page_cache);
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_bit(AS_ENOSPC, &mapping->flags) &&
261             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262                 ret = -ENOSPC;
263         if (test_bit(AS_EIO, &mapping->flags) &&
264             test_and_clear_bit(AS_EIO, &mapping->flags))
265                 ret = -EIO;
266         return ret;
267 }
268
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:    address space structure to write
272  * @start:      offset in bytes where the range starts
273  * @end:        offset in bytes where the range ends (inclusive)
274  * @sync_mode:  enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285                                 loff_t end, int sync_mode)
286 {
287         int ret;
288         struct writeback_control wbc = {
289                 .sync_mode = sync_mode,
290                 .nr_to_write = LONG_MAX,
291                 .range_start = start,
292                 .range_end = end,
293         };
294
295         if (!mapping_cap_writeback_dirty(mapping))
296                 return 0;
297
298         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
299         ret = do_writepages(mapping, &wbc);
300         wbc_detach_inode(&wbc);
301         return ret;
302 }
303
304 static inline int __filemap_fdatawrite(struct address_space *mapping,
305         int sync_mode)
306 {
307         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
308 }
309
310 int filemap_fdatawrite(struct address_space *mapping)
311 {
312         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
313 }
314 EXPORT_SYMBOL(filemap_fdatawrite);
315
316 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
317                                 loff_t end)
318 {
319         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
320 }
321 EXPORT_SYMBOL(filemap_fdatawrite_range);
322
323 /**
324  * filemap_flush - mostly a non-blocking flush
325  * @mapping:    target address_space
326  *
327  * This is a mostly non-blocking flush.  Not suitable for data-integrity
328  * purposes - I/O may not be started against all dirty pages.
329  */
330 int filemap_flush(struct address_space *mapping)
331 {
332         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
333 }
334 EXPORT_SYMBOL(filemap_flush);
335
336 static int __filemap_fdatawait_range(struct address_space *mapping,
337                                      loff_t start_byte, loff_t end_byte)
338 {
339         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
340         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
341         struct pagevec pvec;
342         int nr_pages;
343         int ret = 0;
344
345         if (end_byte < start_byte)
346                 goto out;
347
348         pagevec_init(&pvec, 0);
349         while ((index <= end) &&
350                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
351                         PAGECACHE_TAG_WRITEBACK,
352                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
353                 unsigned i;
354
355                 for (i = 0; i < nr_pages; i++) {
356                         struct page *page = pvec.pages[i];
357
358                         /* until radix tree lookup accepts end_index */
359                         if (page->index > end)
360                                 continue;
361
362                         wait_on_page_writeback(page);
363                         if (TestClearPageError(page))
364                                 ret = -EIO;
365                 }
366                 pagevec_release(&pvec);
367                 cond_resched();
368         }
369 out:
370         return ret;
371 }
372
373 /**
374  * filemap_fdatawait_range - wait for writeback to complete
375  * @mapping:            address space structure to wait for
376  * @start_byte:         offset in bytes where the range starts
377  * @end_byte:           offset in bytes where the range ends (inclusive)
378  *
379  * Walk the list of under-writeback pages of the given address space
380  * in the given range and wait for all of them.  Check error status of
381  * the address space and return it.
382  *
383  * Since the error status of the address space is cleared by this function,
384  * callers are responsible for checking the return value and handling and/or
385  * reporting the error.
386  */
387 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
388                             loff_t end_byte)
389 {
390         int ret, ret2;
391
392         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
393         ret2 = filemap_check_errors(mapping);
394         if (!ret)
395                 ret = ret2;
396
397         return ret;
398 }
399 EXPORT_SYMBOL(filemap_fdatawait_range);
400
401 /**
402  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
403  * @mapping: address space structure to wait for
404  *
405  * Walk the list of under-writeback pages of the given address space
406  * and wait for all of them.  Unlike filemap_fdatawait(), this function
407  * does not clear error status of the address space.
408  *
409  * Use this function if callers don't handle errors themselves.  Expected
410  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
411  * fsfreeze(8)
412  */
413 void filemap_fdatawait_keep_errors(struct address_space *mapping)
414 {
415         loff_t i_size = i_size_read(mapping->host);
416
417         if (i_size == 0)
418                 return;
419
420         __filemap_fdatawait_range(mapping, 0, i_size - 1);
421 }
422
423 /**
424  * filemap_fdatawait - wait for all under-writeback pages to complete
425  * @mapping: address space structure to wait for
426  *
427  * Walk the list of under-writeback pages of the given address space
428  * and wait for all of them.  Check error status of the address space
429  * and return it.
430  *
431  * Since the error status of the address space is cleared by this function,
432  * callers are responsible for checking the return value and handling and/or
433  * reporting the error.
434  */
435 int filemap_fdatawait(struct address_space *mapping)
436 {
437         loff_t i_size = i_size_read(mapping->host);
438
439         if (i_size == 0)
440                 return 0;
441
442         return filemap_fdatawait_range(mapping, 0, i_size - 1);
443 }
444 EXPORT_SYMBOL(filemap_fdatawait);
445
446 int filemap_write_and_wait(struct address_space *mapping)
447 {
448         int err = 0;
449
450         if (mapping->nrpages) {
451                 err = filemap_fdatawrite(mapping);
452                 /*
453                  * Even if the above returned error, the pages may be
454                  * written partially (e.g. -ENOSPC), so we wait for it.
455                  * But the -EIO is special case, it may indicate the worst
456                  * thing (e.g. bug) happened, so we avoid waiting for it.
457                  */
458                 if (err != -EIO) {
459                         int err2 = filemap_fdatawait(mapping);
460                         if (!err)
461                                 err = err2;
462                 }
463         } else {
464                 err = filemap_check_errors(mapping);
465         }
466         return err;
467 }
468 EXPORT_SYMBOL(filemap_write_and_wait);
469
470 /**
471  * filemap_write_and_wait_range - write out & wait on a file range
472  * @mapping:    the address_space for the pages
473  * @lstart:     offset in bytes where the range starts
474  * @lend:       offset in bytes where the range ends (inclusive)
475  *
476  * Write out and wait upon file offsets lstart->lend, inclusive.
477  *
478  * Note that `lend' is inclusive (describes the last byte to be written) so
479  * that this function can be used to write to the very end-of-file (end = -1).
480  */
481 int filemap_write_and_wait_range(struct address_space *mapping,
482                                  loff_t lstart, loff_t lend)
483 {
484         int err = 0;
485
486         if (mapping->nrpages) {
487                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
488                                                  WB_SYNC_ALL);
489                 /* See comment of filemap_write_and_wait() */
490                 if (err != -EIO) {
491                         int err2 = filemap_fdatawait_range(mapping,
492                                                 lstart, lend);
493                         if (!err)
494                                 err = err2;
495                 }
496         } else {
497                 err = filemap_check_errors(mapping);
498         }
499         return err;
500 }
501 EXPORT_SYMBOL(filemap_write_and_wait_range);
502
503 /**
504  * replace_page_cache_page - replace a pagecache page with a new one
505  * @old:        page to be replaced
506  * @new:        page to replace with
507  * @gfp_mask:   allocation mode
508  *
509  * This function replaces a page in the pagecache with a new one.  On
510  * success it acquires the pagecache reference for the new page and
511  * drops it for the old page.  Both the old and new pages must be
512  * locked.  This function does not add the new page to the LRU, the
513  * caller must do that.
514  *
515  * The remove + add is atomic.  The only way this function can fail is
516  * memory allocation failure.
517  */
518 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
519 {
520         int error;
521
522         VM_BUG_ON_PAGE(!PageLocked(old), old);
523         VM_BUG_ON_PAGE(!PageLocked(new), new);
524         VM_BUG_ON_PAGE(new->mapping, new);
525
526         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
527         if (!error) {
528                 struct address_space *mapping = old->mapping;
529                 void (*freepage)(struct page *);
530                 struct mem_cgroup *memcg;
531                 unsigned long flags;
532
533                 pgoff_t offset = old->index;
534                 freepage = mapping->a_ops->freepage;
535
536                 page_cache_get(new);
537                 new->mapping = mapping;
538                 new->index = offset;
539
540                 memcg = mem_cgroup_begin_page_stat(old);
541                 spin_lock_irqsave(&mapping->tree_lock, flags);
542                 __delete_from_page_cache(old, NULL, memcg);
543                 error = radix_tree_insert(&mapping->page_tree, offset, new);
544                 BUG_ON(error);
545                 mapping->nrpages++;
546
547                 /*
548                  * hugetlb pages do not participate in page cache accounting.
549                  */
550                 if (!PageHuge(new))
551                         __inc_zone_page_state(new, NR_FILE_PAGES);
552                 if (PageSwapBacked(new))
553                         __inc_zone_page_state(new, NR_SHMEM);
554                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
555                 mem_cgroup_end_page_stat(memcg);
556                 mem_cgroup_replace_page(old, new);
557                 radix_tree_preload_end();
558                 if (freepage)
559                         freepage(old);
560                 page_cache_release(old);
561         }
562
563         return error;
564 }
565 EXPORT_SYMBOL_GPL(replace_page_cache_page);
566
567 static int page_cache_tree_insert(struct address_space *mapping,
568                                   struct page *page, void **shadowp)
569 {
570         struct radix_tree_node *node;
571         void **slot;
572         int error;
573
574         error = __radix_tree_create(&mapping->page_tree, page->index,
575                                     &node, &slot);
576         if (error)
577                 return error;
578         if (*slot) {
579                 void *p;
580
581                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
582                 if (!radix_tree_exceptional_entry(p))
583                         return -EEXIST;
584                 if (shadowp)
585                         *shadowp = p;
586                 mapping->nrshadows--;
587                 if (node)
588                         workingset_node_shadows_dec(node);
589         }
590         radix_tree_replace_slot(slot, page);
591         mapping->nrpages++;
592         if (node) {
593                 workingset_node_pages_inc(node);
594                 /*
595                  * Don't track node that contains actual pages.
596                  *
597                  * Avoid acquiring the list_lru lock if already
598                  * untracked.  The list_empty() test is safe as
599                  * node->private_list is protected by
600                  * mapping->tree_lock.
601                  */
602                 if (!list_empty(&node->private_list)) {
603                         local_lock(workingset_shadow_lock);
604                         list_lru_del(&__workingset_shadow_nodes,
605                                      &node->private_list);
606                         local_unlock(workingset_shadow_lock);
607                 }
608         }
609         return 0;
610 }
611
612 static int __add_to_page_cache_locked(struct page *page,
613                                       struct address_space *mapping,
614                                       pgoff_t offset, gfp_t gfp_mask,
615                                       void **shadowp)
616 {
617         int huge = PageHuge(page);
618         struct mem_cgroup *memcg;
619         int error;
620
621         VM_BUG_ON_PAGE(!PageLocked(page), page);
622         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
623
624         if (!huge) {
625                 error = mem_cgroup_try_charge(page, current->mm,
626                                               gfp_mask, &memcg);
627                 if (error)
628                         return error;
629         }
630
631         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
632         if (error) {
633                 if (!huge)
634                         mem_cgroup_cancel_charge(page, memcg);
635                 return error;
636         }
637
638         page_cache_get(page);
639         page->mapping = mapping;
640         page->index = offset;
641
642         spin_lock_irq(&mapping->tree_lock);
643         error = page_cache_tree_insert(mapping, page, shadowp);
644         radix_tree_preload_end();
645         if (unlikely(error))
646                 goto err_insert;
647
648         /* hugetlb pages do not participate in page cache accounting. */
649         if (!huge)
650                 __inc_zone_page_state(page, NR_FILE_PAGES);
651         spin_unlock_irq(&mapping->tree_lock);
652         if (!huge)
653                 mem_cgroup_commit_charge(page, memcg, false);
654         trace_mm_filemap_add_to_page_cache(page);
655         return 0;
656 err_insert:
657         page->mapping = NULL;
658         /* Leave page->index set: truncation relies upon it */
659         spin_unlock_irq(&mapping->tree_lock);
660         if (!huge)
661                 mem_cgroup_cancel_charge(page, memcg);
662         page_cache_release(page);
663         return error;
664 }
665
666 /**
667  * add_to_page_cache_locked - add a locked page to the pagecache
668  * @page:       page to add
669  * @mapping:    the page's address_space
670  * @offset:     page index
671  * @gfp_mask:   page allocation mode
672  *
673  * This function is used to add a page to the pagecache. It must be locked.
674  * This function does not add the page to the LRU.  The caller must do that.
675  */
676 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
677                 pgoff_t offset, gfp_t gfp_mask)
678 {
679         return __add_to_page_cache_locked(page, mapping, offset,
680                                           gfp_mask, NULL);
681 }
682 EXPORT_SYMBOL(add_to_page_cache_locked);
683
684 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
685                                 pgoff_t offset, gfp_t gfp_mask)
686 {
687         void *shadow = NULL;
688         int ret;
689
690         __set_page_locked(page);
691         ret = __add_to_page_cache_locked(page, mapping, offset,
692                                          gfp_mask, &shadow);
693         if (unlikely(ret))
694                 __clear_page_locked(page);
695         else {
696                 /*
697                  * The page might have been evicted from cache only
698                  * recently, in which case it should be activated like
699                  * any other repeatedly accessed page.
700                  */
701                 if (shadow && workingset_refault(shadow)) {
702                         SetPageActive(page);
703                         workingset_activation(page);
704                 } else
705                         ClearPageActive(page);
706                 lru_cache_add(page);
707         }
708         return ret;
709 }
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711
712 #ifdef CONFIG_NUMA
713 struct page *__page_cache_alloc(gfp_t gfp)
714 {
715         int n;
716         struct page *page;
717
718         if (cpuset_do_page_mem_spread()) {
719                 unsigned int cpuset_mems_cookie;
720                 do {
721                         cpuset_mems_cookie = read_mems_allowed_begin();
722                         n = cpuset_mem_spread_node();
723                         page = __alloc_pages_node(n, gfp, 0);
724                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725
726                 return page;
727         }
728         return alloc_pages(gfp, 0);
729 }
730 EXPORT_SYMBOL(__page_cache_alloc);
731 #endif
732
733 /*
734  * In order to wait for pages to become available there must be
735  * waitqueues associated with pages. By using a hash table of
736  * waitqueues where the bucket discipline is to maintain all
737  * waiters on the same queue and wake all when any of the pages
738  * become available, and for the woken contexts to check to be
739  * sure the appropriate page became available, this saves space
740  * at a cost of "thundering herd" phenomena during rare hash
741  * collisions.
742  */
743 wait_queue_head_t *page_waitqueue(struct page *page)
744 {
745         const struct zone *zone = page_zone(page);
746
747         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
748 }
749 EXPORT_SYMBOL(page_waitqueue);
750
751 void wait_on_page_bit(struct page *page, int bit_nr)
752 {
753         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
754
755         if (test_bit(bit_nr, &page->flags))
756                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
757                                                         TASK_UNINTERRUPTIBLE);
758 }
759 EXPORT_SYMBOL(wait_on_page_bit);
760
761 int wait_on_page_bit_killable(struct page *page, int bit_nr)
762 {
763         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
764
765         if (!test_bit(bit_nr, &page->flags))
766                 return 0;
767
768         return __wait_on_bit(page_waitqueue(page), &wait,
769                              bit_wait_io, TASK_KILLABLE);
770 }
771
772 int wait_on_page_bit_killable_timeout(struct page *page,
773                                        int bit_nr, unsigned long timeout)
774 {
775         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
776
777         wait.key.timeout = jiffies + timeout;
778         if (!test_bit(bit_nr, &page->flags))
779                 return 0;
780         return __wait_on_bit(page_waitqueue(page), &wait,
781                              bit_wait_io_timeout, TASK_KILLABLE);
782 }
783 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
784
785 /**
786  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
787  * @page: Page defining the wait queue of interest
788  * @waiter: Waiter to add to the queue
789  *
790  * Add an arbitrary @waiter to the wait queue for the nominated @page.
791  */
792 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
793 {
794         wait_queue_head_t *q = page_waitqueue(page);
795         unsigned long flags;
796
797         spin_lock_irqsave(&q->lock, flags);
798         __add_wait_queue(q, waiter);
799         spin_unlock_irqrestore(&q->lock, flags);
800 }
801 EXPORT_SYMBOL_GPL(add_page_wait_queue);
802
803 /**
804  * unlock_page - unlock a locked page
805  * @page: the page
806  *
807  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
808  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
809  * mechanism between PageLocked pages and PageWriteback pages is shared.
810  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
811  *
812  * The mb is necessary to enforce ordering between the clear_bit and the read
813  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
814  */
815 void unlock_page(struct page *page)
816 {
817         VM_BUG_ON_PAGE(!PageLocked(page), page);
818         clear_bit_unlock(PG_locked, &page->flags);
819         smp_mb__after_atomic();
820         wake_up_page(page, PG_locked);
821 }
822 EXPORT_SYMBOL(unlock_page);
823
824 /**
825  * end_page_writeback - end writeback against a page
826  * @page: the page
827  */
828 void end_page_writeback(struct page *page)
829 {
830         /*
831          * TestClearPageReclaim could be used here but it is an atomic
832          * operation and overkill in this particular case. Failing to
833          * shuffle a page marked for immediate reclaim is too mild to
834          * justify taking an atomic operation penalty at the end of
835          * ever page writeback.
836          */
837         if (PageReclaim(page)) {
838                 ClearPageReclaim(page);
839                 rotate_reclaimable_page(page);
840         }
841
842         if (!test_clear_page_writeback(page))
843                 BUG();
844
845         smp_mb__after_atomic();
846         wake_up_page(page, PG_writeback);
847 }
848 EXPORT_SYMBOL(end_page_writeback);
849
850 /*
851  * After completing I/O on a page, call this routine to update the page
852  * flags appropriately
853  */
854 void page_endio(struct page *page, int rw, int err)
855 {
856         if (rw == READ) {
857                 if (!err) {
858                         SetPageUptodate(page);
859                 } else {
860                         ClearPageUptodate(page);
861                         SetPageError(page);
862                 }
863                 unlock_page(page);
864         } else { /* rw == WRITE */
865                 if (err) {
866                         SetPageError(page);
867                         if (page->mapping)
868                                 mapping_set_error(page->mapping, err);
869                 }
870                 end_page_writeback(page);
871         }
872 }
873 EXPORT_SYMBOL_GPL(page_endio);
874
875 /**
876  * __lock_page - get a lock on the page, assuming we need to sleep to get it
877  * @page: the page to lock
878  */
879 void __lock_page(struct page *page)
880 {
881         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
882
883         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
884                                                         TASK_UNINTERRUPTIBLE);
885 }
886 EXPORT_SYMBOL(__lock_page);
887
888 int __lock_page_killable(struct page *page)
889 {
890         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
891
892         return __wait_on_bit_lock(page_waitqueue(page), &wait,
893                                         bit_wait_io, TASK_KILLABLE);
894 }
895 EXPORT_SYMBOL_GPL(__lock_page_killable);
896
897 /*
898  * Return values:
899  * 1 - page is locked; mmap_sem is still held.
900  * 0 - page is not locked.
901  *     mmap_sem has been released (up_read()), unless flags had both
902  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
903  *     which case mmap_sem is still held.
904  *
905  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
906  * with the page locked and the mmap_sem unperturbed.
907  */
908 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
909                          unsigned int flags)
910 {
911         if (flags & FAULT_FLAG_ALLOW_RETRY) {
912                 /*
913                  * CAUTION! In this case, mmap_sem is not released
914                  * even though return 0.
915                  */
916                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
917                         return 0;
918
919                 up_read(&mm->mmap_sem);
920                 if (flags & FAULT_FLAG_KILLABLE)
921                         wait_on_page_locked_killable(page);
922                 else
923                         wait_on_page_locked(page);
924                 return 0;
925         } else {
926                 if (flags & FAULT_FLAG_KILLABLE) {
927                         int ret;
928
929                         ret = __lock_page_killable(page);
930                         if (ret) {
931                                 up_read(&mm->mmap_sem);
932                                 return 0;
933                         }
934                 } else
935                         __lock_page(page);
936                 return 1;
937         }
938 }
939
940 /**
941  * page_cache_next_hole - find the next hole (not-present entry)
942  * @mapping: mapping
943  * @index: index
944  * @max_scan: maximum range to search
945  *
946  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
947  * lowest indexed hole.
948  *
949  * Returns: the index of the hole if found, otherwise returns an index
950  * outside of the set specified (in which case 'return - index >=
951  * max_scan' will be true). In rare cases of index wrap-around, 0 will
952  * be returned.
953  *
954  * page_cache_next_hole may be called under rcu_read_lock. However,
955  * like radix_tree_gang_lookup, this will not atomically search a
956  * snapshot of the tree at a single point in time. For example, if a
957  * hole is created at index 5, then subsequently a hole is created at
958  * index 10, page_cache_next_hole covering both indexes may return 10
959  * if called under rcu_read_lock.
960  */
961 pgoff_t page_cache_next_hole(struct address_space *mapping,
962                              pgoff_t index, unsigned long max_scan)
963 {
964         unsigned long i;
965
966         for (i = 0; i < max_scan; i++) {
967                 struct page *page;
968
969                 page = radix_tree_lookup(&mapping->page_tree, index);
970                 if (!page || radix_tree_exceptional_entry(page))
971                         break;
972                 index++;
973                 if (index == 0)
974                         break;
975         }
976
977         return index;
978 }
979 EXPORT_SYMBOL(page_cache_next_hole);
980
981 /**
982  * page_cache_prev_hole - find the prev hole (not-present entry)
983  * @mapping: mapping
984  * @index: index
985  * @max_scan: maximum range to search
986  *
987  * Search backwards in the range [max(index-max_scan+1, 0), index] for
988  * the first hole.
989  *
990  * Returns: the index of the hole if found, otherwise returns an index
991  * outside of the set specified (in which case 'index - return >=
992  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
993  * will be returned.
994  *
995  * page_cache_prev_hole may be called under rcu_read_lock. However,
996  * like radix_tree_gang_lookup, this will not atomically search a
997  * snapshot of the tree at a single point in time. For example, if a
998  * hole is created at index 10, then subsequently a hole is created at
999  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1000  * called under rcu_read_lock.
1001  */
1002 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1003                              pgoff_t index, unsigned long max_scan)
1004 {
1005         unsigned long i;
1006
1007         for (i = 0; i < max_scan; i++) {
1008                 struct page *page;
1009
1010                 page = radix_tree_lookup(&mapping->page_tree, index);
1011                 if (!page || radix_tree_exceptional_entry(page))
1012                         break;
1013                 index--;
1014                 if (index == ULONG_MAX)
1015                         break;
1016         }
1017
1018         return index;
1019 }
1020 EXPORT_SYMBOL(page_cache_prev_hole);
1021
1022 /**
1023  * find_get_entry - find and get a page cache entry
1024  * @mapping: the address_space to search
1025  * @offset: the page cache index
1026  *
1027  * Looks up the page cache slot at @mapping & @offset.  If there is a
1028  * page cache page, it is returned with an increased refcount.
1029  *
1030  * If the slot holds a shadow entry of a previously evicted page, or a
1031  * swap entry from shmem/tmpfs, it is returned.
1032  *
1033  * Otherwise, %NULL is returned.
1034  */
1035 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1036 {
1037         void **pagep;
1038         struct page *page;
1039
1040         rcu_read_lock();
1041 repeat:
1042         page = NULL;
1043         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1044         if (pagep) {
1045                 page = radix_tree_deref_slot(pagep);
1046                 if (unlikely(!page))
1047                         goto out;
1048                 if (radix_tree_exception(page)) {
1049                         if (radix_tree_deref_retry(page))
1050                                 goto repeat;
1051                         /*
1052                          * A shadow entry of a recently evicted page,
1053                          * or a swap entry from shmem/tmpfs.  Return
1054                          * it without attempting to raise page count.
1055                          */
1056                         goto out;
1057                 }
1058                 if (!page_cache_get_speculative(page))
1059                         goto repeat;
1060
1061                 /*
1062                  * Has the page moved?
1063                  * This is part of the lockless pagecache protocol. See
1064                  * include/linux/pagemap.h for details.
1065                  */
1066                 if (unlikely(page != *pagep)) {
1067                         page_cache_release(page);
1068                         goto repeat;
1069                 }
1070         }
1071 out:
1072         rcu_read_unlock();
1073
1074         return page;
1075 }
1076 EXPORT_SYMBOL(find_get_entry);
1077
1078 /**
1079  * find_lock_entry - locate, pin and lock a page cache entry
1080  * @mapping: the address_space to search
1081  * @offset: the page cache index
1082  *
1083  * Looks up the page cache slot at @mapping & @offset.  If there is a
1084  * page cache page, it is returned locked and with an increased
1085  * refcount.
1086  *
1087  * If the slot holds a shadow entry of a previously evicted page, or a
1088  * swap entry from shmem/tmpfs, it is returned.
1089  *
1090  * Otherwise, %NULL is returned.
1091  *
1092  * find_lock_entry() may sleep.
1093  */
1094 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1095 {
1096         struct page *page;
1097
1098 repeat:
1099         page = find_get_entry(mapping, offset);
1100         if (page && !radix_tree_exception(page)) {
1101                 lock_page(page);
1102                 /* Has the page been truncated? */
1103                 if (unlikely(page->mapping != mapping)) {
1104                         unlock_page(page);
1105                         page_cache_release(page);
1106                         goto repeat;
1107                 }
1108                 VM_BUG_ON_PAGE(page->index != offset, page);
1109         }
1110         return page;
1111 }
1112 EXPORT_SYMBOL(find_lock_entry);
1113
1114 /**
1115  * pagecache_get_page - find and get a page reference
1116  * @mapping: the address_space to search
1117  * @offset: the page index
1118  * @fgp_flags: PCG flags
1119  * @gfp_mask: gfp mask to use for the page cache data page allocation
1120  *
1121  * Looks up the page cache slot at @mapping & @offset.
1122  *
1123  * PCG flags modify how the page is returned.
1124  *
1125  * FGP_ACCESSED: the page will be marked accessed
1126  * FGP_LOCK: Page is return locked
1127  * FGP_CREAT: If page is not present then a new page is allocated using
1128  *              @gfp_mask and added to the page cache and the VM's LRU
1129  *              list. The page is returned locked and with an increased
1130  *              refcount. Otherwise, %NULL is returned.
1131  *
1132  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1133  * if the GFP flags specified for FGP_CREAT are atomic.
1134  *
1135  * If there is a page cache page, it is returned with an increased refcount.
1136  */
1137 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1138         int fgp_flags, gfp_t gfp_mask)
1139 {
1140         struct page *page;
1141
1142 repeat:
1143         page = find_get_entry(mapping, offset);
1144         if (radix_tree_exceptional_entry(page))
1145                 page = NULL;
1146         if (!page)
1147                 goto no_page;
1148
1149         if (fgp_flags & FGP_LOCK) {
1150                 if (fgp_flags & FGP_NOWAIT) {
1151                         if (!trylock_page(page)) {
1152                                 page_cache_release(page);
1153                                 return NULL;
1154                         }
1155                 } else {
1156                         lock_page(page);
1157                 }
1158
1159                 /* Has the page been truncated? */
1160                 if (unlikely(page->mapping != mapping)) {
1161                         unlock_page(page);
1162                         page_cache_release(page);
1163                         goto repeat;
1164                 }
1165                 VM_BUG_ON_PAGE(page->index != offset, page);
1166         }
1167
1168         if (page && (fgp_flags & FGP_ACCESSED))
1169                 mark_page_accessed(page);
1170
1171 no_page:
1172         if (!page && (fgp_flags & FGP_CREAT)) {
1173                 int err;
1174                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1175                         gfp_mask |= __GFP_WRITE;
1176                 if (fgp_flags & FGP_NOFS)
1177                         gfp_mask &= ~__GFP_FS;
1178
1179                 page = __page_cache_alloc(gfp_mask);
1180                 if (!page)
1181                         return NULL;
1182
1183                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1184                         fgp_flags |= FGP_LOCK;
1185
1186                 /* Init accessed so avoid atomic mark_page_accessed later */
1187                 if (fgp_flags & FGP_ACCESSED)
1188                         __SetPageReferenced(page);
1189
1190                 err = add_to_page_cache_lru(page, mapping, offset,
1191                                 gfp_mask & GFP_RECLAIM_MASK);
1192                 if (unlikely(err)) {
1193                         page_cache_release(page);
1194                         page = NULL;
1195                         if (err == -EEXIST)
1196                                 goto repeat;
1197                 }
1198         }
1199
1200         return page;
1201 }
1202 EXPORT_SYMBOL(pagecache_get_page);
1203
1204 /**
1205  * find_get_entries - gang pagecache lookup
1206  * @mapping:    The address_space to search
1207  * @start:      The starting page cache index
1208  * @nr_entries: The maximum number of entries
1209  * @entries:    Where the resulting entries are placed
1210  * @indices:    The cache indices corresponding to the entries in @entries
1211  *
1212  * find_get_entries() will search for and return a group of up to
1213  * @nr_entries entries in the mapping.  The entries are placed at
1214  * @entries.  find_get_entries() takes a reference against any actual
1215  * pages it returns.
1216  *
1217  * The search returns a group of mapping-contiguous page cache entries
1218  * with ascending indexes.  There may be holes in the indices due to
1219  * not-present pages.
1220  *
1221  * Any shadow entries of evicted pages, or swap entries from
1222  * shmem/tmpfs, are included in the returned array.
1223  *
1224  * find_get_entries() returns the number of pages and shadow entries
1225  * which were found.
1226  */
1227 unsigned find_get_entries(struct address_space *mapping,
1228                           pgoff_t start, unsigned int nr_entries,
1229                           struct page **entries, pgoff_t *indices)
1230 {
1231         void **slot;
1232         unsigned int ret = 0;
1233         struct radix_tree_iter iter;
1234
1235         if (!nr_entries)
1236                 return 0;
1237
1238         rcu_read_lock();
1239 restart:
1240         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1241                 struct page *page;
1242 repeat:
1243                 page = radix_tree_deref_slot(slot);
1244                 if (unlikely(!page))
1245                         continue;
1246                 if (radix_tree_exception(page)) {
1247                         if (radix_tree_deref_retry(page))
1248                                 goto restart;
1249                         /*
1250                          * A shadow entry of a recently evicted page,
1251                          * or a swap entry from shmem/tmpfs.  Return
1252                          * it without attempting to raise page count.
1253                          */
1254                         goto export;
1255                 }
1256                 if (!page_cache_get_speculative(page))
1257                         goto repeat;
1258
1259                 /* Has the page moved? */
1260                 if (unlikely(page != *slot)) {
1261                         page_cache_release(page);
1262                         goto repeat;
1263                 }
1264 export:
1265                 indices[ret] = iter.index;
1266                 entries[ret] = page;
1267                 if (++ret == nr_entries)
1268                         break;
1269         }
1270         rcu_read_unlock();
1271         return ret;
1272 }
1273
1274 /**
1275  * find_get_pages - gang pagecache lookup
1276  * @mapping:    The address_space to search
1277  * @start:      The starting page index
1278  * @nr_pages:   The maximum number of pages
1279  * @pages:      Where the resulting pages are placed
1280  *
1281  * find_get_pages() will search for and return a group of up to
1282  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1283  * find_get_pages() takes a reference against the returned pages.
1284  *
1285  * The search returns a group of mapping-contiguous pages with ascending
1286  * indexes.  There may be holes in the indices due to not-present pages.
1287  *
1288  * find_get_pages() returns the number of pages which were found.
1289  */
1290 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1291                             unsigned int nr_pages, struct page **pages)
1292 {
1293         struct radix_tree_iter iter;
1294         void **slot;
1295         unsigned ret = 0;
1296
1297         if (unlikely(!nr_pages))
1298                 return 0;
1299
1300         rcu_read_lock();
1301 restart:
1302         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1303                 struct page *page;
1304 repeat:
1305                 page = radix_tree_deref_slot(slot);
1306                 if (unlikely(!page))
1307                         continue;
1308
1309                 if (radix_tree_exception(page)) {
1310                         if (radix_tree_deref_retry(page)) {
1311                                 /*
1312                                  * Transient condition which can only trigger
1313                                  * when entry at index 0 moves out of or back
1314                                  * to root: none yet gotten, safe to restart.
1315                                  */
1316                                 WARN_ON(iter.index);
1317                                 goto restart;
1318                         }
1319                         /*
1320                          * A shadow entry of a recently evicted page,
1321                          * or a swap entry from shmem/tmpfs.  Skip
1322                          * over it.
1323                          */
1324                         continue;
1325                 }
1326
1327                 if (!page_cache_get_speculative(page))
1328                         goto repeat;
1329
1330                 /* Has the page moved? */
1331                 if (unlikely(page != *slot)) {
1332                         page_cache_release(page);
1333                         goto repeat;
1334                 }
1335
1336                 pages[ret] = page;
1337                 if (++ret == nr_pages)
1338                         break;
1339         }
1340
1341         rcu_read_unlock();
1342         return ret;
1343 }
1344
1345 /**
1346  * find_get_pages_contig - gang contiguous pagecache lookup
1347  * @mapping:    The address_space to search
1348  * @index:      The starting page index
1349  * @nr_pages:   The maximum number of pages
1350  * @pages:      Where the resulting pages are placed
1351  *
1352  * find_get_pages_contig() works exactly like find_get_pages(), except
1353  * that the returned number of pages are guaranteed to be contiguous.
1354  *
1355  * find_get_pages_contig() returns the number of pages which were found.
1356  */
1357 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1358                                unsigned int nr_pages, struct page **pages)
1359 {
1360         struct radix_tree_iter iter;
1361         void **slot;
1362         unsigned int ret = 0;
1363
1364         if (unlikely(!nr_pages))
1365                 return 0;
1366
1367         rcu_read_lock();
1368 restart:
1369         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1370                 struct page *page;
1371 repeat:
1372                 page = radix_tree_deref_slot(slot);
1373                 /* The hole, there no reason to continue */
1374                 if (unlikely(!page))
1375                         break;
1376
1377                 if (radix_tree_exception(page)) {
1378                         if (radix_tree_deref_retry(page)) {
1379                                 /*
1380                                  * Transient condition which can only trigger
1381                                  * when entry at index 0 moves out of or back
1382                                  * to root: none yet gotten, safe to restart.
1383                                  */
1384                                 goto restart;
1385                         }
1386                         /*
1387                          * A shadow entry of a recently evicted page,
1388                          * or a swap entry from shmem/tmpfs.  Stop
1389                          * looking for contiguous pages.
1390                          */
1391                         break;
1392                 }
1393
1394                 if (!page_cache_get_speculative(page))
1395                         goto repeat;
1396
1397                 /* Has the page moved? */
1398                 if (unlikely(page != *slot)) {
1399                         page_cache_release(page);
1400                         goto repeat;
1401                 }
1402
1403                 /*
1404                  * must check mapping and index after taking the ref.
1405                  * otherwise we can get both false positives and false
1406                  * negatives, which is just confusing to the caller.
1407                  */
1408                 if (page->mapping == NULL || page->index != iter.index) {
1409                         page_cache_release(page);
1410                         break;
1411                 }
1412
1413                 pages[ret] = page;
1414                 if (++ret == nr_pages)
1415                         break;
1416         }
1417         rcu_read_unlock();
1418         return ret;
1419 }
1420 EXPORT_SYMBOL(find_get_pages_contig);
1421
1422 /**
1423  * find_get_pages_tag - find and return pages that match @tag
1424  * @mapping:    the address_space to search
1425  * @index:      the starting page index
1426  * @tag:        the tag index
1427  * @nr_pages:   the maximum number of pages
1428  * @pages:      where the resulting pages are placed
1429  *
1430  * Like find_get_pages, except we only return pages which are tagged with
1431  * @tag.   We update @index to index the next page for the traversal.
1432  */
1433 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1434                         int tag, unsigned int nr_pages, struct page **pages)
1435 {
1436         struct radix_tree_iter iter;
1437         void **slot;
1438         unsigned ret = 0;
1439
1440         if (unlikely(!nr_pages))
1441                 return 0;
1442
1443         rcu_read_lock();
1444 restart:
1445         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1446                                    &iter, *index, tag) {
1447                 struct page *page;
1448 repeat:
1449                 page = radix_tree_deref_slot(slot);
1450                 if (unlikely(!page))
1451                         continue;
1452
1453                 if (radix_tree_exception(page)) {
1454                         if (radix_tree_deref_retry(page)) {
1455                                 /*
1456                                  * Transient condition which can only trigger
1457                                  * when entry at index 0 moves out of or back
1458                                  * to root: none yet gotten, safe to restart.
1459                                  */
1460                                 goto restart;
1461                         }
1462                         /*
1463                          * A shadow entry of a recently evicted page.
1464                          *
1465                          * Those entries should never be tagged, but
1466                          * this tree walk is lockless and the tags are
1467                          * looked up in bulk, one radix tree node at a
1468                          * time, so there is a sizable window for page
1469                          * reclaim to evict a page we saw tagged.
1470                          *
1471                          * Skip over it.
1472                          */
1473                         continue;
1474                 }
1475
1476                 if (!page_cache_get_speculative(page))
1477                         goto repeat;
1478
1479                 /* Has the page moved? */
1480                 if (unlikely(page != *slot)) {
1481                         page_cache_release(page);
1482                         goto repeat;
1483                 }
1484
1485                 pages[ret] = page;
1486                 if (++ret == nr_pages)
1487                         break;
1488         }
1489
1490         rcu_read_unlock();
1491
1492         if (ret)
1493                 *index = pages[ret - 1]->index + 1;
1494
1495         return ret;
1496 }
1497 EXPORT_SYMBOL(find_get_pages_tag);
1498
1499 /*
1500  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1501  * a _large_ part of the i/o request. Imagine the worst scenario:
1502  *
1503  *      ---R__________________________________________B__________
1504  *         ^ reading here                             ^ bad block(assume 4k)
1505  *
1506  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1507  * => failing the whole request => read(R) => read(R+1) =>
1508  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1509  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1510  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1511  *
1512  * It is going insane. Fix it by quickly scaling down the readahead size.
1513  */
1514 static void shrink_readahead_size_eio(struct file *filp,
1515                                         struct file_ra_state *ra)
1516 {
1517         ra->ra_pages /= 4;
1518 }
1519
1520 /**
1521  * do_generic_file_read - generic file read routine
1522  * @filp:       the file to read
1523  * @ppos:       current file position
1524  * @iter:       data destination
1525  * @written:    already copied
1526  *
1527  * This is a generic file read routine, and uses the
1528  * mapping->a_ops->readpage() function for the actual low-level stuff.
1529  *
1530  * This is really ugly. But the goto's actually try to clarify some
1531  * of the logic when it comes to error handling etc.
1532  */
1533 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1534                 struct iov_iter *iter, ssize_t written)
1535 {
1536         struct address_space *mapping = filp->f_mapping;
1537         struct inode *inode = mapping->host;
1538         struct file_ra_state *ra = &filp->f_ra;
1539         pgoff_t index;
1540         pgoff_t last_index;
1541         pgoff_t prev_index;
1542         unsigned long offset;      /* offset into pagecache page */
1543         unsigned int prev_offset;
1544         int error = 0;
1545
1546         index = *ppos >> PAGE_CACHE_SHIFT;
1547         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1548         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1549         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1550         offset = *ppos & ~PAGE_CACHE_MASK;
1551
1552         for (;;) {
1553                 struct page *page;
1554                 pgoff_t end_index;
1555                 loff_t isize;
1556                 unsigned long nr, ret;
1557
1558                 cond_resched();
1559 find_page:
1560                 page = find_get_page(mapping, index);
1561                 if (!page) {
1562                         page_cache_sync_readahead(mapping,
1563                                         ra, filp,
1564                                         index, last_index - index);
1565                         page = find_get_page(mapping, index);
1566                         if (unlikely(page == NULL))
1567                                 goto no_cached_page;
1568                 }
1569                 if (PageReadahead(page)) {
1570                         page_cache_async_readahead(mapping,
1571                                         ra, filp, page,
1572                                         index, last_index - index);
1573                 }
1574                 if (!PageUptodate(page)) {
1575                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1576                                         !mapping->a_ops->is_partially_uptodate)
1577                                 goto page_not_up_to_date;
1578                         if (!trylock_page(page))
1579                                 goto page_not_up_to_date;
1580                         /* Did it get truncated before we got the lock? */
1581                         if (!page->mapping)
1582                                 goto page_not_up_to_date_locked;
1583                         if (!mapping->a_ops->is_partially_uptodate(page,
1584                                                         offset, iter->count))
1585                                 goto page_not_up_to_date_locked;
1586                         unlock_page(page);
1587                 }
1588 page_ok:
1589                 /*
1590                  * i_size must be checked after we know the page is Uptodate.
1591                  *
1592                  * Checking i_size after the check allows us to calculate
1593                  * the correct value for "nr", which means the zero-filled
1594                  * part of the page is not copied back to userspace (unless
1595                  * another truncate extends the file - this is desired though).
1596                  */
1597
1598                 isize = i_size_read(inode);
1599                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1600                 if (unlikely(!isize || index > end_index)) {
1601                         page_cache_release(page);
1602                         goto out;
1603                 }
1604
1605                 /* nr is the maximum number of bytes to copy from this page */
1606                 nr = PAGE_CACHE_SIZE;
1607                 if (index == end_index) {
1608                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1609                         if (nr <= offset) {
1610                                 page_cache_release(page);
1611                                 goto out;
1612                         }
1613                 }
1614                 nr = nr - offset;
1615
1616                 /* If users can be writing to this page using arbitrary
1617                  * virtual addresses, take care about potential aliasing
1618                  * before reading the page on the kernel side.
1619                  */
1620                 if (mapping_writably_mapped(mapping))
1621                         flush_dcache_page(page);
1622
1623                 /*
1624                  * When a sequential read accesses a page several times,
1625                  * only mark it as accessed the first time.
1626                  */
1627                 if (prev_index != index || offset != prev_offset)
1628                         mark_page_accessed(page);
1629                 prev_index = index;
1630
1631                 /*
1632                  * Ok, we have the page, and it's up-to-date, so
1633                  * now we can copy it to user space...
1634                  */
1635
1636                 ret = copy_page_to_iter(page, offset, nr, iter);
1637                 offset += ret;
1638                 index += offset >> PAGE_CACHE_SHIFT;
1639                 offset &= ~PAGE_CACHE_MASK;
1640                 prev_offset = offset;
1641
1642                 page_cache_release(page);
1643                 written += ret;
1644                 if (!iov_iter_count(iter))
1645                         goto out;
1646                 if (ret < nr) {
1647                         error = -EFAULT;
1648                         goto out;
1649                 }
1650                 continue;
1651
1652 page_not_up_to_date:
1653                 /* Get exclusive access to the page ... */
1654                 error = lock_page_killable(page);
1655                 if (unlikely(error))
1656                         goto readpage_error;
1657
1658 page_not_up_to_date_locked:
1659                 /* Did it get truncated before we got the lock? */
1660                 if (!page->mapping) {
1661                         unlock_page(page);
1662                         page_cache_release(page);
1663                         continue;
1664                 }
1665
1666                 /* Did somebody else fill it already? */
1667                 if (PageUptodate(page)) {
1668                         unlock_page(page);
1669                         goto page_ok;
1670                 }
1671
1672 readpage:
1673                 /*
1674                  * A previous I/O error may have been due to temporary
1675                  * failures, eg. multipath errors.
1676                  * PG_error will be set again if readpage fails.
1677                  */
1678                 ClearPageError(page);
1679                 /* Start the actual read. The read will unlock the page. */
1680                 error = mapping->a_ops->readpage(filp, page);
1681
1682                 if (unlikely(error)) {
1683                         if (error == AOP_TRUNCATED_PAGE) {
1684                                 page_cache_release(page);
1685                                 error = 0;
1686                                 goto find_page;
1687                         }
1688                         goto readpage_error;
1689                 }
1690
1691                 if (!PageUptodate(page)) {
1692                         error = lock_page_killable(page);
1693                         if (unlikely(error))
1694                                 goto readpage_error;
1695                         if (!PageUptodate(page)) {
1696                                 if (page->mapping == NULL) {
1697                                         /*
1698                                          * invalidate_mapping_pages got it
1699                                          */
1700                                         unlock_page(page);
1701                                         page_cache_release(page);
1702                                         goto find_page;
1703                                 }
1704                                 unlock_page(page);
1705                                 shrink_readahead_size_eio(filp, ra);
1706                                 error = -EIO;
1707                                 goto readpage_error;
1708                         }
1709                         unlock_page(page);
1710                 }
1711
1712                 goto page_ok;
1713
1714 readpage_error:
1715                 /* UHHUH! A synchronous read error occurred. Report it */
1716                 page_cache_release(page);
1717                 goto out;
1718
1719 no_cached_page:
1720                 /*
1721                  * Ok, it wasn't cached, so we need to create a new
1722                  * page..
1723                  */
1724                 page = page_cache_alloc_cold(mapping);
1725                 if (!page) {
1726                         error = -ENOMEM;
1727                         goto out;
1728                 }
1729                 error = add_to_page_cache_lru(page, mapping, index,
1730                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1731                 if (error) {
1732                         page_cache_release(page);
1733                         if (error == -EEXIST) {
1734                                 error = 0;
1735                                 goto find_page;
1736                         }
1737                         goto out;
1738                 }
1739                 goto readpage;
1740         }
1741
1742 out:
1743         ra->prev_pos = prev_index;
1744         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1745         ra->prev_pos |= prev_offset;
1746
1747         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1748         file_accessed(filp);
1749         return written ? written : error;
1750 }
1751
1752 /**
1753  * generic_file_read_iter - generic filesystem read routine
1754  * @iocb:       kernel I/O control block
1755  * @iter:       destination for the data read
1756  *
1757  * This is the "read_iter()" routine for all filesystems
1758  * that can use the page cache directly.
1759  */
1760 ssize_t
1761 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1762 {
1763         struct file *file = iocb->ki_filp;
1764         ssize_t retval = 0;
1765         loff_t *ppos = &iocb->ki_pos;
1766         loff_t pos = *ppos;
1767
1768         if (iocb->ki_flags & IOCB_DIRECT) {
1769                 struct address_space *mapping = file->f_mapping;
1770                 struct inode *inode = mapping->host;
1771                 size_t count = iov_iter_count(iter);
1772                 loff_t size;
1773
1774                 if (!count)
1775                         goto out; /* skip atime */
1776                 size = i_size_read(inode);
1777                 retval = filemap_write_and_wait_range(mapping, pos,
1778                                         pos + count - 1);
1779                 if (!retval) {
1780                         struct iov_iter data = *iter;
1781                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1782                 }
1783
1784                 if (retval > 0) {
1785                         *ppos = pos + retval;
1786                         iov_iter_advance(iter, retval);
1787                 }
1788
1789                 /*
1790                  * Btrfs can have a short DIO read if we encounter
1791                  * compressed extents, so if there was an error, or if
1792                  * we've already read everything we wanted to, or if
1793                  * there was a short read because we hit EOF, go ahead
1794                  * and return.  Otherwise fallthrough to buffered io for
1795                  * the rest of the read.  Buffered reads will not work for
1796                  * DAX files, so don't bother trying.
1797                  */
1798                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1799                     IS_DAX(inode)) {
1800                         file_accessed(file);
1801                         goto out;
1802                 }
1803         }
1804
1805         retval = do_generic_file_read(file, ppos, iter, retval);
1806 out:
1807         return retval;
1808 }
1809 EXPORT_SYMBOL(generic_file_read_iter);
1810
1811 #ifdef CONFIG_MMU
1812 /**
1813  * page_cache_read - adds requested page to the page cache if not already there
1814  * @file:       file to read
1815  * @offset:     page index
1816  *
1817  * This adds the requested page to the page cache if it isn't already there,
1818  * and schedules an I/O to read in its contents from disk.
1819  */
1820 static int page_cache_read(struct file *file, pgoff_t offset)
1821 {
1822         struct address_space *mapping = file->f_mapping;
1823         struct page *page;
1824         int ret;
1825
1826         do {
1827                 page = page_cache_alloc_cold(mapping);
1828                 if (!page)
1829                         return -ENOMEM;
1830
1831                 ret = add_to_page_cache_lru(page, mapping, offset,
1832                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1833                 if (ret == 0)
1834                         ret = mapping->a_ops->readpage(file, page);
1835                 else if (ret == -EEXIST)
1836                         ret = 0; /* losing race to add is OK */
1837
1838                 page_cache_release(page);
1839
1840         } while (ret == AOP_TRUNCATED_PAGE);
1841
1842         return ret;
1843 }
1844
1845 #define MMAP_LOTSAMISS  (100)
1846
1847 /*
1848  * Synchronous readahead happens when we don't even find
1849  * a page in the page cache at all.
1850  */
1851 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1852                                    struct file_ra_state *ra,
1853                                    struct file *file,
1854                                    pgoff_t offset)
1855 {
1856         struct address_space *mapping = file->f_mapping;
1857
1858         /* If we don't want any read-ahead, don't bother */
1859         if (vma->vm_flags & VM_RAND_READ)
1860                 return;
1861         if (!ra->ra_pages)
1862                 return;
1863
1864         if (vma->vm_flags & VM_SEQ_READ) {
1865                 page_cache_sync_readahead(mapping, ra, file, offset,
1866                                           ra->ra_pages);
1867                 return;
1868         }
1869
1870         /* Avoid banging the cache line if not needed */
1871         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1872                 ra->mmap_miss++;
1873
1874         /*
1875          * Do we miss much more than hit in this file? If so,
1876          * stop bothering with read-ahead. It will only hurt.
1877          */
1878         if (ra->mmap_miss > MMAP_LOTSAMISS)
1879                 return;
1880
1881         /*
1882          * mmap read-around
1883          */
1884         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1885         ra->size = ra->ra_pages;
1886         ra->async_size = ra->ra_pages / 4;
1887         ra_submit(ra, mapping, file);
1888 }
1889
1890 /*
1891  * Asynchronous readahead happens when we find the page and PG_readahead,
1892  * so we want to possibly extend the readahead further..
1893  */
1894 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1895                                     struct file_ra_state *ra,
1896                                     struct file *file,
1897                                     struct page *page,
1898                                     pgoff_t offset)
1899 {
1900         struct address_space *mapping = file->f_mapping;
1901
1902         /* If we don't want any read-ahead, don't bother */
1903         if (vma->vm_flags & VM_RAND_READ)
1904                 return;
1905         if (ra->mmap_miss > 0)
1906                 ra->mmap_miss--;
1907         if (PageReadahead(page))
1908                 page_cache_async_readahead(mapping, ra, file,
1909                                            page, offset, ra->ra_pages);
1910 }
1911
1912 /**
1913  * filemap_fault - read in file data for page fault handling
1914  * @vma:        vma in which the fault was taken
1915  * @vmf:        struct vm_fault containing details of the fault
1916  *
1917  * filemap_fault() is invoked via the vma operations vector for a
1918  * mapped memory region to read in file data during a page fault.
1919  *
1920  * The goto's are kind of ugly, but this streamlines the normal case of having
1921  * it in the page cache, and handles the special cases reasonably without
1922  * having a lot of duplicated code.
1923  *
1924  * vma->vm_mm->mmap_sem must be held on entry.
1925  *
1926  * If our return value has VM_FAULT_RETRY set, it's because
1927  * lock_page_or_retry() returned 0.
1928  * The mmap_sem has usually been released in this case.
1929  * See __lock_page_or_retry() for the exception.
1930  *
1931  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1932  * has not been released.
1933  *
1934  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1935  */
1936 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1937 {
1938         int error;
1939         struct file *file = vma->vm_file;
1940         struct address_space *mapping = file->f_mapping;
1941         struct file_ra_state *ra = &file->f_ra;
1942         struct inode *inode = mapping->host;
1943         pgoff_t offset = vmf->pgoff;
1944         struct page *page;
1945         loff_t size;
1946         int ret = 0;
1947
1948         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1949         if (offset >= size >> PAGE_CACHE_SHIFT)
1950                 return VM_FAULT_SIGBUS;
1951
1952         /*
1953          * Do we have something in the page cache already?
1954          */
1955         page = find_get_page(mapping, offset);
1956         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1957                 /*
1958                  * We found the page, so try async readahead before
1959                  * waiting for the lock.
1960                  */
1961                 do_async_mmap_readahead(vma, ra, file, page, offset);
1962         } else if (!page) {
1963                 /* No page in the page cache at all */
1964                 do_sync_mmap_readahead(vma, ra, file, offset);
1965                 count_vm_event(PGMAJFAULT);
1966                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1967                 ret = VM_FAULT_MAJOR;
1968 retry_find:
1969                 page = find_get_page(mapping, offset);
1970                 if (!page)
1971                         goto no_cached_page;
1972         }
1973
1974         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1975                 page_cache_release(page);
1976                 return ret | VM_FAULT_RETRY;
1977         }
1978
1979         /* Did it get truncated? */
1980         if (unlikely(page->mapping != mapping)) {
1981                 unlock_page(page);
1982                 put_page(page);
1983                 goto retry_find;
1984         }
1985         VM_BUG_ON_PAGE(page->index != offset, page);
1986
1987         /*
1988          * We have a locked page in the page cache, now we need to check
1989          * that it's up-to-date. If not, it is going to be due to an error.
1990          */
1991         if (unlikely(!PageUptodate(page)))
1992                 goto page_not_uptodate;
1993
1994         /*
1995          * Found the page and have a reference on it.
1996          * We must recheck i_size under page lock.
1997          */
1998         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1999         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2000                 unlock_page(page);
2001                 page_cache_release(page);
2002                 return VM_FAULT_SIGBUS;
2003         }
2004
2005         vmf->page = page;
2006         return ret | VM_FAULT_LOCKED;
2007
2008 no_cached_page:
2009         /*
2010          * We're only likely to ever get here if MADV_RANDOM is in
2011          * effect.
2012          */
2013         error = page_cache_read(file, offset);
2014
2015         /*
2016          * The page we want has now been added to the page cache.
2017          * In the unlikely event that someone removed it in the
2018          * meantime, we'll just come back here and read it again.
2019          */
2020         if (error >= 0)
2021                 goto retry_find;
2022
2023         /*
2024          * An error return from page_cache_read can result if the
2025          * system is low on memory, or a problem occurs while trying
2026          * to schedule I/O.
2027          */
2028         if (error == -ENOMEM)
2029                 return VM_FAULT_OOM;
2030         return VM_FAULT_SIGBUS;
2031
2032 page_not_uptodate:
2033         /*
2034          * Umm, take care of errors if the page isn't up-to-date.
2035          * Try to re-read it _once_. We do this synchronously,
2036          * because there really aren't any performance issues here
2037          * and we need to check for errors.
2038          */
2039         ClearPageError(page);
2040         error = mapping->a_ops->readpage(file, page);
2041         if (!error) {
2042                 wait_on_page_locked(page);
2043                 if (!PageUptodate(page))
2044                         error = -EIO;
2045         }
2046         page_cache_release(page);
2047
2048         if (!error || error == AOP_TRUNCATED_PAGE)
2049                 goto retry_find;
2050
2051         /* Things didn't work out. Return zero to tell the mm layer so. */
2052         shrink_readahead_size_eio(file, ra);
2053         return VM_FAULT_SIGBUS;
2054 }
2055 EXPORT_SYMBOL(filemap_fault);
2056
2057 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2058 {
2059         struct radix_tree_iter iter;
2060         void **slot;
2061         struct file *file = vma->vm_file;
2062         struct address_space *mapping = file->f_mapping;
2063         loff_t size;
2064         struct page *page;
2065         unsigned long address = (unsigned long) vmf->virtual_address;
2066         unsigned long addr;
2067         pte_t *pte;
2068
2069         rcu_read_lock();
2070         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2071                 if (iter.index > vmf->max_pgoff)
2072                         break;
2073 repeat:
2074                 page = radix_tree_deref_slot(slot);
2075                 if (unlikely(!page))
2076                         goto next;
2077                 if (radix_tree_exception(page)) {
2078                         if (radix_tree_deref_retry(page))
2079                                 break;
2080                         else
2081                                 goto next;
2082                 }
2083
2084                 if (!page_cache_get_speculative(page))
2085                         goto repeat;
2086
2087                 /* Has the page moved? */
2088                 if (unlikely(page != *slot)) {
2089                         page_cache_release(page);
2090                         goto repeat;
2091                 }
2092
2093                 if (!PageUptodate(page) ||
2094                                 PageReadahead(page) ||
2095                                 PageHWPoison(page))
2096                         goto skip;
2097                 if (!trylock_page(page))
2098                         goto skip;
2099
2100                 if (page->mapping != mapping || !PageUptodate(page))
2101                         goto unlock;
2102
2103                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2104                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2105                         goto unlock;
2106
2107                 pte = vmf->pte + page->index - vmf->pgoff;
2108                 if (!pte_none(*pte))
2109                         goto unlock;
2110
2111                 if (file->f_ra.mmap_miss > 0)
2112                         file->f_ra.mmap_miss--;
2113                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2114                 do_set_pte(vma, addr, page, pte, false, false);
2115                 unlock_page(page);
2116                 goto next;
2117 unlock:
2118                 unlock_page(page);
2119 skip:
2120                 page_cache_release(page);
2121 next:
2122                 if (iter.index == vmf->max_pgoff)
2123                         break;
2124         }
2125         rcu_read_unlock();
2126 }
2127 EXPORT_SYMBOL(filemap_map_pages);
2128
2129 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2130 {
2131         struct page *page = vmf->page;
2132         struct inode *inode = file_inode(vma->vm_file);
2133         int ret = VM_FAULT_LOCKED;
2134
2135         sb_start_pagefault(inode->i_sb);
2136         file_update_time(vma->vm_file);
2137         lock_page(page);
2138         if (page->mapping != inode->i_mapping) {
2139                 unlock_page(page);
2140                 ret = VM_FAULT_NOPAGE;
2141                 goto out;
2142         }
2143         /*
2144          * We mark the page dirty already here so that when freeze is in
2145          * progress, we are guaranteed that writeback during freezing will
2146          * see the dirty page and writeprotect it again.
2147          */
2148         set_page_dirty(page);
2149         wait_for_stable_page(page);
2150 out:
2151         sb_end_pagefault(inode->i_sb);
2152         return ret;
2153 }
2154 EXPORT_SYMBOL(filemap_page_mkwrite);
2155
2156 const struct vm_operations_struct generic_file_vm_ops = {
2157         .fault          = filemap_fault,
2158         .map_pages      = filemap_map_pages,
2159         .page_mkwrite   = filemap_page_mkwrite,
2160 };
2161
2162 /* This is used for a general mmap of a disk file */
2163
2164 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2165 {
2166         struct address_space *mapping = file->f_mapping;
2167
2168         if (!mapping->a_ops->readpage)
2169                 return -ENOEXEC;
2170         file_accessed(file);
2171         vma->vm_ops = &generic_file_vm_ops;
2172         return 0;
2173 }
2174
2175 /*
2176  * This is for filesystems which do not implement ->writepage.
2177  */
2178 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2179 {
2180         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2181                 return -EINVAL;
2182         return generic_file_mmap(file, vma);
2183 }
2184 #else
2185 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2186 {
2187         return -ENOSYS;
2188 }
2189 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2190 {
2191         return -ENOSYS;
2192 }
2193 #endif /* CONFIG_MMU */
2194
2195 EXPORT_SYMBOL(generic_file_mmap);
2196 EXPORT_SYMBOL(generic_file_readonly_mmap);
2197
2198 static struct page *wait_on_page_read(struct page *page)
2199 {
2200         if (!IS_ERR(page)) {
2201                 wait_on_page_locked(page);
2202                 if (!PageUptodate(page)) {
2203                         page_cache_release(page);
2204                         page = ERR_PTR(-EIO);
2205                 }
2206         }
2207         return page;
2208 }
2209
2210 static struct page *__read_cache_page(struct address_space *mapping,
2211                                 pgoff_t index,
2212                                 int (*filler)(void *, struct page *),
2213                                 void *data,
2214                                 gfp_t gfp)
2215 {
2216         struct page *page;
2217         int err;
2218 repeat:
2219         page = find_get_page(mapping, index);
2220         if (!page) {
2221                 page = __page_cache_alloc(gfp | __GFP_COLD);
2222                 if (!page)
2223                         return ERR_PTR(-ENOMEM);
2224                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2225                 if (unlikely(err)) {
2226                         page_cache_release(page);
2227                         if (err == -EEXIST)
2228                                 goto repeat;
2229                         /* Presumably ENOMEM for radix tree node */
2230                         return ERR_PTR(err);
2231                 }
2232                 err = filler(data, page);
2233                 if (err < 0) {
2234                         page_cache_release(page);
2235                         page = ERR_PTR(err);
2236                 } else {
2237                         page = wait_on_page_read(page);
2238                 }
2239         }
2240         return page;
2241 }
2242
2243 static struct page *do_read_cache_page(struct address_space *mapping,
2244                                 pgoff_t index,
2245                                 int (*filler)(void *, struct page *),
2246                                 void *data,
2247                                 gfp_t gfp)
2248
2249 {
2250         struct page *page;
2251         int err;
2252
2253 retry:
2254         page = __read_cache_page(mapping, index, filler, data, gfp);
2255         if (IS_ERR(page))
2256                 return page;
2257         if (PageUptodate(page))
2258                 goto out;
2259
2260         lock_page(page);
2261         if (!page->mapping) {
2262                 unlock_page(page);
2263                 page_cache_release(page);
2264                 goto retry;
2265         }
2266         if (PageUptodate(page)) {
2267                 unlock_page(page);
2268                 goto out;
2269         }
2270         err = filler(data, page);
2271         if (err < 0) {
2272                 page_cache_release(page);
2273                 return ERR_PTR(err);
2274         } else {
2275                 page = wait_on_page_read(page);
2276                 if (IS_ERR(page))
2277                         return page;
2278         }
2279 out:
2280         mark_page_accessed(page);
2281         return page;
2282 }
2283
2284 /**
2285  * read_cache_page - read into page cache, fill it if needed
2286  * @mapping:    the page's address_space
2287  * @index:      the page index
2288  * @filler:     function to perform the read
2289  * @data:       first arg to filler(data, page) function, often left as NULL
2290  *
2291  * Read into the page cache. If a page already exists, and PageUptodate() is
2292  * not set, try to fill the page and wait for it to become unlocked.
2293  *
2294  * If the page does not get brought uptodate, return -EIO.
2295  */
2296 struct page *read_cache_page(struct address_space *mapping,
2297                                 pgoff_t index,
2298                                 int (*filler)(void *, struct page *),
2299                                 void *data)
2300 {
2301         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2302 }
2303 EXPORT_SYMBOL(read_cache_page);
2304
2305 /**
2306  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2307  * @mapping:    the page's address_space
2308  * @index:      the page index
2309  * @gfp:        the page allocator flags to use if allocating
2310  *
2311  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2312  * any new page allocations done using the specified allocation flags.
2313  *
2314  * If the page does not get brought uptodate, return -EIO.
2315  */
2316 struct page *read_cache_page_gfp(struct address_space *mapping,
2317                                 pgoff_t index,
2318                                 gfp_t gfp)
2319 {
2320         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2321
2322         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2323 }
2324 EXPORT_SYMBOL(read_cache_page_gfp);
2325
2326 /*
2327  * Performs necessary checks before doing a write
2328  *
2329  * Can adjust writing position or amount of bytes to write.
2330  * Returns appropriate error code that caller should return or
2331  * zero in case that write should be allowed.
2332  */
2333 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2334 {
2335         struct file *file = iocb->ki_filp;
2336         struct inode *inode = file->f_mapping->host;
2337         unsigned long limit = rlimit(RLIMIT_FSIZE);
2338         loff_t pos;
2339
2340         if (!iov_iter_count(from))
2341                 return 0;
2342
2343         /* FIXME: this is for backwards compatibility with 2.4 */
2344         if (iocb->ki_flags & IOCB_APPEND)
2345                 iocb->ki_pos = i_size_read(inode);
2346
2347         pos = iocb->ki_pos;
2348
2349         if (limit != RLIM_INFINITY) {
2350                 if (iocb->ki_pos >= limit) {
2351                         send_sig(SIGXFSZ, current, 0);
2352                         return -EFBIG;
2353                 }
2354                 iov_iter_truncate(from, limit - (unsigned long)pos);
2355         }
2356
2357         /*
2358          * LFS rule
2359          */
2360         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2361                                 !(file->f_flags & O_LARGEFILE))) {
2362                 if (pos >= MAX_NON_LFS)
2363                         return -EFBIG;
2364                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2365         }
2366
2367         /*
2368          * Are we about to exceed the fs block limit ?
2369          *
2370          * If we have written data it becomes a short write.  If we have
2371          * exceeded without writing data we send a signal and return EFBIG.
2372          * Linus frestrict idea will clean these up nicely..
2373          */
2374         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2375                 return -EFBIG;
2376
2377         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2378         return iov_iter_count(from);
2379 }
2380 EXPORT_SYMBOL(generic_write_checks);
2381
2382 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2383                                 loff_t pos, unsigned len, unsigned flags,
2384                                 struct page **pagep, void **fsdata)
2385 {
2386         const struct address_space_operations *aops = mapping->a_ops;
2387
2388         return aops->write_begin(file, mapping, pos, len, flags,
2389                                                         pagep, fsdata);
2390 }
2391 EXPORT_SYMBOL(pagecache_write_begin);
2392
2393 int pagecache_write_end(struct file *file, struct address_space *mapping,
2394                                 loff_t pos, unsigned len, unsigned copied,
2395                                 struct page *page, void *fsdata)
2396 {
2397         const struct address_space_operations *aops = mapping->a_ops;
2398
2399         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2400 }
2401 EXPORT_SYMBOL(pagecache_write_end);
2402
2403 ssize_t
2404 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2405 {
2406         struct file     *file = iocb->ki_filp;
2407         struct address_space *mapping = file->f_mapping;
2408         struct inode    *inode = mapping->host;
2409         ssize_t         written;
2410         size_t          write_len;
2411         pgoff_t         end;
2412         struct iov_iter data;
2413
2414         write_len = iov_iter_count(from);
2415         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2416
2417         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2418         if (written)
2419                 goto out;
2420
2421         /*
2422          * After a write we want buffered reads to be sure to go to disk to get
2423          * the new data.  We invalidate clean cached page from the region we're
2424          * about to write.  We do this *before* the write so that we can return
2425          * without clobbering -EIOCBQUEUED from ->direct_IO().
2426          */
2427         if (mapping->nrpages) {
2428                 written = invalidate_inode_pages2_range(mapping,
2429                                         pos >> PAGE_CACHE_SHIFT, end);
2430                 /*
2431                  * If a page can not be invalidated, return 0 to fall back
2432                  * to buffered write.
2433                  */
2434                 if (written) {
2435                         if (written == -EBUSY)
2436                                 return 0;
2437                         goto out;
2438                 }
2439         }
2440
2441         data = *from;
2442         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2443
2444         /*
2445          * Finally, try again to invalidate clean pages which might have been
2446          * cached by non-direct readahead, or faulted in by get_user_pages()
2447          * if the source of the write was an mmap'ed region of the file
2448          * we're writing.  Either one is a pretty crazy thing to do,
2449          * so we don't support it 100%.  If this invalidation
2450          * fails, tough, the write still worked...
2451          */
2452         if (mapping->nrpages) {
2453                 invalidate_inode_pages2_range(mapping,
2454                                               pos >> PAGE_CACHE_SHIFT, end);
2455         }
2456
2457         if (written > 0) {
2458                 pos += written;
2459                 iov_iter_advance(from, written);
2460                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2461                         i_size_write(inode, pos);
2462                         mark_inode_dirty(inode);
2463                 }
2464                 iocb->ki_pos = pos;
2465         }
2466 out:
2467         return written;
2468 }
2469 EXPORT_SYMBOL(generic_file_direct_write);
2470
2471 /*
2472  * Find or create a page at the given pagecache position. Return the locked
2473  * page. This function is specifically for buffered writes.
2474  */
2475 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2476                                         pgoff_t index, unsigned flags)
2477 {
2478         struct page *page;
2479         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2480
2481         if (flags & AOP_FLAG_NOFS)
2482                 fgp_flags |= FGP_NOFS;
2483
2484         page = pagecache_get_page(mapping, index, fgp_flags,
2485                         mapping_gfp_mask(mapping));
2486         if (page)
2487                 wait_for_stable_page(page);
2488
2489         return page;
2490 }
2491 EXPORT_SYMBOL(grab_cache_page_write_begin);
2492
2493 ssize_t generic_perform_write(struct file *file,
2494                                 struct iov_iter *i, loff_t pos)
2495 {
2496         struct address_space *mapping = file->f_mapping;
2497         const struct address_space_operations *a_ops = mapping->a_ops;
2498         long status = 0;
2499         ssize_t written = 0;
2500         unsigned int flags = 0;
2501
2502         /*
2503          * Copies from kernel address space cannot fail (NFSD is a big user).
2504          */
2505         if (!iter_is_iovec(i))
2506                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2507
2508         do {
2509                 struct page *page;
2510                 unsigned long offset;   /* Offset into pagecache page */
2511                 unsigned long bytes;    /* Bytes to write to page */
2512                 size_t copied;          /* Bytes copied from user */
2513                 void *fsdata;
2514
2515                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2516                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2517                                                 iov_iter_count(i));
2518
2519 again:
2520                 /*
2521                  * Bring in the user page that we will copy from _first_.
2522                  * Otherwise there's a nasty deadlock on copying from the
2523                  * same page as we're writing to, without it being marked
2524                  * up-to-date.
2525                  *
2526                  * Not only is this an optimisation, but it is also required
2527                  * to check that the address is actually valid, when atomic
2528                  * usercopies are used, below.
2529                  */
2530                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2531                         status = -EFAULT;
2532                         break;
2533                 }
2534
2535                 if (fatal_signal_pending(current)) {
2536                         status = -EINTR;
2537                         break;
2538                 }
2539
2540                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2541                                                 &page, &fsdata);
2542                 if (unlikely(status < 0))
2543                         break;
2544
2545                 if (mapping_writably_mapped(mapping))
2546                         flush_dcache_page(page);
2547
2548                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2549                 flush_dcache_page(page);
2550
2551                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2552                                                 page, fsdata);
2553                 if (unlikely(status < 0))
2554                         break;
2555                 copied = status;
2556
2557                 cond_resched();
2558
2559                 iov_iter_advance(i, copied);
2560                 if (unlikely(copied == 0)) {
2561                         /*
2562                          * If we were unable to copy any data at all, we must
2563                          * fall back to a single segment length write.
2564                          *
2565                          * If we didn't fallback here, we could livelock
2566                          * because not all segments in the iov can be copied at
2567                          * once without a pagefault.
2568                          */
2569                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2570                                                 iov_iter_single_seg_count(i));
2571                         goto again;
2572                 }
2573                 pos += copied;
2574                 written += copied;
2575
2576                 balance_dirty_pages_ratelimited(mapping);
2577         } while (iov_iter_count(i));
2578
2579         return written ? written : status;
2580 }
2581 EXPORT_SYMBOL(generic_perform_write);
2582
2583 /**
2584  * __generic_file_write_iter - write data to a file
2585  * @iocb:       IO state structure (file, offset, etc.)
2586  * @from:       iov_iter with data to write
2587  *
2588  * This function does all the work needed for actually writing data to a
2589  * file. It does all basic checks, removes SUID from the file, updates
2590  * modification times and calls proper subroutines depending on whether we
2591  * do direct IO or a standard buffered write.
2592  *
2593  * It expects i_mutex to be grabbed unless we work on a block device or similar
2594  * object which does not need locking at all.
2595  *
2596  * This function does *not* take care of syncing data in case of O_SYNC write.
2597  * A caller has to handle it. This is mainly due to the fact that we want to
2598  * avoid syncing under i_mutex.
2599  */
2600 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2601 {
2602         struct file *file = iocb->ki_filp;
2603         struct address_space * mapping = file->f_mapping;
2604         struct inode    *inode = mapping->host;
2605         ssize_t         written = 0;
2606         ssize_t         err;
2607         ssize_t         status;
2608
2609         /* We can write back this queue in page reclaim */
2610         current->backing_dev_info = inode_to_bdi(inode);
2611         err = file_remove_privs(file);
2612         if (err)
2613                 goto out;
2614
2615         err = file_update_time(file);
2616         if (err)
2617                 goto out;
2618
2619         if (iocb->ki_flags & IOCB_DIRECT) {
2620                 loff_t pos, endbyte;
2621
2622                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2623                 /*
2624                  * If the write stopped short of completing, fall back to
2625                  * buffered writes.  Some filesystems do this for writes to
2626                  * holes, for example.  For DAX files, a buffered write will
2627                  * not succeed (even if it did, DAX does not handle dirty
2628                  * page-cache pages correctly).
2629                  */
2630                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2631                         goto out;
2632
2633                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2634                 /*
2635                  * If generic_perform_write() returned a synchronous error
2636                  * then we want to return the number of bytes which were
2637                  * direct-written, or the error code if that was zero.  Note
2638                  * that this differs from normal direct-io semantics, which
2639                  * will return -EFOO even if some bytes were written.
2640                  */
2641                 if (unlikely(status < 0)) {
2642                         err = status;
2643                         goto out;
2644                 }
2645                 /*
2646                  * We need to ensure that the page cache pages are written to
2647                  * disk and invalidated to preserve the expected O_DIRECT
2648                  * semantics.
2649                  */
2650                 endbyte = pos + status - 1;
2651                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2652                 if (err == 0) {
2653                         iocb->ki_pos = endbyte + 1;
2654                         written += status;
2655                         invalidate_mapping_pages(mapping,
2656                                                  pos >> PAGE_CACHE_SHIFT,
2657                                                  endbyte >> PAGE_CACHE_SHIFT);
2658                 } else {
2659                         /*
2660                          * We don't know how much we wrote, so just return
2661                          * the number of bytes which were direct-written
2662                          */
2663                 }
2664         } else {
2665                 written = generic_perform_write(file, from, iocb->ki_pos);
2666                 if (likely(written > 0))
2667                         iocb->ki_pos += written;
2668         }
2669 out:
2670         current->backing_dev_info = NULL;
2671         return written ? written : err;
2672 }
2673 EXPORT_SYMBOL(__generic_file_write_iter);
2674
2675 /**
2676  * generic_file_write_iter - write data to a file
2677  * @iocb:       IO state structure
2678  * @from:       iov_iter with data to write
2679  *
2680  * This is a wrapper around __generic_file_write_iter() to be used by most
2681  * filesystems. It takes care of syncing the file in case of O_SYNC file
2682  * and acquires i_mutex as needed.
2683  */
2684 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2685 {
2686         struct file *file = iocb->ki_filp;
2687         struct inode *inode = file->f_mapping->host;
2688         ssize_t ret;
2689
2690         mutex_lock(&inode->i_mutex);
2691         ret = generic_write_checks(iocb, from);
2692         if (ret > 0)
2693                 ret = __generic_file_write_iter(iocb, from);
2694         mutex_unlock(&inode->i_mutex);
2695
2696         if (ret > 0) {
2697                 ssize_t err;
2698
2699                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2700                 if (err < 0)
2701                         ret = err;
2702         }
2703         return ret;
2704 }
2705 EXPORT_SYMBOL(generic_file_write_iter);
2706
2707 /**
2708  * try_to_release_page() - release old fs-specific metadata on a page
2709  *
2710  * @page: the page which the kernel is trying to free
2711  * @gfp_mask: memory allocation flags (and I/O mode)
2712  *
2713  * The address_space is to try to release any data against the page
2714  * (presumably at page->private).  If the release was successful, return `1'.
2715  * Otherwise return zero.
2716  *
2717  * This may also be called if PG_fscache is set on a page, indicating that the
2718  * page is known to the local caching routines.
2719  *
2720  * The @gfp_mask argument specifies whether I/O may be performed to release
2721  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2722  *
2723  */
2724 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2725 {
2726         struct address_space * const mapping = page->mapping;
2727
2728         BUG_ON(!PageLocked(page));
2729         if (PageWriteback(page))
2730                 return 0;
2731
2732         if (mapping && mapping->a_ops->releasepage)
2733                 return mapping->a_ops->releasepage(page, gfp_mask);
2734         return try_to_free_buffers(page);
2735 }
2736
2737 EXPORT_SYMBOL(try_to_release_page);