These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 struct buffer_data_page {
284         u64              time_stamp;    /* page time stamp */
285         local_t          commit;        /* write committed index */
286         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
287 };
288
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298         struct list_head list;          /* list of buffer pages */
299         local_t          write;         /* index for next write */
300         unsigned         read;          /* index for next read */
301         local_t          entries;       /* entries on this page */
302         unsigned long    real_end;      /* real end of data */
303         struct buffer_data_page *page;  /* Actual data page */
304 };
305
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK           0xfffff
319 #define RB_WRITE_INTCNT         (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323         local_set(&bpage->commit, 0);
324 }
325
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334         return local_read(&((struct buffer_data_page *)page)->commit)
335                 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344         free_page((unsigned long)bpage->page);
345         kfree(bpage);
346 }
347
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353         if (delta & TS_DELTA_TEST)
354                 return 1;
355         return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365         struct buffer_data_page field;
366
367         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368                          "offset:0;\tsize:%u;\tsigned:%u;\n",
369                          (unsigned int)sizeof(field.time_stamp),
370                          (unsigned int)is_signed_type(u64));
371
372         trace_seq_printf(s, "\tfield: local_t commit;\t"
373                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
374                          (unsigned int)offsetof(typeof(field), commit),
375                          (unsigned int)sizeof(field.commit),
376                          (unsigned int)is_signed_type(long));
377
378         trace_seq_printf(s, "\tfield: int overwrite;\t"
379                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
380                          (unsigned int)offsetof(typeof(field), commit),
381                          1,
382                          (unsigned int)is_signed_type(long));
383
384         trace_seq_printf(s, "\tfield: char data;\t"
385                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
386                          (unsigned int)offsetof(typeof(field), data),
387                          (unsigned int)BUF_PAGE_SIZE,
388                          (unsigned int)is_signed_type(char));
389
390         return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394         struct irq_work                 work;
395         wait_queue_head_t               waiters;
396         wait_queue_head_t               full_waiters;
397         bool                            waiters_pending;
398         bool                            full_waiters_pending;
399         bool                            wakeup_full;
400 };
401
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406         u64                     ts;
407         u64                     delta;
408         unsigned long           length;
409         struct buffer_page      *tail_page;
410         int                     add_timestamp;
411 };
412
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423         RB_CTX_NMI,
424         RB_CTX_IRQ,
425         RB_CTX_SOFTIRQ,
426         RB_CTX_NORMAL,
427         RB_CTX_MAX
428 };
429
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434         int                             cpu;
435         atomic_t                        record_disabled;
436         struct ring_buffer              *buffer;
437         raw_spinlock_t                  reader_lock;    /* serialize readers */
438         arch_spinlock_t                 lock;
439         struct lock_class_key           lock_key;
440         unsigned int                    nr_pages;
441         unsigned int                    current_context;
442         struct list_head                *pages;
443         struct buffer_page              *head_page;     /* read from head */
444         struct buffer_page              *tail_page;     /* write to tail */
445         struct buffer_page              *commit_page;   /* committed pages */
446         struct buffer_page              *reader_page;
447         unsigned long                   lost_events;
448         unsigned long                   last_overrun;
449         local_t                         entries_bytes;
450         local_t                         entries;
451         local_t                         overrun;
452         local_t                         commit_overrun;
453         local_t                         dropped_events;
454         local_t                         committing;
455         local_t                         commits;
456         unsigned long                   read;
457         unsigned long                   read_bytes;
458         u64                             write_stamp;
459         u64                             read_stamp;
460         /* ring buffer pages to update, > 0 to add, < 0 to remove */
461         int                             nr_pages_to_update;
462         struct list_head                new_pages; /* new pages to add */
463         struct work_struct              update_pages_work;
464         struct completion               update_done;
465
466         struct rb_irq_work              irq_work;
467 };
468
469 struct ring_buffer {
470         unsigned                        flags;
471         int                             cpus;
472         atomic_t                        record_disabled;
473         atomic_t                        resize_disabled;
474         cpumask_var_t                   cpumask;
475
476         struct lock_class_key           *reader_lock_key;
477
478         struct mutex                    mutex;
479
480         struct ring_buffer_per_cpu      **buffers;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483         struct notifier_block           cpu_notify;
484 #endif
485         u64                             (*clock)(void);
486
487         struct rb_irq_work              irq_work;
488 };
489
490 struct ring_buffer_iter {
491         struct ring_buffer_per_cpu      *cpu_buffer;
492         unsigned long                   head;
493         struct buffer_page              *head_page;
494         struct buffer_page              *cache_reader_page;
495         unsigned long                   cache_read;
496         u64                             read_stamp;
497 };
498
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509         wake_up_all(&rbwork->waiters);
510         if (rbwork->wakeup_full) {
511                 rbwork->wakeup_full = false;
512                 wake_up_all(&rbwork->full_waiters);
513         }
514 }
515
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529         DEFINE_WAIT(wait);
530         struct rb_irq_work *work;
531         int ret = 0;
532
533         /*
534          * Depending on what the caller is waiting for, either any
535          * data in any cpu buffer, or a specific buffer, put the
536          * caller on the appropriate wait queue.
537          */
538         if (cpu == RING_BUFFER_ALL_CPUS) {
539                 work = &buffer->irq_work;
540                 /* Full only makes sense on per cpu reads */
541                 full = false;
542         } else {
543                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544                         return -ENODEV;
545                 cpu_buffer = buffer->buffers[cpu];
546                 work = &cpu_buffer->irq_work;
547         }
548
549
550         while (true) {
551                 if (full)
552                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553                 else
554                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556                 /*
557                  * The events can happen in critical sections where
558                  * checking a work queue can cause deadlocks.
559                  * After adding a task to the queue, this flag is set
560                  * only to notify events to try to wake up the queue
561                  * using irq_work.
562                  *
563                  * We don't clear it even if the buffer is no longer
564                  * empty. The flag only causes the next event to run
565                  * irq_work to do the work queue wake up. The worse
566                  * that can happen if we race with !trace_empty() is that
567                  * an event will cause an irq_work to try to wake up
568                  * an empty queue.
569                  *
570                  * There's no reason to protect this flag either, as
571                  * the work queue and irq_work logic will do the necessary
572                  * synchronization for the wake ups. The only thing
573                  * that is necessary is that the wake up happens after
574                  * a task has been queued. It's OK for spurious wake ups.
575                  */
576                 if (full)
577                         work->full_waiters_pending = true;
578                 else
579                         work->waiters_pending = true;
580
581                 if (signal_pending(current)) {
582                         ret = -EINTR;
583                         break;
584                 }
585
586                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587                         break;
588
589                 if (cpu != RING_BUFFER_ALL_CPUS &&
590                     !ring_buffer_empty_cpu(buffer, cpu)) {
591                         unsigned long flags;
592                         bool pagebusy;
593
594                         if (!full)
595                                 break;
596
597                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601                         if (!pagebusy)
602                                 break;
603                 }
604
605                 schedule();
606         }
607
608         if (full)
609                 finish_wait(&work->full_waiters, &wait);
610         else
611                 finish_wait(&work->waiters, &wait);
612
613         return ret;
614 }
615
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631                           struct file *filp, poll_table *poll_table)
632 {
633         struct ring_buffer_per_cpu *cpu_buffer;
634         struct rb_irq_work *work;
635
636         if (cpu == RING_BUFFER_ALL_CPUS)
637                 work = &buffer->irq_work;
638         else {
639                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640                         return -EINVAL;
641
642                 cpu_buffer = buffer->buffers[cpu];
643                 work = &cpu_buffer->irq_work;
644         }
645
646         poll_wait(filp, &work->waiters, poll_table);
647         work->waiters_pending = true;
648         /*
649          * There's a tight race between setting the waiters_pending and
650          * checking if the ring buffer is empty.  Once the waiters_pending bit
651          * is set, the next event will wake the task up, but we can get stuck
652          * if there's only a single event in.
653          *
654          * FIXME: Ideally, we need a memory barrier on the writer side as well,
655          * but adding a memory barrier to all events will cause too much of a
656          * performance hit in the fast path.  We only need a memory barrier when
657          * the buffer goes from empty to having content.  But as this race is
658          * extremely small, and it's not a problem if another event comes in, we
659          * will fix it later.
660          */
661         smp_mb();
662
663         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665                 return POLLIN | POLLRDNORM;
666         return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)                                             \
671         ({                                                              \
672                 int _____ret = unlikely(cond);                          \
673                 if (_____ret) {                                         \
674                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675                                 struct ring_buffer_per_cpu *__b =       \
676                                         (void *)b;                      \
677                                 atomic_inc(&__b->buffer->record_disabled); \
678                         } else                                          \
679                                 atomic_inc(&b->record_disabled);        \
680                         WARN_ON(1);                                     \
681                 }                                                       \
682                 _____ret;                                               \
683         })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690         /* shift to debug/test normalization and TIME_EXTENTS */
691         return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696         u64 time;
697
698         preempt_disable_notrace();
699         time = rb_time_stamp(buffer);
700         preempt_enable_no_resched_notrace();
701
702         return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707                                       int cpu, u64 *ts)
708 {
709         /* Just stupid testing the normalize function and deltas */
710         *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782
783 #define RB_PAGE_NORMAL          0UL
784 #define RB_PAGE_HEAD            1UL
785 #define RB_PAGE_UPDATE          2UL
786
787
788 #define RB_FLAG_MASK            3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED           4UL
792
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798         unsigned long val = (unsigned long)list;
799
800         return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813                 struct buffer_page *page, struct list_head *list)
814 {
815         unsigned long val;
816
817         val = (unsigned long)list->next;
818
819         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820                 return RB_PAGE_MOVED;
821
822         return val & RB_FLAG_MASK;
823 }
824
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834         struct list_head *list = page->list.prev;
835
836         return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843                                 struct list_head *list)
844 {
845         unsigned long *ptr;
846
847         ptr = (unsigned long *)&list->next;
848         *ptr |= RB_PAGE_HEAD;
849         *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857         struct buffer_page *head;
858
859         head = cpu_buffer->head_page;
860         if (!head)
861                 return;
862
863         /*
864          * Set the previous list pointer to have the HEAD flag.
865          */
866         rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871         unsigned long *ptr = (unsigned long *)&list->next;
872
873         *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882         struct list_head *hd;
883
884         /* Go through the whole list and clear any pointers found. */
885         rb_list_head_clear(cpu_buffer->pages);
886
887         list_for_each(hd, cpu_buffer->pages)
888                 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892                             struct buffer_page *head,
893                             struct buffer_page *prev,
894                             int old_flag, int new_flag)
895 {
896         struct list_head *list;
897         unsigned long val = (unsigned long)&head->list;
898         unsigned long ret;
899
900         list = &prev->list;
901
902         val &= ~RB_FLAG_MASK;
903
904         ret = cmpxchg((unsigned long *)&list->next,
905                       val | old_flag, val | new_flag);
906
907         /* check if the reader took the page */
908         if ((ret & ~RB_FLAG_MASK) != val)
909                 return RB_PAGE_MOVED;
910
911         return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915                                    struct buffer_page *head,
916                                    struct buffer_page *prev,
917                                    int old_flag)
918 {
919         return rb_head_page_set(cpu_buffer, head, prev,
920                                 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924                                  struct buffer_page *head,
925                                  struct buffer_page *prev,
926                                  int old_flag)
927 {
928         return rb_head_page_set(cpu_buffer, head, prev,
929                                 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933                                    struct buffer_page *head,
934                                    struct buffer_page *prev,
935                                    int old_flag)
936 {
937         return rb_head_page_set(cpu_buffer, head, prev,
938                                 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942                                struct buffer_page **bpage)
943 {
944         struct list_head *p = rb_list_head((*bpage)->list.next);
945
946         *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952         struct buffer_page *head;
953         struct buffer_page *page;
954         struct list_head *list;
955         int i;
956
957         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958                 return NULL;
959
960         /* sanity check */
961         list = cpu_buffer->pages;
962         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963                 return NULL;
964
965         page = head = cpu_buffer->head_page;
966         /*
967          * It is possible that the writer moves the header behind
968          * where we started, and we miss in one loop.
969          * A second loop should grab the header, but we'll do
970          * three loops just because I'm paranoid.
971          */
972         for (i = 0; i < 3; i++) {
973                 do {
974                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975                                 cpu_buffer->head_page = page;
976                                 return page;
977                         }
978                         rb_inc_page(cpu_buffer, &page);
979                 } while (page != head);
980         }
981
982         RB_WARN_ON(cpu_buffer, 1);
983
984         return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988                                 struct buffer_page *new)
989 {
990         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991         unsigned long val;
992         unsigned long ret;
993
994         val = *ptr & ~RB_FLAG_MASK;
995         val |= RB_PAGE_HEAD;
996
997         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999         return ret == val;
1000 }
1001
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  *
1005  * Returns 1 if moved tail page, 0 if someone else did.
1006  */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008                                struct buffer_page *tail_page,
1009                                struct buffer_page *next_page)
1010 {
1011         struct buffer_page *old_tail;
1012         unsigned long old_entries;
1013         unsigned long old_write;
1014         int ret = 0;
1015
1016         /*
1017          * The tail page now needs to be moved forward.
1018          *
1019          * We need to reset the tail page, but without messing
1020          * with possible erasing of data brought in by interrupts
1021          * that have moved the tail page and are currently on it.
1022          *
1023          * We add a counter to the write field to denote this.
1024          */
1025         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028         /*
1029          * Just make sure we have seen our old_write and synchronize
1030          * with any interrupts that come in.
1031          */
1032         barrier();
1033
1034         /*
1035          * If the tail page is still the same as what we think
1036          * it is, then it is up to us to update the tail
1037          * pointer.
1038          */
1039         if (tail_page == cpu_buffer->tail_page) {
1040                 /* Zero the write counter */
1041                 unsigned long val = old_write & ~RB_WRITE_MASK;
1042                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044                 /*
1045                  * This will only succeed if an interrupt did
1046                  * not come in and change it. In which case, we
1047                  * do not want to modify it.
1048                  *
1049                  * We add (void) to let the compiler know that we do not care
1050                  * about the return value of these functions. We use the
1051                  * cmpxchg to only update if an interrupt did not already
1052                  * do it for us. If the cmpxchg fails, we don't care.
1053                  */
1054                 (void)local_cmpxchg(&next_page->write, old_write, val);
1055                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056
1057                 /*
1058                  * No need to worry about races with clearing out the commit.
1059                  * it only can increment when a commit takes place. But that
1060                  * only happens in the outer most nested commit.
1061                  */
1062                 local_set(&next_page->page->commit, 0);
1063
1064                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065                                    tail_page, next_page);
1066
1067                 if (old_tail == tail_page)
1068                         ret = 1;
1069         }
1070
1071         return ret;
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075                           struct buffer_page *bpage)
1076 {
1077         unsigned long val = (unsigned long)bpage;
1078
1079         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080                 return 1;
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089                          struct list_head *list)
1090 {
1091         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092                 return 1;
1093         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094                 return 1;
1095         return 0;
1096 }
1097
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107         struct list_head *head = cpu_buffer->pages;
1108         struct buffer_page *bpage, *tmp;
1109
1110         /* Reset the head page if it exists */
1111         if (cpu_buffer->head_page)
1112                 rb_set_head_page(cpu_buffer);
1113
1114         rb_head_page_deactivate(cpu_buffer);
1115
1116         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117                 return -1;
1118         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119                 return -1;
1120
1121         if (rb_check_list(cpu_buffer, head))
1122                 return -1;
1123
1124         list_for_each_entry_safe(bpage, tmp, head, list) {
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.next->prev != &bpage->list))
1127                         return -1;
1128                 if (RB_WARN_ON(cpu_buffer,
1129                                bpage->list.prev->next != &bpage->list))
1130                         return -1;
1131                 if (rb_check_list(cpu_buffer, &bpage->list))
1132                         return -1;
1133         }
1134
1135         rb_head_page_activate(cpu_buffer);
1136
1137         return 0;
1138 }
1139
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142         int i;
1143         struct buffer_page *bpage, *tmp;
1144
1145         for (i = 0; i < nr_pages; i++) {
1146                 struct page *page;
1147                 /*
1148                  * __GFP_NORETRY flag makes sure that the allocation fails
1149                  * gracefully without invoking oom-killer and the system is
1150                  * not destabilized.
1151                  */
1152                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153                                     GFP_KERNEL | __GFP_NORETRY,
1154                                     cpu_to_node(cpu));
1155                 if (!bpage)
1156                         goto free_pages;
1157
1158                 list_add(&bpage->list, pages);
1159
1160                 page = alloc_pages_node(cpu_to_node(cpu),
1161                                         GFP_KERNEL | __GFP_NORETRY, 0);
1162                 if (!page)
1163                         goto free_pages;
1164                 bpage->page = page_address(page);
1165                 rb_init_page(bpage->page);
1166         }
1167
1168         return 0;
1169
1170 free_pages:
1171         list_for_each_entry_safe(bpage, tmp, pages, list) {
1172                 list_del_init(&bpage->list);
1173                 free_buffer_page(bpage);
1174         }
1175
1176         return -ENOMEM;
1177 }
1178
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180                              unsigned nr_pages)
1181 {
1182         LIST_HEAD(pages);
1183
1184         WARN_ON(!nr_pages);
1185
1186         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187                 return -ENOMEM;
1188
1189         /*
1190          * The ring buffer page list is a circular list that does not
1191          * start and end with a list head. All page list items point to
1192          * other pages.
1193          */
1194         cpu_buffer->pages = pages.next;
1195         list_del(&pages);
1196
1197         cpu_buffer->nr_pages = nr_pages;
1198
1199         rb_check_pages(cpu_buffer);
1200
1201         return 0;
1202 }
1203
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207         struct ring_buffer_per_cpu *cpu_buffer;
1208         struct buffer_page *bpage;
1209         struct page *page;
1210         int ret;
1211
1212         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213                                   GFP_KERNEL, cpu_to_node(cpu));
1214         if (!cpu_buffer)
1215                 return NULL;
1216
1217         cpu_buffer->cpu = cpu;
1218         cpu_buffer->buffer = buffer;
1219         raw_spin_lock_init(&cpu_buffer->reader_lock);
1220         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223         init_completion(&cpu_buffer->update_done);
1224         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227
1228         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229                             GFP_KERNEL, cpu_to_node(cpu));
1230         if (!bpage)
1231                 goto fail_free_buffer;
1232
1233         rb_check_bpage(cpu_buffer, bpage);
1234
1235         cpu_buffer->reader_page = bpage;
1236         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237         if (!page)
1238                 goto fail_free_reader;
1239         bpage->page = page_address(page);
1240         rb_init_page(bpage->page);
1241
1242         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244
1245         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246         if (ret < 0)
1247                 goto fail_free_reader;
1248
1249         cpu_buffer->head_page
1250                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1251         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252
1253         rb_head_page_activate(cpu_buffer);
1254
1255         return cpu_buffer;
1256
1257  fail_free_reader:
1258         free_buffer_page(cpu_buffer->reader_page);
1259
1260  fail_free_buffer:
1261         kfree(cpu_buffer);
1262         return NULL;
1263 }
1264
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267         struct list_head *head = cpu_buffer->pages;
1268         struct buffer_page *bpage, *tmp;
1269
1270         free_buffer_page(cpu_buffer->reader_page);
1271
1272         rb_head_page_deactivate(cpu_buffer);
1273
1274         if (head) {
1275                 list_for_each_entry_safe(bpage, tmp, head, list) {
1276                         list_del_init(&bpage->list);
1277                         free_buffer_page(bpage);
1278                 }
1279                 bpage = list_entry(head, struct buffer_page, list);
1280                 free_buffer_page(bpage);
1281         }
1282
1283         kfree(cpu_buffer);
1284 }
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288                          unsigned long action, void *hcpu);
1289 #endif
1290
1291 /**
1292  * __ring_buffer_alloc - allocate a new ring_buffer
1293  * @size: the size in bytes per cpu that is needed.
1294  * @flags: attributes to set for the ring buffer.
1295  *
1296  * Currently the only flag that is available is the RB_FL_OVERWRITE
1297  * flag. This flag means that the buffer will overwrite old data
1298  * when the buffer wraps. If this flag is not set, the buffer will
1299  * drop data when the tail hits the head.
1300  */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302                                         struct lock_class_key *key)
1303 {
1304         struct ring_buffer *buffer;
1305         int bsize;
1306         int cpu, nr_pages;
1307
1308         /* keep it in its own cache line */
1309         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310                          GFP_KERNEL);
1311         if (!buffer)
1312                 return NULL;
1313
1314         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315                 goto fail_free_buffer;
1316
1317         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318         buffer->flags = flags;
1319         buffer->clock = trace_clock_local;
1320         buffer->reader_lock_key = key;
1321
1322         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323         init_waitqueue_head(&buffer->irq_work.waiters);
1324
1325         /* need at least two pages */
1326         if (nr_pages < 2)
1327                 nr_pages = 2;
1328
1329         /*
1330          * In case of non-hotplug cpu, if the ring-buffer is allocated
1331          * in early initcall, it will not be notified of secondary cpus.
1332          * In that off case, we need to allocate for all possible cpus.
1333          */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335         cpu_notifier_register_begin();
1336         cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340         buffer->cpus = nr_cpu_ids;
1341
1342         bsize = sizeof(void *) * nr_cpu_ids;
1343         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344                                   GFP_KERNEL);
1345         if (!buffer->buffers)
1346                 goto fail_free_cpumask;
1347
1348         for_each_buffer_cpu(buffer, cpu) {
1349                 buffer->buffers[cpu] =
1350                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351                 if (!buffer->buffers[cpu])
1352                         goto fail_free_buffers;
1353         }
1354
1355 #ifdef CONFIG_HOTPLUG_CPU
1356         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357         buffer->cpu_notify.priority = 0;
1358         __register_cpu_notifier(&buffer->cpu_notify);
1359         cpu_notifier_register_done();
1360 #endif
1361
1362         mutex_init(&buffer->mutex);
1363
1364         return buffer;
1365
1366  fail_free_buffers:
1367         for_each_buffer_cpu(buffer, cpu) {
1368                 if (buffer->buffers[cpu])
1369                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1370         }
1371         kfree(buffer->buffers);
1372
1373  fail_free_cpumask:
1374         free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376         cpu_notifier_register_done();
1377 #endif
1378
1379  fail_free_buffer:
1380         kfree(buffer);
1381         return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384
1385 /**
1386  * ring_buffer_free - free a ring buffer.
1387  * @buffer: the buffer to free.
1388  */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392         int cpu;
1393
1394 #ifdef CONFIG_HOTPLUG_CPU
1395         cpu_notifier_register_begin();
1396         __unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398
1399         for_each_buffer_cpu(buffer, cpu)
1400                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
1402 #ifdef CONFIG_HOTPLUG_CPU
1403         cpu_notifier_register_done();
1404 #endif
1405
1406         kfree(buffer->buffers);
1407         free_cpumask_var(buffer->cpumask);
1408
1409         kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414                            u64 (*clock)(void))
1415 {
1416         buffer->clock = clock;
1417 }
1418
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423         return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428         return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434         struct list_head *tail_page, *to_remove, *next_page;
1435         struct buffer_page *to_remove_page, *tmp_iter_page;
1436         struct buffer_page *last_page, *first_page;
1437         unsigned int nr_removed;
1438         unsigned long head_bit;
1439         int page_entries;
1440
1441         head_bit = 0;
1442
1443         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444         atomic_inc(&cpu_buffer->record_disabled);
1445         /*
1446          * We don't race with the readers since we have acquired the reader
1447          * lock. We also don't race with writers after disabling recording.
1448          * This makes it easy to figure out the first and the last page to be
1449          * removed from the list. We unlink all the pages in between including
1450          * the first and last pages. This is done in a busy loop so that we
1451          * lose the least number of traces.
1452          * The pages are freed after we restart recording and unlock readers.
1453          */
1454         tail_page = &cpu_buffer->tail_page->list;
1455
1456         /*
1457          * tail page might be on reader page, we remove the next page
1458          * from the ring buffer
1459          */
1460         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461                 tail_page = rb_list_head(tail_page->next);
1462         to_remove = tail_page;
1463
1464         /* start of pages to remove */
1465         first_page = list_entry(rb_list_head(to_remove->next),
1466                                 struct buffer_page, list);
1467
1468         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469                 to_remove = rb_list_head(to_remove)->next;
1470                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471         }
1472
1473         next_page = rb_list_head(to_remove)->next;
1474
1475         /*
1476          * Now we remove all pages between tail_page and next_page.
1477          * Make sure that we have head_bit value preserved for the
1478          * next page
1479          */
1480         tail_page->next = (struct list_head *)((unsigned long)next_page |
1481                                                 head_bit);
1482         next_page = rb_list_head(next_page);
1483         next_page->prev = tail_page;
1484
1485         /* make sure pages points to a valid page in the ring buffer */
1486         cpu_buffer->pages = next_page;
1487
1488         /* update head page */
1489         if (head_bit)
1490                 cpu_buffer->head_page = list_entry(next_page,
1491                                                 struct buffer_page, list);
1492
1493         /*
1494          * change read pointer to make sure any read iterators reset
1495          * themselves
1496          */
1497         cpu_buffer->read = 0;
1498
1499         /* pages are removed, resume tracing and then free the pages */
1500         atomic_dec(&cpu_buffer->record_disabled);
1501         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502
1503         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505         /* last buffer page to remove */
1506         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507                                 list);
1508         tmp_iter_page = first_page;
1509
1510         do {
1511                 to_remove_page = tmp_iter_page;
1512                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514                 /* update the counters */
1515                 page_entries = rb_page_entries(to_remove_page);
1516                 if (page_entries) {
1517                         /*
1518                          * If something was added to this page, it was full
1519                          * since it is not the tail page. So we deduct the
1520                          * bytes consumed in ring buffer from here.
1521                          * Increment overrun to account for the lost events.
1522                          */
1523                         local_add(page_entries, &cpu_buffer->overrun);
1524                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525                 }
1526
1527                 /*
1528                  * We have already removed references to this list item, just
1529                  * free up the buffer_page and its page
1530                  */
1531                 free_buffer_page(to_remove_page);
1532                 nr_removed--;
1533
1534         } while (to_remove_page != last_page);
1535
1536         RB_WARN_ON(cpu_buffer, nr_removed);
1537
1538         return nr_removed == 0;
1539 }
1540
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544         struct list_head *pages = &cpu_buffer->new_pages;
1545         int retries, success;
1546
1547         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548         /*
1549          * We are holding the reader lock, so the reader page won't be swapped
1550          * in the ring buffer. Now we are racing with the writer trying to
1551          * move head page and the tail page.
1552          * We are going to adapt the reader page update process where:
1553          * 1. We first splice the start and end of list of new pages between
1554          *    the head page and its previous page.
1555          * 2. We cmpxchg the prev_page->next to point from head page to the
1556          *    start of new pages list.
1557          * 3. Finally, we update the head->prev to the end of new list.
1558          *
1559          * We will try this process 10 times, to make sure that we don't keep
1560          * spinning.
1561          */
1562         retries = 10;
1563         success = 0;
1564         while (retries--) {
1565                 struct list_head *head_page, *prev_page, *r;
1566                 struct list_head *last_page, *first_page;
1567                 struct list_head *head_page_with_bit;
1568
1569                 head_page = &rb_set_head_page(cpu_buffer)->list;
1570                 if (!head_page)
1571                         break;
1572                 prev_page = head_page->prev;
1573
1574                 first_page = pages->next;
1575                 last_page  = pages->prev;
1576
1577                 head_page_with_bit = (struct list_head *)
1578                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580                 last_page->next = head_page_with_bit;
1581                 first_page->prev = prev_page;
1582
1583                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585                 if (r == head_page_with_bit) {
1586                         /*
1587                          * yay, we replaced the page pointer to our new list,
1588                          * now, we just have to update to head page's prev
1589                          * pointer to point to end of list
1590                          */
1591                         head_page->prev = last_page;
1592                         success = 1;
1593                         break;
1594                 }
1595         }
1596
1597         if (success)
1598                 INIT_LIST_HEAD(pages);
1599         /*
1600          * If we weren't successful in adding in new pages, warn and stop
1601          * tracing
1602          */
1603         RB_WARN_ON(cpu_buffer, !success);
1604         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605
1606         /* free pages if they weren't inserted */
1607         if (!success) {
1608                 struct buffer_page *bpage, *tmp;
1609                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610                                          list) {
1611                         list_del_init(&bpage->list);
1612                         free_buffer_page(bpage);
1613                 }
1614         }
1615         return success;
1616 }
1617
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620         int success;
1621
1622         if (cpu_buffer->nr_pages_to_update > 0)
1623                 success = rb_insert_pages(cpu_buffer);
1624         else
1625                 success = rb_remove_pages(cpu_buffer,
1626                                         -cpu_buffer->nr_pages_to_update);
1627
1628         if (success)
1629                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635                         struct ring_buffer_per_cpu, update_pages_work);
1636         rb_update_pages(cpu_buffer);
1637         complete(&cpu_buffer->update_done);
1638 }
1639
1640 /**
1641  * ring_buffer_resize - resize the ring buffer
1642  * @buffer: the buffer to resize.
1643  * @size: the new size.
1644  * @cpu_id: the cpu buffer to resize
1645  *
1646  * Minimum size is 2 * BUF_PAGE_SIZE.
1647  *
1648  * Returns 0 on success and < 0 on failure.
1649  */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651                         int cpu_id)
1652 {
1653         struct ring_buffer_per_cpu *cpu_buffer;
1654         unsigned nr_pages;
1655         int cpu, err = 0;
1656
1657         /*
1658          * Always succeed at resizing a non-existent buffer:
1659          */
1660         if (!buffer)
1661                 return size;
1662
1663         /* Make sure the requested buffer exists */
1664         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666                 return size;
1667
1668         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669         size *= BUF_PAGE_SIZE;
1670
1671         /* we need a minimum of two pages */
1672         if (size < BUF_PAGE_SIZE * 2)
1673                 size = BUF_PAGE_SIZE * 2;
1674
1675         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676
1677         /*
1678          * Don't succeed if resizing is disabled, as a reader might be
1679          * manipulating the ring buffer and is expecting a sane state while
1680          * this is true.
1681          */
1682         if (atomic_read(&buffer->resize_disabled))
1683                 return -EBUSY;
1684
1685         /* prevent another thread from changing buffer sizes */
1686         mutex_lock(&buffer->mutex);
1687
1688         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689                 /* calculate the pages to update */
1690                 for_each_buffer_cpu(buffer, cpu) {
1691                         cpu_buffer = buffer->buffers[cpu];
1692
1693                         cpu_buffer->nr_pages_to_update = nr_pages -
1694                                                         cpu_buffer->nr_pages;
1695                         /*
1696                          * nothing more to do for removing pages or no update
1697                          */
1698                         if (cpu_buffer->nr_pages_to_update <= 0)
1699                                 continue;
1700                         /*
1701                          * to add pages, make sure all new pages can be
1702                          * allocated without receiving ENOMEM
1703                          */
1704                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706                                                 &cpu_buffer->new_pages, cpu)) {
1707                                 /* not enough memory for new pages */
1708                                 err = -ENOMEM;
1709                                 goto out_err;
1710                         }
1711                 }
1712
1713                 get_online_cpus();
1714                 /*
1715                  * Fire off all the required work handlers
1716                  * We can't schedule on offline CPUs, but it's not necessary
1717                  * since we can change their buffer sizes without any race.
1718                  */
1719                 for_each_buffer_cpu(buffer, cpu) {
1720                         cpu_buffer = buffer->buffers[cpu];
1721                         if (!cpu_buffer->nr_pages_to_update)
1722                                 continue;
1723
1724                         /* Can't run something on an offline CPU. */
1725                         if (!cpu_online(cpu)) {
1726                                 rb_update_pages(cpu_buffer);
1727                                 cpu_buffer->nr_pages_to_update = 0;
1728                         } else {
1729                                 schedule_work_on(cpu,
1730                                                 &cpu_buffer->update_pages_work);
1731                         }
1732                 }
1733
1734                 /* wait for all the updates to complete */
1735                 for_each_buffer_cpu(buffer, cpu) {
1736                         cpu_buffer = buffer->buffers[cpu];
1737                         if (!cpu_buffer->nr_pages_to_update)
1738                                 continue;
1739
1740                         if (cpu_online(cpu))
1741                                 wait_for_completion(&cpu_buffer->update_done);
1742                         cpu_buffer->nr_pages_to_update = 0;
1743                 }
1744
1745                 put_online_cpus();
1746         } else {
1747                 /* Make sure this CPU has been intitialized */
1748                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749                         goto out;
1750
1751                 cpu_buffer = buffer->buffers[cpu_id];
1752
1753                 if (nr_pages == cpu_buffer->nr_pages)
1754                         goto out;
1755
1756                 cpu_buffer->nr_pages_to_update = nr_pages -
1757                                                 cpu_buffer->nr_pages;
1758
1759                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760                 if (cpu_buffer->nr_pages_to_update > 0 &&
1761                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762                                             &cpu_buffer->new_pages, cpu_id)) {
1763                         err = -ENOMEM;
1764                         goto out_err;
1765                 }
1766
1767                 get_online_cpus();
1768
1769                 /* Can't run something on an offline CPU. */
1770                 if (!cpu_online(cpu_id))
1771                         rb_update_pages(cpu_buffer);
1772                 else {
1773                         schedule_work_on(cpu_id,
1774                                          &cpu_buffer->update_pages_work);
1775                         wait_for_completion(&cpu_buffer->update_done);
1776                 }
1777
1778                 cpu_buffer->nr_pages_to_update = 0;
1779                 put_online_cpus();
1780         }
1781
1782  out:
1783         /*
1784          * The ring buffer resize can happen with the ring buffer
1785          * enabled, so that the update disturbs the tracing as little
1786          * as possible. But if the buffer is disabled, we do not need
1787          * to worry about that, and we can take the time to verify
1788          * that the buffer is not corrupt.
1789          */
1790         if (atomic_read(&buffer->record_disabled)) {
1791                 atomic_inc(&buffer->record_disabled);
1792                 /*
1793                  * Even though the buffer was disabled, we must make sure
1794                  * that it is truly disabled before calling rb_check_pages.
1795                  * There could have been a race between checking
1796                  * record_disable and incrementing it.
1797                  */
1798                 synchronize_sched();
1799                 for_each_buffer_cpu(buffer, cpu) {
1800                         cpu_buffer = buffer->buffers[cpu];
1801                         rb_check_pages(cpu_buffer);
1802                 }
1803                 atomic_dec(&buffer->record_disabled);
1804         }
1805
1806         mutex_unlock(&buffer->mutex);
1807         return size;
1808
1809  out_err:
1810         for_each_buffer_cpu(buffer, cpu) {
1811                 struct buffer_page *bpage, *tmp;
1812
1813                 cpu_buffer = buffer->buffers[cpu];
1814                 cpu_buffer->nr_pages_to_update = 0;
1815
1816                 if (list_empty(&cpu_buffer->new_pages))
1817                         continue;
1818
1819                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820                                         list) {
1821                         list_del_init(&bpage->list);
1822                         free_buffer_page(bpage);
1823                 }
1824         }
1825         mutex_unlock(&buffer->mutex);
1826         return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832         mutex_lock(&buffer->mutex);
1833         if (val)
1834                 buffer->flags |= RB_FL_OVERWRITE;
1835         else
1836                 buffer->flags &= ~RB_FL_OVERWRITE;
1837         mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844         return bpage->data + index;
1845 }
1846
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849         return bpage->page->data + index;
1850 }
1851
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855         return __rb_page_index(cpu_buffer->reader_page,
1856                                cpu_buffer->reader_page->read);
1857 }
1858
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862         return __rb_page_index(iter->head_page, iter->head);
1863 }
1864
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867         return local_read(&bpage->page->commit);
1868 }
1869
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873         return rb_page_commit(bpage);
1874 }
1875
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879         return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885         unsigned long addr = (unsigned long)event;
1886
1887         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889
1890 static void rb_inc_iter(struct ring_buffer_iter *iter)
1891 {
1892         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1893
1894         /*
1895          * The iterator could be on the reader page (it starts there).
1896          * But the head could have moved, since the reader was
1897          * found. Check for this case and assign the iterator
1898          * to the head page instead of next.
1899          */
1900         if (iter->head_page == cpu_buffer->reader_page)
1901                 iter->head_page = rb_set_head_page(cpu_buffer);
1902         else
1903                 rb_inc_page(cpu_buffer, &iter->head_page);
1904
1905         iter->read_stamp = iter->head_page->page->time_stamp;
1906         iter->head = 0;
1907 }
1908
1909 /*
1910  * rb_handle_head_page - writer hit the head page
1911  *
1912  * Returns: +1 to retry page
1913  *           0 to continue
1914  *          -1 on error
1915  */
1916 static int
1917 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1918                     struct buffer_page *tail_page,
1919                     struct buffer_page *next_page)
1920 {
1921         struct buffer_page *new_head;
1922         int entries;
1923         int type;
1924         int ret;
1925
1926         entries = rb_page_entries(next_page);
1927
1928         /*
1929          * The hard part is here. We need to move the head
1930          * forward, and protect against both readers on
1931          * other CPUs and writers coming in via interrupts.
1932          */
1933         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1934                                        RB_PAGE_HEAD);
1935
1936         /*
1937          * type can be one of four:
1938          *  NORMAL - an interrupt already moved it for us
1939          *  HEAD   - we are the first to get here.
1940          *  UPDATE - we are the interrupt interrupting
1941          *           a current move.
1942          *  MOVED  - a reader on another CPU moved the next
1943          *           pointer to its reader page. Give up
1944          *           and try again.
1945          */
1946
1947         switch (type) {
1948         case RB_PAGE_HEAD:
1949                 /*
1950                  * We changed the head to UPDATE, thus
1951                  * it is our responsibility to update
1952                  * the counters.
1953                  */
1954                 local_add(entries, &cpu_buffer->overrun);
1955                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1956
1957                 /*
1958                  * The entries will be zeroed out when we move the
1959                  * tail page.
1960                  */
1961
1962                 /* still more to do */
1963                 break;
1964
1965         case RB_PAGE_UPDATE:
1966                 /*
1967                  * This is an interrupt that interrupt the
1968                  * previous update. Still more to do.
1969                  */
1970                 break;
1971         case RB_PAGE_NORMAL:
1972                 /*
1973                  * An interrupt came in before the update
1974                  * and processed this for us.
1975                  * Nothing left to do.
1976                  */
1977                 return 1;
1978         case RB_PAGE_MOVED:
1979                 /*
1980                  * The reader is on another CPU and just did
1981                  * a swap with our next_page.
1982                  * Try again.
1983                  */
1984                 return 1;
1985         default:
1986                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1987                 return -1;
1988         }
1989
1990         /*
1991          * Now that we are here, the old head pointer is
1992          * set to UPDATE. This will keep the reader from
1993          * swapping the head page with the reader page.
1994          * The reader (on another CPU) will spin till
1995          * we are finished.
1996          *
1997          * We just need to protect against interrupts
1998          * doing the job. We will set the next pointer
1999          * to HEAD. After that, we set the old pointer
2000          * to NORMAL, but only if it was HEAD before.
2001          * otherwise we are an interrupt, and only
2002          * want the outer most commit to reset it.
2003          */
2004         new_head = next_page;
2005         rb_inc_page(cpu_buffer, &new_head);
2006
2007         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2008                                     RB_PAGE_NORMAL);
2009
2010         /*
2011          * Valid returns are:
2012          *  HEAD   - an interrupt came in and already set it.
2013          *  NORMAL - One of two things:
2014          *            1) We really set it.
2015          *            2) A bunch of interrupts came in and moved
2016          *               the page forward again.
2017          */
2018         switch (ret) {
2019         case RB_PAGE_HEAD:
2020         case RB_PAGE_NORMAL:
2021                 /* OK */
2022                 break;
2023         default:
2024                 RB_WARN_ON(cpu_buffer, 1);
2025                 return -1;
2026         }
2027
2028         /*
2029          * It is possible that an interrupt came in,
2030          * set the head up, then more interrupts came in
2031          * and moved it again. When we get back here,
2032          * the page would have been set to NORMAL but we
2033          * just set it back to HEAD.
2034          *
2035          * How do you detect this? Well, if that happened
2036          * the tail page would have moved.
2037          */
2038         if (ret == RB_PAGE_NORMAL) {
2039                 /*
2040                  * If the tail had moved passed next, then we need
2041                  * to reset the pointer.
2042                  */
2043                 if (cpu_buffer->tail_page != tail_page &&
2044                     cpu_buffer->tail_page != next_page)
2045                         rb_head_page_set_normal(cpu_buffer, new_head,
2046                                                 next_page,
2047                                                 RB_PAGE_HEAD);
2048         }
2049
2050         /*
2051          * If this was the outer most commit (the one that
2052          * changed the original pointer from HEAD to UPDATE),
2053          * then it is up to us to reset it to NORMAL.
2054          */
2055         if (type == RB_PAGE_HEAD) {
2056                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2057                                               tail_page,
2058                                               RB_PAGE_UPDATE);
2059                 if (RB_WARN_ON(cpu_buffer,
2060                                ret != RB_PAGE_UPDATE))
2061                         return -1;
2062         }
2063
2064         return 0;
2065 }
2066
2067 static inline void
2068 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2069               unsigned long tail, struct rb_event_info *info)
2070 {
2071         struct buffer_page *tail_page = info->tail_page;
2072         struct ring_buffer_event *event;
2073         unsigned long length = info->length;
2074
2075         /*
2076          * Only the event that crossed the page boundary
2077          * must fill the old tail_page with padding.
2078          */
2079         if (tail >= BUF_PAGE_SIZE) {
2080                 /*
2081                  * If the page was filled, then we still need
2082                  * to update the real_end. Reset it to zero
2083                  * and the reader will ignore it.
2084                  */
2085                 if (tail == BUF_PAGE_SIZE)
2086                         tail_page->real_end = 0;
2087
2088                 local_sub(length, &tail_page->write);
2089                 return;
2090         }
2091
2092         event = __rb_page_index(tail_page, tail);
2093         kmemcheck_annotate_bitfield(event, bitfield);
2094
2095         /* account for padding bytes */
2096         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2097
2098         /*
2099          * Save the original length to the meta data.
2100          * This will be used by the reader to add lost event
2101          * counter.
2102          */
2103         tail_page->real_end = tail;
2104
2105         /*
2106          * If this event is bigger than the minimum size, then
2107          * we need to be careful that we don't subtract the
2108          * write counter enough to allow another writer to slip
2109          * in on this page.
2110          * We put in a discarded commit instead, to make sure
2111          * that this space is not used again.
2112          *
2113          * If we are less than the minimum size, we don't need to
2114          * worry about it.
2115          */
2116         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2117                 /* No room for any events */
2118
2119                 /* Mark the rest of the page with padding */
2120                 rb_event_set_padding(event);
2121
2122                 /* Set the write back to the previous setting */
2123                 local_sub(length, &tail_page->write);
2124                 return;
2125         }
2126
2127         /* Put in a discarded event */
2128         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2129         event->type_len = RINGBUF_TYPE_PADDING;
2130         /* time delta must be non zero */
2131         event->time_delta = 1;
2132
2133         /* Set write to end of buffer */
2134         length = (tail + length) - BUF_PAGE_SIZE;
2135         local_sub(length, &tail_page->write);
2136 }
2137
2138 /*
2139  * This is the slow path, force gcc not to inline it.
2140  */
2141 static noinline struct ring_buffer_event *
2142 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2143              unsigned long tail, struct rb_event_info *info)
2144 {
2145         struct buffer_page *tail_page = info->tail_page;
2146         struct buffer_page *commit_page = cpu_buffer->commit_page;
2147         struct ring_buffer *buffer = cpu_buffer->buffer;
2148         struct buffer_page *next_page;
2149         int ret;
2150         u64 ts;
2151
2152         next_page = tail_page;
2153
2154         rb_inc_page(cpu_buffer, &next_page);
2155
2156         /*
2157          * If for some reason, we had an interrupt storm that made
2158          * it all the way around the buffer, bail, and warn
2159          * about it.
2160          */
2161         if (unlikely(next_page == commit_page)) {
2162                 local_inc(&cpu_buffer->commit_overrun);
2163                 goto out_reset;
2164         }
2165
2166         /*
2167          * This is where the fun begins!
2168          *
2169          * We are fighting against races between a reader that
2170          * could be on another CPU trying to swap its reader
2171          * page with the buffer head.
2172          *
2173          * We are also fighting against interrupts coming in and
2174          * moving the head or tail on us as well.
2175          *
2176          * If the next page is the head page then we have filled
2177          * the buffer, unless the commit page is still on the
2178          * reader page.
2179          */
2180         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2181
2182                 /*
2183                  * If the commit is not on the reader page, then
2184                  * move the header page.
2185                  */
2186                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2187                         /*
2188                          * If we are not in overwrite mode,
2189                          * this is easy, just stop here.
2190                          */
2191                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2192                                 local_inc(&cpu_buffer->dropped_events);
2193                                 goto out_reset;
2194                         }
2195
2196                         ret = rb_handle_head_page(cpu_buffer,
2197                                                   tail_page,
2198                                                   next_page);
2199                         if (ret < 0)
2200                                 goto out_reset;
2201                         if (ret)
2202                                 goto out_again;
2203                 } else {
2204                         /*
2205                          * We need to be careful here too. The
2206                          * commit page could still be on the reader
2207                          * page. We could have a small buffer, and
2208                          * have filled up the buffer with events
2209                          * from interrupts and such, and wrapped.
2210                          *
2211                          * Note, if the tail page is also the on the
2212                          * reader_page, we let it move out.
2213                          */
2214                         if (unlikely((cpu_buffer->commit_page !=
2215                                       cpu_buffer->tail_page) &&
2216                                      (cpu_buffer->commit_page ==
2217                                       cpu_buffer->reader_page))) {
2218                                 local_inc(&cpu_buffer->commit_overrun);
2219                                 goto out_reset;
2220                         }
2221                 }
2222         }
2223
2224         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2225         if (ret) {
2226                 /*
2227                  * Nested commits always have zero deltas, so
2228                  * just reread the time stamp
2229                  */
2230                 ts = rb_time_stamp(buffer);
2231                 next_page->page->time_stamp = ts;
2232         }
2233
2234  out_again:
2235
2236         rb_reset_tail(cpu_buffer, tail, info);
2237
2238         /* fail and let the caller try again */
2239         return ERR_PTR(-EAGAIN);
2240
2241  out_reset:
2242         /* reset write */
2243         rb_reset_tail(cpu_buffer, tail, info);
2244
2245         return NULL;
2246 }
2247
2248 /* Slow path, do not inline */
2249 static noinline struct ring_buffer_event *
2250 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2251 {
2252         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2253
2254         /* Not the first event on the page? */
2255         if (rb_event_index(event)) {
2256                 event->time_delta = delta & TS_MASK;
2257                 event->array[0] = delta >> TS_SHIFT;
2258         } else {
2259                 /* nope, just zero it */
2260                 event->time_delta = 0;
2261                 event->array[0] = 0;
2262         }
2263
2264         return skip_time_extend(event);
2265 }
2266
2267 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2268                                      struct ring_buffer_event *event);
2269
2270 /**
2271  * rb_update_event - update event type and data
2272  * @event: the event to update
2273  * @type: the type of event
2274  * @length: the size of the event field in the ring buffer
2275  *
2276  * Update the type and data fields of the event. The length
2277  * is the actual size that is written to the ring buffer,
2278  * and with this, we can determine what to place into the
2279  * data field.
2280  */
2281 static void
2282 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2283                 struct ring_buffer_event *event,
2284                 struct rb_event_info *info)
2285 {
2286         unsigned length = info->length;
2287         u64 delta = info->delta;
2288
2289         /* Only a commit updates the timestamp */
2290         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2291                 delta = 0;
2292
2293         /*
2294          * If we need to add a timestamp, then we
2295          * add it to the start of the resevered space.
2296          */
2297         if (unlikely(info->add_timestamp)) {
2298                 event = rb_add_time_stamp(event, delta);
2299                 length -= RB_LEN_TIME_EXTEND;
2300                 delta = 0;
2301         }
2302
2303         event->time_delta = delta;
2304         length -= RB_EVNT_HDR_SIZE;
2305         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2306                 event->type_len = 0;
2307                 event->array[0] = length;
2308         } else
2309                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2310 }
2311
2312 static unsigned rb_calculate_event_length(unsigned length)
2313 {
2314         struct ring_buffer_event event; /* Used only for sizeof array */
2315
2316         /* zero length can cause confusions */
2317         if (!length)
2318                 length++;
2319
2320         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2321                 length += sizeof(event.array[0]);
2322
2323         length += RB_EVNT_HDR_SIZE;
2324         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2325
2326         /*
2327          * In case the time delta is larger than the 27 bits for it
2328          * in the header, we need to add a timestamp. If another
2329          * event comes in when trying to discard this one to increase
2330          * the length, then the timestamp will be added in the allocated
2331          * space of this event. If length is bigger than the size needed
2332          * for the TIME_EXTEND, then padding has to be used. The events
2333          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2334          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2335          * As length is a multiple of 4, we only need to worry if it
2336          * is 12 (RB_LEN_TIME_EXTEND + 4).
2337          */
2338         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2339                 length += RB_ALIGNMENT;
2340
2341         return length;
2342 }
2343
2344 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2345 static inline bool sched_clock_stable(void)
2346 {
2347         return true;
2348 }
2349 #endif
2350
2351 static inline int
2352 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2353                   struct ring_buffer_event *event)
2354 {
2355         unsigned long new_index, old_index;
2356         struct buffer_page *bpage;
2357         unsigned long index;
2358         unsigned long addr;
2359
2360         new_index = rb_event_index(event);
2361         old_index = new_index + rb_event_ts_length(event);
2362         addr = (unsigned long)event;
2363         addr &= PAGE_MASK;
2364
2365         bpage = cpu_buffer->tail_page;
2366
2367         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2368                 unsigned long write_mask =
2369                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2370                 unsigned long event_length = rb_event_length(event);
2371                 /*
2372                  * This is on the tail page. It is possible that
2373                  * a write could come in and move the tail page
2374                  * and write to the next page. That is fine
2375                  * because we just shorten what is on this page.
2376                  */
2377                 old_index += write_mask;
2378                 new_index += write_mask;
2379                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2380                 if (index == old_index) {
2381                         /* update counters */
2382                         local_sub(event_length, &cpu_buffer->entries_bytes);
2383                         return 1;
2384                 }
2385         }
2386
2387         /* could not discard */
2388         return 0;
2389 }
2390
2391 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2392 {
2393         local_inc(&cpu_buffer->committing);
2394         local_inc(&cpu_buffer->commits);
2395 }
2396
2397 static void
2398 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2399 {
2400         unsigned long max_count;
2401
2402         /*
2403          * We only race with interrupts and NMIs on this CPU.
2404          * If we own the commit event, then we can commit
2405          * all others that interrupted us, since the interruptions
2406          * are in stack format (they finish before they come
2407          * back to us). This allows us to do a simple loop to
2408          * assign the commit to the tail.
2409          */
2410  again:
2411         max_count = cpu_buffer->nr_pages * 100;
2412
2413         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2414                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2415                         return;
2416                 if (RB_WARN_ON(cpu_buffer,
2417                                rb_is_reader_page(cpu_buffer->tail_page)))
2418                         return;
2419                 local_set(&cpu_buffer->commit_page->page->commit,
2420                           rb_page_write(cpu_buffer->commit_page));
2421                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2422                 cpu_buffer->write_stamp =
2423                         cpu_buffer->commit_page->page->time_stamp;
2424                 /* add barrier to keep gcc from optimizing too much */
2425                 barrier();
2426         }
2427         while (rb_commit_index(cpu_buffer) !=
2428                rb_page_write(cpu_buffer->commit_page)) {
2429
2430                 local_set(&cpu_buffer->commit_page->page->commit,
2431                           rb_page_write(cpu_buffer->commit_page));
2432                 RB_WARN_ON(cpu_buffer,
2433                            local_read(&cpu_buffer->commit_page->page->commit) &
2434                            ~RB_WRITE_MASK);
2435                 barrier();
2436         }
2437
2438         /* again, keep gcc from optimizing */
2439         barrier();
2440
2441         /*
2442          * If an interrupt came in just after the first while loop
2443          * and pushed the tail page forward, we will be left with
2444          * a dangling commit that will never go forward.
2445          */
2446         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2447                 goto again;
2448 }
2449
2450 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2451 {
2452         unsigned long commits;
2453
2454         if (RB_WARN_ON(cpu_buffer,
2455                        !local_read(&cpu_buffer->committing)))
2456                 return;
2457
2458  again:
2459         commits = local_read(&cpu_buffer->commits);
2460         /* synchronize with interrupts */
2461         barrier();
2462         if (local_read(&cpu_buffer->committing) == 1)
2463                 rb_set_commit_to_write(cpu_buffer);
2464
2465         local_dec(&cpu_buffer->committing);
2466
2467         /* synchronize with interrupts */
2468         barrier();
2469
2470         /*
2471          * Need to account for interrupts coming in between the
2472          * updating of the commit page and the clearing of the
2473          * committing counter.
2474          */
2475         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2476             !local_read(&cpu_buffer->committing)) {
2477                 local_inc(&cpu_buffer->committing);
2478                 goto again;
2479         }
2480 }
2481
2482 static inline void rb_event_discard(struct ring_buffer_event *event)
2483 {
2484         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2485                 event = skip_time_extend(event);
2486
2487         /* array[0] holds the actual length for the discarded event */
2488         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2489         event->type_len = RINGBUF_TYPE_PADDING;
2490         /* time delta must be non zero */
2491         if (!event->time_delta)
2492                 event->time_delta = 1;
2493 }
2494
2495 static inline bool
2496 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2497                    struct ring_buffer_event *event)
2498 {
2499         unsigned long addr = (unsigned long)event;
2500         unsigned long index;
2501
2502         index = rb_event_index(event);
2503         addr &= PAGE_MASK;
2504
2505         return cpu_buffer->commit_page->page == (void *)addr &&
2506                 rb_commit_index(cpu_buffer) == index;
2507 }
2508
2509 static void
2510 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2511                       struct ring_buffer_event *event)
2512 {
2513         u64 delta;
2514
2515         /*
2516          * The event first in the commit queue updates the
2517          * time stamp.
2518          */
2519         if (rb_event_is_commit(cpu_buffer, event)) {
2520                 /*
2521                  * A commit event that is first on a page
2522                  * updates the write timestamp with the page stamp
2523                  */
2524                 if (!rb_event_index(event))
2525                         cpu_buffer->write_stamp =
2526                                 cpu_buffer->commit_page->page->time_stamp;
2527                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2528                         delta = event->array[0];
2529                         delta <<= TS_SHIFT;
2530                         delta += event->time_delta;
2531                         cpu_buffer->write_stamp += delta;
2532                 } else
2533                         cpu_buffer->write_stamp += event->time_delta;
2534         }
2535 }
2536
2537 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2538                       struct ring_buffer_event *event)
2539 {
2540         local_inc(&cpu_buffer->entries);
2541         rb_update_write_stamp(cpu_buffer, event);
2542         rb_end_commit(cpu_buffer);
2543 }
2544
2545 static __always_inline void
2546 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2547 {
2548         bool pagebusy;
2549
2550         if (buffer->irq_work.waiters_pending) {
2551                 buffer->irq_work.waiters_pending = false;
2552                 /* irq_work_queue() supplies it's own memory barriers */
2553                 irq_work_queue(&buffer->irq_work.work);
2554         }
2555
2556         if (cpu_buffer->irq_work.waiters_pending) {
2557                 cpu_buffer->irq_work.waiters_pending = false;
2558                 /* irq_work_queue() supplies it's own memory barriers */
2559                 irq_work_queue(&cpu_buffer->irq_work.work);
2560         }
2561
2562         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2563
2564         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2565                 cpu_buffer->irq_work.wakeup_full = true;
2566                 cpu_buffer->irq_work.full_waiters_pending = false;
2567                 /* irq_work_queue() supplies it's own memory barriers */
2568                 irq_work_queue(&cpu_buffer->irq_work.work);
2569         }
2570 }
2571
2572 /*
2573  * The lock and unlock are done within a preempt disable section.
2574  * The current_context per_cpu variable can only be modified
2575  * by the current task between lock and unlock. But it can
2576  * be modified more than once via an interrupt. To pass this
2577  * information from the lock to the unlock without having to
2578  * access the 'in_interrupt()' functions again (which do show
2579  * a bit of overhead in something as critical as function tracing,
2580  * we use a bitmask trick.
2581  *
2582  *  bit 0 =  NMI context
2583  *  bit 1 =  IRQ context
2584  *  bit 2 =  SoftIRQ context
2585  *  bit 3 =  normal context.
2586  *
2587  * This works because this is the order of contexts that can
2588  * preempt other contexts. A SoftIRQ never preempts an IRQ
2589  * context.
2590  *
2591  * When the context is determined, the corresponding bit is
2592  * checked and set (if it was set, then a recursion of that context
2593  * happened).
2594  *
2595  * On unlock, we need to clear this bit. To do so, just subtract
2596  * 1 from the current_context and AND it to itself.
2597  *
2598  * (binary)
2599  *  101 - 1 = 100
2600  *  101 & 100 = 100 (clearing bit zero)
2601  *
2602  *  1010 - 1 = 1001
2603  *  1010 & 1001 = 1000 (clearing bit 1)
2604  *
2605  * The least significant bit can be cleared this way, and it
2606  * just so happens that it is the same bit corresponding to
2607  * the current context.
2608  */
2609
2610 static __always_inline int
2611 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613         unsigned int val = cpu_buffer->current_context;
2614         int bit;
2615
2616         if (in_interrupt()) {
2617                 if (in_nmi())
2618                         bit = RB_CTX_NMI;
2619                 else if (in_irq())
2620                         bit = RB_CTX_IRQ;
2621                 else
2622                         bit = RB_CTX_SOFTIRQ;
2623         } else
2624                 bit = RB_CTX_NORMAL;
2625
2626         if (unlikely(val & (1 << bit)))
2627                 return 1;
2628
2629         val |= (1 << bit);
2630         cpu_buffer->current_context = val;
2631
2632         return 0;
2633 }
2634
2635 static __always_inline void
2636 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2637 {
2638         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2639 }
2640
2641 /**
2642  * ring_buffer_unlock_commit - commit a reserved
2643  * @buffer: The buffer to commit to
2644  * @event: The event pointer to commit.
2645  *
2646  * This commits the data to the ring buffer, and releases any locks held.
2647  *
2648  * Must be paired with ring_buffer_lock_reserve.
2649  */
2650 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2651                               struct ring_buffer_event *event)
2652 {
2653         struct ring_buffer_per_cpu *cpu_buffer;
2654         int cpu = raw_smp_processor_id();
2655
2656         cpu_buffer = buffer->buffers[cpu];
2657
2658         rb_commit(cpu_buffer, event);
2659
2660         rb_wakeups(buffer, cpu_buffer);
2661
2662         trace_recursive_unlock(cpu_buffer);
2663
2664         preempt_enable_notrace();
2665
2666         return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2669
2670 static noinline void
2671 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2672                     struct rb_event_info *info)
2673 {
2674         WARN_ONCE(info->delta > (1ULL << 59),
2675                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2676                   (unsigned long long)info->delta,
2677                   (unsigned long long)info->ts,
2678                   (unsigned long long)cpu_buffer->write_stamp,
2679                   sched_clock_stable() ? "" :
2680                   "If you just came from a suspend/resume,\n"
2681                   "please switch to the trace global clock:\n"
2682                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2683         info->add_timestamp = 1;
2684 }
2685
2686 static struct ring_buffer_event *
2687 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2688                   struct rb_event_info *info)
2689 {
2690         struct ring_buffer_event *event;
2691         struct buffer_page *tail_page;
2692         unsigned long tail, write;
2693
2694         /*
2695          * If the time delta since the last event is too big to
2696          * hold in the time field of the event, then we append a
2697          * TIME EXTEND event ahead of the data event.
2698          */
2699         if (unlikely(info->add_timestamp))
2700                 info->length += RB_LEN_TIME_EXTEND;
2701
2702         tail_page = info->tail_page = cpu_buffer->tail_page;
2703         write = local_add_return(info->length, &tail_page->write);
2704
2705         /* set write to only the index of the write */
2706         write &= RB_WRITE_MASK;
2707         tail = write - info->length;
2708
2709         /*
2710          * If this is the first commit on the page, then it has the same
2711          * timestamp as the page itself.
2712          */
2713         if (!tail)
2714                 info->delta = 0;
2715
2716         /* See if we shot pass the end of this buffer page */
2717         if (unlikely(write > BUF_PAGE_SIZE))
2718                 return rb_move_tail(cpu_buffer, tail, info);
2719
2720         /* We reserved something on the buffer */
2721
2722         event = __rb_page_index(tail_page, tail);
2723         kmemcheck_annotate_bitfield(event, bitfield);
2724         rb_update_event(cpu_buffer, event, info);
2725
2726         local_inc(&tail_page->entries);
2727
2728         /*
2729          * If this is the first commit on the page, then update
2730          * its timestamp.
2731          */
2732         if (!tail)
2733                 tail_page->page->time_stamp = info->ts;
2734
2735         /* account for these added bytes */
2736         local_add(info->length, &cpu_buffer->entries_bytes);
2737
2738         return event;
2739 }
2740
2741 static struct ring_buffer_event *
2742 rb_reserve_next_event(struct ring_buffer *buffer,
2743                       struct ring_buffer_per_cpu *cpu_buffer,
2744                       unsigned long length)
2745 {
2746         struct ring_buffer_event *event;
2747         struct rb_event_info info;
2748         int nr_loops = 0;
2749         u64 diff;
2750
2751         rb_start_commit(cpu_buffer);
2752
2753 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2754         /*
2755          * Due to the ability to swap a cpu buffer from a buffer
2756          * it is possible it was swapped before we committed.
2757          * (committing stops a swap). We check for it here and
2758          * if it happened, we have to fail the write.
2759          */
2760         barrier();
2761         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2762                 local_dec(&cpu_buffer->committing);
2763                 local_dec(&cpu_buffer->commits);
2764                 return NULL;
2765         }
2766 #endif
2767
2768         info.length = rb_calculate_event_length(length);
2769  again:
2770         info.add_timestamp = 0;
2771         info.delta = 0;
2772
2773         /*
2774          * We allow for interrupts to reenter here and do a trace.
2775          * If one does, it will cause this original code to loop
2776          * back here. Even with heavy interrupts happening, this
2777          * should only happen a few times in a row. If this happens
2778          * 1000 times in a row, there must be either an interrupt
2779          * storm or we have something buggy.
2780          * Bail!
2781          */
2782         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2783                 goto out_fail;
2784
2785         info.ts = rb_time_stamp(cpu_buffer->buffer);
2786         diff = info.ts - cpu_buffer->write_stamp;
2787
2788         /* make sure this diff is calculated here */
2789         barrier();
2790
2791         /* Did the write stamp get updated already? */
2792         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2793                 info.delta = diff;
2794                 if (unlikely(test_time_stamp(info.delta)))
2795                         rb_handle_timestamp(cpu_buffer, &info);
2796         }
2797
2798         event = __rb_reserve_next(cpu_buffer, &info);
2799
2800         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2801                 if (info.add_timestamp)
2802                         info.length -= RB_LEN_TIME_EXTEND;
2803                 goto again;
2804         }
2805
2806         if (!event)
2807                 goto out_fail;
2808
2809         return event;
2810
2811  out_fail:
2812         rb_end_commit(cpu_buffer);
2813         return NULL;
2814 }
2815
2816 /**
2817  * ring_buffer_lock_reserve - reserve a part of the buffer
2818  * @buffer: the ring buffer to reserve from
2819  * @length: the length of the data to reserve (excluding event header)
2820  *
2821  * Returns a reseverd event on the ring buffer to copy directly to.
2822  * The user of this interface will need to get the body to write into
2823  * and can use the ring_buffer_event_data() interface.
2824  *
2825  * The length is the length of the data needed, not the event length
2826  * which also includes the event header.
2827  *
2828  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2829  * If NULL is returned, then nothing has been allocated or locked.
2830  */
2831 struct ring_buffer_event *
2832 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2833 {
2834         struct ring_buffer_per_cpu *cpu_buffer;
2835         struct ring_buffer_event *event;
2836         int cpu;
2837
2838         /* If we are tracing schedule, we don't want to recurse */
2839         preempt_disable_notrace();
2840
2841         if (unlikely(atomic_read(&buffer->record_disabled)))
2842                 goto out;
2843
2844         cpu = raw_smp_processor_id();
2845
2846         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2847                 goto out;
2848
2849         cpu_buffer = buffer->buffers[cpu];
2850
2851         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2852                 goto out;
2853
2854         if (unlikely(length > BUF_MAX_DATA_SIZE))
2855                 goto out;
2856
2857         if (unlikely(trace_recursive_lock(cpu_buffer)))
2858                 goto out;
2859
2860         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2861         if (!event)
2862                 goto out_unlock;
2863
2864         return event;
2865
2866  out_unlock:
2867         trace_recursive_unlock(cpu_buffer);
2868  out:
2869         preempt_enable_notrace();
2870         return NULL;
2871 }
2872 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2873
2874 /*
2875  * Decrement the entries to the page that an event is on.
2876  * The event does not even need to exist, only the pointer
2877  * to the page it is on. This may only be called before the commit
2878  * takes place.
2879  */
2880 static inline void
2881 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2882                    struct ring_buffer_event *event)
2883 {
2884         unsigned long addr = (unsigned long)event;
2885         struct buffer_page *bpage = cpu_buffer->commit_page;
2886         struct buffer_page *start;
2887
2888         addr &= PAGE_MASK;
2889
2890         /* Do the likely case first */
2891         if (likely(bpage->page == (void *)addr)) {
2892                 local_dec(&bpage->entries);
2893                 return;
2894         }
2895
2896         /*
2897          * Because the commit page may be on the reader page we
2898          * start with the next page and check the end loop there.
2899          */
2900         rb_inc_page(cpu_buffer, &bpage);
2901         start = bpage;
2902         do {
2903                 if (bpage->page == (void *)addr) {
2904                         local_dec(&bpage->entries);
2905                         return;
2906                 }
2907                 rb_inc_page(cpu_buffer, &bpage);
2908         } while (bpage != start);
2909
2910         /* commit not part of this buffer?? */
2911         RB_WARN_ON(cpu_buffer, 1);
2912 }
2913
2914 /**
2915  * ring_buffer_commit_discard - discard an event that has not been committed
2916  * @buffer: the ring buffer
2917  * @event: non committed event to discard
2918  *
2919  * Sometimes an event that is in the ring buffer needs to be ignored.
2920  * This function lets the user discard an event in the ring buffer
2921  * and then that event will not be read later.
2922  *
2923  * This function only works if it is called before the the item has been
2924  * committed. It will try to free the event from the ring buffer
2925  * if another event has not been added behind it.
2926  *
2927  * If another event has been added behind it, it will set the event
2928  * up as discarded, and perform the commit.
2929  *
2930  * If this function is called, do not call ring_buffer_unlock_commit on
2931  * the event.
2932  */
2933 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2934                                 struct ring_buffer_event *event)
2935 {
2936         struct ring_buffer_per_cpu *cpu_buffer;
2937         int cpu;
2938
2939         /* The event is discarded regardless */
2940         rb_event_discard(event);
2941
2942         cpu = smp_processor_id();
2943         cpu_buffer = buffer->buffers[cpu];
2944
2945         /*
2946          * This must only be called if the event has not been
2947          * committed yet. Thus we can assume that preemption
2948          * is still disabled.
2949          */
2950         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2951
2952         rb_decrement_entry(cpu_buffer, event);
2953         if (rb_try_to_discard(cpu_buffer, event))
2954                 goto out;
2955
2956         /*
2957          * The commit is still visible by the reader, so we
2958          * must still update the timestamp.
2959          */
2960         rb_update_write_stamp(cpu_buffer, event);
2961  out:
2962         rb_end_commit(cpu_buffer);
2963
2964         trace_recursive_unlock(cpu_buffer);
2965
2966         preempt_enable_notrace();
2967
2968 }
2969 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2970
2971 /**
2972  * ring_buffer_write - write data to the buffer without reserving
2973  * @buffer: The ring buffer to write to.
2974  * @length: The length of the data being written (excluding the event header)
2975  * @data: The data to write to the buffer.
2976  *
2977  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2978  * one function. If you already have the data to write to the buffer, it
2979  * may be easier to simply call this function.
2980  *
2981  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2982  * and not the length of the event which would hold the header.
2983  */
2984 int ring_buffer_write(struct ring_buffer *buffer,
2985                       unsigned long length,
2986                       void *data)
2987 {
2988         struct ring_buffer_per_cpu *cpu_buffer;
2989         struct ring_buffer_event *event;
2990         void *body;
2991         int ret = -EBUSY;
2992         int cpu;
2993
2994         preempt_disable_notrace();
2995
2996         if (atomic_read(&buffer->record_disabled))
2997                 goto out;
2998
2999         cpu = raw_smp_processor_id();
3000
3001         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3002                 goto out;
3003
3004         cpu_buffer = buffer->buffers[cpu];
3005
3006         if (atomic_read(&cpu_buffer->record_disabled))
3007                 goto out;
3008
3009         if (length > BUF_MAX_DATA_SIZE)
3010                 goto out;
3011
3012         if (unlikely(trace_recursive_lock(cpu_buffer)))
3013                 goto out;
3014
3015         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3016         if (!event)
3017                 goto out_unlock;
3018
3019         body = rb_event_data(event);
3020
3021         memcpy(body, data, length);
3022
3023         rb_commit(cpu_buffer, event);
3024
3025         rb_wakeups(buffer, cpu_buffer);
3026
3027         ret = 0;
3028
3029  out_unlock:
3030         trace_recursive_unlock(cpu_buffer);
3031
3032  out:
3033         preempt_enable_notrace();
3034
3035         return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(ring_buffer_write);
3038
3039 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3040 {
3041         struct buffer_page *reader = cpu_buffer->reader_page;
3042         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3043         struct buffer_page *commit = cpu_buffer->commit_page;
3044
3045         /* In case of error, head will be NULL */
3046         if (unlikely(!head))
3047                 return true;
3048
3049         return reader->read == rb_page_commit(reader) &&
3050                 (commit == reader ||
3051                  (commit == head &&
3052                   head->read == rb_page_commit(commit)));
3053 }
3054
3055 /**
3056  * ring_buffer_record_disable - stop all writes into the buffer
3057  * @buffer: The ring buffer to stop writes to.
3058  *
3059  * This prevents all writes to the buffer. Any attempt to write
3060  * to the buffer after this will fail and return NULL.
3061  *
3062  * The caller should call synchronize_sched() after this.
3063  */
3064 void ring_buffer_record_disable(struct ring_buffer *buffer)
3065 {
3066         atomic_inc(&buffer->record_disabled);
3067 }
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3069
3070 /**
3071  * ring_buffer_record_enable - enable writes to the buffer
3072  * @buffer: The ring buffer to enable writes
3073  *
3074  * Note, multiple disables will need the same number of enables
3075  * to truly enable the writing (much like preempt_disable).
3076  */
3077 void ring_buffer_record_enable(struct ring_buffer *buffer)
3078 {
3079         atomic_dec(&buffer->record_disabled);
3080 }
3081 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3082
3083 /**
3084  * ring_buffer_record_off - stop all writes into the buffer
3085  * @buffer: The ring buffer to stop writes to.
3086  *
3087  * This prevents all writes to the buffer. Any attempt to write
3088  * to the buffer after this will fail and return NULL.
3089  *
3090  * This is different than ring_buffer_record_disable() as
3091  * it works like an on/off switch, where as the disable() version
3092  * must be paired with a enable().
3093  */
3094 void ring_buffer_record_off(struct ring_buffer *buffer)
3095 {
3096         unsigned int rd;
3097         unsigned int new_rd;
3098
3099         do {
3100                 rd = atomic_read(&buffer->record_disabled);
3101                 new_rd = rd | RB_BUFFER_OFF;
3102         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3103 }
3104 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3105
3106 /**
3107  * ring_buffer_record_on - restart writes into the buffer
3108  * @buffer: The ring buffer to start writes to.
3109  *
3110  * This enables all writes to the buffer that was disabled by
3111  * ring_buffer_record_off().
3112  *
3113  * This is different than ring_buffer_record_enable() as
3114  * it works like an on/off switch, where as the enable() version
3115  * must be paired with a disable().
3116  */
3117 void ring_buffer_record_on(struct ring_buffer *buffer)
3118 {
3119         unsigned int rd;
3120         unsigned int new_rd;
3121
3122         do {
3123                 rd = atomic_read(&buffer->record_disabled);
3124                 new_rd = rd & ~RB_BUFFER_OFF;
3125         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3128
3129 /**
3130  * ring_buffer_record_is_on - return true if the ring buffer can write
3131  * @buffer: The ring buffer to see if write is enabled
3132  *
3133  * Returns true if the ring buffer is in a state that it accepts writes.
3134  */
3135 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3136 {
3137         return !atomic_read(&buffer->record_disabled);
3138 }
3139
3140 /**
3141  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3142  * @buffer: The ring buffer to stop writes to.
3143  * @cpu: The CPU buffer to stop
3144  *
3145  * This prevents all writes to the buffer. Any attempt to write
3146  * to the buffer after this will fail and return NULL.
3147  *
3148  * The caller should call synchronize_sched() after this.
3149  */
3150 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3151 {
3152         struct ring_buffer_per_cpu *cpu_buffer;
3153
3154         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3155                 return;
3156
3157         cpu_buffer = buffer->buffers[cpu];
3158         atomic_inc(&cpu_buffer->record_disabled);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3161
3162 /**
3163  * ring_buffer_record_enable_cpu - enable writes to the buffer
3164  * @buffer: The ring buffer to enable writes
3165  * @cpu: The CPU to enable.
3166  *
3167  * Note, multiple disables will need the same number of enables
3168  * to truly enable the writing (much like preempt_disable).
3169  */
3170 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3171 {
3172         struct ring_buffer_per_cpu *cpu_buffer;
3173
3174         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3175                 return;
3176
3177         cpu_buffer = buffer->buffers[cpu];
3178         atomic_dec(&cpu_buffer->record_disabled);
3179 }
3180 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3181
3182 /*
3183  * The total entries in the ring buffer is the running counter
3184  * of entries entered into the ring buffer, minus the sum of
3185  * the entries read from the ring buffer and the number of
3186  * entries that were overwritten.
3187  */
3188 static inline unsigned long
3189 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3190 {
3191         return local_read(&cpu_buffer->entries) -
3192                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3193 }
3194
3195 /**
3196  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3197  * @buffer: The ring buffer
3198  * @cpu: The per CPU buffer to read from.
3199  */
3200 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3201 {
3202         unsigned long flags;
3203         struct ring_buffer_per_cpu *cpu_buffer;
3204         struct buffer_page *bpage;
3205         u64 ret = 0;
3206
3207         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208                 return 0;
3209
3210         cpu_buffer = buffer->buffers[cpu];
3211         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3212         /*
3213          * if the tail is on reader_page, oldest time stamp is on the reader
3214          * page
3215          */
3216         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3217                 bpage = cpu_buffer->reader_page;
3218         else
3219                 bpage = rb_set_head_page(cpu_buffer);
3220         if (bpage)
3221                 ret = bpage->page->time_stamp;
3222         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3223
3224         return ret;
3225 }
3226 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3227
3228 /**
3229  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3230  * @buffer: The ring buffer
3231  * @cpu: The per CPU buffer to read from.
3232  */
3233 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3234 {
3235         struct ring_buffer_per_cpu *cpu_buffer;
3236         unsigned long ret;
3237
3238         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239                 return 0;
3240
3241         cpu_buffer = buffer->buffers[cpu];
3242         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3243
3244         return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3247
3248 /**
3249  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the entries from.
3252  */
3253 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255         struct ring_buffer_per_cpu *cpu_buffer;
3256
3257         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258                 return 0;
3259
3260         cpu_buffer = buffer->buffers[cpu];
3261
3262         return rb_num_of_entries(cpu_buffer);
3263 }
3264 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3265
3266 /**
3267  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3268  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3269  * @buffer: The ring buffer
3270  * @cpu: The per CPU buffer to get the number of overruns from
3271  */
3272 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3273 {
3274         struct ring_buffer_per_cpu *cpu_buffer;
3275         unsigned long ret;
3276
3277         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278                 return 0;
3279
3280         cpu_buffer = buffer->buffers[cpu];
3281         ret = local_read(&cpu_buffer->overrun);
3282
3283         return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3286
3287 /**
3288  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3289  * commits failing due to the buffer wrapping around while there are uncommitted
3290  * events, such as during an interrupt storm.
3291  * @buffer: The ring buffer
3292  * @cpu: The per CPU buffer to get the number of overruns from
3293  */
3294 unsigned long
3295 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297         struct ring_buffer_per_cpu *cpu_buffer;
3298         unsigned long ret;
3299
3300         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301                 return 0;
3302
3303         cpu_buffer = buffer->buffers[cpu];
3304         ret = local_read(&cpu_buffer->commit_overrun);
3305
3306         return ret;
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3309
3310 /**
3311  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3312  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3313  * @buffer: The ring buffer
3314  * @cpu: The per CPU buffer to get the number of overruns from
3315  */
3316 unsigned long
3317 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3318 {
3319         struct ring_buffer_per_cpu *cpu_buffer;
3320         unsigned long ret;
3321
3322         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323                 return 0;
3324
3325         cpu_buffer = buffer->buffers[cpu];
3326         ret = local_read(&cpu_buffer->dropped_events);
3327
3328         return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3331
3332 /**
3333  * ring_buffer_read_events_cpu - get the number of events successfully read
3334  * @buffer: The ring buffer
3335  * @cpu: The per CPU buffer to get the number of events read
3336  */
3337 unsigned long
3338 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3339 {
3340         struct ring_buffer_per_cpu *cpu_buffer;
3341
3342         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3343                 return 0;
3344
3345         cpu_buffer = buffer->buffers[cpu];
3346         return cpu_buffer->read;
3347 }
3348 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3349
3350 /**
3351  * ring_buffer_entries - get the number of entries in a buffer
3352  * @buffer: The ring buffer
3353  *
3354  * Returns the total number of entries in the ring buffer
3355  * (all CPU entries)
3356  */
3357 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3358 {
3359         struct ring_buffer_per_cpu *cpu_buffer;
3360         unsigned long entries = 0;
3361         int cpu;
3362
3363         /* if you care about this being correct, lock the buffer */
3364         for_each_buffer_cpu(buffer, cpu) {
3365                 cpu_buffer = buffer->buffers[cpu];
3366                 entries += rb_num_of_entries(cpu_buffer);
3367         }
3368
3369         return entries;
3370 }
3371 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3372
3373 /**
3374  * ring_buffer_overruns - get the number of overruns in buffer
3375  * @buffer: The ring buffer
3376  *
3377  * Returns the total number of overruns in the ring buffer
3378  * (all CPU entries)
3379  */
3380 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3381 {
3382         struct ring_buffer_per_cpu *cpu_buffer;
3383         unsigned long overruns = 0;
3384         int cpu;
3385
3386         /* if you care about this being correct, lock the buffer */
3387         for_each_buffer_cpu(buffer, cpu) {
3388                 cpu_buffer = buffer->buffers[cpu];
3389                 overruns += local_read(&cpu_buffer->overrun);
3390         }
3391
3392         return overruns;
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3395
3396 static void rb_iter_reset(struct ring_buffer_iter *iter)
3397 {
3398         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3399
3400         /* Iterator usage is expected to have record disabled */
3401         iter->head_page = cpu_buffer->reader_page;
3402         iter->head = cpu_buffer->reader_page->read;
3403
3404         iter->cache_reader_page = iter->head_page;
3405         iter->cache_read = cpu_buffer->read;
3406
3407         if (iter->head)
3408                 iter->read_stamp = cpu_buffer->read_stamp;
3409         else
3410                 iter->read_stamp = iter->head_page->page->time_stamp;
3411 }
3412
3413 /**
3414  * ring_buffer_iter_reset - reset an iterator
3415  * @iter: The iterator to reset
3416  *
3417  * Resets the iterator, so that it will start from the beginning
3418  * again.
3419  */
3420 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3421 {
3422         struct ring_buffer_per_cpu *cpu_buffer;
3423         unsigned long flags;
3424
3425         if (!iter)
3426                 return;
3427
3428         cpu_buffer = iter->cpu_buffer;
3429
3430         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3431         rb_iter_reset(iter);
3432         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3433 }
3434 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3435
3436 /**
3437  * ring_buffer_iter_empty - check if an iterator has no more to read
3438  * @iter: The iterator to check
3439  */
3440 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3441 {
3442         struct ring_buffer_per_cpu *cpu_buffer;
3443
3444         cpu_buffer = iter->cpu_buffer;
3445
3446         return iter->head_page == cpu_buffer->commit_page &&
3447                 iter->head == rb_commit_index(cpu_buffer);
3448 }
3449 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3450
3451 static void
3452 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3453                      struct ring_buffer_event *event)
3454 {
3455         u64 delta;
3456
3457         switch (event->type_len) {
3458         case RINGBUF_TYPE_PADDING:
3459                 return;
3460
3461         case RINGBUF_TYPE_TIME_EXTEND:
3462                 delta = event->array[0];
3463                 delta <<= TS_SHIFT;
3464                 delta += event->time_delta;
3465                 cpu_buffer->read_stamp += delta;
3466                 return;
3467
3468         case RINGBUF_TYPE_TIME_STAMP:
3469                 /* FIXME: not implemented */
3470                 return;
3471
3472         case RINGBUF_TYPE_DATA:
3473                 cpu_buffer->read_stamp += event->time_delta;
3474                 return;
3475
3476         default:
3477                 BUG();
3478         }
3479         return;
3480 }
3481
3482 static void
3483 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3484                           struct ring_buffer_event *event)
3485 {
3486         u64 delta;
3487
3488         switch (event->type_len) {
3489         case RINGBUF_TYPE_PADDING:
3490                 return;
3491
3492         case RINGBUF_TYPE_TIME_EXTEND:
3493                 delta = event->array[0];
3494                 delta <<= TS_SHIFT;
3495                 delta += event->time_delta;
3496                 iter->read_stamp += delta;
3497                 return;
3498
3499         case RINGBUF_TYPE_TIME_STAMP:
3500                 /* FIXME: not implemented */
3501                 return;
3502
3503         case RINGBUF_TYPE_DATA:
3504                 iter->read_stamp += event->time_delta;
3505                 return;
3506
3507         default:
3508                 BUG();
3509         }
3510         return;
3511 }
3512
3513 static struct buffer_page *
3514 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3515 {
3516         struct buffer_page *reader = NULL;
3517         unsigned long overwrite;
3518         unsigned long flags;
3519         int nr_loops = 0;
3520         int ret;
3521
3522         local_irq_save(flags);
3523         arch_spin_lock(&cpu_buffer->lock);
3524
3525  again:
3526         /*
3527          * This should normally only loop twice. But because the
3528          * start of the reader inserts an empty page, it causes
3529          * a case where we will loop three times. There should be no
3530          * reason to loop four times (that I know of).
3531          */
3532         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3533                 reader = NULL;
3534                 goto out;
3535         }
3536
3537         reader = cpu_buffer->reader_page;
3538
3539         /* If there's more to read, return this page */
3540         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3541                 goto out;
3542
3543         /* Never should we have an index greater than the size */
3544         if (RB_WARN_ON(cpu_buffer,
3545                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3546                 goto out;
3547
3548         /* check if we caught up to the tail */
3549         reader = NULL;
3550         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3551                 goto out;
3552
3553         /* Don't bother swapping if the ring buffer is empty */
3554         if (rb_num_of_entries(cpu_buffer) == 0)
3555                 goto out;
3556
3557         /*
3558          * Reset the reader page to size zero.
3559          */
3560         local_set(&cpu_buffer->reader_page->write, 0);
3561         local_set(&cpu_buffer->reader_page->entries, 0);
3562         local_set(&cpu_buffer->reader_page->page->commit, 0);
3563         cpu_buffer->reader_page->real_end = 0;
3564
3565  spin:
3566         /*
3567          * Splice the empty reader page into the list around the head.
3568          */
3569         reader = rb_set_head_page(cpu_buffer);
3570         if (!reader)
3571                 goto out;
3572         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3573         cpu_buffer->reader_page->list.prev = reader->list.prev;
3574
3575         /*
3576          * cpu_buffer->pages just needs to point to the buffer, it
3577          *  has no specific buffer page to point to. Lets move it out
3578          *  of our way so we don't accidentally swap it.
3579          */
3580         cpu_buffer->pages = reader->list.prev;
3581
3582         /* The reader page will be pointing to the new head */
3583         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3584
3585         /*
3586          * We want to make sure we read the overruns after we set up our
3587          * pointers to the next object. The writer side does a
3588          * cmpxchg to cross pages which acts as the mb on the writer
3589          * side. Note, the reader will constantly fail the swap
3590          * while the writer is updating the pointers, so this
3591          * guarantees that the overwrite recorded here is the one we
3592          * want to compare with the last_overrun.
3593          */
3594         smp_mb();
3595         overwrite = local_read(&(cpu_buffer->overrun));
3596
3597         /*
3598          * Here's the tricky part.
3599          *
3600          * We need to move the pointer past the header page.
3601          * But we can only do that if a writer is not currently
3602          * moving it. The page before the header page has the
3603          * flag bit '1' set if it is pointing to the page we want.
3604          * but if the writer is in the process of moving it
3605          * than it will be '2' or already moved '0'.
3606          */
3607
3608         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3609
3610         /*
3611          * If we did not convert it, then we must try again.
3612          */
3613         if (!ret)
3614                 goto spin;
3615
3616         /*
3617          * Yeah! We succeeded in replacing the page.
3618          *
3619          * Now make the new head point back to the reader page.
3620          */
3621         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3622         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3623
3624         /* Finally update the reader page to the new head */
3625         cpu_buffer->reader_page = reader;
3626         cpu_buffer->reader_page->read = 0;
3627
3628         if (overwrite != cpu_buffer->last_overrun) {
3629                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3630                 cpu_buffer->last_overrun = overwrite;
3631         }
3632
3633         goto again;
3634
3635  out:
3636         /* Update the read_stamp on the first event */
3637         if (reader && reader->read == 0)
3638                 cpu_buffer->read_stamp = reader->page->time_stamp;
3639
3640         arch_spin_unlock(&cpu_buffer->lock);
3641         local_irq_restore(flags);
3642
3643         return reader;
3644 }
3645
3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647 {
3648         struct ring_buffer_event *event;
3649         struct buffer_page *reader;
3650         unsigned length;
3651
3652         reader = rb_get_reader_page(cpu_buffer);
3653
3654         /* This function should not be called when buffer is empty */
3655         if (RB_WARN_ON(cpu_buffer, !reader))
3656                 return;
3657
3658         event = rb_reader_event(cpu_buffer);
3659
3660         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3661                 cpu_buffer->read++;
3662
3663         rb_update_read_stamp(cpu_buffer, event);
3664
3665         length = rb_event_length(event);
3666         cpu_buffer->reader_page->read += length;
3667 }
3668
3669 static void rb_advance_iter(struct ring_buffer_iter *iter)
3670 {
3671         struct ring_buffer_per_cpu *cpu_buffer;
3672         struct ring_buffer_event *event;
3673         unsigned length;
3674
3675         cpu_buffer = iter->cpu_buffer;
3676
3677         /*
3678          * Check if we are at the end of the buffer.
3679          */
3680         if (iter->head >= rb_page_size(iter->head_page)) {
3681                 /* discarded commits can make the page empty */
3682                 if (iter->head_page == cpu_buffer->commit_page)
3683                         return;
3684                 rb_inc_iter(iter);
3685                 return;
3686         }
3687
3688         event = rb_iter_head_event(iter);
3689
3690         length = rb_event_length(event);
3691
3692         /*
3693          * This should not be called to advance the header if we are
3694          * at the tail of the buffer.
3695          */
3696         if (RB_WARN_ON(cpu_buffer,
3697                        (iter->head_page == cpu_buffer->commit_page) &&
3698                        (iter->head + length > rb_commit_index(cpu_buffer))))
3699                 return;
3700
3701         rb_update_iter_read_stamp(iter, event);
3702
3703         iter->head += length;
3704
3705         /* check for end of page padding */
3706         if ((iter->head >= rb_page_size(iter->head_page)) &&
3707             (iter->head_page != cpu_buffer->commit_page))
3708                 rb_inc_iter(iter);
3709 }
3710
3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712 {
3713         return cpu_buffer->lost_events;
3714 }
3715
3716 static struct ring_buffer_event *
3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718                unsigned long *lost_events)
3719 {
3720         struct ring_buffer_event *event;
3721         struct buffer_page *reader;
3722         int nr_loops = 0;
3723
3724  again:
3725         /*
3726          * We repeat when a time extend is encountered.
3727          * Since the time extend is always attached to a data event,
3728          * we should never loop more than once.
3729          * (We never hit the following condition more than twice).
3730          */
3731         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3732                 return NULL;
3733
3734         reader = rb_get_reader_page(cpu_buffer);
3735         if (!reader)
3736                 return NULL;
3737
3738         event = rb_reader_event(cpu_buffer);
3739
3740         switch (event->type_len) {
3741         case RINGBUF_TYPE_PADDING:
3742                 if (rb_null_event(event))
3743                         RB_WARN_ON(cpu_buffer, 1);
3744                 /*
3745                  * Because the writer could be discarding every
3746                  * event it creates (which would probably be bad)
3747                  * if we were to go back to "again" then we may never
3748                  * catch up, and will trigger the warn on, or lock
3749                  * the box. Return the padding, and we will release
3750                  * the current locks, and try again.
3751                  */
3752                 return event;
3753
3754         case RINGBUF_TYPE_TIME_EXTEND:
3755                 /* Internal data, OK to advance */
3756                 rb_advance_reader(cpu_buffer);
3757                 goto again;
3758
3759         case RINGBUF_TYPE_TIME_STAMP:
3760                 /* FIXME: not implemented */
3761                 rb_advance_reader(cpu_buffer);
3762                 goto again;
3763
3764         case RINGBUF_TYPE_DATA:
3765                 if (ts) {
3766                         *ts = cpu_buffer->read_stamp + event->time_delta;
3767                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3768                                                          cpu_buffer->cpu, ts);
3769                 }
3770                 if (lost_events)
3771                         *lost_events = rb_lost_events(cpu_buffer);
3772                 return event;
3773
3774         default:
3775                 BUG();
3776         }
3777
3778         return NULL;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3781
3782 static struct ring_buffer_event *
3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3784 {
3785         struct ring_buffer *buffer;
3786         struct ring_buffer_per_cpu *cpu_buffer;
3787         struct ring_buffer_event *event;
3788         int nr_loops = 0;
3789
3790         cpu_buffer = iter->cpu_buffer;
3791         buffer = cpu_buffer->buffer;
3792
3793         /*
3794          * Check if someone performed a consuming read to
3795          * the buffer. A consuming read invalidates the iterator
3796          * and we need to reset the iterator in this case.
3797          */
3798         if (unlikely(iter->cache_read != cpu_buffer->read ||
3799                      iter->cache_reader_page != cpu_buffer->reader_page))
3800                 rb_iter_reset(iter);
3801
3802  again:
3803         if (ring_buffer_iter_empty(iter))
3804                 return NULL;
3805
3806         /*
3807          * We repeat when a time extend is encountered or we hit
3808          * the end of the page. Since the time extend is always attached
3809          * to a data event, we should never loop more than three times.
3810          * Once for going to next page, once on time extend, and
3811          * finally once to get the event.
3812          * (We never hit the following condition more than thrice).
3813          */
3814         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3815                 return NULL;
3816
3817         if (rb_per_cpu_empty(cpu_buffer))
3818                 return NULL;
3819
3820         if (iter->head >= rb_page_size(iter->head_page)) {
3821                 rb_inc_iter(iter);
3822                 goto again;
3823         }
3824
3825         event = rb_iter_head_event(iter);
3826
3827         switch (event->type_len) {
3828         case RINGBUF_TYPE_PADDING:
3829                 if (rb_null_event(event)) {
3830                         rb_inc_iter(iter);
3831                         goto again;
3832                 }
3833                 rb_advance_iter(iter);
3834                 return event;
3835
3836         case RINGBUF_TYPE_TIME_EXTEND:
3837                 /* Internal data, OK to advance */
3838                 rb_advance_iter(iter);
3839                 goto again;
3840
3841         case RINGBUF_TYPE_TIME_STAMP:
3842                 /* FIXME: not implemented */
3843                 rb_advance_iter(iter);
3844                 goto again;
3845
3846         case RINGBUF_TYPE_DATA:
3847                 if (ts) {
3848                         *ts = iter->read_stamp + event->time_delta;
3849                         ring_buffer_normalize_time_stamp(buffer,
3850                                                          cpu_buffer->cpu, ts);
3851                 }
3852                 return event;
3853
3854         default:
3855                 BUG();
3856         }
3857
3858         return NULL;
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3861
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3863 {
3864         if (likely(!in_nmi())) {
3865                 raw_spin_lock(&cpu_buffer->reader_lock);
3866                 return true;
3867         }
3868
3869         /*
3870          * If an NMI die dumps out the content of the ring buffer
3871          * trylock must be used to prevent a deadlock if the NMI
3872          * preempted a task that holds the ring buffer locks. If
3873          * we get the lock then all is fine, if not, then continue
3874          * to do the read, but this can corrupt the ring buffer,
3875          * so it must be permanently disabled from future writes.
3876          * Reading from NMI is a oneshot deal.
3877          */
3878         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879                 return true;
3880
3881         /* Continue without locking, but disable the ring buffer */
3882         atomic_inc(&cpu_buffer->record_disabled);
3883         return false;
3884 }
3885
3886 static inline void
3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888 {
3889         if (likely(locked))
3890                 raw_spin_unlock(&cpu_buffer->reader_lock);
3891         return;
3892 }
3893
3894 /**
3895  * ring_buffer_peek - peek at the next event to be read
3896  * @buffer: The ring buffer to read
3897  * @cpu: The cpu to peak at
3898  * @ts: The timestamp counter of this event.
3899  * @lost_events: a variable to store if events were lost (may be NULL)
3900  *
3901  * This will return the event that will be read next, but does
3902  * not consume the data.
3903  */
3904 struct ring_buffer_event *
3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906                  unsigned long *lost_events)
3907 {
3908         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3909         struct ring_buffer_event *event;
3910         unsigned long flags;
3911         bool dolock;
3912
3913         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3914                 return NULL;
3915
3916  again:
3917         local_irq_save(flags);
3918         dolock = rb_reader_lock(cpu_buffer);
3919         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921                 rb_advance_reader(cpu_buffer);
3922         rb_reader_unlock(cpu_buffer, dolock);
3923         local_irq_restore(flags);
3924
3925         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3926                 goto again;
3927
3928         return event;
3929 }
3930
3931 /**
3932  * ring_buffer_iter_peek - peek at the next event to be read
3933  * @iter: The ring buffer iterator
3934  * @ts: The timestamp counter of this event.
3935  *
3936  * This will return the event that will be read next, but does
3937  * not increment the iterator.
3938  */
3939 struct ring_buffer_event *
3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941 {
3942         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943         struct ring_buffer_event *event;
3944         unsigned long flags;
3945
3946  again:
3947         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3948         event = rb_iter_peek(iter, ts);
3949         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3950
3951         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3952                 goto again;
3953
3954         return event;
3955 }
3956
3957 /**
3958  * ring_buffer_consume - return an event and consume it
3959  * @buffer: The ring buffer to get the next event from
3960  * @cpu: the cpu to read the buffer from
3961  * @ts: a variable to store the timestamp (may be NULL)
3962  * @lost_events: a variable to store if events were lost (may be NULL)
3963  *
3964  * Returns the next event in the ring buffer, and that event is consumed.
3965  * Meaning, that sequential reads will keep returning a different event,
3966  * and eventually empty the ring buffer if the producer is slower.
3967  */
3968 struct ring_buffer_event *
3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970                     unsigned long *lost_events)
3971 {
3972         struct ring_buffer_per_cpu *cpu_buffer;
3973         struct ring_buffer_event *event = NULL;
3974         unsigned long flags;
3975         bool dolock;
3976
3977  again:
3978         /* might be called in atomic */
3979         preempt_disable();
3980
3981         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982                 goto out;
3983
3984         cpu_buffer = buffer->buffers[cpu];
3985         local_irq_save(flags);
3986         dolock = rb_reader_lock(cpu_buffer);
3987
3988         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989         if (event) {
3990                 cpu_buffer->lost_events = 0;
3991                 rb_advance_reader(cpu_buffer);
3992         }
3993
3994         rb_reader_unlock(cpu_buffer, dolock);
3995         local_irq_restore(flags);
3996
3997  out:
3998         preempt_enable();
3999
4000         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4001                 goto again;
4002
4003         return event;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4006
4007 /**
4008  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009  * @buffer: The ring buffer to read from
4010  * @cpu: The cpu buffer to iterate over
4011  *
4012  * This performs the initial preparations necessary to iterate
4013  * through the buffer.  Memory is allocated, buffer recording
4014  * is disabled, and the iterator pointer is returned to the caller.
4015  *
4016  * Disabling buffer recordng prevents the reading from being
4017  * corrupted. This is not a consuming read, so a producer is not
4018  * expected.
4019  *
4020  * After a sequence of ring_buffer_read_prepare calls, the user is
4021  * expected to make at least one call to ring_buffer_read_prepare_sync.
4022  * Afterwards, ring_buffer_read_start is invoked to get things going
4023  * for real.
4024  *
4025  * This overall must be paired with ring_buffer_read_finish.
4026  */
4027 struct ring_buffer_iter *
4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4029 {
4030         struct ring_buffer_per_cpu *cpu_buffer;
4031         struct ring_buffer_iter *iter;
4032
4033         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4034                 return NULL;
4035
4036         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037         if (!iter)
4038                 return NULL;
4039
4040         cpu_buffer = buffer->buffers[cpu];
4041
4042         iter->cpu_buffer = cpu_buffer;
4043
4044         atomic_inc(&buffer->resize_disabled);
4045         atomic_inc(&cpu_buffer->record_disabled);
4046
4047         return iter;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050
4051 /**
4052  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053  *
4054  * All previously invoked ring_buffer_read_prepare calls to prepare
4055  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4056  * calls on those iterators are allowed.
4057  */
4058 void
4059 ring_buffer_read_prepare_sync(void)
4060 {
4061         synchronize_sched();
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064
4065 /**
4066  * ring_buffer_read_start - start a non consuming read of the buffer
4067  * @iter: The iterator returned by ring_buffer_read_prepare
4068  *
4069  * This finalizes the startup of an iteration through the buffer.
4070  * The iterator comes from a call to ring_buffer_read_prepare and
4071  * an intervening ring_buffer_read_prepare_sync must have been
4072  * performed.
4073  *
4074  * Must be paired with ring_buffer_read_finish.
4075  */
4076 void
4077 ring_buffer_read_start(struct ring_buffer_iter *iter)
4078 {
4079         struct ring_buffer_per_cpu *cpu_buffer;
4080         unsigned long flags;
4081
4082         if (!iter)
4083                 return;
4084
4085         cpu_buffer = iter->cpu_buffer;
4086
4087         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088         arch_spin_lock(&cpu_buffer->lock);
4089         rb_iter_reset(iter);
4090         arch_spin_unlock(&cpu_buffer->lock);
4091         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4094
4095 /**
4096  * ring_buffer_read_finish - finish reading the iterator of the buffer
4097  * @iter: The iterator retrieved by ring_buffer_start
4098  *
4099  * This re-enables the recording to the buffer, and frees the
4100  * iterator.
4101  */
4102 void
4103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104 {
4105         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106         unsigned long flags;
4107
4108         /*
4109          * Ring buffer is disabled from recording, here's a good place
4110          * to check the integrity of the ring buffer.
4111          * Must prevent readers from trying to read, as the check
4112          * clears the HEAD page and readers require it.
4113          */
4114         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115         rb_check_pages(cpu_buffer);
4116         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118         atomic_dec(&cpu_buffer->record_disabled);
4119         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4120         kfree(iter);
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4123
4124 /**
4125  * ring_buffer_read - read the next item in the ring buffer by the iterator
4126  * @iter: The ring buffer iterator
4127  * @ts: The time stamp of the event read.
4128  *
4129  * This reads the next event in the ring buffer and increments the iterator.
4130  */
4131 struct ring_buffer_event *
4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133 {
4134         struct ring_buffer_event *event;
4135         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136         unsigned long flags;
4137
4138         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139  again:
4140         event = rb_iter_peek(iter, ts);
4141         if (!event)
4142                 goto out;
4143
4144         if (event->type_len == RINGBUF_TYPE_PADDING)
4145                 goto again;
4146
4147         rb_advance_iter(iter);
4148  out:
4149         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150
4151         return event;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_read);
4154
4155 /**
4156  * ring_buffer_size - return the size of the ring buffer (in bytes)
4157  * @buffer: The ring buffer.
4158  */
4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4160 {
4161         /*
4162          * Earlier, this method returned
4163          *      BUF_PAGE_SIZE * buffer->nr_pages
4164          * Since the nr_pages field is now removed, we have converted this to
4165          * return the per cpu buffer value.
4166          */
4167         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168                 return 0;
4169
4170         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_size);
4173
4174 static void
4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176 {
4177         rb_head_page_deactivate(cpu_buffer);
4178
4179         cpu_buffer->head_page
4180                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4181         local_set(&cpu_buffer->head_page->write, 0);
4182         local_set(&cpu_buffer->head_page->entries, 0);
4183         local_set(&cpu_buffer->head_page->page->commit, 0);
4184
4185         cpu_buffer->head_page->read = 0;
4186
4187         cpu_buffer->tail_page = cpu_buffer->head_page;
4188         cpu_buffer->commit_page = cpu_buffer->head_page;
4189
4190         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4191         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4192         local_set(&cpu_buffer->reader_page->write, 0);
4193         local_set(&cpu_buffer->reader_page->entries, 0);
4194         local_set(&cpu_buffer->reader_page->page->commit, 0);
4195         cpu_buffer->reader_page->read = 0;
4196
4197         local_set(&cpu_buffer->entries_bytes, 0);
4198         local_set(&cpu_buffer->overrun, 0);
4199         local_set(&cpu_buffer->commit_overrun, 0);
4200         local_set(&cpu_buffer->dropped_events, 0);
4201         local_set(&cpu_buffer->entries, 0);
4202         local_set(&cpu_buffer->committing, 0);
4203         local_set(&cpu_buffer->commits, 0);
4204         cpu_buffer->read = 0;
4205         cpu_buffer->read_bytes = 0;
4206
4207         cpu_buffer->write_stamp = 0;
4208         cpu_buffer->read_stamp = 0;
4209
4210         cpu_buffer->lost_events = 0;
4211         cpu_buffer->last_overrun = 0;
4212
4213         rb_head_page_activate(cpu_buffer);
4214 }
4215
4216 /**
4217  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218  * @buffer: The ring buffer to reset a per cpu buffer of
4219  * @cpu: The CPU buffer to be reset
4220  */
4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222 {
4223         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224         unsigned long flags;
4225
4226         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227                 return;
4228
4229         atomic_inc(&buffer->resize_disabled);
4230         atomic_inc(&cpu_buffer->record_disabled);
4231
4232         /* Make sure all commits have finished */
4233         synchronize_sched();
4234
4235         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4236
4237         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238                 goto out;
4239
4240         arch_spin_lock(&cpu_buffer->lock);
4241
4242         rb_reset_cpu(cpu_buffer);
4243
4244         arch_spin_unlock(&cpu_buffer->lock);
4245
4246  out:
4247         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248
4249         atomic_dec(&cpu_buffer->record_disabled);
4250         atomic_dec(&buffer->resize_disabled);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4253
4254 /**
4255  * ring_buffer_reset - reset a ring buffer
4256  * @buffer: The ring buffer to reset all cpu buffers
4257  */
4258 void ring_buffer_reset(struct ring_buffer *buffer)
4259 {
4260         int cpu;
4261
4262         for_each_buffer_cpu(buffer, cpu)
4263                 ring_buffer_reset_cpu(buffer, cpu);
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4266
4267 /**
4268  * rind_buffer_empty - is the ring buffer empty?
4269  * @buffer: The ring buffer to test
4270  */
4271 bool ring_buffer_empty(struct ring_buffer *buffer)
4272 {
4273         struct ring_buffer_per_cpu *cpu_buffer;
4274         unsigned long flags;
4275         bool dolock;
4276         int cpu;
4277         int ret;
4278
4279         /* yes this is racy, but if you don't like the race, lock the buffer */
4280         for_each_buffer_cpu(buffer, cpu) {
4281                 cpu_buffer = buffer->buffers[cpu];
4282                 local_irq_save(flags);
4283                 dolock = rb_reader_lock(cpu_buffer);
4284                 ret = rb_per_cpu_empty(cpu_buffer);
4285                 rb_reader_unlock(cpu_buffer, dolock);
4286                 local_irq_restore(flags);
4287
4288                 if (!ret)
4289                         return false;
4290         }
4291
4292         return true;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4295
4296 /**
4297  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298  * @buffer: The ring buffer
4299  * @cpu: The CPU buffer to test
4300  */
4301 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4302 {
4303         struct ring_buffer_per_cpu *cpu_buffer;
4304         unsigned long flags;
4305         bool dolock;
4306         int ret;
4307
4308         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4309                 return true;
4310
4311         cpu_buffer = buffer->buffers[cpu];
4312         local_irq_save(flags);
4313         dolock = rb_reader_lock(cpu_buffer);
4314         ret = rb_per_cpu_empty(cpu_buffer);
4315         rb_reader_unlock(cpu_buffer, dolock);
4316         local_irq_restore(flags);
4317
4318         return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325  * @buffer_a: One buffer to swap with
4326  * @buffer_b: The other buffer to swap with
4327  *
4328  * This function is useful for tracers that want to take a "snapshot"
4329  * of a CPU buffer and has another back up buffer lying around.
4330  * it is expected that the tracer handles the cpu buffer not being
4331  * used at the moment.
4332  */
4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334                          struct ring_buffer *buffer_b, int cpu)
4335 {
4336         struct ring_buffer_per_cpu *cpu_buffer_a;
4337         struct ring_buffer_per_cpu *cpu_buffer_b;
4338         int ret = -EINVAL;
4339
4340         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342                 goto out;
4343
4344         cpu_buffer_a = buffer_a->buffers[cpu];
4345         cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347         /* At least make sure the two buffers are somewhat the same */
4348         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349                 goto out;
4350
4351         ret = -EAGAIN;
4352
4353         if (atomic_read(&buffer_a->record_disabled))
4354                 goto out;
4355
4356         if (atomic_read(&buffer_b->record_disabled))
4357                 goto out;
4358
4359         if (atomic_read(&cpu_buffer_a->record_disabled))
4360                 goto out;
4361
4362         if (atomic_read(&cpu_buffer_b->record_disabled))
4363                 goto out;
4364
4365         /*
4366          * We can't do a synchronize_sched here because this
4367          * function can be called in atomic context.
4368          * Normally this will be called from the same CPU as cpu.
4369          * If not it's up to the caller to protect this.
4370          */
4371         atomic_inc(&cpu_buffer_a->record_disabled);
4372         atomic_inc(&cpu_buffer_b->record_disabled);
4373
4374         ret = -EBUSY;
4375         if (local_read(&cpu_buffer_a->committing))
4376                 goto out_dec;
4377         if (local_read(&cpu_buffer_b->committing))
4378                 goto out_dec;
4379
4380         buffer_a->buffers[cpu] = cpu_buffer_b;
4381         buffer_b->buffers[cpu] = cpu_buffer_a;
4382
4383         cpu_buffer_b->buffer = buffer_a;
4384         cpu_buffer_a->buffer = buffer_b;
4385
4386         ret = 0;
4387
4388 out_dec:
4389         atomic_dec(&cpu_buffer_a->record_disabled);
4390         atomic_dec(&cpu_buffer_b->record_disabled);
4391 out:
4392         return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4395 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4396
4397 /**
4398  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4399  * @buffer: the buffer to allocate for.
4400  * @cpu: the cpu buffer to allocate.
4401  *
4402  * This function is used in conjunction with ring_buffer_read_page.
4403  * When reading a full page from the ring buffer, these functions
4404  * can be used to speed up the process. The calling function should
4405  * allocate a few pages first with this function. Then when it
4406  * needs to get pages from the ring buffer, it passes the result
4407  * of this function into ring_buffer_read_page, which will swap
4408  * the page that was allocated, with the read page of the buffer.
4409  *
4410  * Returns:
4411  *  The page allocated, or NULL on error.
4412  */
4413 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4414 {
4415         struct buffer_data_page *bpage;
4416         struct page *page;
4417
4418         page = alloc_pages_node(cpu_to_node(cpu),
4419                                 GFP_KERNEL | __GFP_NORETRY, 0);
4420         if (!page)
4421                 return NULL;
4422
4423         bpage = page_address(page);
4424
4425         rb_init_page(bpage);
4426
4427         return bpage;
4428 }
4429 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4430
4431 /**
4432  * ring_buffer_free_read_page - free an allocated read page
4433  * @buffer: the buffer the page was allocate for
4434  * @data: the page to free
4435  *
4436  * Free a page allocated from ring_buffer_alloc_read_page.
4437  */
4438 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4439 {
4440         free_page((unsigned long)data);
4441 }
4442 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4443
4444 /**
4445  * ring_buffer_read_page - extract a page from the ring buffer
4446  * @buffer: buffer to extract from
4447  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4448  * @len: amount to extract
4449  * @cpu: the cpu of the buffer to extract
4450  * @full: should the extraction only happen when the page is full.
4451  *
4452  * This function will pull out a page from the ring buffer and consume it.
4453  * @data_page must be the address of the variable that was returned
4454  * from ring_buffer_alloc_read_page. This is because the page might be used
4455  * to swap with a page in the ring buffer.
4456  *
4457  * for example:
4458  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4459  *      if (!rpage)
4460  *              return error;
4461  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4462  *      if (ret >= 0)
4463  *              process_page(rpage, ret);
4464  *
4465  * When @full is set, the function will not return true unless
4466  * the writer is off the reader page.
4467  *
4468  * Note: it is up to the calling functions to handle sleeps and wakeups.
4469  *  The ring buffer can be used anywhere in the kernel and can not
4470  *  blindly call wake_up. The layer that uses the ring buffer must be
4471  *  responsible for that.
4472  *
4473  * Returns:
4474  *  >=0 if data has been transferred, returns the offset of consumed data.
4475  *  <0 if no data has been transferred.
4476  */
4477 int ring_buffer_read_page(struct ring_buffer *buffer,
4478                           void **data_page, size_t len, int cpu, int full)
4479 {
4480         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4481         struct ring_buffer_event *event;
4482         struct buffer_data_page *bpage;
4483         struct buffer_page *reader;
4484         unsigned long missed_events;
4485         unsigned long flags;
4486         unsigned int commit;
4487         unsigned int read;
4488         u64 save_timestamp;
4489         int ret = -1;
4490
4491         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4492                 goto out;
4493
4494         /*
4495          * If len is not big enough to hold the page header, then
4496          * we can not copy anything.
4497          */
4498         if (len <= BUF_PAGE_HDR_SIZE)
4499                 goto out;
4500
4501         len -= BUF_PAGE_HDR_SIZE;
4502
4503         if (!data_page)
4504                 goto out;
4505
4506         bpage = *data_page;
4507         if (!bpage)
4508                 goto out;
4509
4510         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4511
4512         reader = rb_get_reader_page(cpu_buffer);
4513         if (!reader)
4514                 goto out_unlock;
4515
4516         event = rb_reader_event(cpu_buffer);
4517
4518         read = reader->read;
4519         commit = rb_page_commit(reader);
4520
4521         /* Check if any events were dropped */
4522         missed_events = cpu_buffer->lost_events;
4523
4524         /*
4525          * If this page has been partially read or
4526          * if len is not big enough to read the rest of the page or
4527          * a writer is still on the page, then
4528          * we must copy the data from the page to the buffer.
4529          * Otherwise, we can simply swap the page with the one passed in.
4530          */
4531         if (read || (len < (commit - read)) ||
4532             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4533                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4534                 unsigned int rpos = read;
4535                 unsigned int pos = 0;
4536                 unsigned int size;
4537
4538                 if (full)
4539                         goto out_unlock;
4540
4541                 if (len > (commit - read))
4542                         len = (commit - read);
4543
4544                 /* Always keep the time extend and data together */
4545                 size = rb_event_ts_length(event);
4546
4547                 if (len < size)
4548                         goto out_unlock;
4549
4550                 /* save the current timestamp, since the user will need it */
4551                 save_timestamp = cpu_buffer->read_stamp;
4552
4553                 /* Need to copy one event at a time */
4554                 do {
4555                         /* We need the size of one event, because
4556                          * rb_advance_reader only advances by one event,
4557                          * whereas rb_event_ts_length may include the size of
4558                          * one or two events.
4559                          * We have already ensured there's enough space if this
4560                          * is a time extend. */
4561                         size = rb_event_length(event);
4562                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4563
4564                         len -= size;
4565
4566                         rb_advance_reader(cpu_buffer);
4567                         rpos = reader->read;
4568                         pos += size;
4569
4570                         if (rpos >= commit)
4571                                 break;
4572
4573                         event = rb_reader_event(cpu_buffer);
4574                         /* Always keep the time extend and data together */
4575                         size = rb_event_ts_length(event);
4576                 } while (len >= size);
4577
4578                 /* update bpage */
4579                 local_set(&bpage->commit, pos);
4580                 bpage->time_stamp = save_timestamp;
4581
4582                 /* we copied everything to the beginning */
4583                 read = 0;
4584         } else {
4585                 /* update the entry counter */
4586                 cpu_buffer->read += rb_page_entries(reader);
4587                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4588
4589                 /* swap the pages */
4590                 rb_init_page(bpage);
4591                 bpage = reader->page;
4592                 reader->page = *data_page;
4593                 local_set(&reader->write, 0);
4594                 local_set(&reader->entries, 0);
4595                 reader->read = 0;
4596                 *data_page = bpage;
4597
4598                 /*
4599                  * Use the real_end for the data size,
4600                  * This gives us a chance to store the lost events
4601                  * on the page.
4602                  */
4603                 if (reader->real_end)
4604                         local_set(&bpage->commit, reader->real_end);
4605         }
4606         ret = read;
4607
4608         cpu_buffer->lost_events = 0;
4609
4610         commit = local_read(&bpage->commit);
4611         /*
4612          * Set a flag in the commit field if we lost events
4613          */
4614         if (missed_events) {
4615                 /* If there is room at the end of the page to save the
4616                  * missed events, then record it there.
4617                  */
4618                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4619                         memcpy(&bpage->data[commit], &missed_events,
4620                                sizeof(missed_events));
4621                         local_add(RB_MISSED_STORED, &bpage->commit);
4622                         commit += sizeof(missed_events);
4623                 }
4624                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4625         }
4626
4627         /*
4628          * This page may be off to user land. Zero it out here.
4629          */
4630         if (commit < BUF_PAGE_SIZE)
4631                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4632
4633  out_unlock:
4634         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4635
4636  out:
4637         return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4640
4641 #ifdef CONFIG_HOTPLUG_CPU
4642 static int rb_cpu_notify(struct notifier_block *self,
4643                          unsigned long action, void *hcpu)
4644 {
4645         struct ring_buffer *buffer =
4646                 container_of(self, struct ring_buffer, cpu_notify);
4647         long cpu = (long)hcpu;
4648         int cpu_i, nr_pages_same;
4649         unsigned int nr_pages;
4650
4651         switch (action) {
4652         case CPU_UP_PREPARE:
4653         case CPU_UP_PREPARE_FROZEN:
4654                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4655                         return NOTIFY_OK;
4656
4657                 nr_pages = 0;
4658                 nr_pages_same = 1;
4659                 /* check if all cpu sizes are same */
4660                 for_each_buffer_cpu(buffer, cpu_i) {
4661                         /* fill in the size from first enabled cpu */
4662                         if (nr_pages == 0)
4663                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4664                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4665                                 nr_pages_same = 0;
4666                                 break;
4667                         }
4668                 }
4669                 /* allocate minimum pages, user can later expand it */
4670                 if (!nr_pages_same)
4671                         nr_pages = 2;
4672                 buffer->buffers[cpu] =
4673                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4674                 if (!buffer->buffers[cpu]) {
4675                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4676                              cpu);
4677                         return NOTIFY_OK;
4678                 }
4679                 smp_wmb();
4680                 cpumask_set_cpu(cpu, buffer->cpumask);
4681                 break;
4682         case CPU_DOWN_PREPARE:
4683         case CPU_DOWN_PREPARE_FROZEN:
4684                 /*
4685                  * Do nothing.
4686                  *  If we were to free the buffer, then the user would
4687                  *  lose any trace that was in the buffer.
4688                  */
4689                 break;
4690         default:
4691                 break;
4692         }
4693         return NOTIFY_OK;
4694 }
4695 #endif
4696
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698 /*
4699  * This is a basic integrity check of the ring buffer.
4700  * Late in the boot cycle this test will run when configured in.
4701  * It will kick off a thread per CPU that will go into a loop
4702  * writing to the per cpu ring buffer various sizes of data.
4703  * Some of the data will be large items, some small.
4704  *
4705  * Another thread is created that goes into a spin, sending out
4706  * IPIs to the other CPUs to also write into the ring buffer.
4707  * this is to test the nesting ability of the buffer.
4708  *
4709  * Basic stats are recorded and reported. If something in the
4710  * ring buffer should happen that's not expected, a big warning
4711  * is displayed and all ring buffers are disabled.
4712  */
4713 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714
4715 struct rb_test_data {
4716         struct ring_buffer      *buffer;
4717         unsigned long           events;
4718         unsigned long           bytes_written;
4719         unsigned long           bytes_alloc;
4720         unsigned long           bytes_dropped;
4721         unsigned long           events_nested;
4722         unsigned long           bytes_written_nested;
4723         unsigned long           bytes_alloc_nested;
4724         unsigned long           bytes_dropped_nested;
4725         int                     min_size_nested;
4726         int                     max_size_nested;
4727         int                     max_size;
4728         int                     min_size;
4729         int                     cpu;
4730         int                     cnt;
4731 };
4732
4733 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734
4735 /* 1 meg per cpu */
4736 #define RB_TEST_BUFFER_SIZE     1048576
4737
4738 static char rb_string[] __initdata =
4739         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742
4743 static bool rb_test_started __initdata;
4744
4745 struct rb_item {
4746         int size;
4747         char str[];
4748 };
4749
4750 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751 {
4752         struct ring_buffer_event *event;
4753         struct rb_item *item;
4754         bool started;
4755         int event_len;
4756         int size;
4757         int len;
4758         int cnt;
4759
4760         /* Have nested writes different that what is written */
4761         cnt = data->cnt + (nested ? 27 : 0);
4762
4763         /* Multiply cnt by ~e, to make some unique increment */
4764         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765
4766         len = size + sizeof(struct rb_item);
4767
4768         started = rb_test_started;
4769         /* read rb_test_started before checking buffer enabled */
4770         smp_rmb();
4771
4772         event = ring_buffer_lock_reserve(data->buffer, len);
4773         if (!event) {
4774                 /* Ignore dropped events before test starts. */
4775                 if (started) {
4776                         if (nested)
4777                                 data->bytes_dropped += len;
4778                         else
4779                                 data->bytes_dropped_nested += len;
4780                 }
4781                 return len;
4782         }
4783
4784         event_len = ring_buffer_event_length(event);
4785
4786         if (RB_WARN_ON(data->buffer, event_len < len))
4787                 goto out;
4788
4789         item = ring_buffer_event_data(event);
4790         item->size = size;
4791         memcpy(item->str, rb_string, size);
4792
4793         if (nested) {
4794                 data->bytes_alloc_nested += event_len;
4795                 data->bytes_written_nested += len;
4796                 data->events_nested++;
4797                 if (!data->min_size_nested || len < data->min_size_nested)
4798                         data->min_size_nested = len;
4799                 if (len > data->max_size_nested)
4800                         data->max_size_nested = len;
4801         } else {
4802                 data->bytes_alloc += event_len;
4803                 data->bytes_written += len;
4804                 data->events++;
4805                 if (!data->min_size || len < data->min_size)
4806                         data->max_size = len;
4807                 if (len > data->max_size)
4808                         data->max_size = len;
4809         }
4810
4811  out:
4812         ring_buffer_unlock_commit(data->buffer, event);
4813
4814         return 0;
4815 }
4816
4817 static __init int rb_test(void *arg)
4818 {
4819         struct rb_test_data *data = arg;
4820
4821         while (!kthread_should_stop()) {
4822                 rb_write_something(data, false);
4823                 data->cnt++;
4824
4825                 set_current_state(TASK_INTERRUPTIBLE);
4826                 /* Now sleep between a min of 100-300us and a max of 1ms */
4827                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828         }
4829
4830         return 0;
4831 }
4832
4833 static __init void rb_ipi(void *ignore)
4834 {
4835         struct rb_test_data *data;
4836         int cpu = smp_processor_id();
4837
4838         data = &rb_data[cpu];
4839         rb_write_something(data, true);
4840 }
4841
4842 static __init int rb_hammer_test(void *arg)
4843 {
4844         while (!kthread_should_stop()) {
4845
4846                 /* Send an IPI to all cpus to write data! */
4847                 smp_call_function(rb_ipi, NULL, 1);
4848                 /* No sleep, but for non preempt, let others run */
4849                 schedule();
4850         }
4851
4852         return 0;
4853 }
4854
4855 static __init int test_ringbuffer(void)
4856 {
4857         struct task_struct *rb_hammer;
4858         struct ring_buffer *buffer;
4859         int cpu;
4860         int ret = 0;
4861
4862         pr_info("Running ring buffer tests...\n");
4863
4864         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865         if (WARN_ON(!buffer))
4866                 return 0;
4867
4868         /* Disable buffer so that threads can't write to it yet */
4869         ring_buffer_record_off(buffer);
4870
4871         for_each_online_cpu(cpu) {
4872                 rb_data[cpu].buffer = buffer;
4873                 rb_data[cpu].cpu = cpu;
4874                 rb_data[cpu].cnt = cpu;
4875                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876                                                  "rbtester/%d", cpu);
4877                 if (WARN_ON(!rb_threads[cpu])) {
4878                         pr_cont("FAILED\n");
4879                         ret = -1;
4880                         goto out_free;
4881                 }
4882
4883                 kthread_bind(rb_threads[cpu], cpu);
4884                 wake_up_process(rb_threads[cpu]);
4885         }
4886
4887         /* Now create the rb hammer! */
4888         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889         if (WARN_ON(!rb_hammer)) {
4890                 pr_cont("FAILED\n");
4891                 ret = -1;
4892                 goto out_free;
4893         }
4894
4895         ring_buffer_record_on(buffer);
4896         /*
4897          * Show buffer is enabled before setting rb_test_started.
4898          * Yes there's a small race window where events could be
4899          * dropped and the thread wont catch it. But when a ring
4900          * buffer gets enabled, there will always be some kind of
4901          * delay before other CPUs see it. Thus, we don't care about
4902          * those dropped events. We care about events dropped after
4903          * the threads see that the buffer is active.
4904          */
4905         smp_wmb();
4906         rb_test_started = true;
4907
4908         set_current_state(TASK_INTERRUPTIBLE);
4909         /* Just run for 10 seconds */;
4910         schedule_timeout(10 * HZ);
4911
4912         kthread_stop(rb_hammer);
4913
4914  out_free:
4915         for_each_online_cpu(cpu) {
4916                 if (!rb_threads[cpu])
4917                         break;
4918                 kthread_stop(rb_threads[cpu]);
4919         }
4920         if (ret) {
4921                 ring_buffer_free(buffer);
4922                 return ret;
4923         }
4924
4925         /* Report! */
4926         pr_info("finished\n");
4927         for_each_online_cpu(cpu) {
4928                 struct ring_buffer_event *event;
4929                 struct rb_test_data *data = &rb_data[cpu];
4930                 struct rb_item *item;
4931                 unsigned long total_events;
4932                 unsigned long total_dropped;
4933                 unsigned long total_written;
4934                 unsigned long total_alloc;
4935                 unsigned long total_read = 0;
4936                 unsigned long total_size = 0;
4937                 unsigned long total_len = 0;
4938                 unsigned long total_lost = 0;
4939                 unsigned long lost;
4940                 int big_event_size;
4941                 int small_event_size;
4942
4943                 ret = -1;
4944
4945                 total_events = data->events + data->events_nested;
4946                 total_written = data->bytes_written + data->bytes_written_nested;
4947                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949
4950                 big_event_size = data->max_size + data->max_size_nested;
4951                 small_event_size = data->min_size + data->min_size_nested;
4952
4953                 pr_info("CPU %d:\n", cpu);
4954                 pr_info("              events:    %ld\n", total_events);
4955                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4956                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4957                 pr_info("       written bytes:    %ld\n", total_written);
4958                 pr_info("       biggest event:    %d\n", big_event_size);
4959                 pr_info("      smallest event:    %d\n", small_event_size);
4960
4961                 if (RB_WARN_ON(buffer, total_dropped))
4962                         break;
4963
4964                 ret = 0;
4965
4966                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967                         total_lost += lost;
4968                         item = ring_buffer_event_data(event);
4969                         total_len += ring_buffer_event_length(event);
4970                         total_size += item->size + sizeof(struct rb_item);
4971                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972                                 pr_info("FAILED!\n");
4973                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4974                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4975                                 RB_WARN_ON(buffer, 1);
4976                                 ret = -1;
4977                                 break;
4978                         }
4979                         total_read++;
4980                 }
4981                 if (ret)
4982                         break;
4983
4984                 ret = -1;
4985
4986                 pr_info("         read events:   %ld\n", total_read);
4987                 pr_info("         lost events:   %ld\n", total_lost);
4988                 pr_info("        total events:   %ld\n", total_lost + total_read);
4989                 pr_info("  recorded len bytes:   %ld\n", total_len);
4990                 pr_info(" recorded size bytes:   %ld\n", total_size);
4991                 if (total_lost)
4992                         pr_info(" With dropped events, record len and size may not match\n"
4993                                 " alloced and written from above\n");
4994                 if (!total_lost) {
4995                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996                                        total_size != total_written))
4997                                 break;
4998                 }
4999                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000                         break;
5001
5002                 ret = 0;
5003         }
5004         if (!ret)
5005                 pr_info("Ring buffer PASSED!\n");
5006
5007         ring_buffer_free(buffer);
5008         return 0;
5009 }
5010
5011 late_initcall(test_ringbuffer);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */