Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418
419         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420                          "offset:0;\tsize:%u;\tsigned:%u;\n",
421                          (unsigned int)sizeof(field.time_stamp),
422                          (unsigned int)is_signed_type(u64));
423
424         trace_seq_printf(s, "\tfield: local_t commit;\t"
425                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
426                          (unsigned int)offsetof(typeof(field), commit),
427                          (unsigned int)sizeof(field.commit),
428                          (unsigned int)is_signed_type(long));
429
430         trace_seq_printf(s, "\tfield: int overwrite;\t"
431                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
432                          (unsigned int)offsetof(typeof(field), commit),
433                          1,
434                          (unsigned int)is_signed_type(long));
435
436         trace_seq_printf(s, "\tfield: char data;\t"
437                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
438                          (unsigned int)offsetof(typeof(field), data),
439                          (unsigned int)BUF_PAGE_SIZE,
440                          (unsigned int)is_signed_type(char));
441
442         return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446         struct irq_work                 work;
447         wait_queue_head_t               waiters;
448         wait_queue_head_t               full_waiters;
449         bool                            waiters_pending;
450         bool                            full_waiters_pending;
451         bool                            wakeup_full;
452 };
453
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458         int                             cpu;
459         atomic_t                        record_disabled;
460         struct ring_buffer              *buffer;
461         raw_spinlock_t                  reader_lock;    /* serialize readers */
462         arch_spinlock_t                 lock;
463         struct lock_class_key           lock_key;
464         unsigned int                    nr_pages;
465         struct list_head                *pages;
466         struct buffer_page              *head_page;     /* read from head */
467         struct buffer_page              *tail_page;     /* write to tail */
468         struct buffer_page              *commit_page;   /* committed pages */
469         struct buffer_page              *reader_page;
470         unsigned long                   lost_events;
471         unsigned long                   last_overrun;
472         local_t                         entries_bytes;
473         local_t                         entries;
474         local_t                         overrun;
475         local_t                         commit_overrun;
476         local_t                         dropped_events;
477         local_t                         committing;
478         local_t                         commits;
479         unsigned long                   read;
480         unsigned long                   read_bytes;
481         u64                             write_stamp;
482         u64                             read_stamp;
483         /* ring buffer pages to update, > 0 to add, < 0 to remove */
484         int                             nr_pages_to_update;
485         struct list_head                new_pages; /* new pages to add */
486         struct work_struct              update_pages_work;
487         struct completion               update_done;
488
489         struct rb_irq_work              irq_work;
490 };
491
492 struct ring_buffer {
493         unsigned                        flags;
494         int                             cpus;
495         atomic_t                        record_disabled;
496         atomic_t                        resize_disabled;
497         cpumask_var_t                   cpumask;
498
499         struct lock_class_key           *reader_lock_key;
500
501         struct mutex                    mutex;
502
503         struct ring_buffer_per_cpu      **buffers;
504
505 #ifdef CONFIG_HOTPLUG_CPU
506         struct notifier_block           cpu_notify;
507 #endif
508         u64                             (*clock)(void);
509
510         struct rb_irq_work              irq_work;
511 };
512
513 struct ring_buffer_iter {
514         struct ring_buffer_per_cpu      *cpu_buffer;
515         unsigned long                   head;
516         struct buffer_page              *head_page;
517         struct buffer_page              *cache_reader_page;
518         unsigned long                   cache_read;
519         u64                             read_stamp;
520 };
521
522 /*
523  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524  *
525  * Schedules a delayed work to wake up any task that is blocked on the
526  * ring buffer waiters queue.
527  */
528 static void rb_wake_up_waiters(struct irq_work *work)
529 {
530         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531
532         wake_up_all(&rbwork->waiters);
533         if (rbwork->wakeup_full) {
534                 rbwork->wakeup_full = false;
535                 wake_up_all(&rbwork->full_waiters);
536         }
537 }
538
539 /**
540  * ring_buffer_wait - wait for input to the ring buffer
541  * @buffer: buffer to wait on
542  * @cpu: the cpu buffer to wait on
543  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
544  *
545  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546  * as data is added to any of the @buffer's cpu buffers. Otherwise
547  * it will wait for data to be added to a specific cpu buffer.
548  */
549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
550 {
551         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
552         DEFINE_WAIT(wait);
553         struct rb_irq_work *work;
554         int ret = 0;
555
556         /*
557          * Depending on what the caller is waiting for, either any
558          * data in any cpu buffer, or a specific buffer, put the
559          * caller on the appropriate wait queue.
560          */
561         if (cpu == RING_BUFFER_ALL_CPUS) {
562                 work = &buffer->irq_work;
563                 /* Full only makes sense on per cpu reads */
564                 full = false;
565         } else {
566                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
567                         return -ENODEV;
568                 cpu_buffer = buffer->buffers[cpu];
569                 work = &cpu_buffer->irq_work;
570         }
571
572
573         while (true) {
574                 if (full)
575                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
576                 else
577                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
578
579                 /*
580                  * The events can happen in critical sections where
581                  * checking a work queue can cause deadlocks.
582                  * After adding a task to the queue, this flag is set
583                  * only to notify events to try to wake up the queue
584                  * using irq_work.
585                  *
586                  * We don't clear it even if the buffer is no longer
587                  * empty. The flag only causes the next event to run
588                  * irq_work to do the work queue wake up. The worse
589                  * that can happen if we race with !trace_empty() is that
590                  * an event will cause an irq_work to try to wake up
591                  * an empty queue.
592                  *
593                  * There's no reason to protect this flag either, as
594                  * the work queue and irq_work logic will do the necessary
595                  * synchronization for the wake ups. The only thing
596                  * that is necessary is that the wake up happens after
597                  * a task has been queued. It's OK for spurious wake ups.
598                  */
599                 if (full)
600                         work->full_waiters_pending = true;
601                 else
602                         work->waiters_pending = true;
603
604                 if (signal_pending(current)) {
605                         ret = -EINTR;
606                         break;
607                 }
608
609                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
610                         break;
611
612                 if (cpu != RING_BUFFER_ALL_CPUS &&
613                     !ring_buffer_empty_cpu(buffer, cpu)) {
614                         unsigned long flags;
615                         bool pagebusy;
616
617                         if (!full)
618                                 break;
619
620                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
621                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
622                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
623
624                         if (!pagebusy)
625                                 break;
626                 }
627
628                 schedule();
629         }
630
631         if (full)
632                 finish_wait(&work->full_waiters, &wait);
633         else
634                 finish_wait(&work->waiters, &wait);
635
636         return ret;
637 }
638
639 /**
640  * ring_buffer_poll_wait - poll on buffer input
641  * @buffer: buffer to wait on
642  * @cpu: the cpu buffer to wait on
643  * @filp: the file descriptor
644  * @poll_table: The poll descriptor
645  *
646  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647  * as data is added to any of the @buffer's cpu buffers. Otherwise
648  * it will wait for data to be added to a specific cpu buffer.
649  *
650  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
651  * zero otherwise.
652  */
653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
654                           struct file *filp, poll_table *poll_table)
655 {
656         struct ring_buffer_per_cpu *cpu_buffer;
657         struct rb_irq_work *work;
658
659         if (cpu == RING_BUFFER_ALL_CPUS)
660                 work = &buffer->irq_work;
661         else {
662                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
663                         return -EINVAL;
664
665                 cpu_buffer = buffer->buffers[cpu];
666                 work = &cpu_buffer->irq_work;
667         }
668
669         poll_wait(filp, &work->waiters, poll_table);
670         work->waiters_pending = true;
671         /*
672          * There's a tight race between setting the waiters_pending and
673          * checking if the ring buffer is empty.  Once the waiters_pending bit
674          * is set, the next event will wake the task up, but we can get stuck
675          * if there's only a single event in.
676          *
677          * FIXME: Ideally, we need a memory barrier on the writer side as well,
678          * but adding a memory barrier to all events will cause too much of a
679          * performance hit in the fast path.  We only need a memory barrier when
680          * the buffer goes from empty to having content.  But as this race is
681          * extremely small, and it's not a problem if another event comes in, we
682          * will fix it later.
683          */
684         smp_mb();
685
686         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
687             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
688                 return POLLIN | POLLRDNORM;
689         return 0;
690 }
691
692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
693 #define RB_WARN_ON(b, cond)                                             \
694         ({                                                              \
695                 int _____ret = unlikely(cond);                          \
696                 if (_____ret) {                                         \
697                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698                                 struct ring_buffer_per_cpu *__b =       \
699                                         (void *)b;                      \
700                                 atomic_inc(&__b->buffer->record_disabled); \
701                         } else                                          \
702                                 atomic_inc(&b->record_disabled);        \
703                         WARN_ON(1);                                     \
704                 }                                                       \
705                 _____ret;                                               \
706         })
707
708 /* Up this if you want to test the TIME_EXTENTS and normalization */
709 #define DEBUG_SHIFT 0
710
711 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
712 {
713         /* shift to debug/test normalization and TIME_EXTENTS */
714         return buffer->clock() << DEBUG_SHIFT;
715 }
716
717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
718 {
719         u64 time;
720
721         preempt_disable_notrace();
722         time = rb_time_stamp(buffer);
723         preempt_enable_no_resched_notrace();
724
725         return time;
726 }
727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
728
729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
730                                       int cpu, u64 *ts)
731 {
732         /* Just stupid testing the normalize function and deltas */
733         *ts >>= DEBUG_SHIFT;
734 }
735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
736
737 /*
738  * Making the ring buffer lockless makes things tricky.
739  * Although writes only happen on the CPU that they are on,
740  * and they only need to worry about interrupts. Reads can
741  * happen on any CPU.
742  *
743  * The reader page is always off the ring buffer, but when the
744  * reader finishes with a page, it needs to swap its page with
745  * a new one from the buffer. The reader needs to take from
746  * the head (writes go to the tail). But if a writer is in overwrite
747  * mode and wraps, it must push the head page forward.
748  *
749  * Here lies the problem.
750  *
751  * The reader must be careful to replace only the head page, and
752  * not another one. As described at the top of the file in the
753  * ASCII art, the reader sets its old page to point to the next
754  * page after head. It then sets the page after head to point to
755  * the old reader page. But if the writer moves the head page
756  * during this operation, the reader could end up with the tail.
757  *
758  * We use cmpxchg to help prevent this race. We also do something
759  * special with the page before head. We set the LSB to 1.
760  *
761  * When the writer must push the page forward, it will clear the
762  * bit that points to the head page, move the head, and then set
763  * the bit that points to the new head page.
764  *
765  * We also don't want an interrupt coming in and moving the head
766  * page on another writer. Thus we use the second LSB to catch
767  * that too. Thus:
768  *
769  * head->list->prev->next        bit 1          bit 0
770  *                              -------        -------
771  * Normal page                     0              0
772  * Points to head page             0              1
773  * New head page                   1              0
774  *
775  * Note we can not trust the prev pointer of the head page, because:
776  *
777  * +----+       +-----+        +-----+
778  * |    |------>|  T  |---X--->|  N  |
779  * |    |<------|     |        |     |
780  * +----+       +-----+        +-----+
781  *   ^                           ^ |
782  *   |          +-----+          | |
783  *   +----------|  R  |----------+ |
784  *              |     |<-----------+
785  *              +-----+
786  *
787  * Key:  ---X-->  HEAD flag set in pointer
788  *         T      Tail page
789  *         R      Reader page
790  *         N      Next page
791  *
792  * (see __rb_reserve_next() to see where this happens)
793  *
794  *  What the above shows is that the reader just swapped out
795  *  the reader page with a page in the buffer, but before it
796  *  could make the new header point back to the new page added
797  *  it was preempted by a writer. The writer moved forward onto
798  *  the new page added by the reader and is about to move forward
799  *  again.
800  *
801  *  You can see, it is legitimate for the previous pointer of
802  *  the head (or any page) not to point back to itself. But only
803  *  temporarially.
804  */
805
806 #define RB_PAGE_NORMAL          0UL
807 #define RB_PAGE_HEAD            1UL
808 #define RB_PAGE_UPDATE          2UL
809
810
811 #define RB_FLAG_MASK            3UL
812
813 /* PAGE_MOVED is not part of the mask */
814 #define RB_PAGE_MOVED           4UL
815
816 /*
817  * rb_list_head - remove any bit
818  */
819 static struct list_head *rb_list_head(struct list_head *list)
820 {
821         unsigned long val = (unsigned long)list;
822
823         return (struct list_head *)(val & ~RB_FLAG_MASK);
824 }
825
826 /*
827  * rb_is_head_page - test if the given page is the head page
828  *
829  * Because the reader may move the head_page pointer, we can
830  * not trust what the head page is (it may be pointing to
831  * the reader page). But if the next page is a header page,
832  * its flags will be non zero.
833  */
834 static inline int
835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
836                 struct buffer_page *page, struct list_head *list)
837 {
838         unsigned long val;
839
840         val = (unsigned long)list->next;
841
842         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
843                 return RB_PAGE_MOVED;
844
845         return val & RB_FLAG_MASK;
846 }
847
848 /*
849  * rb_is_reader_page
850  *
851  * The unique thing about the reader page, is that, if the
852  * writer is ever on it, the previous pointer never points
853  * back to the reader page.
854  */
855 static int rb_is_reader_page(struct buffer_page *page)
856 {
857         struct list_head *list = page->list.prev;
858
859         return rb_list_head(list->next) != &page->list;
860 }
861
862 /*
863  * rb_set_list_to_head - set a list_head to be pointing to head.
864  */
865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
866                                 struct list_head *list)
867 {
868         unsigned long *ptr;
869
870         ptr = (unsigned long *)&list->next;
871         *ptr |= RB_PAGE_HEAD;
872         *ptr &= ~RB_PAGE_UPDATE;
873 }
874
875 /*
876  * rb_head_page_activate - sets up head page
877  */
878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880         struct buffer_page *head;
881
882         head = cpu_buffer->head_page;
883         if (!head)
884                 return;
885
886         /*
887          * Set the previous list pointer to have the HEAD flag.
888          */
889         rb_set_list_to_head(cpu_buffer, head->list.prev);
890 }
891
892 static void rb_list_head_clear(struct list_head *list)
893 {
894         unsigned long *ptr = (unsigned long *)&list->next;
895
896         *ptr &= ~RB_FLAG_MASK;
897 }
898
899 /*
900  * rb_head_page_dactivate - clears head page ptr (for free list)
901  */
902 static void
903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905         struct list_head *hd;
906
907         /* Go through the whole list and clear any pointers found. */
908         rb_list_head_clear(cpu_buffer->pages);
909
910         list_for_each(hd, cpu_buffer->pages)
911                 rb_list_head_clear(hd);
912 }
913
914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
915                             struct buffer_page *head,
916                             struct buffer_page *prev,
917                             int old_flag, int new_flag)
918 {
919         struct list_head *list;
920         unsigned long val = (unsigned long)&head->list;
921         unsigned long ret;
922
923         list = &prev->list;
924
925         val &= ~RB_FLAG_MASK;
926
927         ret = cmpxchg((unsigned long *)&list->next,
928                       val | old_flag, val | new_flag);
929
930         /* check if the reader took the page */
931         if ((ret & ~RB_FLAG_MASK) != val)
932                 return RB_PAGE_MOVED;
933
934         return ret & RB_FLAG_MASK;
935 }
936
937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
938                                    struct buffer_page *head,
939                                    struct buffer_page *prev,
940                                    int old_flag)
941 {
942         return rb_head_page_set(cpu_buffer, head, prev,
943                                 old_flag, RB_PAGE_UPDATE);
944 }
945
946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
947                                  struct buffer_page *head,
948                                  struct buffer_page *prev,
949                                  int old_flag)
950 {
951         return rb_head_page_set(cpu_buffer, head, prev,
952                                 old_flag, RB_PAGE_HEAD);
953 }
954
955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
956                                    struct buffer_page *head,
957                                    struct buffer_page *prev,
958                                    int old_flag)
959 {
960         return rb_head_page_set(cpu_buffer, head, prev,
961                                 old_flag, RB_PAGE_NORMAL);
962 }
963
964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
965                                struct buffer_page **bpage)
966 {
967         struct list_head *p = rb_list_head((*bpage)->list.next);
968
969         *bpage = list_entry(p, struct buffer_page, list);
970 }
971
972 static struct buffer_page *
973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
974 {
975         struct buffer_page *head;
976         struct buffer_page *page;
977         struct list_head *list;
978         int i;
979
980         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
981                 return NULL;
982
983         /* sanity check */
984         list = cpu_buffer->pages;
985         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
986                 return NULL;
987
988         page = head = cpu_buffer->head_page;
989         /*
990          * It is possible that the writer moves the header behind
991          * where we started, and we miss in one loop.
992          * A second loop should grab the header, but we'll do
993          * three loops just because I'm paranoid.
994          */
995         for (i = 0; i < 3; i++) {
996                 do {
997                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
998                                 cpu_buffer->head_page = page;
999                                 return page;
1000                         }
1001                         rb_inc_page(cpu_buffer, &page);
1002                 } while (page != head);
1003         }
1004
1005         RB_WARN_ON(cpu_buffer, 1);
1006
1007         return NULL;
1008 }
1009
1010 static int rb_head_page_replace(struct buffer_page *old,
1011                                 struct buffer_page *new)
1012 {
1013         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014         unsigned long val;
1015         unsigned long ret;
1016
1017         val = *ptr & ~RB_FLAG_MASK;
1018         val |= RB_PAGE_HEAD;
1019
1020         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1021
1022         return ret == val;
1023 }
1024
1025 /*
1026  * rb_tail_page_update - move the tail page forward
1027  *
1028  * Returns 1 if moved tail page, 0 if someone else did.
1029  */
1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031                                struct buffer_page *tail_page,
1032                                struct buffer_page *next_page)
1033 {
1034         struct buffer_page *old_tail;
1035         unsigned long old_entries;
1036         unsigned long old_write;
1037         int ret = 0;
1038
1039         /*
1040          * The tail page now needs to be moved forward.
1041          *
1042          * We need to reset the tail page, but without messing
1043          * with possible erasing of data brought in by interrupts
1044          * that have moved the tail page and are currently on it.
1045          *
1046          * We add a counter to the write field to denote this.
1047          */
1048         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050
1051         /*
1052          * Just make sure we have seen our old_write and synchronize
1053          * with any interrupts that come in.
1054          */
1055         barrier();
1056
1057         /*
1058          * If the tail page is still the same as what we think
1059          * it is, then it is up to us to update the tail
1060          * pointer.
1061          */
1062         if (tail_page == cpu_buffer->tail_page) {
1063                 /* Zero the write counter */
1064                 unsigned long val = old_write & ~RB_WRITE_MASK;
1065                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066
1067                 /*
1068                  * This will only succeed if an interrupt did
1069                  * not come in and change it. In which case, we
1070                  * do not want to modify it.
1071                  *
1072                  * We add (void) to let the compiler know that we do not care
1073                  * about the return value of these functions. We use the
1074                  * cmpxchg to only update if an interrupt did not already
1075                  * do it for us. If the cmpxchg fails, we don't care.
1076                  */
1077                 (void)local_cmpxchg(&next_page->write, old_write, val);
1078                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1079
1080                 /*
1081                  * No need to worry about races with clearing out the commit.
1082                  * it only can increment when a commit takes place. But that
1083                  * only happens in the outer most nested commit.
1084                  */
1085                 local_set(&next_page->page->commit, 0);
1086
1087                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1088                                    tail_page, next_page);
1089
1090                 if (old_tail == tail_page)
1091                         ret = 1;
1092         }
1093
1094         return ret;
1095 }
1096
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098                           struct buffer_page *bpage)
1099 {
1100         unsigned long val = (unsigned long)bpage;
1101
1102         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103                 return 1;
1104
1105         return 0;
1106 }
1107
1108 /**
1109  * rb_check_list - make sure a pointer to a list has the last bits zero
1110  */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112                          struct list_head *list)
1113 {
1114         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115                 return 1;
1116         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117                 return 1;
1118         return 0;
1119 }
1120
1121 /**
1122  * rb_check_pages - integrity check of buffer pages
1123  * @cpu_buffer: CPU buffer with pages to test
1124  *
1125  * As a safety measure we check to make sure the data pages have not
1126  * been corrupted.
1127  */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130         struct list_head *head = cpu_buffer->pages;
1131         struct buffer_page *bpage, *tmp;
1132
1133         /* Reset the head page if it exists */
1134         if (cpu_buffer->head_page)
1135                 rb_set_head_page(cpu_buffer);
1136
1137         rb_head_page_deactivate(cpu_buffer);
1138
1139         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140                 return -1;
1141         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142                 return -1;
1143
1144         if (rb_check_list(cpu_buffer, head))
1145                 return -1;
1146
1147         list_for_each_entry_safe(bpage, tmp, head, list) {
1148                 if (RB_WARN_ON(cpu_buffer,
1149                                bpage->list.next->prev != &bpage->list))
1150                         return -1;
1151                 if (RB_WARN_ON(cpu_buffer,
1152                                bpage->list.prev->next != &bpage->list))
1153                         return -1;
1154                 if (rb_check_list(cpu_buffer, &bpage->list))
1155                         return -1;
1156         }
1157
1158         rb_head_page_activate(cpu_buffer);
1159
1160         return 0;
1161 }
1162
1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1164 {
1165         int i;
1166         struct buffer_page *bpage, *tmp;
1167
1168         for (i = 0; i < nr_pages; i++) {
1169                 struct page *page;
1170                 /*
1171                  * __GFP_NORETRY flag makes sure that the allocation fails
1172                  * gracefully without invoking oom-killer and the system is
1173                  * not destabilized.
1174                  */
1175                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1176                                     GFP_KERNEL | __GFP_NORETRY,
1177                                     cpu_to_node(cpu));
1178                 if (!bpage)
1179                         goto free_pages;
1180
1181                 list_add(&bpage->list, pages);
1182
1183                 page = alloc_pages_node(cpu_to_node(cpu),
1184                                         GFP_KERNEL | __GFP_NORETRY, 0);
1185                 if (!page)
1186                         goto free_pages;
1187                 bpage->page = page_address(page);
1188                 rb_init_page(bpage->page);
1189         }
1190
1191         return 0;
1192
1193 free_pages:
1194         list_for_each_entry_safe(bpage, tmp, pages, list) {
1195                 list_del_init(&bpage->list);
1196                 free_buffer_page(bpage);
1197         }
1198
1199         return -ENOMEM;
1200 }
1201
1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203                              unsigned nr_pages)
1204 {
1205         LIST_HEAD(pages);
1206
1207         WARN_ON(!nr_pages);
1208
1209         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210                 return -ENOMEM;
1211
1212         /*
1213          * The ring buffer page list is a circular list that does not
1214          * start and end with a list head. All page list items point to
1215          * other pages.
1216          */
1217         cpu_buffer->pages = pages.next;
1218         list_del(&pages);
1219
1220         cpu_buffer->nr_pages = nr_pages;
1221
1222         rb_check_pages(cpu_buffer);
1223
1224         return 0;
1225 }
1226
1227 static struct ring_buffer_per_cpu *
1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1229 {
1230         struct ring_buffer_per_cpu *cpu_buffer;
1231         struct buffer_page *bpage;
1232         struct page *page;
1233         int ret;
1234
1235         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236                                   GFP_KERNEL, cpu_to_node(cpu));
1237         if (!cpu_buffer)
1238                 return NULL;
1239
1240         cpu_buffer->cpu = cpu;
1241         cpu_buffer->buffer = buffer;
1242         raw_spin_lock_init(&cpu_buffer->reader_lock);
1243         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1244         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1245         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1246         init_completion(&cpu_buffer->update_done);
1247         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1248         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1249         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1250
1251         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1252                             GFP_KERNEL, cpu_to_node(cpu));
1253         if (!bpage)
1254                 goto fail_free_buffer;
1255
1256         rb_check_bpage(cpu_buffer, bpage);
1257
1258         cpu_buffer->reader_page = bpage;
1259         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260         if (!page)
1261                 goto fail_free_reader;
1262         bpage->page = page_address(page);
1263         rb_init_page(bpage->page);
1264
1265         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1266         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1267
1268         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1269         if (ret < 0)
1270                 goto fail_free_reader;
1271
1272         cpu_buffer->head_page
1273                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1274         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1275
1276         rb_head_page_activate(cpu_buffer);
1277
1278         return cpu_buffer;
1279
1280  fail_free_reader:
1281         free_buffer_page(cpu_buffer->reader_page);
1282
1283  fail_free_buffer:
1284         kfree(cpu_buffer);
1285         return NULL;
1286 }
1287
1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290         struct list_head *head = cpu_buffer->pages;
1291         struct buffer_page *bpage, *tmp;
1292
1293         free_buffer_page(cpu_buffer->reader_page);
1294
1295         rb_head_page_deactivate(cpu_buffer);
1296
1297         if (head) {
1298                 list_for_each_entry_safe(bpage, tmp, head, list) {
1299                         list_del_init(&bpage->list);
1300                         free_buffer_page(bpage);
1301                 }
1302                 bpage = list_entry(head, struct buffer_page, list);
1303                 free_buffer_page(bpage);
1304         }
1305
1306         kfree(cpu_buffer);
1307 }
1308
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 static int rb_cpu_notify(struct notifier_block *self,
1311                          unsigned long action, void *hcpu);
1312 #endif
1313
1314 /**
1315  * __ring_buffer_alloc - allocate a new ring_buffer
1316  * @size: the size in bytes per cpu that is needed.
1317  * @flags: attributes to set for the ring buffer.
1318  *
1319  * Currently the only flag that is available is the RB_FL_OVERWRITE
1320  * flag. This flag means that the buffer will overwrite old data
1321  * when the buffer wraps. If this flag is not set, the buffer will
1322  * drop data when the tail hits the head.
1323  */
1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325                                         struct lock_class_key *key)
1326 {
1327         struct ring_buffer *buffer;
1328         int bsize;
1329         int cpu, nr_pages;
1330
1331         /* keep it in its own cache line */
1332         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333                          GFP_KERNEL);
1334         if (!buffer)
1335                 return NULL;
1336
1337         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338                 goto fail_free_buffer;
1339
1340         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1341         buffer->flags = flags;
1342         buffer->clock = trace_clock_local;
1343         buffer->reader_lock_key = key;
1344
1345         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1346         init_waitqueue_head(&buffer->irq_work.waiters);
1347
1348         /* need at least two pages */
1349         if (nr_pages < 2)
1350                 nr_pages = 2;
1351
1352         /*
1353          * In case of non-hotplug cpu, if the ring-buffer is allocated
1354          * in early initcall, it will not be notified of secondary cpus.
1355          * In that off case, we need to allocate for all possible cpus.
1356          */
1357 #ifdef CONFIG_HOTPLUG_CPU
1358         cpu_notifier_register_begin();
1359         cpumask_copy(buffer->cpumask, cpu_online_mask);
1360 #else
1361         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362 #endif
1363         buffer->cpus = nr_cpu_ids;
1364
1365         bsize = sizeof(void *) * nr_cpu_ids;
1366         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367                                   GFP_KERNEL);
1368         if (!buffer->buffers)
1369                 goto fail_free_cpumask;
1370
1371         for_each_buffer_cpu(buffer, cpu) {
1372                 buffer->buffers[cpu] =
1373                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1374                 if (!buffer->buffers[cpu])
1375                         goto fail_free_buffers;
1376         }
1377
1378 #ifdef CONFIG_HOTPLUG_CPU
1379         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380         buffer->cpu_notify.priority = 0;
1381         __register_cpu_notifier(&buffer->cpu_notify);
1382         cpu_notifier_register_done();
1383 #endif
1384
1385         mutex_init(&buffer->mutex);
1386
1387         return buffer;
1388
1389  fail_free_buffers:
1390         for_each_buffer_cpu(buffer, cpu) {
1391                 if (buffer->buffers[cpu])
1392                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1393         }
1394         kfree(buffer->buffers);
1395
1396  fail_free_cpumask:
1397         free_cpumask_var(buffer->cpumask);
1398 #ifdef CONFIG_HOTPLUG_CPU
1399         cpu_notifier_register_done();
1400 #endif
1401
1402  fail_free_buffer:
1403         kfree(buffer);
1404         return NULL;
1405 }
1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1407
1408 /**
1409  * ring_buffer_free - free a ring buffer.
1410  * @buffer: the buffer to free.
1411  */
1412 void
1413 ring_buffer_free(struct ring_buffer *buffer)
1414 {
1415         int cpu;
1416
1417 #ifdef CONFIG_HOTPLUG_CPU
1418         cpu_notifier_register_begin();
1419         __unregister_cpu_notifier(&buffer->cpu_notify);
1420 #endif
1421
1422         for_each_buffer_cpu(buffer, cpu)
1423                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1424
1425 #ifdef CONFIG_HOTPLUG_CPU
1426         cpu_notifier_register_done();
1427 #endif
1428
1429         kfree(buffer->buffers);
1430         free_cpumask_var(buffer->cpumask);
1431
1432         kfree(buffer);
1433 }
1434 EXPORT_SYMBOL_GPL(ring_buffer_free);
1435
1436 void ring_buffer_set_clock(struct ring_buffer *buffer,
1437                            u64 (*clock)(void))
1438 {
1439         buffer->clock = clock;
1440 }
1441
1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443
1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445 {
1446         return local_read(&bpage->entries) & RB_WRITE_MASK;
1447 }
1448
1449 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450 {
1451         return local_read(&bpage->write) & RB_WRITE_MASK;
1452 }
1453
1454 static int
1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1456 {
1457         struct list_head *tail_page, *to_remove, *next_page;
1458         struct buffer_page *to_remove_page, *tmp_iter_page;
1459         struct buffer_page *last_page, *first_page;
1460         unsigned int nr_removed;
1461         unsigned long head_bit;
1462         int page_entries;
1463
1464         head_bit = 0;
1465
1466         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1467         atomic_inc(&cpu_buffer->record_disabled);
1468         /*
1469          * We don't race with the readers since we have acquired the reader
1470          * lock. We also don't race with writers after disabling recording.
1471          * This makes it easy to figure out the first and the last page to be
1472          * removed from the list. We unlink all the pages in between including
1473          * the first and last pages. This is done in a busy loop so that we
1474          * lose the least number of traces.
1475          * The pages are freed after we restart recording and unlock readers.
1476          */
1477         tail_page = &cpu_buffer->tail_page->list;
1478
1479         /*
1480          * tail page might be on reader page, we remove the next page
1481          * from the ring buffer
1482          */
1483         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484                 tail_page = rb_list_head(tail_page->next);
1485         to_remove = tail_page;
1486
1487         /* start of pages to remove */
1488         first_page = list_entry(rb_list_head(to_remove->next),
1489                                 struct buffer_page, list);
1490
1491         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492                 to_remove = rb_list_head(to_remove)->next;
1493                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1494         }
1495
1496         next_page = rb_list_head(to_remove)->next;
1497
1498         /*
1499          * Now we remove all pages between tail_page and next_page.
1500          * Make sure that we have head_bit value preserved for the
1501          * next page
1502          */
1503         tail_page->next = (struct list_head *)((unsigned long)next_page |
1504                                                 head_bit);
1505         next_page = rb_list_head(next_page);
1506         next_page->prev = tail_page;
1507
1508         /* make sure pages points to a valid page in the ring buffer */
1509         cpu_buffer->pages = next_page;
1510
1511         /* update head page */
1512         if (head_bit)
1513                 cpu_buffer->head_page = list_entry(next_page,
1514                                                 struct buffer_page, list);
1515
1516         /*
1517          * change read pointer to make sure any read iterators reset
1518          * themselves
1519          */
1520         cpu_buffer->read = 0;
1521
1522         /* pages are removed, resume tracing and then free the pages */
1523         atomic_dec(&cpu_buffer->record_disabled);
1524         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1525
1526         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527
1528         /* last buffer page to remove */
1529         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530                                 list);
1531         tmp_iter_page = first_page;
1532
1533         do {
1534                 to_remove_page = tmp_iter_page;
1535                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1536
1537                 /* update the counters */
1538                 page_entries = rb_page_entries(to_remove_page);
1539                 if (page_entries) {
1540                         /*
1541                          * If something was added to this page, it was full
1542                          * since it is not the tail page. So we deduct the
1543                          * bytes consumed in ring buffer from here.
1544                          * Increment overrun to account for the lost events.
1545                          */
1546                         local_add(page_entries, &cpu_buffer->overrun);
1547                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548                 }
1549
1550                 /*
1551                  * We have already removed references to this list item, just
1552                  * free up the buffer_page and its page
1553                  */
1554                 free_buffer_page(to_remove_page);
1555                 nr_removed--;
1556
1557         } while (to_remove_page != last_page);
1558
1559         RB_WARN_ON(cpu_buffer, nr_removed);
1560
1561         return nr_removed == 0;
1562 }
1563
1564 static int
1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1566 {
1567         struct list_head *pages = &cpu_buffer->new_pages;
1568         int retries, success;
1569
1570         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1571         /*
1572          * We are holding the reader lock, so the reader page won't be swapped
1573          * in the ring buffer. Now we are racing with the writer trying to
1574          * move head page and the tail page.
1575          * We are going to adapt the reader page update process where:
1576          * 1. We first splice the start and end of list of new pages between
1577          *    the head page and its previous page.
1578          * 2. We cmpxchg the prev_page->next to point from head page to the
1579          *    start of new pages list.
1580          * 3. Finally, we update the head->prev to the end of new list.
1581          *
1582          * We will try this process 10 times, to make sure that we don't keep
1583          * spinning.
1584          */
1585         retries = 10;
1586         success = 0;
1587         while (retries--) {
1588                 struct list_head *head_page, *prev_page, *r;
1589                 struct list_head *last_page, *first_page;
1590                 struct list_head *head_page_with_bit;
1591
1592                 head_page = &rb_set_head_page(cpu_buffer)->list;
1593                 if (!head_page)
1594                         break;
1595                 prev_page = head_page->prev;
1596
1597                 first_page = pages->next;
1598                 last_page  = pages->prev;
1599
1600                 head_page_with_bit = (struct list_head *)
1601                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1602
1603                 last_page->next = head_page_with_bit;
1604                 first_page->prev = prev_page;
1605
1606                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607
1608                 if (r == head_page_with_bit) {
1609                         /*
1610                          * yay, we replaced the page pointer to our new list,
1611                          * now, we just have to update to head page's prev
1612                          * pointer to point to end of list
1613                          */
1614                         head_page->prev = last_page;
1615                         success = 1;
1616                         break;
1617                 }
1618         }
1619
1620         if (success)
1621                 INIT_LIST_HEAD(pages);
1622         /*
1623          * If we weren't successful in adding in new pages, warn and stop
1624          * tracing
1625          */
1626         RB_WARN_ON(cpu_buffer, !success);
1627         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1628
1629         /* free pages if they weren't inserted */
1630         if (!success) {
1631                 struct buffer_page *bpage, *tmp;
1632                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633                                          list) {
1634                         list_del_init(&bpage->list);
1635                         free_buffer_page(bpage);
1636                 }
1637         }
1638         return success;
1639 }
1640
1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1642 {
1643         int success;
1644
1645         if (cpu_buffer->nr_pages_to_update > 0)
1646                 success = rb_insert_pages(cpu_buffer);
1647         else
1648                 success = rb_remove_pages(cpu_buffer,
1649                                         -cpu_buffer->nr_pages_to_update);
1650
1651         if (success)
1652                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1653 }
1654
1655 static void update_pages_handler(struct work_struct *work)
1656 {
1657         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658                         struct ring_buffer_per_cpu, update_pages_work);
1659         rb_update_pages(cpu_buffer);
1660         complete(&cpu_buffer->update_done);
1661 }
1662
1663 /**
1664  * ring_buffer_resize - resize the ring buffer
1665  * @buffer: the buffer to resize.
1666  * @size: the new size.
1667  * @cpu_id: the cpu buffer to resize
1668  *
1669  * Minimum size is 2 * BUF_PAGE_SIZE.
1670  *
1671  * Returns 0 on success and < 0 on failure.
1672  */
1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674                         int cpu_id)
1675 {
1676         struct ring_buffer_per_cpu *cpu_buffer;
1677         unsigned nr_pages;
1678         int cpu, err = 0;
1679
1680         /*
1681          * Always succeed at resizing a non-existent buffer:
1682          */
1683         if (!buffer)
1684                 return size;
1685
1686         /* Make sure the requested buffer exists */
1687         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689                 return size;
1690
1691         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692         size *= BUF_PAGE_SIZE;
1693
1694         /* we need a minimum of two pages */
1695         if (size < BUF_PAGE_SIZE * 2)
1696                 size = BUF_PAGE_SIZE * 2;
1697
1698         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1699
1700         /*
1701          * Don't succeed if resizing is disabled, as a reader might be
1702          * manipulating the ring buffer and is expecting a sane state while
1703          * this is true.
1704          */
1705         if (atomic_read(&buffer->resize_disabled))
1706                 return -EBUSY;
1707
1708         /* prevent another thread from changing buffer sizes */
1709         mutex_lock(&buffer->mutex);
1710
1711         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712                 /* calculate the pages to update */
1713                 for_each_buffer_cpu(buffer, cpu) {
1714                         cpu_buffer = buffer->buffers[cpu];
1715
1716                         cpu_buffer->nr_pages_to_update = nr_pages -
1717                                                         cpu_buffer->nr_pages;
1718                         /*
1719                          * nothing more to do for removing pages or no update
1720                          */
1721                         if (cpu_buffer->nr_pages_to_update <= 0)
1722                                 continue;
1723                         /*
1724                          * to add pages, make sure all new pages can be
1725                          * allocated without receiving ENOMEM
1726                          */
1727                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1729                                                 &cpu_buffer->new_pages, cpu)) {
1730                                 /* not enough memory for new pages */
1731                                 err = -ENOMEM;
1732                                 goto out_err;
1733                         }
1734                 }
1735
1736                 get_online_cpus();
1737                 /*
1738                  * Fire off all the required work handlers
1739                  * We can't schedule on offline CPUs, but it's not necessary
1740                  * since we can change their buffer sizes without any race.
1741                  */
1742                 for_each_buffer_cpu(buffer, cpu) {
1743                         cpu_buffer = buffer->buffers[cpu];
1744                         if (!cpu_buffer->nr_pages_to_update)
1745                                 continue;
1746
1747                         /* Can't run something on an offline CPU. */
1748                         if (!cpu_online(cpu)) {
1749                                 rb_update_pages(cpu_buffer);
1750                                 cpu_buffer->nr_pages_to_update = 0;
1751                         } else {
1752                                 schedule_work_on(cpu,
1753                                                 &cpu_buffer->update_pages_work);
1754                         }
1755                 }
1756
1757                 /* wait for all the updates to complete */
1758                 for_each_buffer_cpu(buffer, cpu) {
1759                         cpu_buffer = buffer->buffers[cpu];
1760                         if (!cpu_buffer->nr_pages_to_update)
1761                                 continue;
1762
1763                         if (cpu_online(cpu))
1764                                 wait_for_completion(&cpu_buffer->update_done);
1765                         cpu_buffer->nr_pages_to_update = 0;
1766                 }
1767
1768                 put_online_cpus();
1769         } else {
1770                 /* Make sure this CPU has been intitialized */
1771                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772                         goto out;
1773
1774                 cpu_buffer = buffer->buffers[cpu_id];
1775
1776                 if (nr_pages == cpu_buffer->nr_pages)
1777                         goto out;
1778
1779                 cpu_buffer->nr_pages_to_update = nr_pages -
1780                                                 cpu_buffer->nr_pages;
1781
1782                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783                 if (cpu_buffer->nr_pages_to_update > 0 &&
1784                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1785                                             &cpu_buffer->new_pages, cpu_id)) {
1786                         err = -ENOMEM;
1787                         goto out_err;
1788                 }
1789
1790                 get_online_cpus();
1791
1792                 /* Can't run something on an offline CPU. */
1793                 if (!cpu_online(cpu_id))
1794                         rb_update_pages(cpu_buffer);
1795                 else {
1796                         schedule_work_on(cpu_id,
1797                                          &cpu_buffer->update_pages_work);
1798                         wait_for_completion(&cpu_buffer->update_done);
1799                 }
1800
1801                 cpu_buffer->nr_pages_to_update = 0;
1802                 put_online_cpus();
1803         }
1804
1805  out:
1806         /*
1807          * The ring buffer resize can happen with the ring buffer
1808          * enabled, so that the update disturbs the tracing as little
1809          * as possible. But if the buffer is disabled, we do not need
1810          * to worry about that, and we can take the time to verify
1811          * that the buffer is not corrupt.
1812          */
1813         if (atomic_read(&buffer->record_disabled)) {
1814                 atomic_inc(&buffer->record_disabled);
1815                 /*
1816                  * Even though the buffer was disabled, we must make sure
1817                  * that it is truly disabled before calling rb_check_pages.
1818                  * There could have been a race between checking
1819                  * record_disable and incrementing it.
1820                  */
1821                 synchronize_sched();
1822                 for_each_buffer_cpu(buffer, cpu) {
1823                         cpu_buffer = buffer->buffers[cpu];
1824                         rb_check_pages(cpu_buffer);
1825                 }
1826                 atomic_dec(&buffer->record_disabled);
1827         }
1828
1829         mutex_unlock(&buffer->mutex);
1830         return size;
1831
1832  out_err:
1833         for_each_buffer_cpu(buffer, cpu) {
1834                 struct buffer_page *bpage, *tmp;
1835
1836                 cpu_buffer = buffer->buffers[cpu];
1837                 cpu_buffer->nr_pages_to_update = 0;
1838
1839                 if (list_empty(&cpu_buffer->new_pages))
1840                         continue;
1841
1842                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843                                         list) {
1844                         list_del_init(&bpage->list);
1845                         free_buffer_page(bpage);
1846                 }
1847         }
1848         mutex_unlock(&buffer->mutex);
1849         return err;
1850 }
1851 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1852
1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854 {
1855         mutex_lock(&buffer->mutex);
1856         if (val)
1857                 buffer->flags |= RB_FL_OVERWRITE;
1858         else
1859                 buffer->flags &= ~RB_FL_OVERWRITE;
1860         mutex_unlock(&buffer->mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863
1864 static inline void *
1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1866 {
1867         return bpage->data + index;
1868 }
1869
1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1871 {
1872         return bpage->page->data + index;
1873 }
1874
1875 static inline struct ring_buffer_event *
1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1877 {
1878         return __rb_page_index(cpu_buffer->reader_page,
1879                                cpu_buffer->reader_page->read);
1880 }
1881
1882 static inline struct ring_buffer_event *
1883 rb_iter_head_event(struct ring_buffer_iter *iter)
1884 {
1885         return __rb_page_index(iter->head_page, iter->head);
1886 }
1887
1888 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889 {
1890         return local_read(&bpage->page->commit);
1891 }
1892
1893 /* Size is determined by what has been committed */
1894 static inline unsigned rb_page_size(struct buffer_page *bpage)
1895 {
1896         return rb_page_commit(bpage);
1897 }
1898
1899 static inline unsigned
1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901 {
1902         return rb_page_commit(cpu_buffer->commit_page);
1903 }
1904
1905 static inline unsigned
1906 rb_event_index(struct ring_buffer_event *event)
1907 {
1908         unsigned long addr = (unsigned long)event;
1909
1910         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1911 }
1912
1913 static inline int
1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915                    struct ring_buffer_event *event)
1916 {
1917         unsigned long addr = (unsigned long)event;
1918         unsigned long index;
1919
1920         index = rb_event_index(event);
1921         addr &= PAGE_MASK;
1922
1923         return cpu_buffer->commit_page->page == (void *)addr &&
1924                 rb_commit_index(cpu_buffer) == index;
1925 }
1926
1927 static void
1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1929 {
1930         unsigned long max_count;
1931
1932         /*
1933          * We only race with interrupts and NMIs on this CPU.
1934          * If we own the commit event, then we can commit
1935          * all others that interrupted us, since the interruptions
1936          * are in stack format (they finish before they come
1937          * back to us). This allows us to do a simple loop to
1938          * assign the commit to the tail.
1939          */
1940  again:
1941         max_count = cpu_buffer->nr_pages * 100;
1942
1943         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1944                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945                         return;
1946                 if (RB_WARN_ON(cpu_buffer,
1947                                rb_is_reader_page(cpu_buffer->tail_page)))
1948                         return;
1949                 local_set(&cpu_buffer->commit_page->page->commit,
1950                           rb_page_write(cpu_buffer->commit_page));
1951                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1952                 cpu_buffer->write_stamp =
1953                         cpu_buffer->commit_page->page->time_stamp;
1954                 /* add barrier to keep gcc from optimizing too much */
1955                 barrier();
1956         }
1957         while (rb_commit_index(cpu_buffer) !=
1958                rb_page_write(cpu_buffer->commit_page)) {
1959
1960                 local_set(&cpu_buffer->commit_page->page->commit,
1961                           rb_page_write(cpu_buffer->commit_page));
1962                 RB_WARN_ON(cpu_buffer,
1963                            local_read(&cpu_buffer->commit_page->page->commit) &
1964                            ~RB_WRITE_MASK);
1965                 barrier();
1966         }
1967
1968         /* again, keep gcc from optimizing */
1969         barrier();
1970
1971         /*
1972          * If an interrupt came in just after the first while loop
1973          * and pushed the tail page forward, we will be left with
1974          * a dangling commit that will never go forward.
1975          */
1976         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977                 goto again;
1978 }
1979
1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1981 {
1982         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1983         cpu_buffer->reader_page->read = 0;
1984 }
1985
1986 static void rb_inc_iter(struct ring_buffer_iter *iter)
1987 {
1988         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989
1990         /*
1991          * The iterator could be on the reader page (it starts there).
1992          * But the head could have moved, since the reader was
1993          * found. Check for this case and assign the iterator
1994          * to the head page instead of next.
1995          */
1996         if (iter->head_page == cpu_buffer->reader_page)
1997                 iter->head_page = rb_set_head_page(cpu_buffer);
1998         else
1999                 rb_inc_page(cpu_buffer, &iter->head_page);
2000
2001         iter->read_stamp = iter->head_page->page->time_stamp;
2002         iter->head = 0;
2003 }
2004
2005 /* Slow path, do not inline */
2006 static noinline struct ring_buffer_event *
2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008 {
2009         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010
2011         /* Not the first event on the page? */
2012         if (rb_event_index(event)) {
2013                 event->time_delta = delta & TS_MASK;
2014                 event->array[0] = delta >> TS_SHIFT;
2015         } else {
2016                 /* nope, just zero it */
2017                 event->time_delta = 0;
2018                 event->array[0] = 0;
2019         }
2020
2021         return skip_time_extend(event);
2022 }
2023
2024 /**
2025  * rb_update_event - update event type and data
2026  * @event: the event to update
2027  * @type: the type of event
2028  * @length: the size of the event field in the ring buffer
2029  *
2030  * Update the type and data fields of the event. The length
2031  * is the actual size that is written to the ring buffer,
2032  * and with this, we can determine what to place into the
2033  * data field.
2034  */
2035 static void
2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037                 struct ring_buffer_event *event, unsigned length,
2038                 int add_timestamp, u64 delta)
2039 {
2040         /* Only a commit updates the timestamp */
2041         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042                 delta = 0;
2043
2044         /*
2045          * If we need to add a timestamp, then we
2046          * add it to the start of the resevered space.
2047          */
2048         if (unlikely(add_timestamp)) {
2049                 event = rb_add_time_stamp(event, delta);
2050                 length -= RB_LEN_TIME_EXTEND;
2051                 delta = 0;
2052         }
2053
2054         event->time_delta = delta;
2055         length -= RB_EVNT_HDR_SIZE;
2056         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057                 event->type_len = 0;
2058                 event->array[0] = length;
2059         } else
2060                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2061 }
2062
2063 /*
2064  * rb_handle_head_page - writer hit the head page
2065  *
2066  * Returns: +1 to retry page
2067  *           0 to continue
2068  *          -1 on error
2069  */
2070 static int
2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072                     struct buffer_page *tail_page,
2073                     struct buffer_page *next_page)
2074 {
2075         struct buffer_page *new_head;
2076         int entries;
2077         int type;
2078         int ret;
2079
2080         entries = rb_page_entries(next_page);
2081
2082         /*
2083          * The hard part is here. We need to move the head
2084          * forward, and protect against both readers on
2085          * other CPUs and writers coming in via interrupts.
2086          */
2087         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088                                        RB_PAGE_HEAD);
2089
2090         /*
2091          * type can be one of four:
2092          *  NORMAL - an interrupt already moved it for us
2093          *  HEAD   - we are the first to get here.
2094          *  UPDATE - we are the interrupt interrupting
2095          *           a current move.
2096          *  MOVED  - a reader on another CPU moved the next
2097          *           pointer to its reader page. Give up
2098          *           and try again.
2099          */
2100
2101         switch (type) {
2102         case RB_PAGE_HEAD:
2103                 /*
2104                  * We changed the head to UPDATE, thus
2105                  * it is our responsibility to update
2106                  * the counters.
2107                  */
2108                 local_add(entries, &cpu_buffer->overrun);
2109                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2110
2111                 /*
2112                  * The entries will be zeroed out when we move the
2113                  * tail page.
2114                  */
2115
2116                 /* still more to do */
2117                 break;
2118
2119         case RB_PAGE_UPDATE:
2120                 /*
2121                  * This is an interrupt that interrupt the
2122                  * previous update. Still more to do.
2123                  */
2124                 break;
2125         case RB_PAGE_NORMAL:
2126                 /*
2127                  * An interrupt came in before the update
2128                  * and processed this for us.
2129                  * Nothing left to do.
2130                  */
2131                 return 1;
2132         case RB_PAGE_MOVED:
2133                 /*
2134                  * The reader is on another CPU and just did
2135                  * a swap with our next_page.
2136                  * Try again.
2137                  */
2138                 return 1;
2139         default:
2140                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141                 return -1;
2142         }
2143
2144         /*
2145          * Now that we are here, the old head pointer is
2146          * set to UPDATE. This will keep the reader from
2147          * swapping the head page with the reader page.
2148          * The reader (on another CPU) will spin till
2149          * we are finished.
2150          *
2151          * We just need to protect against interrupts
2152          * doing the job. We will set the next pointer
2153          * to HEAD. After that, we set the old pointer
2154          * to NORMAL, but only if it was HEAD before.
2155          * otherwise we are an interrupt, and only
2156          * want the outer most commit to reset it.
2157          */
2158         new_head = next_page;
2159         rb_inc_page(cpu_buffer, &new_head);
2160
2161         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162                                     RB_PAGE_NORMAL);
2163
2164         /*
2165          * Valid returns are:
2166          *  HEAD   - an interrupt came in and already set it.
2167          *  NORMAL - One of two things:
2168          *            1) We really set it.
2169          *            2) A bunch of interrupts came in and moved
2170          *               the page forward again.
2171          */
2172         switch (ret) {
2173         case RB_PAGE_HEAD:
2174         case RB_PAGE_NORMAL:
2175                 /* OK */
2176                 break;
2177         default:
2178                 RB_WARN_ON(cpu_buffer, 1);
2179                 return -1;
2180         }
2181
2182         /*
2183          * It is possible that an interrupt came in,
2184          * set the head up, then more interrupts came in
2185          * and moved it again. When we get back here,
2186          * the page would have been set to NORMAL but we
2187          * just set it back to HEAD.
2188          *
2189          * How do you detect this? Well, if that happened
2190          * the tail page would have moved.
2191          */
2192         if (ret == RB_PAGE_NORMAL) {
2193                 /*
2194                  * If the tail had moved passed next, then we need
2195                  * to reset the pointer.
2196                  */
2197                 if (cpu_buffer->tail_page != tail_page &&
2198                     cpu_buffer->tail_page != next_page)
2199                         rb_head_page_set_normal(cpu_buffer, new_head,
2200                                                 next_page,
2201                                                 RB_PAGE_HEAD);
2202         }
2203
2204         /*
2205          * If this was the outer most commit (the one that
2206          * changed the original pointer from HEAD to UPDATE),
2207          * then it is up to us to reset it to NORMAL.
2208          */
2209         if (type == RB_PAGE_HEAD) {
2210                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211                                               tail_page,
2212                                               RB_PAGE_UPDATE);
2213                 if (RB_WARN_ON(cpu_buffer,
2214                                ret != RB_PAGE_UPDATE))
2215                         return -1;
2216         }
2217
2218         return 0;
2219 }
2220
2221 static unsigned rb_calculate_event_length(unsigned length)
2222 {
2223         struct ring_buffer_event event; /* Used only for sizeof array */
2224
2225         /* zero length can cause confusions */
2226         if (!length)
2227                 length = 1;
2228
2229         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2230                 length += sizeof(event.array[0]);
2231
2232         length += RB_EVNT_HDR_SIZE;
2233         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2234
2235         return length;
2236 }
2237
2238 static inline void
2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240               struct buffer_page *tail_page,
2241               unsigned long tail, unsigned long length)
2242 {
2243         struct ring_buffer_event *event;
2244
2245         /*
2246          * Only the event that crossed the page boundary
2247          * must fill the old tail_page with padding.
2248          */
2249         if (tail >= BUF_PAGE_SIZE) {
2250                 /*
2251                  * If the page was filled, then we still need
2252                  * to update the real_end. Reset it to zero
2253                  * and the reader will ignore it.
2254                  */
2255                 if (tail == BUF_PAGE_SIZE)
2256                         tail_page->real_end = 0;
2257
2258                 local_sub(length, &tail_page->write);
2259                 return;
2260         }
2261
2262         event = __rb_page_index(tail_page, tail);
2263         kmemcheck_annotate_bitfield(event, bitfield);
2264
2265         /* account for padding bytes */
2266         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267
2268         /*
2269          * Save the original length to the meta data.
2270          * This will be used by the reader to add lost event
2271          * counter.
2272          */
2273         tail_page->real_end = tail;
2274
2275         /*
2276          * If this event is bigger than the minimum size, then
2277          * we need to be careful that we don't subtract the
2278          * write counter enough to allow another writer to slip
2279          * in on this page.
2280          * We put in a discarded commit instead, to make sure
2281          * that this space is not used again.
2282          *
2283          * If we are less than the minimum size, we don't need to
2284          * worry about it.
2285          */
2286         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287                 /* No room for any events */
2288
2289                 /* Mark the rest of the page with padding */
2290                 rb_event_set_padding(event);
2291
2292                 /* Set the write back to the previous setting */
2293                 local_sub(length, &tail_page->write);
2294                 return;
2295         }
2296
2297         /* Put in a discarded event */
2298         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299         event->type_len = RINGBUF_TYPE_PADDING;
2300         /* time delta must be non zero */
2301         event->time_delta = 1;
2302
2303         /* Set write to end of buffer */
2304         length = (tail + length) - BUF_PAGE_SIZE;
2305         local_sub(length, &tail_page->write);
2306 }
2307
2308 /*
2309  * This is the slow path, force gcc not to inline it.
2310  */
2311 static noinline struct ring_buffer_event *
2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313              unsigned long length, unsigned long tail,
2314              struct buffer_page *tail_page, u64 ts)
2315 {
2316         struct buffer_page *commit_page = cpu_buffer->commit_page;
2317         struct ring_buffer *buffer = cpu_buffer->buffer;
2318         struct buffer_page *next_page;
2319         int ret;
2320
2321         next_page = tail_page;
2322
2323         rb_inc_page(cpu_buffer, &next_page);
2324
2325         /*
2326          * If for some reason, we had an interrupt storm that made
2327          * it all the way around the buffer, bail, and warn
2328          * about it.
2329          */
2330         if (unlikely(next_page == commit_page)) {
2331                 local_inc(&cpu_buffer->commit_overrun);
2332                 goto out_reset;
2333         }
2334
2335         /*
2336          * This is where the fun begins!
2337          *
2338          * We are fighting against races between a reader that
2339          * could be on another CPU trying to swap its reader
2340          * page with the buffer head.
2341          *
2342          * We are also fighting against interrupts coming in and
2343          * moving the head or tail on us as well.
2344          *
2345          * If the next page is the head page then we have filled
2346          * the buffer, unless the commit page is still on the
2347          * reader page.
2348          */
2349         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2350
2351                 /*
2352                  * If the commit is not on the reader page, then
2353                  * move the header page.
2354                  */
2355                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356                         /*
2357                          * If we are not in overwrite mode,
2358                          * this is easy, just stop here.
2359                          */
2360                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361                                 local_inc(&cpu_buffer->dropped_events);
2362                                 goto out_reset;
2363                         }
2364
2365                         ret = rb_handle_head_page(cpu_buffer,
2366                                                   tail_page,
2367                                                   next_page);
2368                         if (ret < 0)
2369                                 goto out_reset;
2370                         if (ret)
2371                                 goto out_again;
2372                 } else {
2373                         /*
2374                          * We need to be careful here too. The
2375                          * commit page could still be on the reader
2376                          * page. We could have a small buffer, and
2377                          * have filled up the buffer with events
2378                          * from interrupts and such, and wrapped.
2379                          *
2380                          * Note, if the tail page is also the on the
2381                          * reader_page, we let it move out.
2382                          */
2383                         if (unlikely((cpu_buffer->commit_page !=
2384                                       cpu_buffer->tail_page) &&
2385                                      (cpu_buffer->commit_page ==
2386                                       cpu_buffer->reader_page))) {
2387                                 local_inc(&cpu_buffer->commit_overrun);
2388                                 goto out_reset;
2389                         }
2390                 }
2391         }
2392
2393         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394         if (ret) {
2395                 /*
2396                  * Nested commits always have zero deltas, so
2397                  * just reread the time stamp
2398                  */
2399                 ts = rb_time_stamp(buffer);
2400                 next_page->page->time_stamp = ts;
2401         }
2402
2403  out_again:
2404
2405         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406
2407         /* fail and let the caller try again */
2408         return ERR_PTR(-EAGAIN);
2409
2410  out_reset:
2411         /* reset write */
2412         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2413
2414         return NULL;
2415 }
2416
2417 static struct ring_buffer_event *
2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2419                   unsigned long length, u64 ts,
2420                   u64 delta, int add_timestamp)
2421 {
2422         struct buffer_page *tail_page;
2423         struct ring_buffer_event *event;
2424         unsigned long tail, write;
2425
2426         /*
2427          * If the time delta since the last event is too big to
2428          * hold in the time field of the event, then we append a
2429          * TIME EXTEND event ahead of the data event.
2430          */
2431         if (unlikely(add_timestamp))
2432                 length += RB_LEN_TIME_EXTEND;
2433
2434         tail_page = cpu_buffer->tail_page;
2435         write = local_add_return(length, &tail_page->write);
2436
2437         /* set write to only the index of the write */
2438         write &= RB_WRITE_MASK;
2439         tail = write - length;
2440
2441         /*
2442          * If this is the first commit on the page, then it has the same
2443          * timestamp as the page itself.
2444          */
2445         if (!tail)
2446                 delta = 0;
2447
2448         /* See if we shot pass the end of this buffer page */
2449         if (unlikely(write > BUF_PAGE_SIZE))
2450                 return rb_move_tail(cpu_buffer, length, tail,
2451                                     tail_page, ts);
2452
2453         /* We reserved something on the buffer */
2454
2455         event = __rb_page_index(tail_page, tail);
2456         kmemcheck_annotate_bitfield(event, bitfield);
2457         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2458
2459         local_inc(&tail_page->entries);
2460
2461         /*
2462          * If this is the first commit on the page, then update
2463          * its timestamp.
2464          */
2465         if (!tail)
2466                 tail_page->page->time_stamp = ts;
2467
2468         /* account for these added bytes */
2469         local_add(length, &cpu_buffer->entries_bytes);
2470
2471         return event;
2472 }
2473
2474 static inline int
2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476                   struct ring_buffer_event *event)
2477 {
2478         unsigned long new_index, old_index;
2479         struct buffer_page *bpage;
2480         unsigned long index;
2481         unsigned long addr;
2482
2483         new_index = rb_event_index(event);
2484         old_index = new_index + rb_event_ts_length(event);
2485         addr = (unsigned long)event;
2486         addr &= PAGE_MASK;
2487
2488         bpage = cpu_buffer->tail_page;
2489
2490         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2491                 unsigned long write_mask =
2492                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2493                 unsigned long event_length = rb_event_length(event);
2494                 /*
2495                  * This is on the tail page. It is possible that
2496                  * a write could come in and move the tail page
2497                  * and write to the next page. That is fine
2498                  * because we just shorten what is on this page.
2499                  */
2500                 old_index += write_mask;
2501                 new_index += write_mask;
2502                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2503                 if (index == old_index) {
2504                         /* update counters */
2505                         local_sub(event_length, &cpu_buffer->entries_bytes);
2506                         return 1;
2507                 }
2508         }
2509
2510         /* could not discard */
2511         return 0;
2512 }
2513
2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516         local_inc(&cpu_buffer->committing);
2517         local_inc(&cpu_buffer->commits);
2518 }
2519
2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522         unsigned long commits;
2523
2524         if (RB_WARN_ON(cpu_buffer,
2525                        !local_read(&cpu_buffer->committing)))
2526                 return;
2527
2528  again:
2529         commits = local_read(&cpu_buffer->commits);
2530         /* synchronize with interrupts */
2531         barrier();
2532         if (local_read(&cpu_buffer->committing) == 1)
2533                 rb_set_commit_to_write(cpu_buffer);
2534
2535         local_dec(&cpu_buffer->committing);
2536
2537         /* synchronize with interrupts */
2538         barrier();
2539
2540         /*
2541          * Need to account for interrupts coming in between the
2542          * updating of the commit page and the clearing of the
2543          * committing counter.
2544          */
2545         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546             !local_read(&cpu_buffer->committing)) {
2547                 local_inc(&cpu_buffer->committing);
2548                 goto again;
2549         }
2550 }
2551
2552 static struct ring_buffer_event *
2553 rb_reserve_next_event(struct ring_buffer *buffer,
2554                       struct ring_buffer_per_cpu *cpu_buffer,
2555                       unsigned long length)
2556 {
2557         struct ring_buffer_event *event;
2558         u64 ts, delta;
2559         int nr_loops = 0;
2560         int add_timestamp;
2561         u64 diff;
2562
2563         rb_start_commit(cpu_buffer);
2564
2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2566         /*
2567          * Due to the ability to swap a cpu buffer from a buffer
2568          * it is possible it was swapped before we committed.
2569          * (committing stops a swap). We check for it here and
2570          * if it happened, we have to fail the write.
2571          */
2572         barrier();
2573         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574                 local_dec(&cpu_buffer->committing);
2575                 local_dec(&cpu_buffer->commits);
2576                 return NULL;
2577         }
2578 #endif
2579
2580         length = rb_calculate_event_length(length);
2581  again:
2582         add_timestamp = 0;
2583         delta = 0;
2584
2585         /*
2586          * We allow for interrupts to reenter here and do a trace.
2587          * If one does, it will cause this original code to loop
2588          * back here. Even with heavy interrupts happening, this
2589          * should only happen a few times in a row. If this happens
2590          * 1000 times in a row, there must be either an interrupt
2591          * storm or we have something buggy.
2592          * Bail!
2593          */
2594         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2595                 goto out_fail;
2596
2597         ts = rb_time_stamp(cpu_buffer->buffer);
2598         diff = ts - cpu_buffer->write_stamp;
2599
2600         /* make sure this diff is calculated here */
2601         barrier();
2602
2603         /* Did the write stamp get updated already? */
2604         if (likely(ts >= cpu_buffer->write_stamp)) {
2605                 delta = diff;
2606                 if (unlikely(test_time_stamp(delta))) {
2607                         int local_clock_stable = 1;
2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609                         local_clock_stable = sched_clock_stable();
2610 #endif
2611                         WARN_ONCE(delta > (1ULL << 59),
2612                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613                                   (unsigned long long)delta,
2614                                   (unsigned long long)ts,
2615                                   (unsigned long long)cpu_buffer->write_stamp,
2616                                   local_clock_stable ? "" :
2617                                   "If you just came from a suspend/resume,\n"
2618                                   "please switch to the trace global clock:\n"
2619                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2620                         add_timestamp = 1;
2621                 }
2622         }
2623
2624         event = __rb_reserve_next(cpu_buffer, length, ts,
2625                                   delta, add_timestamp);
2626         if (unlikely(PTR_ERR(event) == -EAGAIN))
2627                 goto again;
2628
2629         if (!event)
2630                 goto out_fail;
2631
2632         return event;
2633
2634  out_fail:
2635         rb_end_commit(cpu_buffer);
2636         return NULL;
2637 }
2638
2639 #ifdef CONFIG_TRACING
2640
2641 /*
2642  * The lock and unlock are done within a preempt disable section.
2643  * The current_context per_cpu variable can only be modified
2644  * by the current task between lock and unlock. But it can
2645  * be modified more than once via an interrupt. To pass this
2646  * information from the lock to the unlock without having to
2647  * access the 'in_interrupt()' functions again (which do show
2648  * a bit of overhead in something as critical as function tracing,
2649  * we use a bitmask trick.
2650  *
2651  *  bit 0 =  NMI context
2652  *  bit 1 =  IRQ context
2653  *  bit 2 =  SoftIRQ context
2654  *  bit 3 =  normal context.
2655  *
2656  * This works because this is the order of contexts that can
2657  * preempt other contexts. A SoftIRQ never preempts an IRQ
2658  * context.
2659  *
2660  * When the context is determined, the corresponding bit is
2661  * checked and set (if it was set, then a recursion of that context
2662  * happened).
2663  *
2664  * On unlock, we need to clear this bit. To do so, just subtract
2665  * 1 from the current_context and AND it to itself.
2666  *
2667  * (binary)
2668  *  101 - 1 = 100
2669  *  101 & 100 = 100 (clearing bit zero)
2670  *
2671  *  1010 - 1 = 1001
2672  *  1010 & 1001 = 1000 (clearing bit 1)
2673  *
2674  * The least significant bit can be cleared this way, and it
2675  * just so happens that it is the same bit corresponding to
2676  * the current context.
2677  */
2678 static DEFINE_PER_CPU(unsigned int, current_context);
2679
2680 static __always_inline int trace_recursive_lock(void)
2681 {
2682         unsigned int val = __this_cpu_read(current_context);
2683         int bit;
2684
2685         if (in_interrupt()) {
2686                 if (in_nmi())
2687                         bit = 0;
2688                 else if (in_irq())
2689                         bit = 1;
2690                 else
2691                         bit = 2;
2692         } else
2693                 bit = 3;
2694
2695         if (unlikely(val & (1 << bit)))
2696                 return 1;
2697
2698         val |= (1 << bit);
2699         __this_cpu_write(current_context, val);
2700
2701         return 0;
2702 }
2703
2704 static __always_inline void trace_recursive_unlock(void)
2705 {
2706         __this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
2707 }
2708
2709 #else
2710
2711 #define trace_recursive_lock()          (0)
2712 #define trace_recursive_unlock()        do { } while (0)
2713
2714 #endif
2715
2716 /**
2717  * ring_buffer_lock_reserve - reserve a part of the buffer
2718  * @buffer: the ring buffer to reserve from
2719  * @length: the length of the data to reserve (excluding event header)
2720  *
2721  * Returns a reseverd event on the ring buffer to copy directly to.
2722  * The user of this interface will need to get the body to write into
2723  * and can use the ring_buffer_event_data() interface.
2724  *
2725  * The length is the length of the data needed, not the event length
2726  * which also includes the event header.
2727  *
2728  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2729  * If NULL is returned, then nothing has been allocated or locked.
2730  */
2731 struct ring_buffer_event *
2732 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2733 {
2734         struct ring_buffer_per_cpu *cpu_buffer;
2735         struct ring_buffer_event *event;
2736         int cpu;
2737
2738         if (ring_buffer_flags != RB_BUFFERS_ON)
2739                 return NULL;
2740
2741         /* If we are tracing schedule, we don't want to recurse */
2742         preempt_disable_notrace();
2743
2744         if (atomic_read(&buffer->record_disabled))
2745                 goto out_nocheck;
2746
2747         if (trace_recursive_lock())
2748                 goto out_nocheck;
2749
2750         cpu = raw_smp_processor_id();
2751
2752         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2753                 goto out;
2754
2755         cpu_buffer = buffer->buffers[cpu];
2756
2757         if (atomic_read(&cpu_buffer->record_disabled))
2758                 goto out;
2759
2760         if (length > BUF_MAX_DATA_SIZE)
2761                 goto out;
2762
2763         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2764         if (!event)
2765                 goto out;
2766
2767         return event;
2768
2769  out:
2770         trace_recursive_unlock();
2771
2772  out_nocheck:
2773         preempt_enable_notrace();
2774         return NULL;
2775 }
2776 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2777
2778 static void
2779 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2780                       struct ring_buffer_event *event)
2781 {
2782         u64 delta;
2783
2784         /*
2785          * The event first in the commit queue updates the
2786          * time stamp.
2787          */
2788         if (rb_event_is_commit(cpu_buffer, event)) {
2789                 /*
2790                  * A commit event that is first on a page
2791                  * updates the write timestamp with the page stamp
2792                  */
2793                 if (!rb_event_index(event))
2794                         cpu_buffer->write_stamp =
2795                                 cpu_buffer->commit_page->page->time_stamp;
2796                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2797                         delta = event->array[0];
2798                         delta <<= TS_SHIFT;
2799                         delta += event->time_delta;
2800                         cpu_buffer->write_stamp += delta;
2801                 } else
2802                         cpu_buffer->write_stamp += event->time_delta;
2803         }
2804 }
2805
2806 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2807                       struct ring_buffer_event *event)
2808 {
2809         local_inc(&cpu_buffer->entries);
2810         rb_update_write_stamp(cpu_buffer, event);
2811         rb_end_commit(cpu_buffer);
2812 }
2813
2814 static __always_inline void
2815 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2816 {
2817         bool pagebusy;
2818
2819         if (buffer->irq_work.waiters_pending) {
2820                 buffer->irq_work.waiters_pending = false;
2821                 /* irq_work_queue() supplies it's own memory barriers */
2822                 irq_work_queue(&buffer->irq_work.work);
2823         }
2824
2825         if (cpu_buffer->irq_work.waiters_pending) {
2826                 cpu_buffer->irq_work.waiters_pending = false;
2827                 /* irq_work_queue() supplies it's own memory barriers */
2828                 irq_work_queue(&cpu_buffer->irq_work.work);
2829         }
2830
2831         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2832
2833         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2834                 cpu_buffer->irq_work.wakeup_full = true;
2835                 cpu_buffer->irq_work.full_waiters_pending = false;
2836                 /* irq_work_queue() supplies it's own memory barriers */
2837                 irq_work_queue(&cpu_buffer->irq_work.work);
2838         }
2839 }
2840
2841 /**
2842  * ring_buffer_unlock_commit - commit a reserved
2843  * @buffer: The buffer to commit to
2844  * @event: The event pointer to commit.
2845  *
2846  * This commits the data to the ring buffer, and releases any locks held.
2847  *
2848  * Must be paired with ring_buffer_lock_reserve.
2849  */
2850 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2851                               struct ring_buffer_event *event)
2852 {
2853         struct ring_buffer_per_cpu *cpu_buffer;
2854         int cpu = raw_smp_processor_id();
2855
2856         cpu_buffer = buffer->buffers[cpu];
2857
2858         rb_commit(cpu_buffer, event);
2859
2860         rb_wakeups(buffer, cpu_buffer);
2861
2862         trace_recursive_unlock();
2863
2864         preempt_enable_notrace();
2865
2866         return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2869
2870 static inline void rb_event_discard(struct ring_buffer_event *event)
2871 {
2872         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2873                 event = skip_time_extend(event);
2874
2875         /* array[0] holds the actual length for the discarded event */
2876         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2877         event->type_len = RINGBUF_TYPE_PADDING;
2878         /* time delta must be non zero */
2879         if (!event->time_delta)
2880                 event->time_delta = 1;
2881 }
2882
2883 /*
2884  * Decrement the entries to the page that an event is on.
2885  * The event does not even need to exist, only the pointer
2886  * to the page it is on. This may only be called before the commit
2887  * takes place.
2888  */
2889 static inline void
2890 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2891                    struct ring_buffer_event *event)
2892 {
2893         unsigned long addr = (unsigned long)event;
2894         struct buffer_page *bpage = cpu_buffer->commit_page;
2895         struct buffer_page *start;
2896
2897         addr &= PAGE_MASK;
2898
2899         /* Do the likely case first */
2900         if (likely(bpage->page == (void *)addr)) {
2901                 local_dec(&bpage->entries);
2902                 return;
2903         }
2904
2905         /*
2906          * Because the commit page may be on the reader page we
2907          * start with the next page and check the end loop there.
2908          */
2909         rb_inc_page(cpu_buffer, &bpage);
2910         start = bpage;
2911         do {
2912                 if (bpage->page == (void *)addr) {
2913                         local_dec(&bpage->entries);
2914                         return;
2915                 }
2916                 rb_inc_page(cpu_buffer, &bpage);
2917         } while (bpage != start);
2918
2919         /* commit not part of this buffer?? */
2920         RB_WARN_ON(cpu_buffer, 1);
2921 }
2922
2923 /**
2924  * ring_buffer_commit_discard - discard an event that has not been committed
2925  * @buffer: the ring buffer
2926  * @event: non committed event to discard
2927  *
2928  * Sometimes an event that is in the ring buffer needs to be ignored.
2929  * This function lets the user discard an event in the ring buffer
2930  * and then that event will not be read later.
2931  *
2932  * This function only works if it is called before the the item has been
2933  * committed. It will try to free the event from the ring buffer
2934  * if another event has not been added behind it.
2935  *
2936  * If another event has been added behind it, it will set the event
2937  * up as discarded, and perform the commit.
2938  *
2939  * If this function is called, do not call ring_buffer_unlock_commit on
2940  * the event.
2941  */
2942 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2943                                 struct ring_buffer_event *event)
2944 {
2945         struct ring_buffer_per_cpu *cpu_buffer;
2946         int cpu;
2947
2948         /* The event is discarded regardless */
2949         rb_event_discard(event);
2950
2951         cpu = smp_processor_id();
2952         cpu_buffer = buffer->buffers[cpu];
2953
2954         /*
2955          * This must only be called if the event has not been
2956          * committed yet. Thus we can assume that preemption
2957          * is still disabled.
2958          */
2959         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2960
2961         rb_decrement_entry(cpu_buffer, event);
2962         if (rb_try_to_discard(cpu_buffer, event))
2963                 goto out;
2964
2965         /*
2966          * The commit is still visible by the reader, so we
2967          * must still update the timestamp.
2968          */
2969         rb_update_write_stamp(cpu_buffer, event);
2970  out:
2971         rb_end_commit(cpu_buffer);
2972
2973         trace_recursive_unlock();
2974
2975         preempt_enable_notrace();
2976
2977 }
2978 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2979
2980 /**
2981  * ring_buffer_write - write data to the buffer without reserving
2982  * @buffer: The ring buffer to write to.
2983  * @length: The length of the data being written (excluding the event header)
2984  * @data: The data to write to the buffer.
2985  *
2986  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2987  * one function. If you already have the data to write to the buffer, it
2988  * may be easier to simply call this function.
2989  *
2990  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2991  * and not the length of the event which would hold the header.
2992  */
2993 int ring_buffer_write(struct ring_buffer *buffer,
2994                       unsigned long length,
2995                       void *data)
2996 {
2997         struct ring_buffer_per_cpu *cpu_buffer;
2998         struct ring_buffer_event *event;
2999         void *body;
3000         int ret = -EBUSY;
3001         int cpu;
3002
3003         if (ring_buffer_flags != RB_BUFFERS_ON)
3004                 return -EBUSY;
3005
3006         preempt_disable_notrace();
3007
3008         if (atomic_read(&buffer->record_disabled))
3009                 goto out;
3010
3011         cpu = raw_smp_processor_id();
3012
3013         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014                 goto out;
3015
3016         cpu_buffer = buffer->buffers[cpu];
3017
3018         if (atomic_read(&cpu_buffer->record_disabled))
3019                 goto out;
3020
3021         if (length > BUF_MAX_DATA_SIZE)
3022                 goto out;
3023
3024         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3025         if (!event)
3026                 goto out;
3027
3028         body = rb_event_data(event);
3029
3030         memcpy(body, data, length);
3031
3032         rb_commit(cpu_buffer, event);
3033
3034         rb_wakeups(buffer, cpu_buffer);
3035
3036         ret = 0;
3037  out:
3038         preempt_enable_notrace();
3039
3040         return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(ring_buffer_write);
3043
3044 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3045 {
3046         struct buffer_page *reader = cpu_buffer->reader_page;
3047         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3048         struct buffer_page *commit = cpu_buffer->commit_page;
3049
3050         /* In case of error, head will be NULL */
3051         if (unlikely(!head))
3052                 return 1;
3053
3054         return reader->read == rb_page_commit(reader) &&
3055                 (commit == reader ||
3056                  (commit == head &&
3057                   head->read == rb_page_commit(commit)));
3058 }
3059
3060 /**
3061  * ring_buffer_record_disable - stop all writes into the buffer
3062  * @buffer: The ring buffer to stop writes to.
3063  *
3064  * This prevents all writes to the buffer. Any attempt to write
3065  * to the buffer after this will fail and return NULL.
3066  *
3067  * The caller should call synchronize_sched() after this.
3068  */
3069 void ring_buffer_record_disable(struct ring_buffer *buffer)
3070 {
3071         atomic_inc(&buffer->record_disabled);
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3074
3075 /**
3076  * ring_buffer_record_enable - enable writes to the buffer
3077  * @buffer: The ring buffer to enable writes
3078  *
3079  * Note, multiple disables will need the same number of enables
3080  * to truly enable the writing (much like preempt_disable).
3081  */
3082 void ring_buffer_record_enable(struct ring_buffer *buffer)
3083 {
3084         atomic_dec(&buffer->record_disabled);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3087
3088 /**
3089  * ring_buffer_record_off - stop all writes into the buffer
3090  * @buffer: The ring buffer to stop writes to.
3091  *
3092  * This prevents all writes to the buffer. Any attempt to write
3093  * to the buffer after this will fail and return NULL.
3094  *
3095  * This is different than ring_buffer_record_disable() as
3096  * it works like an on/off switch, where as the disable() version
3097  * must be paired with a enable().
3098  */
3099 void ring_buffer_record_off(struct ring_buffer *buffer)
3100 {
3101         unsigned int rd;
3102         unsigned int new_rd;
3103
3104         do {
3105                 rd = atomic_read(&buffer->record_disabled);
3106                 new_rd = rd | RB_BUFFER_OFF;
3107         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3110
3111 /**
3112  * ring_buffer_record_on - restart writes into the buffer
3113  * @buffer: The ring buffer to start writes to.
3114  *
3115  * This enables all writes to the buffer that was disabled by
3116  * ring_buffer_record_off().
3117  *
3118  * This is different than ring_buffer_record_enable() as
3119  * it works like an on/off switch, where as the enable() version
3120  * must be paired with a disable().
3121  */
3122 void ring_buffer_record_on(struct ring_buffer *buffer)
3123 {
3124         unsigned int rd;
3125         unsigned int new_rd;
3126
3127         do {
3128                 rd = atomic_read(&buffer->record_disabled);
3129                 new_rd = rd & ~RB_BUFFER_OFF;
3130         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3131 }
3132 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3133
3134 /**
3135  * ring_buffer_record_is_on - return true if the ring buffer can write
3136  * @buffer: The ring buffer to see if write is enabled
3137  *
3138  * Returns true if the ring buffer is in a state that it accepts writes.
3139  */
3140 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3141 {
3142         return !atomic_read(&buffer->record_disabled);
3143 }
3144
3145 /**
3146  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3147  * @buffer: The ring buffer to stop writes to.
3148  * @cpu: The CPU buffer to stop
3149  *
3150  * This prevents all writes to the buffer. Any attempt to write
3151  * to the buffer after this will fail and return NULL.
3152  *
3153  * The caller should call synchronize_sched() after this.
3154  */
3155 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3156 {
3157         struct ring_buffer_per_cpu *cpu_buffer;
3158
3159         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3160                 return;
3161
3162         cpu_buffer = buffer->buffers[cpu];
3163         atomic_inc(&cpu_buffer->record_disabled);
3164 }
3165 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3166
3167 /**
3168  * ring_buffer_record_enable_cpu - enable writes to the buffer
3169  * @buffer: The ring buffer to enable writes
3170  * @cpu: The CPU to enable.
3171  *
3172  * Note, multiple disables will need the same number of enables
3173  * to truly enable the writing (much like preempt_disable).
3174  */
3175 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3176 {
3177         struct ring_buffer_per_cpu *cpu_buffer;
3178
3179         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3180                 return;
3181
3182         cpu_buffer = buffer->buffers[cpu];
3183         atomic_dec(&cpu_buffer->record_disabled);
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3186
3187 /*
3188  * The total entries in the ring buffer is the running counter
3189  * of entries entered into the ring buffer, minus the sum of
3190  * the entries read from the ring buffer and the number of
3191  * entries that were overwritten.
3192  */
3193 static inline unsigned long
3194 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3195 {
3196         return local_read(&cpu_buffer->entries) -
3197                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3198 }
3199
3200 /**
3201  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3202  * @buffer: The ring buffer
3203  * @cpu: The per CPU buffer to read from.
3204  */
3205 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3206 {
3207         unsigned long flags;
3208         struct ring_buffer_per_cpu *cpu_buffer;
3209         struct buffer_page *bpage;
3210         u64 ret = 0;
3211
3212         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3213                 return 0;
3214
3215         cpu_buffer = buffer->buffers[cpu];
3216         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3217         /*
3218          * if the tail is on reader_page, oldest time stamp is on the reader
3219          * page
3220          */
3221         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3222                 bpage = cpu_buffer->reader_page;
3223         else
3224                 bpage = rb_set_head_page(cpu_buffer);
3225         if (bpage)
3226                 ret = bpage->page->time_stamp;
3227         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3228
3229         return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3232
3233 /**
3234  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3235  * @buffer: The ring buffer
3236  * @cpu: The per CPU buffer to read from.
3237  */
3238 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240         struct ring_buffer_per_cpu *cpu_buffer;
3241         unsigned long ret;
3242
3243         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244                 return 0;
3245
3246         cpu_buffer = buffer->buffers[cpu];
3247         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3248
3249         return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3252
3253 /**
3254  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3255  * @buffer: The ring buffer
3256  * @cpu: The per CPU buffer to get the entries from.
3257  */
3258 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260         struct ring_buffer_per_cpu *cpu_buffer;
3261
3262         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263                 return 0;
3264
3265         cpu_buffer = buffer->buffers[cpu];
3266
3267         return rb_num_of_entries(cpu_buffer);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3270
3271 /**
3272  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3273  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3274  * @buffer: The ring buffer
3275  * @cpu: The per CPU buffer to get the number of overruns from
3276  */
3277 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3278 {
3279         struct ring_buffer_per_cpu *cpu_buffer;
3280         unsigned long ret;
3281
3282         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                 return 0;
3284
3285         cpu_buffer = buffer->buffers[cpu];
3286         ret = local_read(&cpu_buffer->overrun);
3287
3288         return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3291
3292 /**
3293  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3294  * commits failing due to the buffer wrapping around while there are uncommitted
3295  * events, such as during an interrupt storm.
3296  * @buffer: The ring buffer
3297  * @cpu: The per CPU buffer to get the number of overruns from
3298  */
3299 unsigned long
3300 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3301 {
3302         struct ring_buffer_per_cpu *cpu_buffer;
3303         unsigned long ret;
3304
3305         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306                 return 0;
3307
3308         cpu_buffer = buffer->buffers[cpu];
3309         ret = local_read(&cpu_buffer->commit_overrun);
3310
3311         return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3314
3315 /**
3316  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3317  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3318  * @buffer: The ring buffer
3319  * @cpu: The per CPU buffer to get the number of overruns from
3320  */
3321 unsigned long
3322 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324         struct ring_buffer_per_cpu *cpu_buffer;
3325         unsigned long ret;
3326
3327         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328                 return 0;
3329
3330         cpu_buffer = buffer->buffers[cpu];
3331         ret = local_read(&cpu_buffer->dropped_events);
3332
3333         return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3336
3337 /**
3338  * ring_buffer_read_events_cpu - get the number of events successfully read
3339  * @buffer: The ring buffer
3340  * @cpu: The per CPU buffer to get the number of events read
3341  */
3342 unsigned long
3343 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3344 {
3345         struct ring_buffer_per_cpu *cpu_buffer;
3346
3347         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3348                 return 0;
3349
3350         cpu_buffer = buffer->buffers[cpu];
3351         return cpu_buffer->read;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3354
3355 /**
3356  * ring_buffer_entries - get the number of entries in a buffer
3357  * @buffer: The ring buffer
3358  *
3359  * Returns the total number of entries in the ring buffer
3360  * (all CPU entries)
3361  */
3362 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3363 {
3364         struct ring_buffer_per_cpu *cpu_buffer;
3365         unsigned long entries = 0;
3366         int cpu;
3367
3368         /* if you care about this being correct, lock the buffer */
3369         for_each_buffer_cpu(buffer, cpu) {
3370                 cpu_buffer = buffer->buffers[cpu];
3371                 entries += rb_num_of_entries(cpu_buffer);
3372         }
3373
3374         return entries;
3375 }
3376 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3377
3378 /**
3379  * ring_buffer_overruns - get the number of overruns in buffer
3380  * @buffer: The ring buffer
3381  *
3382  * Returns the total number of overruns in the ring buffer
3383  * (all CPU entries)
3384  */
3385 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3386 {
3387         struct ring_buffer_per_cpu *cpu_buffer;
3388         unsigned long overruns = 0;
3389         int cpu;
3390
3391         /* if you care about this being correct, lock the buffer */
3392         for_each_buffer_cpu(buffer, cpu) {
3393                 cpu_buffer = buffer->buffers[cpu];
3394                 overruns += local_read(&cpu_buffer->overrun);
3395         }
3396
3397         return overruns;
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3400
3401 static void rb_iter_reset(struct ring_buffer_iter *iter)
3402 {
3403         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3404
3405         /* Iterator usage is expected to have record disabled */
3406         iter->head_page = cpu_buffer->reader_page;
3407         iter->head = cpu_buffer->reader_page->read;
3408
3409         iter->cache_reader_page = iter->head_page;
3410         iter->cache_read = cpu_buffer->read;
3411
3412         if (iter->head)
3413                 iter->read_stamp = cpu_buffer->read_stamp;
3414         else
3415                 iter->read_stamp = iter->head_page->page->time_stamp;
3416 }
3417
3418 /**
3419  * ring_buffer_iter_reset - reset an iterator
3420  * @iter: The iterator to reset
3421  *
3422  * Resets the iterator, so that it will start from the beginning
3423  * again.
3424  */
3425 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3426 {
3427         struct ring_buffer_per_cpu *cpu_buffer;
3428         unsigned long flags;
3429
3430         if (!iter)
3431                 return;
3432
3433         cpu_buffer = iter->cpu_buffer;
3434
3435         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3436         rb_iter_reset(iter);
3437         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3438 }
3439 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3440
3441 /**
3442  * ring_buffer_iter_empty - check if an iterator has no more to read
3443  * @iter: The iterator to check
3444  */
3445 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3446 {
3447         struct ring_buffer_per_cpu *cpu_buffer;
3448
3449         cpu_buffer = iter->cpu_buffer;
3450
3451         return iter->head_page == cpu_buffer->commit_page &&
3452                 iter->head == rb_commit_index(cpu_buffer);
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3455
3456 static void
3457 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3458                      struct ring_buffer_event *event)
3459 {
3460         u64 delta;
3461
3462         switch (event->type_len) {
3463         case RINGBUF_TYPE_PADDING:
3464                 return;
3465
3466         case RINGBUF_TYPE_TIME_EXTEND:
3467                 delta = event->array[0];
3468                 delta <<= TS_SHIFT;
3469                 delta += event->time_delta;
3470                 cpu_buffer->read_stamp += delta;
3471                 return;
3472
3473         case RINGBUF_TYPE_TIME_STAMP:
3474                 /* FIXME: not implemented */
3475                 return;
3476
3477         case RINGBUF_TYPE_DATA:
3478                 cpu_buffer->read_stamp += event->time_delta;
3479                 return;
3480
3481         default:
3482                 BUG();
3483         }
3484         return;
3485 }
3486
3487 static void
3488 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3489                           struct ring_buffer_event *event)
3490 {
3491         u64 delta;
3492
3493         switch (event->type_len) {
3494         case RINGBUF_TYPE_PADDING:
3495                 return;
3496
3497         case RINGBUF_TYPE_TIME_EXTEND:
3498                 delta = event->array[0];
3499                 delta <<= TS_SHIFT;
3500                 delta += event->time_delta;
3501                 iter->read_stamp += delta;
3502                 return;
3503
3504         case RINGBUF_TYPE_TIME_STAMP:
3505                 /* FIXME: not implemented */
3506                 return;
3507
3508         case RINGBUF_TYPE_DATA:
3509                 iter->read_stamp += event->time_delta;
3510                 return;
3511
3512         default:
3513                 BUG();
3514         }
3515         return;
3516 }
3517
3518 static struct buffer_page *
3519 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3520 {
3521         struct buffer_page *reader = NULL;
3522         unsigned long overwrite;
3523         unsigned long flags;
3524         int nr_loops = 0;
3525         int ret;
3526
3527         local_irq_save(flags);
3528         arch_spin_lock(&cpu_buffer->lock);
3529
3530  again:
3531         /*
3532          * This should normally only loop twice. But because the
3533          * start of the reader inserts an empty page, it causes
3534          * a case where we will loop three times. There should be no
3535          * reason to loop four times (that I know of).
3536          */
3537         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3538                 reader = NULL;
3539                 goto out;
3540         }
3541
3542         reader = cpu_buffer->reader_page;
3543
3544         /* If there's more to read, return this page */
3545         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3546                 goto out;
3547
3548         /* Never should we have an index greater than the size */
3549         if (RB_WARN_ON(cpu_buffer,
3550                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3551                 goto out;
3552
3553         /* check if we caught up to the tail */
3554         reader = NULL;
3555         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3556                 goto out;
3557
3558         /* Don't bother swapping if the ring buffer is empty */
3559         if (rb_num_of_entries(cpu_buffer) == 0)
3560                 goto out;
3561
3562         /*
3563          * Reset the reader page to size zero.
3564          */
3565         local_set(&cpu_buffer->reader_page->write, 0);
3566         local_set(&cpu_buffer->reader_page->entries, 0);
3567         local_set(&cpu_buffer->reader_page->page->commit, 0);
3568         cpu_buffer->reader_page->real_end = 0;
3569
3570  spin:
3571         /*
3572          * Splice the empty reader page into the list around the head.
3573          */
3574         reader = rb_set_head_page(cpu_buffer);
3575         if (!reader)
3576                 goto out;
3577         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3578         cpu_buffer->reader_page->list.prev = reader->list.prev;
3579
3580         /*
3581          * cpu_buffer->pages just needs to point to the buffer, it
3582          *  has no specific buffer page to point to. Lets move it out
3583          *  of our way so we don't accidentally swap it.
3584          */
3585         cpu_buffer->pages = reader->list.prev;
3586
3587         /* The reader page will be pointing to the new head */
3588         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3589
3590         /*
3591          * We want to make sure we read the overruns after we set up our
3592          * pointers to the next object. The writer side does a
3593          * cmpxchg to cross pages which acts as the mb on the writer
3594          * side. Note, the reader will constantly fail the swap
3595          * while the writer is updating the pointers, so this
3596          * guarantees that the overwrite recorded here is the one we
3597          * want to compare with the last_overrun.
3598          */
3599         smp_mb();
3600         overwrite = local_read(&(cpu_buffer->overrun));
3601
3602         /*
3603          * Here's the tricky part.
3604          *
3605          * We need to move the pointer past the header page.
3606          * But we can only do that if a writer is not currently
3607          * moving it. The page before the header page has the
3608          * flag bit '1' set if it is pointing to the page we want.
3609          * but if the writer is in the process of moving it
3610          * than it will be '2' or already moved '0'.
3611          */
3612
3613         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3614
3615         /*
3616          * If we did not convert it, then we must try again.
3617          */
3618         if (!ret)
3619                 goto spin;
3620
3621         /*
3622          * Yeah! We succeeded in replacing the page.
3623          *
3624          * Now make the new head point back to the reader page.
3625          */
3626         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3627         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3628
3629         /* Finally update the reader page to the new head */
3630         cpu_buffer->reader_page = reader;
3631         rb_reset_reader_page(cpu_buffer);
3632
3633         if (overwrite != cpu_buffer->last_overrun) {
3634                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3635                 cpu_buffer->last_overrun = overwrite;
3636         }
3637
3638         goto again;
3639
3640  out:
3641         arch_spin_unlock(&cpu_buffer->lock);
3642         local_irq_restore(flags);
3643
3644         return reader;
3645 }
3646
3647 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3648 {
3649         struct ring_buffer_event *event;
3650         struct buffer_page *reader;
3651         unsigned length;
3652
3653         reader = rb_get_reader_page(cpu_buffer);
3654
3655         /* This function should not be called when buffer is empty */
3656         if (RB_WARN_ON(cpu_buffer, !reader))
3657                 return;
3658
3659         event = rb_reader_event(cpu_buffer);
3660
3661         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3662                 cpu_buffer->read++;
3663
3664         rb_update_read_stamp(cpu_buffer, event);
3665
3666         length = rb_event_length(event);
3667         cpu_buffer->reader_page->read += length;
3668 }
3669
3670 static void rb_advance_iter(struct ring_buffer_iter *iter)
3671 {
3672         struct ring_buffer_per_cpu *cpu_buffer;
3673         struct ring_buffer_event *event;
3674         unsigned length;
3675
3676         cpu_buffer = iter->cpu_buffer;
3677
3678         /*
3679          * Check if we are at the end of the buffer.
3680          */
3681         if (iter->head >= rb_page_size(iter->head_page)) {
3682                 /* discarded commits can make the page empty */
3683                 if (iter->head_page == cpu_buffer->commit_page)
3684                         return;
3685                 rb_inc_iter(iter);
3686                 return;
3687         }
3688
3689         event = rb_iter_head_event(iter);
3690
3691         length = rb_event_length(event);
3692
3693         /*
3694          * This should not be called to advance the header if we are
3695          * at the tail of the buffer.
3696          */
3697         if (RB_WARN_ON(cpu_buffer,
3698                        (iter->head_page == cpu_buffer->commit_page) &&
3699                        (iter->head + length > rb_commit_index(cpu_buffer))))
3700                 return;
3701
3702         rb_update_iter_read_stamp(iter, event);
3703
3704         iter->head += length;
3705
3706         /* check for end of page padding */
3707         if ((iter->head >= rb_page_size(iter->head_page)) &&
3708             (iter->head_page != cpu_buffer->commit_page))
3709                 rb_inc_iter(iter);
3710 }
3711
3712 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3713 {
3714         return cpu_buffer->lost_events;
3715 }
3716
3717 static struct ring_buffer_event *
3718 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3719                unsigned long *lost_events)
3720 {
3721         struct ring_buffer_event *event;
3722         struct buffer_page *reader;
3723         int nr_loops = 0;
3724
3725  again:
3726         /*
3727          * We repeat when a time extend is encountered.
3728          * Since the time extend is always attached to a data event,
3729          * we should never loop more than once.
3730          * (We never hit the following condition more than twice).
3731          */
3732         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3733                 return NULL;
3734
3735         reader = rb_get_reader_page(cpu_buffer);
3736         if (!reader)
3737                 return NULL;
3738
3739         event = rb_reader_event(cpu_buffer);
3740
3741         switch (event->type_len) {
3742         case RINGBUF_TYPE_PADDING:
3743                 if (rb_null_event(event))
3744                         RB_WARN_ON(cpu_buffer, 1);
3745                 /*
3746                  * Because the writer could be discarding every
3747                  * event it creates (which would probably be bad)
3748                  * if we were to go back to "again" then we may never
3749                  * catch up, and will trigger the warn on, or lock
3750                  * the box. Return the padding, and we will release
3751                  * the current locks, and try again.
3752                  */
3753                 return event;
3754
3755         case RINGBUF_TYPE_TIME_EXTEND:
3756                 /* Internal data, OK to advance */
3757                 rb_advance_reader(cpu_buffer);
3758                 goto again;
3759
3760         case RINGBUF_TYPE_TIME_STAMP:
3761                 /* FIXME: not implemented */
3762                 rb_advance_reader(cpu_buffer);
3763                 goto again;
3764
3765         case RINGBUF_TYPE_DATA:
3766                 if (ts) {
3767                         *ts = cpu_buffer->read_stamp + event->time_delta;
3768                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3769                                                          cpu_buffer->cpu, ts);
3770                 }
3771                 if (lost_events)
3772                         *lost_events = rb_lost_events(cpu_buffer);
3773                 return event;
3774
3775         default:
3776                 BUG();
3777         }
3778
3779         return NULL;
3780 }
3781 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3782
3783 static struct ring_buffer_event *
3784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3785 {
3786         struct ring_buffer *buffer;
3787         struct ring_buffer_per_cpu *cpu_buffer;
3788         struct ring_buffer_event *event;
3789         int nr_loops = 0;
3790
3791         cpu_buffer = iter->cpu_buffer;
3792         buffer = cpu_buffer->buffer;
3793
3794         /*
3795          * Check if someone performed a consuming read to
3796          * the buffer. A consuming read invalidates the iterator
3797          * and we need to reset the iterator in this case.
3798          */
3799         if (unlikely(iter->cache_read != cpu_buffer->read ||
3800                      iter->cache_reader_page != cpu_buffer->reader_page))
3801                 rb_iter_reset(iter);
3802
3803  again:
3804         if (ring_buffer_iter_empty(iter))
3805                 return NULL;
3806
3807         /*
3808          * We repeat when a time extend is encountered or we hit
3809          * the end of the page. Since the time extend is always attached
3810          * to a data event, we should never loop more than three times.
3811          * Once for going to next page, once on time extend, and
3812          * finally once to get the event.
3813          * (We never hit the following condition more than thrice).
3814          */
3815         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3816                 return NULL;
3817
3818         if (rb_per_cpu_empty(cpu_buffer))
3819                 return NULL;
3820
3821         if (iter->head >= rb_page_size(iter->head_page)) {
3822                 rb_inc_iter(iter);
3823                 goto again;
3824         }
3825
3826         event = rb_iter_head_event(iter);
3827
3828         switch (event->type_len) {
3829         case RINGBUF_TYPE_PADDING:
3830                 if (rb_null_event(event)) {
3831                         rb_inc_iter(iter);
3832                         goto again;
3833                 }
3834                 rb_advance_iter(iter);
3835                 return event;
3836
3837         case RINGBUF_TYPE_TIME_EXTEND:
3838                 /* Internal data, OK to advance */
3839                 rb_advance_iter(iter);
3840                 goto again;
3841
3842         case RINGBUF_TYPE_TIME_STAMP:
3843                 /* FIXME: not implemented */
3844                 rb_advance_iter(iter);
3845                 goto again;
3846
3847         case RINGBUF_TYPE_DATA:
3848                 if (ts) {
3849                         *ts = iter->read_stamp + event->time_delta;
3850                         ring_buffer_normalize_time_stamp(buffer,
3851                                                          cpu_buffer->cpu, ts);
3852                 }
3853                 return event;
3854
3855         default:
3856                 BUG();
3857         }
3858
3859         return NULL;
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3862
3863 static inline int rb_ok_to_lock(void)
3864 {
3865         /*
3866          * If an NMI die dumps out the content of the ring buffer
3867          * do not grab locks. We also permanently disable the ring
3868          * buffer too. A one time deal is all you get from reading
3869          * the ring buffer from an NMI.
3870          */
3871         if (likely(!in_nmi()))
3872                 return 1;
3873
3874         tracing_off_permanent();
3875         return 0;
3876 }
3877
3878 /**
3879  * ring_buffer_peek - peek at the next event to be read
3880  * @buffer: The ring buffer to read
3881  * @cpu: The cpu to peak at
3882  * @ts: The timestamp counter of this event.
3883  * @lost_events: a variable to store if events were lost (may be NULL)
3884  *
3885  * This will return the event that will be read next, but does
3886  * not consume the data.
3887  */
3888 struct ring_buffer_event *
3889 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3890                  unsigned long *lost_events)
3891 {
3892         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3893         struct ring_buffer_event *event;
3894         unsigned long flags;
3895         int dolock;
3896
3897         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3898                 return NULL;
3899
3900         dolock = rb_ok_to_lock();
3901  again:
3902         local_irq_save(flags);
3903         if (dolock)
3904                 raw_spin_lock(&cpu_buffer->reader_lock);
3905         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3906         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3907                 rb_advance_reader(cpu_buffer);
3908         if (dolock)
3909                 raw_spin_unlock(&cpu_buffer->reader_lock);
3910         local_irq_restore(flags);
3911
3912         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3913                 goto again;
3914
3915         return event;
3916 }
3917
3918 /**
3919  * ring_buffer_iter_peek - peek at the next event to be read
3920  * @iter: The ring buffer iterator
3921  * @ts: The timestamp counter of this event.
3922  *
3923  * This will return the event that will be read next, but does
3924  * not increment the iterator.
3925  */
3926 struct ring_buffer_event *
3927 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3928 {
3929         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3930         struct ring_buffer_event *event;
3931         unsigned long flags;
3932
3933  again:
3934         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3935         event = rb_iter_peek(iter, ts);
3936         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3937
3938         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939                 goto again;
3940
3941         return event;
3942 }
3943
3944 /**
3945  * ring_buffer_consume - return an event and consume it
3946  * @buffer: The ring buffer to get the next event from
3947  * @cpu: the cpu to read the buffer from
3948  * @ts: a variable to store the timestamp (may be NULL)
3949  * @lost_events: a variable to store if events were lost (may be NULL)
3950  *
3951  * Returns the next event in the ring buffer, and that event is consumed.
3952  * Meaning, that sequential reads will keep returning a different event,
3953  * and eventually empty the ring buffer if the producer is slower.
3954  */
3955 struct ring_buffer_event *
3956 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3957                     unsigned long *lost_events)
3958 {
3959         struct ring_buffer_per_cpu *cpu_buffer;
3960         struct ring_buffer_event *event = NULL;
3961         unsigned long flags;
3962         int dolock;
3963
3964         dolock = rb_ok_to_lock();
3965
3966  again:
3967         /* might be called in atomic */
3968         preempt_disable();
3969
3970         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971                 goto out;
3972
3973         cpu_buffer = buffer->buffers[cpu];
3974         local_irq_save(flags);
3975         if (dolock)
3976                 raw_spin_lock(&cpu_buffer->reader_lock);
3977
3978         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3979         if (event) {
3980                 cpu_buffer->lost_events = 0;
3981                 rb_advance_reader(cpu_buffer);
3982         }
3983
3984         if (dolock)
3985                 raw_spin_unlock(&cpu_buffer->reader_lock);
3986         local_irq_restore(flags);
3987
3988  out:
3989         preempt_enable();
3990
3991         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3992                 goto again;
3993
3994         return event;
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3997
3998 /**
3999  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4000  * @buffer: The ring buffer to read from
4001  * @cpu: The cpu buffer to iterate over
4002  *
4003  * This performs the initial preparations necessary to iterate
4004  * through the buffer.  Memory is allocated, buffer recording
4005  * is disabled, and the iterator pointer is returned to the caller.
4006  *
4007  * Disabling buffer recordng prevents the reading from being
4008  * corrupted. This is not a consuming read, so a producer is not
4009  * expected.
4010  *
4011  * After a sequence of ring_buffer_read_prepare calls, the user is
4012  * expected to make at least one call to ring_buffer_read_prepare_sync.
4013  * Afterwards, ring_buffer_read_start is invoked to get things going
4014  * for real.
4015  *
4016  * This overall must be paired with ring_buffer_read_finish.
4017  */
4018 struct ring_buffer_iter *
4019 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4020 {
4021         struct ring_buffer_per_cpu *cpu_buffer;
4022         struct ring_buffer_iter *iter;
4023
4024         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4025                 return NULL;
4026
4027         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4028         if (!iter)
4029                 return NULL;
4030
4031         cpu_buffer = buffer->buffers[cpu];
4032
4033         iter->cpu_buffer = cpu_buffer;
4034
4035         atomic_inc(&buffer->resize_disabled);
4036         atomic_inc(&cpu_buffer->record_disabled);
4037
4038         return iter;
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4041
4042 /**
4043  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4044  *
4045  * All previously invoked ring_buffer_read_prepare calls to prepare
4046  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4047  * calls on those iterators are allowed.
4048  */
4049 void
4050 ring_buffer_read_prepare_sync(void)
4051 {
4052         synchronize_sched();
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4055
4056 /**
4057  * ring_buffer_read_start - start a non consuming read of the buffer
4058  * @iter: The iterator returned by ring_buffer_read_prepare
4059  *
4060  * This finalizes the startup of an iteration through the buffer.
4061  * The iterator comes from a call to ring_buffer_read_prepare and
4062  * an intervening ring_buffer_read_prepare_sync must have been
4063  * performed.
4064  *
4065  * Must be paired with ring_buffer_read_finish.
4066  */
4067 void
4068 ring_buffer_read_start(struct ring_buffer_iter *iter)
4069 {
4070         struct ring_buffer_per_cpu *cpu_buffer;
4071         unsigned long flags;
4072
4073         if (!iter)
4074                 return;
4075
4076         cpu_buffer = iter->cpu_buffer;
4077
4078         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079         arch_spin_lock(&cpu_buffer->lock);
4080         rb_iter_reset(iter);
4081         arch_spin_unlock(&cpu_buffer->lock);
4082         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083 }
4084 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4085
4086 /**
4087  * ring_buffer_read_finish - finish reading the iterator of the buffer
4088  * @iter: The iterator retrieved by ring_buffer_start
4089  *
4090  * This re-enables the recording to the buffer, and frees the
4091  * iterator.
4092  */
4093 void
4094 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4095 {
4096         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4097         unsigned long flags;
4098
4099         /*
4100          * Ring buffer is disabled from recording, here's a good place
4101          * to check the integrity of the ring buffer.
4102          * Must prevent readers from trying to read, as the check
4103          * clears the HEAD page and readers require it.
4104          */
4105         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106         rb_check_pages(cpu_buffer);
4107         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4108
4109         atomic_dec(&cpu_buffer->record_disabled);
4110         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4111         kfree(iter);
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4114
4115 /**
4116  * ring_buffer_read - read the next item in the ring buffer by the iterator
4117  * @iter: The ring buffer iterator
4118  * @ts: The time stamp of the event read.
4119  *
4120  * This reads the next event in the ring buffer and increments the iterator.
4121  */
4122 struct ring_buffer_event *
4123 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4124 {
4125         struct ring_buffer_event *event;
4126         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4127         unsigned long flags;
4128
4129         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4130  again:
4131         event = rb_iter_peek(iter, ts);
4132         if (!event)
4133                 goto out;
4134
4135         if (event->type_len == RINGBUF_TYPE_PADDING)
4136                 goto again;
4137
4138         rb_advance_iter(iter);
4139  out:
4140         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4141
4142         return event;
4143 }
4144 EXPORT_SYMBOL_GPL(ring_buffer_read);
4145
4146 /**
4147  * ring_buffer_size - return the size of the ring buffer (in bytes)
4148  * @buffer: The ring buffer.
4149  */
4150 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4151 {
4152         /*
4153          * Earlier, this method returned
4154          *      BUF_PAGE_SIZE * buffer->nr_pages
4155          * Since the nr_pages field is now removed, we have converted this to
4156          * return the per cpu buffer value.
4157          */
4158         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159                 return 0;
4160
4161         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_size);
4164
4165 static void
4166 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4167 {
4168         rb_head_page_deactivate(cpu_buffer);
4169
4170         cpu_buffer->head_page
4171                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4172         local_set(&cpu_buffer->head_page->write, 0);
4173         local_set(&cpu_buffer->head_page->entries, 0);
4174         local_set(&cpu_buffer->head_page->page->commit, 0);
4175
4176         cpu_buffer->head_page->read = 0;
4177
4178         cpu_buffer->tail_page = cpu_buffer->head_page;
4179         cpu_buffer->commit_page = cpu_buffer->head_page;
4180
4181         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4182         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4183         local_set(&cpu_buffer->reader_page->write, 0);
4184         local_set(&cpu_buffer->reader_page->entries, 0);
4185         local_set(&cpu_buffer->reader_page->page->commit, 0);
4186         cpu_buffer->reader_page->read = 0;
4187
4188         local_set(&cpu_buffer->entries_bytes, 0);
4189         local_set(&cpu_buffer->overrun, 0);
4190         local_set(&cpu_buffer->commit_overrun, 0);
4191         local_set(&cpu_buffer->dropped_events, 0);
4192         local_set(&cpu_buffer->entries, 0);
4193         local_set(&cpu_buffer->committing, 0);
4194         local_set(&cpu_buffer->commits, 0);
4195         cpu_buffer->read = 0;
4196         cpu_buffer->read_bytes = 0;
4197
4198         cpu_buffer->write_stamp = 0;
4199         cpu_buffer->read_stamp = 0;
4200
4201         cpu_buffer->lost_events = 0;
4202         cpu_buffer->last_overrun = 0;
4203
4204         rb_head_page_activate(cpu_buffer);
4205 }
4206
4207 /**
4208  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4209  * @buffer: The ring buffer to reset a per cpu buffer of
4210  * @cpu: The CPU buffer to be reset
4211  */
4212 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4213 {
4214         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4215         unsigned long flags;
4216
4217         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4218                 return;
4219
4220         atomic_inc(&buffer->resize_disabled);
4221         atomic_inc(&cpu_buffer->record_disabled);
4222
4223         /* Make sure all commits have finished */
4224         synchronize_sched();
4225
4226         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4227
4228         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4229                 goto out;
4230
4231         arch_spin_lock(&cpu_buffer->lock);
4232
4233         rb_reset_cpu(cpu_buffer);
4234
4235         arch_spin_unlock(&cpu_buffer->lock);
4236
4237  out:
4238         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4239
4240         atomic_dec(&cpu_buffer->record_disabled);
4241         atomic_dec(&buffer->resize_disabled);
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4244
4245 /**
4246  * ring_buffer_reset - reset a ring buffer
4247  * @buffer: The ring buffer to reset all cpu buffers
4248  */
4249 void ring_buffer_reset(struct ring_buffer *buffer)
4250 {
4251         int cpu;
4252
4253         for_each_buffer_cpu(buffer, cpu)
4254                 ring_buffer_reset_cpu(buffer, cpu);
4255 }
4256 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4257
4258 /**
4259  * rind_buffer_empty - is the ring buffer empty?
4260  * @buffer: The ring buffer to test
4261  */
4262 int ring_buffer_empty(struct ring_buffer *buffer)
4263 {
4264         struct ring_buffer_per_cpu *cpu_buffer;
4265         unsigned long flags;
4266         int dolock;
4267         int cpu;
4268         int ret;
4269
4270         dolock = rb_ok_to_lock();
4271
4272         /* yes this is racy, but if you don't like the race, lock the buffer */
4273         for_each_buffer_cpu(buffer, cpu) {
4274                 cpu_buffer = buffer->buffers[cpu];
4275                 local_irq_save(flags);
4276                 if (dolock)
4277                         raw_spin_lock(&cpu_buffer->reader_lock);
4278                 ret = rb_per_cpu_empty(cpu_buffer);
4279                 if (dolock)
4280                         raw_spin_unlock(&cpu_buffer->reader_lock);
4281                 local_irq_restore(flags);
4282
4283                 if (!ret)
4284                         return 0;
4285         }
4286
4287         return 1;
4288 }
4289 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290
4291 /**
4292  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293  * @buffer: The ring buffer
4294  * @cpu: The CPU buffer to test
4295  */
4296 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297 {
4298         struct ring_buffer_per_cpu *cpu_buffer;
4299         unsigned long flags;
4300         int dolock;
4301         int ret;
4302
4303         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304                 return 1;
4305
4306         dolock = rb_ok_to_lock();
4307
4308         cpu_buffer = buffer->buffers[cpu];
4309         local_irq_save(flags);
4310         if (dolock)
4311                 raw_spin_lock(&cpu_buffer->reader_lock);
4312         ret = rb_per_cpu_empty(cpu_buffer);
4313         if (dolock)
4314                 raw_spin_unlock(&cpu_buffer->reader_lock);
4315         local_irq_restore(flags);
4316
4317         return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320
4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322 /**
4323  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324  * @buffer_a: One buffer to swap with
4325  * @buffer_b: The other buffer to swap with
4326  *
4327  * This function is useful for tracers that want to take a "snapshot"
4328  * of a CPU buffer and has another back up buffer lying around.
4329  * it is expected that the tracer handles the cpu buffer not being
4330  * used at the moment.
4331  */
4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333                          struct ring_buffer *buffer_b, int cpu)
4334 {
4335         struct ring_buffer_per_cpu *cpu_buffer_a;
4336         struct ring_buffer_per_cpu *cpu_buffer_b;
4337         int ret = -EINVAL;
4338
4339         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341                 goto out;
4342
4343         cpu_buffer_a = buffer_a->buffers[cpu];
4344         cpu_buffer_b = buffer_b->buffers[cpu];
4345
4346         /* At least make sure the two buffers are somewhat the same */
4347         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348                 goto out;
4349
4350         ret = -EAGAIN;
4351
4352         if (ring_buffer_flags != RB_BUFFERS_ON)
4353                 goto out;
4354
4355         if (atomic_read(&buffer_a->record_disabled))
4356                 goto out;
4357
4358         if (atomic_read(&buffer_b->record_disabled))
4359                 goto out;
4360
4361         if (atomic_read(&cpu_buffer_a->record_disabled))
4362                 goto out;
4363
4364         if (atomic_read(&cpu_buffer_b->record_disabled))
4365                 goto out;
4366
4367         /*
4368          * We can't do a synchronize_sched here because this
4369          * function can be called in atomic context.
4370          * Normally this will be called from the same CPU as cpu.
4371          * If not it's up to the caller to protect this.
4372          */
4373         atomic_inc(&cpu_buffer_a->record_disabled);
4374         atomic_inc(&cpu_buffer_b->record_disabled);
4375
4376         ret = -EBUSY;
4377         if (local_read(&cpu_buffer_a->committing))
4378                 goto out_dec;
4379         if (local_read(&cpu_buffer_b->committing))
4380                 goto out_dec;
4381
4382         buffer_a->buffers[cpu] = cpu_buffer_b;
4383         buffer_b->buffers[cpu] = cpu_buffer_a;
4384
4385         cpu_buffer_b->buffer = buffer_a;
4386         cpu_buffer_a->buffer = buffer_b;
4387
4388         ret = 0;
4389
4390 out_dec:
4391         atomic_dec(&cpu_buffer_a->record_disabled);
4392         atomic_dec(&cpu_buffer_b->record_disabled);
4393 out:
4394         return ret;
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4397 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4398
4399 /**
4400  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4401  * @buffer: the buffer to allocate for.
4402  * @cpu: the cpu buffer to allocate.
4403  *
4404  * This function is used in conjunction with ring_buffer_read_page.
4405  * When reading a full page from the ring buffer, these functions
4406  * can be used to speed up the process. The calling function should
4407  * allocate a few pages first with this function. Then when it
4408  * needs to get pages from the ring buffer, it passes the result
4409  * of this function into ring_buffer_read_page, which will swap
4410  * the page that was allocated, with the read page of the buffer.
4411  *
4412  * Returns:
4413  *  The page allocated, or NULL on error.
4414  */
4415 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4416 {
4417         struct buffer_data_page *bpage;
4418         struct page *page;
4419
4420         page = alloc_pages_node(cpu_to_node(cpu),
4421                                 GFP_KERNEL | __GFP_NORETRY, 0);
4422         if (!page)
4423                 return NULL;
4424
4425         bpage = page_address(page);
4426
4427         rb_init_page(bpage);
4428
4429         return bpage;
4430 }
4431 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4432
4433 /**
4434  * ring_buffer_free_read_page - free an allocated read page
4435  * @buffer: the buffer the page was allocate for
4436  * @data: the page to free
4437  *
4438  * Free a page allocated from ring_buffer_alloc_read_page.
4439  */
4440 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4441 {
4442         free_page((unsigned long)data);
4443 }
4444 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4445
4446 /**
4447  * ring_buffer_read_page - extract a page from the ring buffer
4448  * @buffer: buffer to extract from
4449  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4450  * @len: amount to extract
4451  * @cpu: the cpu of the buffer to extract
4452  * @full: should the extraction only happen when the page is full.
4453  *
4454  * This function will pull out a page from the ring buffer and consume it.
4455  * @data_page must be the address of the variable that was returned
4456  * from ring_buffer_alloc_read_page. This is because the page might be used
4457  * to swap with a page in the ring buffer.
4458  *
4459  * for example:
4460  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4461  *      if (!rpage)
4462  *              return error;
4463  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4464  *      if (ret >= 0)
4465  *              process_page(rpage, ret);
4466  *
4467  * When @full is set, the function will not return true unless
4468  * the writer is off the reader page.
4469  *
4470  * Note: it is up to the calling functions to handle sleeps and wakeups.
4471  *  The ring buffer can be used anywhere in the kernel and can not
4472  *  blindly call wake_up. The layer that uses the ring buffer must be
4473  *  responsible for that.
4474  *
4475  * Returns:
4476  *  >=0 if data has been transferred, returns the offset of consumed data.
4477  *  <0 if no data has been transferred.
4478  */
4479 int ring_buffer_read_page(struct ring_buffer *buffer,
4480                           void **data_page, size_t len, int cpu, int full)
4481 {
4482         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4483         struct ring_buffer_event *event;
4484         struct buffer_data_page *bpage;
4485         struct buffer_page *reader;
4486         unsigned long missed_events;
4487         unsigned long flags;
4488         unsigned int commit;
4489         unsigned int read;
4490         u64 save_timestamp;
4491         int ret = -1;
4492
4493         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4494                 goto out;
4495
4496         /*
4497          * If len is not big enough to hold the page header, then
4498          * we can not copy anything.
4499          */
4500         if (len <= BUF_PAGE_HDR_SIZE)
4501                 goto out;
4502
4503         len -= BUF_PAGE_HDR_SIZE;
4504
4505         if (!data_page)
4506                 goto out;
4507
4508         bpage = *data_page;
4509         if (!bpage)
4510                 goto out;
4511
4512         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4513
4514         reader = rb_get_reader_page(cpu_buffer);
4515         if (!reader)
4516                 goto out_unlock;
4517
4518         event = rb_reader_event(cpu_buffer);
4519
4520         read = reader->read;
4521         commit = rb_page_commit(reader);
4522
4523         /* Check if any events were dropped */
4524         missed_events = cpu_buffer->lost_events;
4525
4526         /*
4527          * If this page has been partially read or
4528          * if len is not big enough to read the rest of the page or
4529          * a writer is still on the page, then
4530          * we must copy the data from the page to the buffer.
4531          * Otherwise, we can simply swap the page with the one passed in.
4532          */
4533         if (read || (len < (commit - read)) ||
4534             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4535                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4536                 unsigned int rpos = read;
4537                 unsigned int pos = 0;
4538                 unsigned int size;
4539
4540                 if (full)
4541                         goto out_unlock;
4542
4543                 if (len > (commit - read))
4544                         len = (commit - read);
4545
4546                 /* Always keep the time extend and data together */
4547                 size = rb_event_ts_length(event);
4548
4549                 if (len < size)
4550                         goto out_unlock;
4551
4552                 /* save the current timestamp, since the user will need it */
4553                 save_timestamp = cpu_buffer->read_stamp;
4554
4555                 /* Need to copy one event at a time */
4556                 do {
4557                         /* We need the size of one event, because
4558                          * rb_advance_reader only advances by one event,
4559                          * whereas rb_event_ts_length may include the size of
4560                          * one or two events.
4561                          * We have already ensured there's enough space if this
4562                          * is a time extend. */
4563                         size = rb_event_length(event);
4564                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4565
4566                         len -= size;
4567
4568                         rb_advance_reader(cpu_buffer);
4569                         rpos = reader->read;
4570                         pos += size;
4571
4572                         if (rpos >= commit)
4573                                 break;
4574
4575                         event = rb_reader_event(cpu_buffer);
4576                         /* Always keep the time extend and data together */
4577                         size = rb_event_ts_length(event);
4578                 } while (len >= size);
4579
4580                 /* update bpage */
4581                 local_set(&bpage->commit, pos);
4582                 bpage->time_stamp = save_timestamp;
4583
4584                 /* we copied everything to the beginning */
4585                 read = 0;
4586         } else {
4587                 /* update the entry counter */
4588                 cpu_buffer->read += rb_page_entries(reader);
4589                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4590
4591                 /* swap the pages */
4592                 rb_init_page(bpage);
4593                 bpage = reader->page;
4594                 reader->page = *data_page;
4595                 local_set(&reader->write, 0);
4596                 local_set(&reader->entries, 0);
4597                 reader->read = 0;
4598                 *data_page = bpage;
4599
4600                 /*
4601                  * Use the real_end for the data size,
4602                  * This gives us a chance to store the lost events
4603                  * on the page.
4604                  */
4605                 if (reader->real_end)
4606                         local_set(&bpage->commit, reader->real_end);
4607         }
4608         ret = read;
4609
4610         cpu_buffer->lost_events = 0;
4611
4612         commit = local_read(&bpage->commit);
4613         /*
4614          * Set a flag in the commit field if we lost events
4615          */
4616         if (missed_events) {
4617                 /* If there is room at the end of the page to save the
4618                  * missed events, then record it there.
4619                  */
4620                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4621                         memcpy(&bpage->data[commit], &missed_events,
4622                                sizeof(missed_events));
4623                         local_add(RB_MISSED_STORED, &bpage->commit);
4624                         commit += sizeof(missed_events);
4625                 }
4626                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4627         }
4628
4629         /*
4630          * This page may be off to user land. Zero it out here.
4631          */
4632         if (commit < BUF_PAGE_SIZE)
4633                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4634
4635  out_unlock:
4636         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4637
4638  out:
4639         return ret;
4640 }
4641 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4642
4643 #ifdef CONFIG_HOTPLUG_CPU
4644 static int rb_cpu_notify(struct notifier_block *self,
4645                          unsigned long action, void *hcpu)
4646 {
4647         struct ring_buffer *buffer =
4648                 container_of(self, struct ring_buffer, cpu_notify);
4649         long cpu = (long)hcpu;
4650         int cpu_i, nr_pages_same;
4651         unsigned int nr_pages;
4652
4653         switch (action) {
4654         case CPU_UP_PREPARE:
4655         case CPU_UP_PREPARE_FROZEN:
4656                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4657                         return NOTIFY_OK;
4658
4659                 nr_pages = 0;
4660                 nr_pages_same = 1;
4661                 /* check if all cpu sizes are same */
4662                 for_each_buffer_cpu(buffer, cpu_i) {
4663                         /* fill in the size from first enabled cpu */
4664                         if (nr_pages == 0)
4665                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4666                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4667                                 nr_pages_same = 0;
4668                                 break;
4669                         }
4670                 }
4671                 /* allocate minimum pages, user can later expand it */
4672                 if (!nr_pages_same)
4673                         nr_pages = 2;
4674                 buffer->buffers[cpu] =
4675                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4676                 if (!buffer->buffers[cpu]) {
4677                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4678                              cpu);
4679                         return NOTIFY_OK;
4680                 }
4681                 smp_wmb();
4682                 cpumask_set_cpu(cpu, buffer->cpumask);
4683                 break;
4684         case CPU_DOWN_PREPARE:
4685         case CPU_DOWN_PREPARE_FROZEN:
4686                 /*
4687                  * Do nothing.
4688                  *  If we were to free the buffer, then the user would
4689                  *  lose any trace that was in the buffer.
4690                  */
4691                 break;
4692         default:
4693                 break;
4694         }
4695         return NOTIFY_OK;
4696 }
4697 #endif
4698
4699 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700 /*
4701  * This is a basic integrity check of the ring buffer.
4702  * Late in the boot cycle this test will run when configured in.
4703  * It will kick off a thread per CPU that will go into a loop
4704  * writing to the per cpu ring buffer various sizes of data.
4705  * Some of the data will be large items, some small.
4706  *
4707  * Another thread is created that goes into a spin, sending out
4708  * IPIs to the other CPUs to also write into the ring buffer.
4709  * this is to test the nesting ability of the buffer.
4710  *
4711  * Basic stats are recorded and reported. If something in the
4712  * ring buffer should happen that's not expected, a big warning
4713  * is displayed and all ring buffers are disabled.
4714  */
4715 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717 struct rb_test_data {
4718         struct ring_buffer      *buffer;
4719         unsigned long           events;
4720         unsigned long           bytes_written;
4721         unsigned long           bytes_alloc;
4722         unsigned long           bytes_dropped;
4723         unsigned long           events_nested;
4724         unsigned long           bytes_written_nested;
4725         unsigned long           bytes_alloc_nested;
4726         unsigned long           bytes_dropped_nested;
4727         int                     min_size_nested;
4728         int                     max_size_nested;
4729         int                     max_size;
4730         int                     min_size;
4731         int                     cpu;
4732         int                     cnt;
4733 };
4734
4735 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737 /* 1 meg per cpu */
4738 #define RB_TEST_BUFFER_SIZE     1048576
4739
4740 static char rb_string[] __initdata =
4741         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745 static bool rb_test_started __initdata;
4746
4747 struct rb_item {
4748         int size;
4749         char str[];
4750 };
4751
4752 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753 {
4754         struct ring_buffer_event *event;
4755         struct rb_item *item;
4756         bool started;
4757         int event_len;
4758         int size;
4759         int len;
4760         int cnt;
4761
4762         /* Have nested writes different that what is written */
4763         cnt = data->cnt + (nested ? 27 : 0);
4764
4765         /* Multiply cnt by ~e, to make some unique increment */
4766         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768         len = size + sizeof(struct rb_item);
4769
4770         started = rb_test_started;
4771         /* read rb_test_started before checking buffer enabled */
4772         smp_rmb();
4773
4774         event = ring_buffer_lock_reserve(data->buffer, len);
4775         if (!event) {
4776                 /* Ignore dropped events before test starts. */
4777                 if (started) {
4778                         if (nested)
4779                                 data->bytes_dropped += len;
4780                         else
4781                                 data->bytes_dropped_nested += len;
4782                 }
4783                 return len;
4784         }
4785
4786         event_len = ring_buffer_event_length(event);
4787
4788         if (RB_WARN_ON(data->buffer, event_len < len))
4789                 goto out;
4790
4791         item = ring_buffer_event_data(event);
4792         item->size = size;
4793         memcpy(item->str, rb_string, size);
4794
4795         if (nested) {
4796                 data->bytes_alloc_nested += event_len;
4797                 data->bytes_written_nested += len;
4798                 data->events_nested++;
4799                 if (!data->min_size_nested || len < data->min_size_nested)
4800                         data->min_size_nested = len;
4801                 if (len > data->max_size_nested)
4802                         data->max_size_nested = len;
4803         } else {
4804                 data->bytes_alloc += event_len;
4805                 data->bytes_written += len;
4806                 data->events++;
4807                 if (!data->min_size || len < data->min_size)
4808                         data->max_size = len;
4809                 if (len > data->max_size)
4810                         data->max_size = len;
4811         }
4812
4813  out:
4814         ring_buffer_unlock_commit(data->buffer, event);
4815
4816         return 0;
4817 }
4818
4819 static __init int rb_test(void *arg)
4820 {
4821         struct rb_test_data *data = arg;
4822
4823         while (!kthread_should_stop()) {
4824                 rb_write_something(data, false);
4825                 data->cnt++;
4826
4827                 set_current_state(TASK_INTERRUPTIBLE);
4828                 /* Now sleep between a min of 100-300us and a max of 1ms */
4829                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830         }
4831
4832         return 0;
4833 }
4834
4835 static __init void rb_ipi(void *ignore)
4836 {
4837         struct rb_test_data *data;
4838         int cpu = smp_processor_id();
4839
4840         data = &rb_data[cpu];
4841         rb_write_something(data, true);
4842 }
4843
4844 static __init int rb_hammer_test(void *arg)
4845 {
4846         while (!kthread_should_stop()) {
4847
4848                 /* Send an IPI to all cpus to write data! */
4849                 smp_call_function(rb_ipi, NULL, 1);
4850                 /* No sleep, but for non preempt, let others run */
4851                 schedule();
4852         }
4853
4854         return 0;
4855 }
4856
4857 static __init int test_ringbuffer(void)
4858 {
4859         struct task_struct *rb_hammer;
4860         struct ring_buffer *buffer;
4861         int cpu;
4862         int ret = 0;
4863
4864         pr_info("Running ring buffer tests...\n");
4865
4866         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867         if (WARN_ON(!buffer))
4868                 return 0;
4869
4870         /* Disable buffer so that threads can't write to it yet */
4871         ring_buffer_record_off(buffer);
4872
4873         for_each_online_cpu(cpu) {
4874                 rb_data[cpu].buffer = buffer;
4875                 rb_data[cpu].cpu = cpu;
4876                 rb_data[cpu].cnt = cpu;
4877                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878                                                  "rbtester/%d", cpu);
4879                 if (WARN_ON(!rb_threads[cpu])) {
4880                         pr_cont("FAILED\n");
4881                         ret = -1;
4882                         goto out_free;
4883                 }
4884
4885                 kthread_bind(rb_threads[cpu], cpu);
4886                 wake_up_process(rb_threads[cpu]);
4887         }
4888
4889         /* Now create the rb hammer! */
4890         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891         if (WARN_ON(!rb_hammer)) {
4892                 pr_cont("FAILED\n");
4893                 ret = -1;
4894                 goto out_free;
4895         }
4896
4897         ring_buffer_record_on(buffer);
4898         /*
4899          * Show buffer is enabled before setting rb_test_started.
4900          * Yes there's a small race window where events could be
4901          * dropped and the thread wont catch it. But when a ring
4902          * buffer gets enabled, there will always be some kind of
4903          * delay before other CPUs see it. Thus, we don't care about
4904          * those dropped events. We care about events dropped after
4905          * the threads see that the buffer is active.
4906          */
4907         smp_wmb();
4908         rb_test_started = true;
4909
4910         set_current_state(TASK_INTERRUPTIBLE);
4911         /* Just run for 10 seconds */;
4912         schedule_timeout(10 * HZ);
4913
4914         kthread_stop(rb_hammer);
4915
4916  out_free:
4917         for_each_online_cpu(cpu) {
4918                 if (!rb_threads[cpu])
4919                         break;
4920                 kthread_stop(rb_threads[cpu]);
4921         }
4922         if (ret) {
4923                 ring_buffer_free(buffer);
4924                 return ret;
4925         }
4926
4927         /* Report! */
4928         pr_info("finished\n");
4929         for_each_online_cpu(cpu) {
4930                 struct ring_buffer_event *event;
4931                 struct rb_test_data *data = &rb_data[cpu];
4932                 struct rb_item *item;
4933                 unsigned long total_events;
4934                 unsigned long total_dropped;
4935                 unsigned long total_written;
4936                 unsigned long total_alloc;
4937                 unsigned long total_read = 0;
4938                 unsigned long total_size = 0;
4939                 unsigned long total_len = 0;
4940                 unsigned long total_lost = 0;
4941                 unsigned long lost;
4942                 int big_event_size;
4943                 int small_event_size;
4944
4945                 ret = -1;
4946
4947                 total_events = data->events + data->events_nested;
4948                 total_written = data->bytes_written + data->bytes_written_nested;
4949                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952                 big_event_size = data->max_size + data->max_size_nested;
4953                 small_event_size = data->min_size + data->min_size_nested;
4954
4955                 pr_info("CPU %d:\n", cpu);
4956                 pr_info("              events:    %ld\n", total_events);
4957                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4958                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4959                 pr_info("       written bytes:    %ld\n", total_written);
4960                 pr_info("       biggest event:    %d\n", big_event_size);
4961                 pr_info("      smallest event:    %d\n", small_event_size);
4962
4963                 if (RB_WARN_ON(buffer, total_dropped))
4964                         break;
4965
4966                 ret = 0;
4967
4968                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969                         total_lost += lost;
4970                         item = ring_buffer_event_data(event);
4971                         total_len += ring_buffer_event_length(event);
4972                         total_size += item->size + sizeof(struct rb_item);
4973                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974                                 pr_info("FAILED!\n");
4975                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4976                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4977                                 RB_WARN_ON(buffer, 1);
4978                                 ret = -1;
4979                                 break;
4980                         }
4981                         total_read++;
4982                 }
4983                 if (ret)
4984                         break;
4985
4986                 ret = -1;
4987
4988                 pr_info("         read events:   %ld\n", total_read);
4989                 pr_info("         lost events:   %ld\n", total_lost);
4990                 pr_info("        total events:   %ld\n", total_lost + total_read);
4991                 pr_info("  recorded len bytes:   %ld\n", total_len);
4992                 pr_info(" recorded size bytes:   %ld\n", total_size);
4993                 if (total_lost)
4994                         pr_info(" With dropped events, record len and size may not match\n"
4995                                 " alloced and written from above\n");
4996                 if (!total_lost) {
4997                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998                                        total_size != total_written))
4999                                 break;
5000                 }
5001                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002                         break;
5003
5004                 ret = 0;
5005         }
5006         if (!ret)
5007                 pr_info("Ring buffer PASSED!\n");
5008
5009         ring_buffer_free(buffer);
5010         return 0;
5011 }
5012
5013 late_initcall(test_ringbuffer);
5014 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */