Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
302                                           cycle_t delta)
303 {
304         u64 nsec;
305
306         nsec = delta * tkr->mult + tkr->xtime_nsec;
307         nsec >>= tkr->shift;
308
309         /* If arch requires, add in get_arch_timeoffset() */
310         return nsec + arch_gettimeoffset();
311 }
312
313 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314 {
315         cycle_t delta;
316
317         delta = timekeeping_get_delta(tkr);
318         return timekeeping_delta_to_ns(tkr, delta);
319 }
320
321 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
322                                             cycle_t cycles)
323 {
324         cycle_t delta;
325
326         /* calculate the delta since the last update_wall_time */
327         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328         return timekeeping_delta_to_ns(tkr, delta);
329 }
330
331 /**
332  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333  * @tkr: Timekeeping readout base from which we take the update
334  *
335  * We want to use this from any context including NMI and tracing /
336  * instrumenting the timekeeping code itself.
337  *
338  * Employ the latch technique; see @raw_write_seqcount_latch.
339  *
340  * So if a NMI hits the update of base[0] then it will use base[1]
341  * which is still consistent. In the worst case this can result is a
342  * slightly wrong timestamp (a few nanoseconds). See
343  * @ktime_get_mono_fast_ns.
344  */
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346 {
347         struct tk_read_base *base = tkf->base;
348
349         /* Force readers off to base[1] */
350         raw_write_seqcount_latch(&tkf->seq);
351
352         /* Update base[0] */
353         memcpy(base, tkr, sizeof(*base));
354
355         /* Force readers back to base[0] */
356         raw_write_seqcount_latch(&tkf->seq);
357
358         /* Update base[1] */
359         memcpy(base + 1, base, sizeof(*base));
360 }
361
362 /**
363  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
364  *
365  * This timestamp is not guaranteed to be monotonic across an update.
366  * The timestamp is calculated by:
367  *
368  *      now = base_mono + clock_delta * slope
369  *
370  * So if the update lowers the slope, readers who are forced to the
371  * not yet updated second array are still using the old steeper slope.
372  *
373  * tmono
374  * ^
375  * |    o  n
376  * |   o n
377  * |  u
378  * | o
379  * |o
380  * |12345678---> reader order
381  *
382  * o = old slope
383  * u = update
384  * n = new slope
385  *
386  * So reader 6 will observe time going backwards versus reader 5.
387  *
388  * While other CPUs are likely to be able observe that, the only way
389  * for a CPU local observation is when an NMI hits in the middle of
390  * the update. Timestamps taken from that NMI context might be ahead
391  * of the following timestamps. Callers need to be aware of that and
392  * deal with it.
393  */
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 {
396         struct tk_read_base *tkr;
397         unsigned int seq;
398         u64 now;
399
400         do {
401                 seq = raw_read_seqcount_latch(&tkf->seq);
402                 tkr = tkf->base + (seq & 0x01);
403                 now = ktime_to_ns(tkr->base);
404
405                 now += timekeeping_delta_to_ns(tkr,
406                                 clocksource_delta(
407                                         tkr->read(tkr->clock),
408                                         tkr->cycle_last,
409                                         tkr->mask));
410         } while (read_seqcount_retry(&tkf->seq, seq));
411
412         return now;
413 }
414
415 u64 ktime_get_mono_fast_ns(void)
416 {
417         return __ktime_get_fast_ns(&tk_fast_mono);
418 }
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
420
421 u64 ktime_get_raw_fast_ns(void)
422 {
423         return __ktime_get_fast_ns(&tk_fast_raw);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
426
427 /* Suspend-time cycles value for halted fast timekeeper. */
428 static cycle_t cycles_at_suspend;
429
430 static cycle_t dummy_clock_read(struct clocksource *cs)
431 {
432         return cycles_at_suspend;
433 }
434
435 /**
436  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
437  * @tk: Timekeeper to snapshot.
438  *
439  * It generally is unsafe to access the clocksource after timekeeping has been
440  * suspended, so take a snapshot of the readout base of @tk and use it as the
441  * fast timekeeper's readout base while suspended.  It will return the same
442  * number of cycles every time until timekeeping is resumed at which time the
443  * proper readout base for the fast timekeeper will be restored automatically.
444  */
445 static void halt_fast_timekeeper(struct timekeeper *tk)
446 {
447         static struct tk_read_base tkr_dummy;
448         struct tk_read_base *tkr = &tk->tkr_mono;
449
450         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
451         cycles_at_suspend = tkr->read(tkr->clock);
452         tkr_dummy.read = dummy_clock_read;
453         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
454
455         tkr = &tk->tkr_raw;
456         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
457         tkr_dummy.read = dummy_clock_read;
458         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
459 }
460
461 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
462
463 static inline void update_vsyscall(struct timekeeper *tk)
464 {
465         struct timespec xt, wm;
466
467         xt = timespec64_to_timespec(tk_xtime(tk));
468         wm = timespec64_to_timespec(tk->wall_to_monotonic);
469         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
470                             tk->tkr_mono.cycle_last);
471 }
472
473 static inline void old_vsyscall_fixup(struct timekeeper *tk)
474 {
475         s64 remainder;
476
477         /*
478         * Store only full nanoseconds into xtime_nsec after rounding
479         * it up and add the remainder to the error difference.
480         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
481         * by truncating the remainder in vsyscalls. However, it causes
482         * additional work to be done in timekeeping_adjust(). Once
483         * the vsyscall implementations are converted to use xtime_nsec
484         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
485         * users are removed, this can be killed.
486         */
487         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
488         tk->tkr_mono.xtime_nsec -= remainder;
489         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
490         tk->ntp_error += remainder << tk->ntp_error_shift;
491         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
492 }
493 #else
494 #define old_vsyscall_fixup(tk)
495 #endif
496
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
498
499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
500 {
501         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
502 }
503
504 /**
505  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
506  */
507 int pvclock_gtod_register_notifier(struct notifier_block *nb)
508 {
509         struct timekeeper *tk = &tk_core.timekeeper;
510         unsigned long flags;
511         int ret;
512
513         raw_spin_lock_irqsave(&timekeeper_lock, flags);
514         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515         update_pvclock_gtod(tk, true);
516         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
517
518         return ret;
519 }
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
521
522 /**
523  * pvclock_gtod_unregister_notifier - unregister a pvclock
524  * timedata update listener
525  */
526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
527 {
528         unsigned long flags;
529         int ret;
530
531         raw_spin_lock_irqsave(&timekeeper_lock, flags);
532         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534
535         return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
538
539 /*
540  * tk_update_leap_state - helper to update the next_leap_ktime
541  */
542 static inline void tk_update_leap_state(struct timekeeper *tk)
543 {
544         tk->next_leap_ktime = ntp_get_next_leap();
545         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
546                 /* Convert to monotonic time */
547                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
548 }
549
550 /*
551  * Update the ktime_t based scalar nsec members of the timekeeper
552  */
553 static inline void tk_update_ktime_data(struct timekeeper *tk)
554 {
555         u64 seconds;
556         u32 nsec;
557
558         /*
559          * The xtime based monotonic readout is:
560          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561          * The ktime based monotonic readout is:
562          *      nsec = base_mono + now();
563          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
564          */
565         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
566         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
568
569         /* Update the monotonic raw base */
570         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
571
572         /*
573          * The sum of the nanoseconds portions of xtime and
574          * wall_to_monotonic can be greater/equal one second. Take
575          * this into account before updating tk->ktime_sec.
576          */
577         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578         if (nsec >= NSEC_PER_SEC)
579                 seconds++;
580         tk->ktime_sec = seconds;
581 }
582
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
585 {
586         if (action & TK_CLEAR_NTP) {
587                 tk->ntp_error = 0;
588                 ntp_clear();
589         }
590
591         tk_update_leap_state(tk);
592         tk_update_ktime_data(tk);
593
594         update_vsyscall(tk);
595         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
596
597         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
598         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
599
600         if (action & TK_CLOCK_WAS_SET)
601                 tk->clock_was_set_seq++;
602         /*
603          * The mirroring of the data to the shadow-timekeeper needs
604          * to happen last here to ensure we don't over-write the
605          * timekeeper structure on the next update with stale data
606          */
607         if (action & TK_MIRROR)
608                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
609                        sizeof(tk_core.timekeeper));
610 }
611
612 /**
613  * timekeeping_forward_now - update clock to the current time
614  *
615  * Forward the current clock to update its state since the last call to
616  * update_wall_time(). This is useful before significant clock changes,
617  * as it avoids having to deal with this time offset explicitly.
618  */
619 static void timekeeping_forward_now(struct timekeeper *tk)
620 {
621         struct clocksource *clock = tk->tkr_mono.clock;
622         cycle_t cycle_now, delta;
623         s64 nsec;
624
625         cycle_now = tk->tkr_mono.read(clock);
626         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
627         tk->tkr_mono.cycle_last = cycle_now;
628         tk->tkr_raw.cycle_last  = cycle_now;
629
630         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
631
632         /* If arch requires, add in get_arch_timeoffset() */
633         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
634
635         tk_normalize_xtime(tk);
636
637         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638         timespec64_add_ns(&tk->raw_time, nsec);
639 }
640
641 /**
642  * __getnstimeofday64 - Returns the time of day in a timespec64.
643  * @ts:         pointer to the timespec to be set
644  *
645  * Updates the time of day in the timespec.
646  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
647  */
648 int __getnstimeofday64(struct timespec64 *ts)
649 {
650         struct timekeeper *tk = &tk_core.timekeeper;
651         unsigned long seq;
652         s64 nsecs = 0;
653
654         do {
655                 seq = read_seqcount_begin(&tk_core.seq);
656
657                 ts->tv_sec = tk->xtime_sec;
658                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
659
660         } while (read_seqcount_retry(&tk_core.seq, seq));
661
662         ts->tv_nsec = 0;
663         timespec64_add_ns(ts, nsecs);
664
665         /*
666          * Do not bail out early, in case there were callers still using
667          * the value, even in the face of the WARN_ON.
668          */
669         if (unlikely(timekeeping_suspended))
670                 return -EAGAIN;
671         return 0;
672 }
673 EXPORT_SYMBOL(__getnstimeofday64);
674
675 /**
676  * getnstimeofday64 - Returns the time of day in a timespec64.
677  * @ts:         pointer to the timespec64 to be set
678  *
679  * Returns the time of day in a timespec64 (WARN if suspended).
680  */
681 void getnstimeofday64(struct timespec64 *ts)
682 {
683         WARN_ON(__getnstimeofday64(ts));
684 }
685 EXPORT_SYMBOL(getnstimeofday64);
686
687 ktime_t ktime_get(void)
688 {
689         struct timekeeper *tk = &tk_core.timekeeper;
690         unsigned int seq;
691         ktime_t base;
692         s64 nsecs;
693
694         WARN_ON(timekeeping_suspended);
695
696         do {
697                 seq = read_seqcount_begin(&tk_core.seq);
698                 base = tk->tkr_mono.base;
699                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
700
701         } while (read_seqcount_retry(&tk_core.seq, seq));
702
703         return ktime_add_ns(base, nsecs);
704 }
705 EXPORT_SYMBOL_GPL(ktime_get);
706
707 u32 ktime_get_resolution_ns(void)
708 {
709         struct timekeeper *tk = &tk_core.timekeeper;
710         unsigned int seq;
711         u32 nsecs;
712
713         WARN_ON(timekeeping_suspended);
714
715         do {
716                 seq = read_seqcount_begin(&tk_core.seq);
717                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
718         } while (read_seqcount_retry(&tk_core.seq, seq));
719
720         return nsecs;
721 }
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
723
724 static ktime_t *offsets[TK_OFFS_MAX] = {
725         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
726         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
727         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
728 };
729
730 ktime_t ktime_get_with_offset(enum tk_offsets offs)
731 {
732         struct timekeeper *tk = &tk_core.timekeeper;
733         unsigned int seq;
734         ktime_t base, *offset = offsets[offs];
735         s64 nsecs;
736
737         WARN_ON(timekeeping_suspended);
738
739         do {
740                 seq = read_seqcount_begin(&tk_core.seq);
741                 base = ktime_add(tk->tkr_mono.base, *offset);
742                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
743
744         } while (read_seqcount_retry(&tk_core.seq, seq));
745
746         return ktime_add_ns(base, nsecs);
747
748 }
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
750
751 /**
752  * ktime_mono_to_any() - convert mononotic time to any other time
753  * @tmono:      time to convert.
754  * @offs:       which offset to use
755  */
756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
757 {
758         ktime_t *offset = offsets[offs];
759         unsigned long seq;
760         ktime_t tconv;
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 tconv = ktime_add(tmono, *offset);
765         } while (read_seqcount_retry(&tk_core.seq, seq));
766
767         return tconv;
768 }
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
770
771 /**
772  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
773  */
774 ktime_t ktime_get_raw(void)
775 {
776         struct timekeeper *tk = &tk_core.timekeeper;
777         unsigned int seq;
778         ktime_t base;
779         s64 nsecs;
780
781         do {
782                 seq = read_seqcount_begin(&tk_core.seq);
783                 base = tk->tkr_raw.base;
784                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
785
786         } while (read_seqcount_retry(&tk_core.seq, seq));
787
788         return ktime_add_ns(base, nsecs);
789 }
790 EXPORT_SYMBOL_GPL(ktime_get_raw);
791
792 /**
793  * ktime_get_ts64 - get the monotonic clock in timespec64 format
794  * @ts:         pointer to timespec variable
795  *
796  * The function calculates the monotonic clock from the realtime
797  * clock and the wall_to_monotonic offset and stores the result
798  * in normalized timespec64 format in the variable pointed to by @ts.
799  */
800 void ktime_get_ts64(struct timespec64 *ts)
801 {
802         struct timekeeper *tk = &tk_core.timekeeper;
803         struct timespec64 tomono;
804         s64 nsec;
805         unsigned int seq;
806
807         WARN_ON(timekeeping_suspended);
808
809         do {
810                 seq = read_seqcount_begin(&tk_core.seq);
811                 ts->tv_sec = tk->xtime_sec;
812                 nsec = timekeeping_get_ns(&tk->tkr_mono);
813                 tomono = tk->wall_to_monotonic;
814
815         } while (read_seqcount_retry(&tk_core.seq, seq));
816
817         ts->tv_sec += tomono.tv_sec;
818         ts->tv_nsec = 0;
819         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_ts64);
822
823 /**
824  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
825  *
826  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828  * works on both 32 and 64 bit systems. On 32 bit systems the readout
829  * covers ~136 years of uptime which should be enough to prevent
830  * premature wrap arounds.
831  */
832 time64_t ktime_get_seconds(void)
833 {
834         struct timekeeper *tk = &tk_core.timekeeper;
835
836         WARN_ON(timekeeping_suspended);
837         return tk->ktime_sec;
838 }
839 EXPORT_SYMBOL_GPL(ktime_get_seconds);
840
841 /**
842  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
843  *
844  * Returns the wall clock seconds since 1970. This replaces the
845  * get_seconds() interface which is not y2038 safe on 32bit systems.
846  *
847  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848  * 32bit systems the access must be protected with the sequence
849  * counter to provide "atomic" access to the 64bit tk->xtime_sec
850  * value.
851  */
852 time64_t ktime_get_real_seconds(void)
853 {
854         struct timekeeper *tk = &tk_core.timekeeper;
855         time64_t seconds;
856         unsigned int seq;
857
858         if (IS_ENABLED(CONFIG_64BIT))
859                 return tk->xtime_sec;
860
861         do {
862                 seq = read_seqcount_begin(&tk_core.seq);
863                 seconds = tk->xtime_sec;
864
865         } while (read_seqcount_retry(&tk_core.seq, seq));
866
867         return seconds;
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
870
871 #ifdef CONFIG_NTP_PPS
872
873 /**
874  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
875  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
876  * @ts_real:    pointer to the timespec to be set to the time of day
877  *
878  * This function reads both the time of day and raw monotonic time at the
879  * same time atomically and stores the resulting timestamps in timespec
880  * format.
881  */
882 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
883 {
884         struct timekeeper *tk = &tk_core.timekeeper;
885         unsigned long seq;
886         s64 nsecs_raw, nsecs_real;
887
888         WARN_ON_ONCE(timekeeping_suspended);
889
890         do {
891                 seq = read_seqcount_begin(&tk_core.seq);
892
893                 *ts_raw = tk->raw_time;
894                 ts_real->tv_sec = tk->xtime_sec;
895                 ts_real->tv_nsec = 0;
896
897                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
898                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
899
900         } while (read_seqcount_retry(&tk_core.seq, seq));
901
902         timespec64_add_ns(ts_raw, nsecs_raw);
903         timespec64_add_ns(ts_real, nsecs_real);
904 }
905 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
906
907 #endif /* CONFIG_NTP_PPS */
908
909 /**
910  * do_gettimeofday - Returns the time of day in a timeval
911  * @tv:         pointer to the timeval to be set
912  *
913  * NOTE: Users should be converted to using getnstimeofday()
914  */
915 void do_gettimeofday(struct timeval *tv)
916 {
917         struct timespec64 now;
918
919         getnstimeofday64(&now);
920         tv->tv_sec = now.tv_sec;
921         tv->tv_usec = now.tv_nsec/1000;
922 }
923 EXPORT_SYMBOL(do_gettimeofday);
924
925 /**
926  * do_settimeofday64 - Sets the time of day.
927  * @ts:     pointer to the timespec64 variable containing the new time
928  *
929  * Sets the time of day to the new time and update NTP and notify hrtimers
930  */
931 int do_settimeofday64(const struct timespec64 *ts)
932 {
933         struct timekeeper *tk = &tk_core.timekeeper;
934         struct timespec64 ts_delta, xt;
935         unsigned long flags;
936         int ret = 0;
937
938         if (!timespec64_valid_strict(ts))
939                 return -EINVAL;
940
941         raw_spin_lock_irqsave(&timekeeper_lock, flags);
942         write_seqcount_begin(&tk_core.seq);
943
944         timekeeping_forward_now(tk);
945
946         xt = tk_xtime(tk);
947         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
948         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
949
950         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
951                 ret = -EINVAL;
952                 goto out;
953         }
954
955         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
956
957         tk_set_xtime(tk, ts);
958 out:
959         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
960
961         write_seqcount_end(&tk_core.seq);
962         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
963
964         /* signal hrtimers about time change */
965         clock_was_set();
966
967         return ret;
968 }
969 EXPORT_SYMBOL(do_settimeofday64);
970
971 /**
972  * timekeeping_inject_offset - Adds or subtracts from the current time.
973  * @tv:         pointer to the timespec variable containing the offset
974  *
975  * Adds or subtracts an offset value from the current time.
976  */
977 int timekeeping_inject_offset(struct timespec *ts)
978 {
979         struct timekeeper *tk = &tk_core.timekeeper;
980         unsigned long flags;
981         struct timespec64 ts64, tmp;
982         int ret = 0;
983
984         if (!timespec_inject_offset_valid(ts))
985                 return -EINVAL;
986
987         ts64 = timespec_to_timespec64(*ts);
988
989         raw_spin_lock_irqsave(&timekeeper_lock, flags);
990         write_seqcount_begin(&tk_core.seq);
991
992         timekeeping_forward_now(tk);
993
994         /* Make sure the proposed value is valid */
995         tmp = timespec64_add(tk_xtime(tk),  ts64);
996         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
997             !timespec64_valid_strict(&tmp)) {
998                 ret = -EINVAL;
999                 goto error;
1000         }
1001
1002         tk_xtime_add(tk, &ts64);
1003         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1004
1005 error: /* even if we error out, we forwarded the time, so call update */
1006         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1007
1008         write_seqcount_end(&tk_core.seq);
1009         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1010
1011         /* signal hrtimers about time change */
1012         clock_was_set();
1013
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(timekeeping_inject_offset);
1017
1018
1019 /**
1020  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1021  *
1022  */
1023 s32 timekeeping_get_tai_offset(void)
1024 {
1025         struct timekeeper *tk = &tk_core.timekeeper;
1026         unsigned int seq;
1027         s32 ret;
1028
1029         do {
1030                 seq = read_seqcount_begin(&tk_core.seq);
1031                 ret = tk->tai_offset;
1032         } while (read_seqcount_retry(&tk_core.seq, seq));
1033
1034         return ret;
1035 }
1036
1037 /**
1038  * __timekeeping_set_tai_offset - Lock free worker function
1039  *
1040  */
1041 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1042 {
1043         tk->tai_offset = tai_offset;
1044         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1045 }
1046
1047 /**
1048  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1049  *
1050  */
1051 void timekeeping_set_tai_offset(s32 tai_offset)
1052 {
1053         struct timekeeper *tk = &tk_core.timekeeper;
1054         unsigned long flags;
1055
1056         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1057         write_seqcount_begin(&tk_core.seq);
1058         __timekeeping_set_tai_offset(tk, tai_offset);
1059         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1060         write_seqcount_end(&tk_core.seq);
1061         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1062         clock_was_set();
1063 }
1064
1065 /**
1066  * change_clocksource - Swaps clocksources if a new one is available
1067  *
1068  * Accumulates current time interval and initializes new clocksource
1069  */
1070 static int change_clocksource(void *data)
1071 {
1072         struct timekeeper *tk = &tk_core.timekeeper;
1073         struct clocksource *new, *old;
1074         unsigned long flags;
1075
1076         new = (struct clocksource *) data;
1077
1078         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1079         write_seqcount_begin(&tk_core.seq);
1080
1081         timekeeping_forward_now(tk);
1082         /*
1083          * If the cs is in module, get a module reference. Succeeds
1084          * for built-in code (owner == NULL) as well.
1085          */
1086         if (try_module_get(new->owner)) {
1087                 if (!new->enable || new->enable(new) == 0) {
1088                         old = tk->tkr_mono.clock;
1089                         tk_setup_internals(tk, new);
1090                         if (old->disable)
1091                                 old->disable(old);
1092                         module_put(old->owner);
1093                 } else {
1094                         module_put(new->owner);
1095                 }
1096         }
1097         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1098
1099         write_seqcount_end(&tk_core.seq);
1100         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101
1102         return 0;
1103 }
1104
1105 /**
1106  * timekeeping_notify - Install a new clock source
1107  * @clock:              pointer to the clock source
1108  *
1109  * This function is called from clocksource.c after a new, better clock
1110  * source has been registered. The caller holds the clocksource_mutex.
1111  */
1112 int timekeeping_notify(struct clocksource *clock)
1113 {
1114         struct timekeeper *tk = &tk_core.timekeeper;
1115
1116         if (tk->tkr_mono.clock == clock)
1117                 return 0;
1118         stop_machine(change_clocksource, clock, NULL);
1119         tick_clock_notify();
1120         return tk->tkr_mono.clock == clock ? 0 : -1;
1121 }
1122
1123 /**
1124  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1125  * @ts:         pointer to the timespec64 to be set
1126  *
1127  * Returns the raw monotonic time (completely un-modified by ntp)
1128  */
1129 void getrawmonotonic64(struct timespec64 *ts)
1130 {
1131         struct timekeeper *tk = &tk_core.timekeeper;
1132         struct timespec64 ts64;
1133         unsigned long seq;
1134         s64 nsecs;
1135
1136         do {
1137                 seq = read_seqcount_begin(&tk_core.seq);
1138                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1139                 ts64 = tk->raw_time;
1140
1141         } while (read_seqcount_retry(&tk_core.seq, seq));
1142
1143         timespec64_add_ns(&ts64, nsecs);
1144         *ts = ts64;
1145 }
1146 EXPORT_SYMBOL(getrawmonotonic64);
1147
1148
1149 /**
1150  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1151  */
1152 int timekeeping_valid_for_hres(void)
1153 {
1154         struct timekeeper *tk = &tk_core.timekeeper;
1155         unsigned long seq;
1156         int ret;
1157
1158         do {
1159                 seq = read_seqcount_begin(&tk_core.seq);
1160
1161                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1162
1163         } while (read_seqcount_retry(&tk_core.seq, seq));
1164
1165         return ret;
1166 }
1167
1168 /**
1169  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1170  */
1171 u64 timekeeping_max_deferment(void)
1172 {
1173         struct timekeeper *tk = &tk_core.timekeeper;
1174         unsigned long seq;
1175         u64 ret;
1176
1177         do {
1178                 seq = read_seqcount_begin(&tk_core.seq);
1179
1180                 ret = tk->tkr_mono.clock->max_idle_ns;
1181
1182         } while (read_seqcount_retry(&tk_core.seq, seq));
1183
1184         return ret;
1185 }
1186
1187 /**
1188  * read_persistent_clock -  Return time from the persistent clock.
1189  *
1190  * Weak dummy function for arches that do not yet support it.
1191  * Reads the time from the battery backed persistent clock.
1192  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1193  *
1194  *  XXX - Do be sure to remove it once all arches implement it.
1195  */
1196 void __weak read_persistent_clock(struct timespec *ts)
1197 {
1198         ts->tv_sec = 0;
1199         ts->tv_nsec = 0;
1200 }
1201
1202 void __weak read_persistent_clock64(struct timespec64 *ts64)
1203 {
1204         struct timespec ts;
1205
1206         read_persistent_clock(&ts);
1207         *ts64 = timespec_to_timespec64(ts);
1208 }
1209
1210 /**
1211  * read_boot_clock64 -  Return time of the system start.
1212  *
1213  * Weak dummy function for arches that do not yet support it.
1214  * Function to read the exact time the system has been started.
1215  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1216  *
1217  *  XXX - Do be sure to remove it once all arches implement it.
1218  */
1219 void __weak read_boot_clock64(struct timespec64 *ts)
1220 {
1221         ts->tv_sec = 0;
1222         ts->tv_nsec = 0;
1223 }
1224
1225 /* Flag for if timekeeping_resume() has injected sleeptime */
1226 static bool sleeptime_injected;
1227
1228 /* Flag for if there is a persistent clock on this platform */
1229 static bool persistent_clock_exists;
1230
1231 /*
1232  * timekeeping_init - Initializes the clocksource and common timekeeping values
1233  */
1234 void __init timekeeping_init(void)
1235 {
1236         struct timekeeper *tk = &tk_core.timekeeper;
1237         struct clocksource *clock;
1238         unsigned long flags;
1239         struct timespec64 now, boot, tmp;
1240
1241         read_persistent_clock64(&now);
1242         if (!timespec64_valid_strict(&now)) {
1243                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1244                         "         Check your CMOS/BIOS settings.\n");
1245                 now.tv_sec = 0;
1246                 now.tv_nsec = 0;
1247         } else if (now.tv_sec || now.tv_nsec)
1248                 persistent_clock_exists = true;
1249
1250         read_boot_clock64(&boot);
1251         if (!timespec64_valid_strict(&boot)) {
1252                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1253                         "         Check your CMOS/BIOS settings.\n");
1254                 boot.tv_sec = 0;
1255                 boot.tv_nsec = 0;
1256         }
1257
1258         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1259         write_seqcount_begin(&tk_core.seq);
1260         ntp_init();
1261
1262         clock = clocksource_default_clock();
1263         if (clock->enable)
1264                 clock->enable(clock);
1265         tk_setup_internals(tk, clock);
1266
1267         tk_set_xtime(tk, &now);
1268         tk->raw_time.tv_sec = 0;
1269         tk->raw_time.tv_nsec = 0;
1270         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1271                 boot = tk_xtime(tk);
1272
1273         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1274         tk_set_wall_to_mono(tk, tmp);
1275
1276         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1277
1278         write_seqcount_end(&tk_core.seq);
1279         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1280 }
1281
1282 /* time in seconds when suspend began for persistent clock */
1283 static struct timespec64 timekeeping_suspend_time;
1284
1285 /**
1286  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1287  * @delta: pointer to a timespec delta value
1288  *
1289  * Takes a timespec offset measuring a suspend interval and properly
1290  * adds the sleep offset to the timekeeping variables.
1291  */
1292 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1293                                            struct timespec64 *delta)
1294 {
1295         if (!timespec64_valid_strict(delta)) {
1296                 printk_deferred(KERN_WARNING
1297                                 "__timekeeping_inject_sleeptime: Invalid "
1298                                 "sleep delta value!\n");
1299                 return;
1300         }
1301         tk_xtime_add(tk, delta);
1302         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1303         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1304         tk_debug_account_sleep_time(delta);
1305 }
1306
1307 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1308 /**
1309  * We have three kinds of time sources to use for sleep time
1310  * injection, the preference order is:
1311  * 1) non-stop clocksource
1312  * 2) persistent clock (ie: RTC accessible when irqs are off)
1313  * 3) RTC
1314  *
1315  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1316  * If system has neither 1) nor 2), 3) will be used finally.
1317  *
1318  *
1319  * If timekeeping has injected sleeptime via either 1) or 2),
1320  * 3) becomes needless, so in this case we don't need to call
1321  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1322  * means.
1323  */
1324 bool timekeeping_rtc_skipresume(void)
1325 {
1326         return sleeptime_injected;
1327 }
1328
1329 /**
1330  * 1) can be determined whether to use or not only when doing
1331  * timekeeping_resume() which is invoked after rtc_suspend(),
1332  * so we can't skip rtc_suspend() surely if system has 1).
1333  *
1334  * But if system has 2), 2) will definitely be used, so in this
1335  * case we don't need to call rtc_suspend(), and this is what
1336  * timekeeping_rtc_skipsuspend() means.
1337  */
1338 bool timekeeping_rtc_skipsuspend(void)
1339 {
1340         return persistent_clock_exists;
1341 }
1342
1343 /**
1344  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1345  * @delta: pointer to a timespec64 delta value
1346  *
1347  * This hook is for architectures that cannot support read_persistent_clock64
1348  * because their RTC/persistent clock is only accessible when irqs are enabled.
1349  * and also don't have an effective nonstop clocksource.
1350  *
1351  * This function should only be called by rtc_resume(), and allows
1352  * a suspend offset to be injected into the timekeeping values.
1353  */
1354 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1355 {
1356         struct timekeeper *tk = &tk_core.timekeeper;
1357         unsigned long flags;
1358
1359         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1360         write_seqcount_begin(&tk_core.seq);
1361
1362         timekeeping_forward_now(tk);
1363
1364         __timekeeping_inject_sleeptime(tk, delta);
1365
1366         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1367
1368         write_seqcount_end(&tk_core.seq);
1369         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1370
1371         /* signal hrtimers about time change */
1372         clock_was_set();
1373 }
1374 #endif
1375
1376 /**
1377  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1378  */
1379 void timekeeping_resume(void)
1380 {
1381         struct timekeeper *tk = &tk_core.timekeeper;
1382         struct clocksource *clock = tk->tkr_mono.clock;
1383         unsigned long flags;
1384         struct timespec64 ts_new, ts_delta;
1385         cycle_t cycle_now, cycle_delta;
1386
1387         sleeptime_injected = false;
1388         read_persistent_clock64(&ts_new);
1389
1390         clockevents_resume();
1391         clocksource_resume();
1392
1393         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1394         write_seqcount_begin(&tk_core.seq);
1395
1396         /*
1397          * After system resumes, we need to calculate the suspended time and
1398          * compensate it for the OS time. There are 3 sources that could be
1399          * used: Nonstop clocksource during suspend, persistent clock and rtc
1400          * device.
1401          *
1402          * One specific platform may have 1 or 2 or all of them, and the
1403          * preference will be:
1404          *      suspend-nonstop clocksource -> persistent clock -> rtc
1405          * The less preferred source will only be tried if there is no better
1406          * usable source. The rtc part is handled separately in rtc core code.
1407          */
1408         cycle_now = tk->tkr_mono.read(clock);
1409         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1410                 cycle_now > tk->tkr_mono.cycle_last) {
1411                 u64 num, max = ULLONG_MAX;
1412                 u32 mult = clock->mult;
1413                 u32 shift = clock->shift;
1414                 s64 nsec = 0;
1415
1416                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1417                                                 tk->tkr_mono.mask);
1418
1419                 /*
1420                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1421                  * suspended time is too long. In that case we need do the
1422                  * 64 bits math carefully
1423                  */
1424                 do_div(max, mult);
1425                 if (cycle_delta > max) {
1426                         num = div64_u64(cycle_delta, max);
1427                         nsec = (((u64) max * mult) >> shift) * num;
1428                         cycle_delta -= num * max;
1429                 }
1430                 nsec += ((u64) cycle_delta * mult) >> shift;
1431
1432                 ts_delta = ns_to_timespec64(nsec);
1433                 sleeptime_injected = true;
1434         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1435                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1436                 sleeptime_injected = true;
1437         }
1438
1439         if (sleeptime_injected)
1440                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1441
1442         /* Re-base the last cycle value */
1443         tk->tkr_mono.cycle_last = cycle_now;
1444         tk->tkr_raw.cycle_last  = cycle_now;
1445
1446         tk->ntp_error = 0;
1447         timekeeping_suspended = 0;
1448         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1449         write_seqcount_end(&tk_core.seq);
1450         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1451
1452         touch_softlockup_watchdog();
1453
1454         tick_resume();
1455         hrtimers_resume();
1456 }
1457
1458 int timekeeping_suspend(void)
1459 {
1460         struct timekeeper *tk = &tk_core.timekeeper;
1461         unsigned long flags;
1462         struct timespec64               delta, delta_delta;
1463         static struct timespec64        old_delta;
1464
1465         read_persistent_clock64(&timekeeping_suspend_time);
1466
1467         /*
1468          * On some systems the persistent_clock can not be detected at
1469          * timekeeping_init by its return value, so if we see a valid
1470          * value returned, update the persistent_clock_exists flag.
1471          */
1472         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1473                 persistent_clock_exists = true;
1474
1475         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1476         write_seqcount_begin(&tk_core.seq);
1477         timekeeping_forward_now(tk);
1478         timekeeping_suspended = 1;
1479
1480         if (persistent_clock_exists) {
1481                 /*
1482                  * To avoid drift caused by repeated suspend/resumes,
1483                  * which each can add ~1 second drift error,
1484                  * try to compensate so the difference in system time
1485                  * and persistent_clock time stays close to constant.
1486                  */
1487                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1488                 delta_delta = timespec64_sub(delta, old_delta);
1489                 if (abs(delta_delta.tv_sec) >= 2) {
1490                         /*
1491                          * if delta_delta is too large, assume time correction
1492                          * has occurred and set old_delta to the current delta.
1493                          */
1494                         old_delta = delta;
1495                 } else {
1496                         /* Otherwise try to adjust old_system to compensate */
1497                         timekeeping_suspend_time =
1498                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1499                 }
1500         }
1501
1502         timekeeping_update(tk, TK_MIRROR);
1503         halt_fast_timekeeper(tk);
1504         write_seqcount_end(&tk_core.seq);
1505         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1506
1507         tick_suspend();
1508         clocksource_suspend();
1509         clockevents_suspend();
1510
1511         return 0;
1512 }
1513
1514 /* sysfs resume/suspend bits for timekeeping */
1515 static struct syscore_ops timekeeping_syscore_ops = {
1516         .resume         = timekeeping_resume,
1517         .suspend        = timekeeping_suspend,
1518 };
1519
1520 static int __init timekeeping_init_ops(void)
1521 {
1522         register_syscore_ops(&timekeeping_syscore_ops);
1523         return 0;
1524 }
1525 device_initcall(timekeeping_init_ops);
1526
1527 /*
1528  * Apply a multiplier adjustment to the timekeeper
1529  */
1530 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1531                                                          s64 offset,
1532                                                          bool negative,
1533                                                          int adj_scale)
1534 {
1535         s64 interval = tk->cycle_interval;
1536         s32 mult_adj = 1;
1537
1538         if (negative) {
1539                 mult_adj = -mult_adj;
1540                 interval = -interval;
1541                 offset  = -offset;
1542         }
1543         mult_adj <<= adj_scale;
1544         interval <<= adj_scale;
1545         offset <<= adj_scale;
1546
1547         /*
1548          * So the following can be confusing.
1549          *
1550          * To keep things simple, lets assume mult_adj == 1 for now.
1551          *
1552          * When mult_adj != 1, remember that the interval and offset values
1553          * have been appropriately scaled so the math is the same.
1554          *
1555          * The basic idea here is that we're increasing the multiplier
1556          * by one, this causes the xtime_interval to be incremented by
1557          * one cycle_interval. This is because:
1558          *      xtime_interval = cycle_interval * mult
1559          * So if mult is being incremented by one:
1560          *      xtime_interval = cycle_interval * (mult + 1)
1561          * Its the same as:
1562          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1563          * Which can be shortened to:
1564          *      xtime_interval += cycle_interval
1565          *
1566          * So offset stores the non-accumulated cycles. Thus the current
1567          * time (in shifted nanoseconds) is:
1568          *      now = (offset * adj) + xtime_nsec
1569          * Now, even though we're adjusting the clock frequency, we have
1570          * to keep time consistent. In other words, we can't jump back
1571          * in time, and we also want to avoid jumping forward in time.
1572          *
1573          * So given the same offset value, we need the time to be the same
1574          * both before and after the freq adjustment.
1575          *      now = (offset * adj_1) + xtime_nsec_1
1576          *      now = (offset * adj_2) + xtime_nsec_2
1577          * So:
1578          *      (offset * adj_1) + xtime_nsec_1 =
1579          *              (offset * adj_2) + xtime_nsec_2
1580          * And we know:
1581          *      adj_2 = adj_1 + 1
1582          * So:
1583          *      (offset * adj_1) + xtime_nsec_1 =
1584          *              (offset * (adj_1+1)) + xtime_nsec_2
1585          *      (offset * adj_1) + xtime_nsec_1 =
1586          *              (offset * adj_1) + offset + xtime_nsec_2
1587          * Canceling the sides:
1588          *      xtime_nsec_1 = offset + xtime_nsec_2
1589          * Which gives us:
1590          *      xtime_nsec_2 = xtime_nsec_1 - offset
1591          * Which simplfies to:
1592          *      xtime_nsec -= offset
1593          *
1594          * XXX - TODO: Doc ntp_error calculation.
1595          */
1596         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1597                 /* NTP adjustment caused clocksource mult overflow */
1598                 WARN_ON_ONCE(1);
1599                 return;
1600         }
1601
1602         tk->tkr_mono.mult += mult_adj;
1603         tk->xtime_interval += interval;
1604         tk->tkr_mono.xtime_nsec -= offset;
1605         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1606 }
1607
1608 /*
1609  * Calculate the multiplier adjustment needed to match the frequency
1610  * specified by NTP
1611  */
1612 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1613                                                         s64 offset)
1614 {
1615         s64 interval = tk->cycle_interval;
1616         s64 xinterval = tk->xtime_interval;
1617         s64 tick_error;
1618         bool negative;
1619         u32 adj;
1620
1621         /* Remove any current error adj from freq calculation */
1622         if (tk->ntp_err_mult)
1623                 xinterval -= tk->cycle_interval;
1624
1625         tk->ntp_tick = ntp_tick_length();
1626
1627         /* Calculate current error per tick */
1628         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1629         tick_error -= (xinterval + tk->xtime_remainder);
1630
1631         /* Don't worry about correcting it if its small */
1632         if (likely((tick_error >= 0) && (tick_error <= interval)))
1633                 return;
1634
1635         /* preserve the direction of correction */
1636         negative = (tick_error < 0);
1637
1638         /* Sort out the magnitude of the correction */
1639         tick_error = abs(tick_error);
1640         for (adj = 0; tick_error > interval; adj++)
1641                 tick_error >>= 1;
1642
1643         /* scale the corrections */
1644         timekeeping_apply_adjustment(tk, offset, negative, adj);
1645 }
1646
1647 /*
1648  * Adjust the timekeeper's multiplier to the correct frequency
1649  * and also to reduce the accumulated error value.
1650  */
1651 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1652 {
1653         /* Correct for the current frequency error */
1654         timekeeping_freqadjust(tk, offset);
1655
1656         /* Next make a small adjustment to fix any cumulative error */
1657         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1658                 tk->ntp_err_mult = 1;
1659                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1660         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1661                 /* Undo any existing error adjustment */
1662                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1663                 tk->ntp_err_mult = 0;
1664         }
1665
1666         if (unlikely(tk->tkr_mono.clock->maxadj &&
1667                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1668                         > tk->tkr_mono.clock->maxadj))) {
1669                 printk_once(KERN_WARNING
1670                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1671                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1672                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1673         }
1674
1675         /*
1676          * It may be possible that when we entered this function, xtime_nsec
1677          * was very small.  Further, if we're slightly speeding the clocksource
1678          * in the code above, its possible the required corrective factor to
1679          * xtime_nsec could cause it to underflow.
1680          *
1681          * Now, since we already accumulated the second, cannot simply roll
1682          * the accumulated second back, since the NTP subsystem has been
1683          * notified via second_overflow. So instead we push xtime_nsec forward
1684          * by the amount we underflowed, and add that amount into the error.
1685          *
1686          * We'll correct this error next time through this function, when
1687          * xtime_nsec is not as small.
1688          */
1689         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1690                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1691                 tk->tkr_mono.xtime_nsec = 0;
1692                 tk->ntp_error += neg << tk->ntp_error_shift;
1693         }
1694 }
1695
1696 /**
1697  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1698  *
1699  * Helper function that accumulates the nsecs greater than a second
1700  * from the xtime_nsec field to the xtime_secs field.
1701  * It also calls into the NTP code to handle leapsecond processing.
1702  *
1703  */
1704 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1705 {
1706         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1707         unsigned int clock_set = 0;
1708
1709         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1710                 int leap;
1711
1712                 tk->tkr_mono.xtime_nsec -= nsecps;
1713                 tk->xtime_sec++;
1714
1715                 /* Figure out if its a leap sec and apply if needed */
1716                 leap = second_overflow(tk->xtime_sec);
1717                 if (unlikely(leap)) {
1718                         struct timespec64 ts;
1719
1720                         tk->xtime_sec += leap;
1721
1722                         ts.tv_sec = leap;
1723                         ts.tv_nsec = 0;
1724                         tk_set_wall_to_mono(tk,
1725                                 timespec64_sub(tk->wall_to_monotonic, ts));
1726
1727                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1728
1729                         clock_set = TK_CLOCK_WAS_SET;
1730                 }
1731         }
1732         return clock_set;
1733 }
1734
1735 /**
1736  * logarithmic_accumulation - shifted accumulation of cycles
1737  *
1738  * This functions accumulates a shifted interval of cycles into
1739  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1740  * loop.
1741  *
1742  * Returns the unconsumed cycles.
1743  */
1744 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1745                                                 u32 shift,
1746                                                 unsigned int *clock_set)
1747 {
1748         cycle_t interval = tk->cycle_interval << shift;
1749         u64 raw_nsecs;
1750
1751         /* If the offset is smaller than a shifted interval, do nothing */
1752         if (offset < interval)
1753                 return offset;
1754
1755         /* Accumulate one shifted interval */
1756         offset -= interval;
1757         tk->tkr_mono.cycle_last += interval;
1758         tk->tkr_raw.cycle_last  += interval;
1759
1760         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1761         *clock_set |= accumulate_nsecs_to_secs(tk);
1762
1763         /* Accumulate raw time */
1764         raw_nsecs = (u64)tk->raw_interval << shift;
1765         raw_nsecs += tk->raw_time.tv_nsec;
1766         if (raw_nsecs >= NSEC_PER_SEC) {
1767                 u64 raw_secs = raw_nsecs;
1768                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1769                 tk->raw_time.tv_sec += raw_secs;
1770         }
1771         tk->raw_time.tv_nsec = raw_nsecs;
1772
1773         /* Accumulate error between NTP and clock interval */
1774         tk->ntp_error += tk->ntp_tick << shift;
1775         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1776                                                 (tk->ntp_error_shift + shift);
1777
1778         return offset;
1779 }
1780
1781 /**
1782  * update_wall_time - Uses the current clocksource to increment the wall time
1783  *
1784  */
1785 void update_wall_time(void)
1786 {
1787         struct timekeeper *real_tk = &tk_core.timekeeper;
1788         struct timekeeper *tk = &shadow_timekeeper;
1789         cycle_t offset;
1790         int shift = 0, maxshift;
1791         unsigned int clock_set = 0;
1792         unsigned long flags;
1793
1794         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1795
1796         /* Make sure we're fully resumed: */
1797         if (unlikely(timekeeping_suspended))
1798                 goto out;
1799
1800 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1801         offset = real_tk->cycle_interval;
1802 #else
1803         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1804                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1805 #endif
1806
1807         /* Check if there's really nothing to do */
1808         if (offset < real_tk->cycle_interval)
1809                 goto out;
1810
1811         /* Do some additional sanity checking */
1812         timekeeping_check_update(real_tk, offset);
1813
1814         /*
1815          * With NO_HZ we may have to accumulate many cycle_intervals
1816          * (think "ticks") worth of time at once. To do this efficiently,
1817          * we calculate the largest doubling multiple of cycle_intervals
1818          * that is smaller than the offset.  We then accumulate that
1819          * chunk in one go, and then try to consume the next smaller
1820          * doubled multiple.
1821          */
1822         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1823         shift = max(0, shift);
1824         /* Bound shift to one less than what overflows tick_length */
1825         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1826         shift = min(shift, maxshift);
1827         while (offset >= tk->cycle_interval) {
1828                 offset = logarithmic_accumulation(tk, offset, shift,
1829                                                         &clock_set);
1830                 if (offset < tk->cycle_interval<<shift)
1831                         shift--;
1832         }
1833
1834         /* correct the clock when NTP error is too big */
1835         timekeeping_adjust(tk, offset);
1836
1837         /*
1838          * XXX This can be killed once everyone converts
1839          * to the new update_vsyscall.
1840          */
1841         old_vsyscall_fixup(tk);
1842
1843         /*
1844          * Finally, make sure that after the rounding
1845          * xtime_nsec isn't larger than NSEC_PER_SEC
1846          */
1847         clock_set |= accumulate_nsecs_to_secs(tk);
1848
1849         write_seqcount_begin(&tk_core.seq);
1850         /*
1851          * Update the real timekeeper.
1852          *
1853          * We could avoid this memcpy by switching pointers, but that
1854          * requires changes to all other timekeeper usage sites as
1855          * well, i.e. move the timekeeper pointer getter into the
1856          * spinlocked/seqcount protected sections. And we trade this
1857          * memcpy under the tk_core.seq against one before we start
1858          * updating.
1859          */
1860         timekeeping_update(tk, clock_set);
1861         memcpy(real_tk, tk, sizeof(*tk));
1862         /* The memcpy must come last. Do not put anything here! */
1863         write_seqcount_end(&tk_core.seq);
1864 out:
1865         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1866         if (clock_set)
1867                 /* Have to call _delayed version, since in irq context*/
1868                 clock_was_set_delayed();
1869 }
1870
1871 /**
1872  * getboottime64 - Return the real time of system boot.
1873  * @ts:         pointer to the timespec64 to be set
1874  *
1875  * Returns the wall-time of boot in a timespec64.
1876  *
1877  * This is based on the wall_to_monotonic offset and the total suspend
1878  * time. Calls to settimeofday will affect the value returned (which
1879  * basically means that however wrong your real time clock is at boot time,
1880  * you get the right time here).
1881  */
1882 void getboottime64(struct timespec64 *ts)
1883 {
1884         struct timekeeper *tk = &tk_core.timekeeper;
1885         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1886
1887         *ts = ktime_to_timespec64(t);
1888 }
1889 EXPORT_SYMBOL_GPL(getboottime64);
1890
1891 unsigned long get_seconds(void)
1892 {
1893         struct timekeeper *tk = &tk_core.timekeeper;
1894
1895         return tk->xtime_sec;
1896 }
1897 EXPORT_SYMBOL(get_seconds);
1898
1899 struct timespec __current_kernel_time(void)
1900 {
1901         struct timekeeper *tk = &tk_core.timekeeper;
1902
1903         return timespec64_to_timespec(tk_xtime(tk));
1904 }
1905
1906 struct timespec64 current_kernel_time64(void)
1907 {
1908         struct timekeeper *tk = &tk_core.timekeeper;
1909         struct timespec64 now;
1910         unsigned long seq;
1911
1912         do {
1913                 seq = read_seqcount_begin(&tk_core.seq);
1914
1915                 now = tk_xtime(tk);
1916         } while (read_seqcount_retry(&tk_core.seq, seq));
1917
1918         return now;
1919 }
1920 EXPORT_SYMBOL(current_kernel_time64);
1921
1922 struct timespec64 get_monotonic_coarse64(void)
1923 {
1924         struct timekeeper *tk = &tk_core.timekeeper;
1925         struct timespec64 now, mono;
1926         unsigned long seq;
1927
1928         do {
1929                 seq = read_seqcount_begin(&tk_core.seq);
1930
1931                 now = tk_xtime(tk);
1932                 mono = tk->wall_to_monotonic;
1933         } while (read_seqcount_retry(&tk_core.seq, seq));
1934
1935         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1936                                 now.tv_nsec + mono.tv_nsec);
1937
1938         return now;
1939 }
1940
1941 /*
1942  * Must hold jiffies_lock
1943  */
1944 void do_timer(unsigned long ticks)
1945 {
1946         jiffies_64 += ticks;
1947         calc_global_load(ticks);
1948 }
1949
1950 /**
1951  * ktime_get_update_offsets_now - hrtimer helper
1952  * @cwsseq:     pointer to check and store the clock was set sequence number
1953  * @offs_real:  pointer to storage for monotonic -> realtime offset
1954  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1955  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1956  *
1957  * Returns current monotonic time and updates the offsets if the
1958  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1959  * different.
1960  *
1961  * Called from hrtimer_interrupt() or retrigger_next_event()
1962  */
1963 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1964                                      ktime_t *offs_boot, ktime_t *offs_tai)
1965 {
1966         struct timekeeper *tk = &tk_core.timekeeper;
1967         unsigned int seq;
1968         ktime_t base;
1969         u64 nsecs;
1970
1971         do {
1972                 seq = read_seqcount_begin(&tk_core.seq);
1973
1974                 base = tk->tkr_mono.base;
1975                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1976                 base = ktime_add_ns(base, nsecs);
1977
1978                 if (*cwsseq != tk->clock_was_set_seq) {
1979                         *cwsseq = tk->clock_was_set_seq;
1980                         *offs_real = tk->offs_real;
1981                         *offs_boot = tk->offs_boot;
1982                         *offs_tai = tk->offs_tai;
1983                 }
1984
1985                 /* Handle leapsecond insertion adjustments */
1986                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1987                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1988
1989         } while (read_seqcount_retry(&tk_core.seq, seq));
1990
1991         return base;
1992 }
1993
1994 /**
1995  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1996  */
1997 int do_adjtimex(struct timex *txc)
1998 {
1999         struct timekeeper *tk = &tk_core.timekeeper;
2000         unsigned long flags;
2001         struct timespec64 ts;
2002         s32 orig_tai, tai;
2003         int ret;
2004
2005         /* Validate the data before disabling interrupts */
2006         ret = ntp_validate_timex(txc);
2007         if (ret)
2008                 return ret;
2009
2010         if (txc->modes & ADJ_SETOFFSET) {
2011                 struct timespec delta;
2012                 delta.tv_sec  = txc->time.tv_sec;
2013                 delta.tv_nsec = txc->time.tv_usec;
2014                 if (!(txc->modes & ADJ_NANO))
2015                         delta.tv_nsec *= 1000;
2016                 ret = timekeeping_inject_offset(&delta);
2017                 if (ret)
2018                         return ret;
2019         }
2020
2021         getnstimeofday64(&ts);
2022
2023         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2024         write_seqcount_begin(&tk_core.seq);
2025
2026         orig_tai = tai = tk->tai_offset;
2027         ret = __do_adjtimex(txc, &ts, &tai);
2028
2029         if (tai != orig_tai) {
2030                 __timekeeping_set_tai_offset(tk, tai);
2031                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2032         }
2033         tk_update_leap_state(tk);
2034
2035         write_seqcount_end(&tk_core.seq);
2036         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2037
2038         if (tai != orig_tai)
2039                 clock_was_set();
2040
2041         ntp_notify_cmos_timer();
2042
2043         return ret;
2044 }
2045
2046 #ifdef CONFIG_NTP_PPS
2047 /**
2048  * hardpps() - Accessor function to NTP __hardpps function
2049  */
2050 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2051 {
2052         unsigned long flags;
2053
2054         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2055         write_seqcount_begin(&tk_core.seq);
2056
2057         __hardpps(phase_ts, raw_ts);
2058
2059         write_seqcount_end(&tk_core.seq);
2060         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2061 }
2062 EXPORT_SYMBOL(hardpps);
2063 #endif
2064
2065 /**
2066  * xtime_update() - advances the timekeeping infrastructure
2067  * @ticks:      number of ticks, that have elapsed since the last call.
2068  *
2069  * Must be called with interrupts disabled.
2070  */
2071 void xtime_update(unsigned long ticks)
2072 {
2073         raw_spin_lock(&jiffies_lock);
2074         write_seqcount_begin(&jiffies_seq);
2075         do_timer(ticks);
2076         write_seqcount_end(&jiffies_seq);
2077         raw_spin_unlock(&jiffies_lock);
2078         update_wall_time();
2079 }