Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 /*
122  * These simple flag variables are managed
123  * without locks, which is racy, but ok since
124  * we don't really care about being super
125  * precise about how many events were seen,
126  * just that a problem was observed.
127  */
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
130
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
133
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135 {
136
137         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138         const char *name = tk->tkr_mono.clock->name;
139
140         if (offset > max_cycles) {
141                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142                                 offset, name, max_cycles);
143                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144         } else {
145                 if (offset > (max_cycles >> 1)) {
146                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147                                         offset, name, max_cycles >> 1);
148                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149                 }
150         }
151
152         if (timekeeping_underflow_seen) {
153                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156                         printk_deferred("         Your kernel is probably still fine.\n");
157                         timekeeping_last_warning = jiffies;
158                 }
159                 timekeeping_underflow_seen = 0;
160         }
161
162         if (timekeeping_overflow_seen) {
163                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166                         printk_deferred("         Your kernel is probably still fine.\n");
167                         timekeeping_last_warning = jiffies;
168                 }
169                 timekeeping_overflow_seen = 0;
170         }
171 }
172
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174 {
175         cycle_t now, last, mask, max, delta;
176         unsigned int seq;
177
178         /*
179          * Since we're called holding a seqlock, the data may shift
180          * under us while we're doing the calculation. This can cause
181          * false positives, since we'd note a problem but throw the
182          * results away. So nest another seqlock here to atomically
183          * grab the points we are checking with.
184          */
185         do {
186                 seq = read_seqcount_begin(&tk_core.seq);
187                 now = tkr->read(tkr->clock);
188                 last = tkr->cycle_last;
189                 mask = tkr->mask;
190                 max = tkr->clock->max_cycles;
191         } while (read_seqcount_retry(&tk_core.seq, seq));
192
193         delta = clocksource_delta(now, last, mask);
194
195         /*
196          * Try to catch underflows by checking if we are seeing small
197          * mask-relative negative values.
198          */
199         if (unlikely((~delta & mask) < (mask >> 3))) {
200                 timekeeping_underflow_seen = 1;
201                 delta = 0;
202         }
203
204         /* Cap delta value to the max_cycles values to avoid mult overflows */
205         if (unlikely(delta > max)) {
206                 timekeeping_overflow_seen = 1;
207                 delta = tkr->clock->max_cycles;
208         }
209
210         return delta;
211 }
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214 {
215 }
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217 {
218         cycle_t cycle_now, delta;
219
220         /* read clocksource */
221         cycle_now = tkr->read(tkr->clock);
222
223         /* calculate the delta since the last update_wall_time */
224         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226         return delta;
227 }
228 #endif
229
230 /**
231  * tk_setup_internals - Set up internals to use clocksource clock.
232  *
233  * @tk:         The target timekeeper to setup.
234  * @clock:              Pointer to clocksource.
235  *
236  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237  * pair and interval request.
238  *
239  * Unless you're the timekeeping code, you should not be using this!
240  */
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 {
243         cycle_t interval;
244         u64 tmp, ntpinterval;
245         struct clocksource *old_clock;
246
247         old_clock = tk->tkr_mono.clock;
248         tk->tkr_mono.clock = clock;
249         tk->tkr_mono.read = clock->read;
250         tk->tkr_mono.mask = clock->mask;
251         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252
253         tk->tkr_raw.clock = clock;
254         tk->tkr_raw.read = clock->read;
255         tk->tkr_raw.mask = clock->mask;
256         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
258         /* Do the ns -> cycle conversion first, using original mult */
259         tmp = NTP_INTERVAL_LENGTH;
260         tmp <<= clock->shift;
261         ntpinterval = tmp;
262         tmp += clock->mult/2;
263         do_div(tmp, clock->mult);
264         if (tmp == 0)
265                 tmp = 1;
266
267         interval = (cycle_t) tmp;
268         tk->cycle_interval = interval;
269
270         /* Go back from cycles -> shifted ns */
271         tk->xtime_interval = (u64) interval * clock->mult;
272         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273         tk->raw_interval =
274                 ((u64) interval * clock->mult) >> clock->shift;
275
276          /* if changing clocks, convert xtime_nsec shift units */
277         if (old_clock) {
278                 int shift_change = clock->shift - old_clock->shift;
279                 if (shift_change < 0)
280                         tk->tkr_mono.xtime_nsec >>= -shift_change;
281                 else
282                         tk->tkr_mono.xtime_nsec <<= shift_change;
283         }
284         tk->tkr_raw.xtime_nsec = 0;
285
286         tk->tkr_mono.shift = clock->shift;
287         tk->tkr_raw.shift = clock->shift;
288
289         tk->ntp_error = 0;
290         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292
293         /*
294          * The timekeeper keeps its own mult values for the currently
295          * active clocksource. These value will be adjusted via NTP
296          * to counteract clock drifting.
297          */
298         tk->tkr_mono.mult = clock->mult;
299         tk->tkr_raw.mult = clock->mult;
300         tk->ntp_err_mult = 0;
301 }
302
303 /* Timekeeper helper functions. */
304
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
311
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314         cycle_t delta;
315         s64 nsec;
316
317         delta = timekeeping_get_delta(tkr);
318
319         nsec = delta * tkr->mult + tkr->xtime_nsec;
320         nsec >>= tkr->shift;
321
322         /* If arch requires, add in get_arch_timeoffset() */
323         return nsec + arch_gettimeoffset();
324 }
325
326 /**
327  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328  * @tkr: Timekeeping readout base from which we take the update
329  *
330  * We want to use this from any context including NMI and tracing /
331  * instrumenting the timekeeping code itself.
332  *
333  * So we handle this differently than the other timekeeping accessor
334  * functions which retry when the sequence count has changed. The
335  * update side does:
336  *
337  * smp_wmb();   <- Ensure that the last base[1] update is visible
338  * tkf->seq++;
339  * smp_wmb();   <- Ensure that the seqcount update is visible
340  * update(tkf->base[0], tkr);
341  * smp_wmb();   <- Ensure that the base[0] update is visible
342  * tkf->seq++;
343  * smp_wmb();   <- Ensure that the seqcount update is visible
344  * update(tkf->base[1], tkr);
345  *
346  * The reader side does:
347  *
348  * do {
349  *      seq = tkf->seq;
350  *      smp_rmb();
351  *      idx = seq & 0x01;
352  *      now = now(tkf->base[idx]);
353  *      smp_rmb();
354  * } while (seq != tkf->seq)
355  *
356  * As long as we update base[0] readers are forced off to
357  * base[1]. Once base[0] is updated readers are redirected to base[0]
358  * and the base[1] update takes place.
359  *
360  * So if a NMI hits the update of base[0] then it will use base[1]
361  * which is still consistent. In the worst case this can result is a
362  * slightly wrong timestamp (a few nanoseconds). See
363  * @ktime_get_mono_fast_ns.
364  */
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 {
367         struct tk_read_base *base = tkf->base;
368
369         /* Force readers off to base[1] */
370         raw_write_seqcount_latch(&tkf->seq);
371
372         /* Update base[0] */
373         memcpy(base, tkr, sizeof(*base));
374
375         /* Force readers back to base[0] */
376         raw_write_seqcount_latch(&tkf->seq);
377
378         /* Update base[1] */
379         memcpy(base + 1, base, sizeof(*base));
380 }
381
382 /**
383  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384  *
385  * This timestamp is not guaranteed to be monotonic across an update.
386  * The timestamp is calculated by:
387  *
388  *      now = base_mono + clock_delta * slope
389  *
390  * So if the update lowers the slope, readers who are forced to the
391  * not yet updated second array are still using the old steeper slope.
392  *
393  * tmono
394  * ^
395  * |    o  n
396  * |   o n
397  * |  u
398  * | o
399  * |o
400  * |12345678---> reader order
401  *
402  * o = old slope
403  * u = update
404  * n = new slope
405  *
406  * So reader 6 will observe time going backwards versus reader 5.
407  *
408  * While other CPUs are likely to be able observe that, the only way
409  * for a CPU local observation is when an NMI hits in the middle of
410  * the update. Timestamps taken from that NMI context might be ahead
411  * of the following timestamps. Callers need to be aware of that and
412  * deal with it.
413  */
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 {
416         struct tk_read_base *tkr;
417         unsigned int seq;
418         u64 now;
419
420         do {
421                 seq = raw_read_seqcount(&tkf->seq);
422                 tkr = tkf->base + (seq & 0x01);
423                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
424         } while (read_seqcount_retry(&tkf->seq, seq));
425
426         return now;
427 }
428
429 u64 ktime_get_mono_fast_ns(void)
430 {
431         return __ktime_get_fast_ns(&tk_fast_mono);
432 }
433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434
435 u64 ktime_get_raw_fast_ns(void)
436 {
437         return __ktime_get_fast_ns(&tk_fast_raw);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440
441 /* Suspend-time cycles value for halted fast timekeeper. */
442 static cycle_t cycles_at_suspend;
443
444 static cycle_t dummy_clock_read(struct clocksource *cs)
445 {
446         return cycles_at_suspend;
447 }
448
449 /**
450  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451  * @tk: Timekeeper to snapshot.
452  *
453  * It generally is unsafe to access the clocksource after timekeeping has been
454  * suspended, so take a snapshot of the readout base of @tk and use it as the
455  * fast timekeeper's readout base while suspended.  It will return the same
456  * number of cycles every time until timekeeping is resumed at which time the
457  * proper readout base for the fast timekeeper will be restored automatically.
458  */
459 static void halt_fast_timekeeper(struct timekeeper *tk)
460 {
461         static struct tk_read_base tkr_dummy;
462         struct tk_read_base *tkr = &tk->tkr_mono;
463
464         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465         cycles_at_suspend = tkr->read(tkr->clock);
466         tkr_dummy.read = dummy_clock_read;
467         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
468
469         tkr = &tk->tkr_raw;
470         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471         tkr_dummy.read = dummy_clock_read;
472         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
473 }
474
475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476
477 static inline void update_vsyscall(struct timekeeper *tk)
478 {
479         struct timespec xt, wm;
480
481         xt = timespec64_to_timespec(tk_xtime(tk));
482         wm = timespec64_to_timespec(tk->wall_to_monotonic);
483         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484                             tk->tkr_mono.cycle_last);
485 }
486
487 static inline void old_vsyscall_fixup(struct timekeeper *tk)
488 {
489         s64 remainder;
490
491         /*
492         * Store only full nanoseconds into xtime_nsec after rounding
493         * it up and add the remainder to the error difference.
494         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
495         * by truncating the remainder in vsyscalls. However, it causes
496         * additional work to be done in timekeeping_adjust(). Once
497         * the vsyscall implementations are converted to use xtime_nsec
498         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499         * users are removed, this can be killed.
500         */
501         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502         tk->tkr_mono.xtime_nsec -= remainder;
503         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
504         tk->ntp_error += remainder << tk->ntp_error_shift;
505         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
506 }
507 #else
508 #define old_vsyscall_fixup(tk)
509 #endif
510
511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512
513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
514 {
515         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
516 }
517
518 /**
519  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
520  */
521 int pvclock_gtod_register_notifier(struct notifier_block *nb)
522 {
523         struct timekeeper *tk = &tk_core.timekeeper;
524         unsigned long flags;
525         int ret;
526
527         raw_spin_lock_irqsave(&timekeeper_lock, flags);
528         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
529         update_pvclock_gtod(tk, true);
530         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531
532         return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
535
536 /**
537  * pvclock_gtod_unregister_notifier - unregister a pvclock
538  * timedata update listener
539  */
540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541 {
542         unsigned long flags;
543         int ret;
544
545         raw_spin_lock_irqsave(&timekeeper_lock, flags);
546         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
547         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548
549         return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
552
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558         u64 seconds;
559         u32 nsec;
560
561         /*
562          * The xtime based monotonic readout is:
563          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564          * The ktime based monotonic readout is:
565          *      nsec = base_mono + now();
566          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567          */
568         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572         /* Update the monotonic raw base */
573         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575         /*
576          * The sum of the nanoseconds portions of xtime and
577          * wall_to_monotonic can be greater/equal one second. Take
578          * this into account before updating tk->ktime_sec.
579          */
580         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581         if (nsec >= NSEC_PER_SEC)
582                 seconds++;
583         tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589         if (action & TK_CLEAR_NTP) {
590                 tk->ntp_error = 0;
591                 ntp_clear();
592         }
593
594         tk_update_ktime_data(tk);
595
596         update_vsyscall(tk);
597         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598
599         if (action & TK_MIRROR)
600                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601                        sizeof(tk_core.timekeeper));
602
603         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
604         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
605 }
606
607 /**
608  * timekeeping_forward_now - update clock to the current time
609  *
610  * Forward the current clock to update its state since the last call to
611  * update_wall_time(). This is useful before significant clock changes,
612  * as it avoids having to deal with this time offset explicitly.
613  */
614 static void timekeeping_forward_now(struct timekeeper *tk)
615 {
616         struct clocksource *clock = tk->tkr_mono.clock;
617         cycle_t cycle_now, delta;
618         s64 nsec;
619
620         cycle_now = tk->tkr_mono.read(clock);
621         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622         tk->tkr_mono.cycle_last = cycle_now;
623         tk->tkr_raw.cycle_last  = cycle_now;
624
625         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626
627         /* If arch requires, add in get_arch_timeoffset() */
628         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629
630         tk_normalize_xtime(tk);
631
632         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633         timespec64_add_ns(&tk->raw_time, nsec);
634 }
635
636 /**
637  * __getnstimeofday64 - Returns the time of day in a timespec64.
638  * @ts:         pointer to the timespec to be set
639  *
640  * Updates the time of day in the timespec.
641  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642  */
643 int __getnstimeofday64(struct timespec64 *ts)
644 {
645         struct timekeeper *tk = &tk_core.timekeeper;
646         unsigned long seq;
647         s64 nsecs = 0;
648
649         do {
650                 seq = read_seqcount_begin(&tk_core.seq);
651
652                 ts->tv_sec = tk->xtime_sec;
653                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
654
655         } while (read_seqcount_retry(&tk_core.seq, seq));
656
657         ts->tv_nsec = 0;
658         timespec64_add_ns(ts, nsecs);
659
660         /*
661          * Do not bail out early, in case there were callers still using
662          * the value, even in the face of the WARN_ON.
663          */
664         if (unlikely(timekeeping_suspended))
665                 return -EAGAIN;
666         return 0;
667 }
668 EXPORT_SYMBOL(__getnstimeofday64);
669
670 /**
671  * getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:         pointer to the timespec64 to be set
673  *
674  * Returns the time of day in a timespec64 (WARN if suspended).
675  */
676 void getnstimeofday64(struct timespec64 *ts)
677 {
678         WARN_ON(__getnstimeofday64(ts));
679 }
680 EXPORT_SYMBOL(getnstimeofday64);
681
682 ktime_t ktime_get(void)
683 {
684         struct timekeeper *tk = &tk_core.timekeeper;
685         unsigned int seq;
686         ktime_t base;
687         s64 nsecs;
688
689         WARN_ON(timekeeping_suspended);
690
691         do {
692                 seq = read_seqcount_begin(&tk_core.seq);
693                 base = tk->tkr_mono.base;
694                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
695
696         } while (read_seqcount_retry(&tk_core.seq, seq));
697
698         return ktime_add_ns(base, nsecs);
699 }
700 EXPORT_SYMBOL_GPL(ktime_get);
701
702 static ktime_t *offsets[TK_OFFS_MAX] = {
703         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
704         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
705         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
706 };
707
708 ktime_t ktime_get_with_offset(enum tk_offsets offs)
709 {
710         struct timekeeper *tk = &tk_core.timekeeper;
711         unsigned int seq;
712         ktime_t base, *offset = offsets[offs];
713         s64 nsecs;
714
715         WARN_ON(timekeeping_suspended);
716
717         do {
718                 seq = read_seqcount_begin(&tk_core.seq);
719                 base = ktime_add(tk->tkr_mono.base, *offset);
720                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
721
722         } while (read_seqcount_retry(&tk_core.seq, seq));
723
724         return ktime_add_ns(base, nsecs);
725
726 }
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728
729 /**
730  * ktime_mono_to_any() - convert mononotic time to any other time
731  * @tmono:      time to convert.
732  * @offs:       which offset to use
733  */
734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735 {
736         ktime_t *offset = offsets[offs];
737         unsigned long seq;
738         ktime_t tconv;
739
740         do {
741                 seq = read_seqcount_begin(&tk_core.seq);
742                 tconv = ktime_add(tmono, *offset);
743         } while (read_seqcount_retry(&tk_core.seq, seq));
744
745         return tconv;
746 }
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748
749 /**
750  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751  */
752 ktime_t ktime_get_raw(void)
753 {
754         struct timekeeper *tk = &tk_core.timekeeper;
755         unsigned int seq;
756         ktime_t base;
757         s64 nsecs;
758
759         do {
760                 seq = read_seqcount_begin(&tk_core.seq);
761                 base = tk->tkr_raw.base;
762                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
763
764         } while (read_seqcount_retry(&tk_core.seq, seq));
765
766         return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get_raw);
769
770 /**
771  * ktime_get_ts64 - get the monotonic clock in timespec64 format
772  * @ts:         pointer to timespec variable
773  *
774  * The function calculates the monotonic clock from the realtime
775  * clock and the wall_to_monotonic offset and stores the result
776  * in normalized timespec64 format in the variable pointed to by @ts.
777  */
778 void ktime_get_ts64(struct timespec64 *ts)
779 {
780         struct timekeeper *tk = &tk_core.timekeeper;
781         struct timespec64 tomono;
782         s64 nsec;
783         unsigned int seq;
784
785         WARN_ON(timekeeping_suspended);
786
787         do {
788                 seq = read_seqcount_begin(&tk_core.seq);
789                 ts->tv_sec = tk->xtime_sec;
790                 nsec = timekeeping_get_ns(&tk->tkr_mono);
791                 tomono = tk->wall_to_monotonic;
792
793         } while (read_seqcount_retry(&tk_core.seq, seq));
794
795         ts->tv_sec += tomono.tv_sec;
796         ts->tv_nsec = 0;
797         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
798 }
799 EXPORT_SYMBOL_GPL(ktime_get_ts64);
800
801 /**
802  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803  *
804  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806  * works on both 32 and 64 bit systems. On 32 bit systems the readout
807  * covers ~136 years of uptime which should be enough to prevent
808  * premature wrap arounds.
809  */
810 time64_t ktime_get_seconds(void)
811 {
812         struct timekeeper *tk = &tk_core.timekeeper;
813
814         WARN_ON(timekeeping_suspended);
815         return tk->ktime_sec;
816 }
817 EXPORT_SYMBOL_GPL(ktime_get_seconds);
818
819 /**
820  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821  *
822  * Returns the wall clock seconds since 1970. This replaces the
823  * get_seconds() interface which is not y2038 safe on 32bit systems.
824  *
825  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826  * 32bit systems the access must be protected with the sequence
827  * counter to provide "atomic" access to the 64bit tk->xtime_sec
828  * value.
829  */
830 time64_t ktime_get_real_seconds(void)
831 {
832         struct timekeeper *tk = &tk_core.timekeeper;
833         time64_t seconds;
834         unsigned int seq;
835
836         if (IS_ENABLED(CONFIG_64BIT))
837                 return tk->xtime_sec;
838
839         do {
840                 seq = read_seqcount_begin(&tk_core.seq);
841                 seconds = tk->xtime_sec;
842
843         } while (read_seqcount_retry(&tk_core.seq, seq));
844
845         return seconds;
846 }
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848
849 #ifdef CONFIG_NTP_PPS
850
851 /**
852  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
854  * @ts_real:    pointer to the timespec to be set to the time of day
855  *
856  * This function reads both the time of day and raw monotonic time at the
857  * same time atomically and stores the resulting timestamps in timespec
858  * format.
859  */
860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861 {
862         struct timekeeper *tk = &tk_core.timekeeper;
863         unsigned long seq;
864         s64 nsecs_raw, nsecs_real;
865
866         WARN_ON_ONCE(timekeeping_suspended);
867
868         do {
869                 seq = read_seqcount_begin(&tk_core.seq);
870
871                 *ts_raw = timespec64_to_timespec(tk->raw_time);
872                 ts_real->tv_sec = tk->xtime_sec;
873                 ts_real->tv_nsec = 0;
874
875                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
876                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
877
878         } while (read_seqcount_retry(&tk_core.seq, seq));
879
880         timespec_add_ns(ts_raw, nsecs_raw);
881         timespec_add_ns(ts_real, nsecs_real);
882 }
883 EXPORT_SYMBOL(getnstime_raw_and_real);
884
885 #endif /* CONFIG_NTP_PPS */
886
887 /**
888  * do_gettimeofday - Returns the time of day in a timeval
889  * @tv:         pointer to the timeval to be set
890  *
891  * NOTE: Users should be converted to using getnstimeofday()
892  */
893 void do_gettimeofday(struct timeval *tv)
894 {
895         struct timespec64 now;
896
897         getnstimeofday64(&now);
898         tv->tv_sec = now.tv_sec;
899         tv->tv_usec = now.tv_nsec/1000;
900 }
901 EXPORT_SYMBOL(do_gettimeofday);
902
903 /**
904  * do_settimeofday64 - Sets the time of day.
905  * @ts:     pointer to the timespec64 variable containing the new time
906  *
907  * Sets the time of day to the new time and update NTP and notify hrtimers
908  */
909 int do_settimeofday64(const struct timespec64 *ts)
910 {
911         struct timekeeper *tk = &tk_core.timekeeper;
912         struct timespec64 ts_delta, xt;
913         unsigned long flags;
914
915         if (!timespec64_valid_strict(ts))
916                 return -EINVAL;
917
918         raw_spin_lock_irqsave(&timekeeper_lock, flags);
919         write_seqcount_begin(&tk_core.seq);
920
921         timekeeping_forward_now(tk);
922
923         xt = tk_xtime(tk);
924         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926
927         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
928
929         tk_set_xtime(tk, ts);
930
931         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
932
933         write_seqcount_end(&tk_core.seq);
934         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
935
936         /* signal hrtimers about time change */
937         clock_was_set();
938
939         return 0;
940 }
941 EXPORT_SYMBOL(do_settimeofday64);
942
943 /**
944  * timekeeping_inject_offset - Adds or subtracts from the current time.
945  * @tv:         pointer to the timespec variable containing the offset
946  *
947  * Adds or subtracts an offset value from the current time.
948  */
949 int timekeeping_inject_offset(struct timespec *ts)
950 {
951         struct timekeeper *tk = &tk_core.timekeeper;
952         unsigned long flags;
953         struct timespec64 ts64, tmp;
954         int ret = 0;
955
956         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957                 return -EINVAL;
958
959         ts64 = timespec_to_timespec64(*ts);
960
961         raw_spin_lock_irqsave(&timekeeper_lock, flags);
962         write_seqcount_begin(&tk_core.seq);
963
964         timekeeping_forward_now(tk);
965
966         /* Make sure the proposed value is valid */
967         tmp = timespec64_add(tk_xtime(tk),  ts64);
968         if (!timespec64_valid_strict(&tmp)) {
969                 ret = -EINVAL;
970                 goto error;
971         }
972
973         tk_xtime_add(tk, &ts64);
974         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
975
976 error: /* even if we error out, we forwarded the time, so call update */
977         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
978
979         write_seqcount_end(&tk_core.seq);
980         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
981
982         /* signal hrtimers about time change */
983         clock_was_set();
984
985         return ret;
986 }
987 EXPORT_SYMBOL(timekeeping_inject_offset);
988
989
990 /**
991  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
992  *
993  */
994 s32 timekeeping_get_tai_offset(void)
995 {
996         struct timekeeper *tk = &tk_core.timekeeper;
997         unsigned int seq;
998         s32 ret;
999
1000         do {
1001                 seq = read_seqcount_begin(&tk_core.seq);
1002                 ret = tk->tai_offset;
1003         } while (read_seqcount_retry(&tk_core.seq, seq));
1004
1005         return ret;
1006 }
1007
1008 /**
1009  * __timekeeping_set_tai_offset - Lock free worker function
1010  *
1011  */
1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013 {
1014         tk->tai_offset = tai_offset;
1015         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1016 }
1017
1018 /**
1019  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020  *
1021  */
1022 void timekeeping_set_tai_offset(s32 tai_offset)
1023 {
1024         struct timekeeper *tk = &tk_core.timekeeper;
1025         unsigned long flags;
1026
1027         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028         write_seqcount_begin(&tk_core.seq);
1029         __timekeeping_set_tai_offset(tk, tai_offset);
1030         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031         write_seqcount_end(&tk_core.seq);
1032         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033         clock_was_set();
1034 }
1035
1036 /**
1037  * change_clocksource - Swaps clocksources if a new one is available
1038  *
1039  * Accumulates current time interval and initializes new clocksource
1040  */
1041 static int change_clocksource(void *data)
1042 {
1043         struct timekeeper *tk = &tk_core.timekeeper;
1044         struct clocksource *new, *old;
1045         unsigned long flags;
1046
1047         new = (struct clocksource *) data;
1048
1049         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050         write_seqcount_begin(&tk_core.seq);
1051
1052         timekeeping_forward_now(tk);
1053         /*
1054          * If the cs is in module, get a module reference. Succeeds
1055          * for built-in code (owner == NULL) as well.
1056          */
1057         if (try_module_get(new->owner)) {
1058                 if (!new->enable || new->enable(new) == 0) {
1059                         old = tk->tkr_mono.clock;
1060                         tk_setup_internals(tk, new);
1061                         if (old->disable)
1062                                 old->disable(old);
1063                         module_put(old->owner);
1064                 } else {
1065                         module_put(new->owner);
1066                 }
1067         }
1068         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069
1070         write_seqcount_end(&tk_core.seq);
1071         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 /**
1077  * timekeeping_notify - Install a new clock source
1078  * @clock:              pointer to the clock source
1079  *
1080  * This function is called from clocksource.c after a new, better clock
1081  * source has been registered. The caller holds the clocksource_mutex.
1082  */
1083 int timekeeping_notify(struct clocksource *clock)
1084 {
1085         struct timekeeper *tk = &tk_core.timekeeper;
1086
1087         if (tk->tkr_mono.clock == clock)
1088                 return 0;
1089         stop_machine(change_clocksource, clock, NULL);
1090         tick_clock_notify();
1091         return tk->tkr_mono.clock == clock ? 0 : -1;
1092 }
1093
1094 /**
1095  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096  * @ts:         pointer to the timespec64 to be set
1097  *
1098  * Returns the raw monotonic time (completely un-modified by ntp)
1099  */
1100 void getrawmonotonic64(struct timespec64 *ts)
1101 {
1102         struct timekeeper *tk = &tk_core.timekeeper;
1103         struct timespec64 ts64;
1104         unsigned long seq;
1105         s64 nsecs;
1106
1107         do {
1108                 seq = read_seqcount_begin(&tk_core.seq);
1109                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110                 ts64 = tk->raw_time;
1111
1112         } while (read_seqcount_retry(&tk_core.seq, seq));
1113
1114         timespec64_add_ns(&ts64, nsecs);
1115         *ts = ts64;
1116 }
1117 EXPORT_SYMBOL(getrawmonotonic64);
1118
1119
1120 /**
1121  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122  */
1123 int timekeeping_valid_for_hres(void)
1124 {
1125         struct timekeeper *tk = &tk_core.timekeeper;
1126         unsigned long seq;
1127         int ret;
1128
1129         do {
1130                 seq = read_seqcount_begin(&tk_core.seq);
1131
1132                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133
1134         } while (read_seqcount_retry(&tk_core.seq, seq));
1135
1136         return ret;
1137 }
1138
1139 /**
1140  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141  */
1142 u64 timekeeping_max_deferment(void)
1143 {
1144         struct timekeeper *tk = &tk_core.timekeeper;
1145         unsigned long seq;
1146         u64 ret;
1147
1148         do {
1149                 seq = read_seqcount_begin(&tk_core.seq);
1150
1151                 ret = tk->tkr_mono.clock->max_idle_ns;
1152
1153         } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155         return ret;
1156 }
1157
1158 /**
1159  * read_persistent_clock -  Return time from the persistent clock.
1160  *
1161  * Weak dummy function for arches that do not yet support it.
1162  * Reads the time from the battery backed persistent clock.
1163  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164  *
1165  *  XXX - Do be sure to remove it once all arches implement it.
1166  */
1167 void __weak read_persistent_clock(struct timespec *ts)
1168 {
1169         ts->tv_sec = 0;
1170         ts->tv_nsec = 0;
1171 }
1172
1173 void __weak read_persistent_clock64(struct timespec64 *ts64)
1174 {
1175         struct timespec ts;
1176
1177         read_persistent_clock(&ts);
1178         *ts64 = timespec_to_timespec64(ts);
1179 }
1180
1181 /**
1182  * read_boot_clock -  Return time of the system start.
1183  *
1184  * Weak dummy function for arches that do not yet support it.
1185  * Function to read the exact time the system has been started.
1186  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1187  *
1188  *  XXX - Do be sure to remove it once all arches implement it.
1189  */
1190 void __weak read_boot_clock(struct timespec *ts)
1191 {
1192         ts->tv_sec = 0;
1193         ts->tv_nsec = 0;
1194 }
1195
1196 void __weak read_boot_clock64(struct timespec64 *ts64)
1197 {
1198         struct timespec ts;
1199
1200         read_boot_clock(&ts);
1201         *ts64 = timespec_to_timespec64(ts);
1202 }
1203
1204 /* Flag for if timekeeping_resume() has injected sleeptime */
1205 static bool sleeptime_injected;
1206
1207 /* Flag for if there is a persistent clock on this platform */
1208 static bool persistent_clock_exists;
1209
1210 /*
1211  * timekeeping_init - Initializes the clocksource and common timekeeping values
1212  */
1213 void __init timekeeping_init(void)
1214 {
1215         struct timekeeper *tk = &tk_core.timekeeper;
1216         struct clocksource *clock;
1217         unsigned long flags;
1218         struct timespec64 now, boot, tmp;
1219
1220         read_persistent_clock64(&now);
1221         if (!timespec64_valid_strict(&now)) {
1222                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1223                         "         Check your CMOS/BIOS settings.\n");
1224                 now.tv_sec = 0;
1225                 now.tv_nsec = 0;
1226         } else if (now.tv_sec || now.tv_nsec)
1227                 persistent_clock_exists = true;
1228
1229         read_boot_clock64(&boot);
1230         if (!timespec64_valid_strict(&boot)) {
1231                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1232                         "         Check your CMOS/BIOS settings.\n");
1233                 boot.tv_sec = 0;
1234                 boot.tv_nsec = 0;
1235         }
1236
1237         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1238         write_seqcount_begin(&tk_core.seq);
1239         ntp_init();
1240
1241         clock = clocksource_default_clock();
1242         if (clock->enable)
1243                 clock->enable(clock);
1244         tk_setup_internals(tk, clock);
1245
1246         tk_set_xtime(tk, &now);
1247         tk->raw_time.tv_sec = 0;
1248         tk->raw_time.tv_nsec = 0;
1249         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1250                 boot = tk_xtime(tk);
1251
1252         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1253         tk_set_wall_to_mono(tk, tmp);
1254
1255         timekeeping_update(tk, TK_MIRROR);
1256
1257         write_seqcount_end(&tk_core.seq);
1258         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1259 }
1260
1261 /* time in seconds when suspend began for persistent clock */
1262 static struct timespec64 timekeeping_suspend_time;
1263
1264 /**
1265  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1266  * @delta: pointer to a timespec delta value
1267  *
1268  * Takes a timespec offset measuring a suspend interval and properly
1269  * adds the sleep offset to the timekeeping variables.
1270  */
1271 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1272                                            struct timespec64 *delta)
1273 {
1274         if (!timespec64_valid_strict(delta)) {
1275                 printk_deferred(KERN_WARNING
1276                                 "__timekeeping_inject_sleeptime: Invalid "
1277                                 "sleep delta value!\n");
1278                 return;
1279         }
1280         tk_xtime_add(tk, delta);
1281         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1282         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1283         tk_debug_account_sleep_time(delta);
1284 }
1285
1286 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1287 /**
1288  * We have three kinds of time sources to use for sleep time
1289  * injection, the preference order is:
1290  * 1) non-stop clocksource
1291  * 2) persistent clock (ie: RTC accessible when irqs are off)
1292  * 3) RTC
1293  *
1294  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1295  * If system has neither 1) nor 2), 3) will be used finally.
1296  *
1297  *
1298  * If timekeeping has injected sleeptime via either 1) or 2),
1299  * 3) becomes needless, so in this case we don't need to call
1300  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1301  * means.
1302  */
1303 bool timekeeping_rtc_skipresume(void)
1304 {
1305         return sleeptime_injected;
1306 }
1307
1308 /**
1309  * 1) can be determined whether to use or not only when doing
1310  * timekeeping_resume() which is invoked after rtc_suspend(),
1311  * so we can't skip rtc_suspend() surely if system has 1).
1312  *
1313  * But if system has 2), 2) will definitely be used, so in this
1314  * case we don't need to call rtc_suspend(), and this is what
1315  * timekeeping_rtc_skipsuspend() means.
1316  */
1317 bool timekeeping_rtc_skipsuspend(void)
1318 {
1319         return persistent_clock_exists;
1320 }
1321
1322 /**
1323  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1324  * @delta: pointer to a timespec64 delta value
1325  *
1326  * This hook is for architectures that cannot support read_persistent_clock64
1327  * because their RTC/persistent clock is only accessible when irqs are enabled.
1328  * and also don't have an effective nonstop clocksource.
1329  *
1330  * This function should only be called by rtc_resume(), and allows
1331  * a suspend offset to be injected into the timekeeping values.
1332  */
1333 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1334 {
1335         struct timekeeper *tk = &tk_core.timekeeper;
1336         unsigned long flags;
1337
1338         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339         write_seqcount_begin(&tk_core.seq);
1340
1341         timekeeping_forward_now(tk);
1342
1343         __timekeeping_inject_sleeptime(tk, delta);
1344
1345         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1346
1347         write_seqcount_end(&tk_core.seq);
1348         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1349
1350         /* signal hrtimers about time change */
1351         clock_was_set();
1352 }
1353 #endif
1354
1355 /**
1356  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1357  */
1358 void timekeeping_resume(void)
1359 {
1360         struct timekeeper *tk = &tk_core.timekeeper;
1361         struct clocksource *clock = tk->tkr_mono.clock;
1362         unsigned long flags;
1363         struct timespec64 ts_new, ts_delta;
1364         cycle_t cycle_now, cycle_delta;
1365
1366         sleeptime_injected = false;
1367         read_persistent_clock64(&ts_new);
1368
1369         clockevents_resume();
1370         clocksource_resume();
1371
1372         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373         write_seqcount_begin(&tk_core.seq);
1374
1375         /*
1376          * After system resumes, we need to calculate the suspended time and
1377          * compensate it for the OS time. There are 3 sources that could be
1378          * used: Nonstop clocksource during suspend, persistent clock and rtc
1379          * device.
1380          *
1381          * One specific platform may have 1 or 2 or all of them, and the
1382          * preference will be:
1383          *      suspend-nonstop clocksource -> persistent clock -> rtc
1384          * The less preferred source will only be tried if there is no better
1385          * usable source. The rtc part is handled separately in rtc core code.
1386          */
1387         cycle_now = tk->tkr_mono.read(clock);
1388         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1389                 cycle_now > tk->tkr_mono.cycle_last) {
1390                 u64 num, max = ULLONG_MAX;
1391                 u32 mult = clock->mult;
1392                 u32 shift = clock->shift;
1393                 s64 nsec = 0;
1394
1395                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1396                                                 tk->tkr_mono.mask);
1397
1398                 /*
1399                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1400                  * suspended time is too long. In that case we need do the
1401                  * 64 bits math carefully
1402                  */
1403                 do_div(max, mult);
1404                 if (cycle_delta > max) {
1405                         num = div64_u64(cycle_delta, max);
1406                         nsec = (((u64) max * mult) >> shift) * num;
1407                         cycle_delta -= num * max;
1408                 }
1409                 nsec += ((u64) cycle_delta * mult) >> shift;
1410
1411                 ts_delta = ns_to_timespec64(nsec);
1412                 sleeptime_injected = true;
1413         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1414                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1415                 sleeptime_injected = true;
1416         }
1417
1418         if (sleeptime_injected)
1419                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1420
1421         /* Re-base the last cycle value */
1422         tk->tkr_mono.cycle_last = cycle_now;
1423         tk->tkr_raw.cycle_last  = cycle_now;
1424
1425         tk->ntp_error = 0;
1426         timekeeping_suspended = 0;
1427         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1428         write_seqcount_end(&tk_core.seq);
1429         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1430
1431         touch_softlockup_watchdog();
1432
1433         tick_resume();
1434         hrtimers_resume();
1435 }
1436
1437 int timekeeping_suspend(void)
1438 {
1439         struct timekeeper *tk = &tk_core.timekeeper;
1440         unsigned long flags;
1441         struct timespec64               delta, delta_delta;
1442         static struct timespec64        old_delta;
1443
1444         read_persistent_clock64(&timekeeping_suspend_time);
1445
1446         /*
1447          * On some systems the persistent_clock can not be detected at
1448          * timekeeping_init by its return value, so if we see a valid
1449          * value returned, update the persistent_clock_exists flag.
1450          */
1451         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1452                 persistent_clock_exists = true;
1453
1454         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1455         write_seqcount_begin(&tk_core.seq);
1456         timekeeping_forward_now(tk);
1457         timekeeping_suspended = 1;
1458
1459         if (persistent_clock_exists) {
1460                 /*
1461                  * To avoid drift caused by repeated suspend/resumes,
1462                  * which each can add ~1 second drift error,
1463                  * try to compensate so the difference in system time
1464                  * and persistent_clock time stays close to constant.
1465                  */
1466                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1467                 delta_delta = timespec64_sub(delta, old_delta);
1468                 if (abs(delta_delta.tv_sec) >= 2) {
1469                         /*
1470                          * if delta_delta is too large, assume time correction
1471                          * has occurred and set old_delta to the current delta.
1472                          */
1473                         old_delta = delta;
1474                 } else {
1475                         /* Otherwise try to adjust old_system to compensate */
1476                         timekeeping_suspend_time =
1477                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1478                 }
1479         }
1480
1481         timekeeping_update(tk, TK_MIRROR);
1482         halt_fast_timekeeper(tk);
1483         write_seqcount_end(&tk_core.seq);
1484         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1485
1486         tick_suspend();
1487         clocksource_suspend();
1488         clockevents_suspend();
1489
1490         return 0;
1491 }
1492
1493 /* sysfs resume/suspend bits for timekeeping */
1494 static struct syscore_ops timekeeping_syscore_ops = {
1495         .resume         = timekeeping_resume,
1496         .suspend        = timekeeping_suspend,
1497 };
1498
1499 static int __init timekeeping_init_ops(void)
1500 {
1501         register_syscore_ops(&timekeeping_syscore_ops);
1502         return 0;
1503 }
1504 device_initcall(timekeeping_init_ops);
1505
1506 /*
1507  * Apply a multiplier adjustment to the timekeeper
1508  */
1509 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1510                                                          s64 offset,
1511                                                          bool negative,
1512                                                          int adj_scale)
1513 {
1514         s64 interval = tk->cycle_interval;
1515         s32 mult_adj = 1;
1516
1517         if (negative) {
1518                 mult_adj = -mult_adj;
1519                 interval = -interval;
1520                 offset  = -offset;
1521         }
1522         mult_adj <<= adj_scale;
1523         interval <<= adj_scale;
1524         offset <<= adj_scale;
1525
1526         /*
1527          * So the following can be confusing.
1528          *
1529          * To keep things simple, lets assume mult_adj == 1 for now.
1530          *
1531          * When mult_adj != 1, remember that the interval and offset values
1532          * have been appropriately scaled so the math is the same.
1533          *
1534          * The basic idea here is that we're increasing the multiplier
1535          * by one, this causes the xtime_interval to be incremented by
1536          * one cycle_interval. This is because:
1537          *      xtime_interval = cycle_interval * mult
1538          * So if mult is being incremented by one:
1539          *      xtime_interval = cycle_interval * (mult + 1)
1540          * Its the same as:
1541          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1542          * Which can be shortened to:
1543          *      xtime_interval += cycle_interval
1544          *
1545          * So offset stores the non-accumulated cycles. Thus the current
1546          * time (in shifted nanoseconds) is:
1547          *      now = (offset * adj) + xtime_nsec
1548          * Now, even though we're adjusting the clock frequency, we have
1549          * to keep time consistent. In other words, we can't jump back
1550          * in time, and we also want to avoid jumping forward in time.
1551          *
1552          * So given the same offset value, we need the time to be the same
1553          * both before and after the freq adjustment.
1554          *      now = (offset * adj_1) + xtime_nsec_1
1555          *      now = (offset * adj_2) + xtime_nsec_2
1556          * So:
1557          *      (offset * adj_1) + xtime_nsec_1 =
1558          *              (offset * adj_2) + xtime_nsec_2
1559          * And we know:
1560          *      adj_2 = adj_1 + 1
1561          * So:
1562          *      (offset * adj_1) + xtime_nsec_1 =
1563          *              (offset * (adj_1+1)) + xtime_nsec_2
1564          *      (offset * adj_1) + xtime_nsec_1 =
1565          *              (offset * adj_1) + offset + xtime_nsec_2
1566          * Canceling the sides:
1567          *      xtime_nsec_1 = offset + xtime_nsec_2
1568          * Which gives us:
1569          *      xtime_nsec_2 = xtime_nsec_1 - offset
1570          * Which simplfies to:
1571          *      xtime_nsec -= offset
1572          *
1573          * XXX - TODO: Doc ntp_error calculation.
1574          */
1575         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1576                 /* NTP adjustment caused clocksource mult overflow */
1577                 WARN_ON_ONCE(1);
1578                 return;
1579         }
1580
1581         tk->tkr_mono.mult += mult_adj;
1582         tk->xtime_interval += interval;
1583         tk->tkr_mono.xtime_nsec -= offset;
1584         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1585 }
1586
1587 /*
1588  * Calculate the multiplier adjustment needed to match the frequency
1589  * specified by NTP
1590  */
1591 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1592                                                         s64 offset)
1593 {
1594         s64 interval = tk->cycle_interval;
1595         s64 xinterval = tk->xtime_interval;
1596         s64 tick_error;
1597         bool negative;
1598         u32 adj;
1599
1600         /* Remove any current error adj from freq calculation */
1601         if (tk->ntp_err_mult)
1602                 xinterval -= tk->cycle_interval;
1603
1604         tk->ntp_tick = ntp_tick_length();
1605
1606         /* Calculate current error per tick */
1607         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1608         tick_error -= (xinterval + tk->xtime_remainder);
1609
1610         /* Don't worry about correcting it if its small */
1611         if (likely((tick_error >= 0) && (tick_error <= interval)))
1612                 return;
1613
1614         /* preserve the direction of correction */
1615         negative = (tick_error < 0);
1616
1617         /* Sort out the magnitude of the correction */
1618         tick_error = abs(tick_error);
1619         for (adj = 0; tick_error > interval; adj++)
1620                 tick_error >>= 1;
1621
1622         /* scale the corrections */
1623         timekeeping_apply_adjustment(tk, offset, negative, adj);
1624 }
1625
1626 /*
1627  * Adjust the timekeeper's multiplier to the correct frequency
1628  * and also to reduce the accumulated error value.
1629  */
1630 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1631 {
1632         /* Correct for the current frequency error */
1633         timekeeping_freqadjust(tk, offset);
1634
1635         /* Next make a small adjustment to fix any cumulative error */
1636         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1637                 tk->ntp_err_mult = 1;
1638                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1639         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1640                 /* Undo any existing error adjustment */
1641                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1642                 tk->ntp_err_mult = 0;
1643         }
1644
1645         if (unlikely(tk->tkr_mono.clock->maxadj &&
1646                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1647                         > tk->tkr_mono.clock->maxadj))) {
1648                 printk_once(KERN_WARNING
1649                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1650                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1651                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1652         }
1653
1654         /*
1655          * It may be possible that when we entered this function, xtime_nsec
1656          * was very small.  Further, if we're slightly speeding the clocksource
1657          * in the code above, its possible the required corrective factor to
1658          * xtime_nsec could cause it to underflow.
1659          *
1660          * Now, since we already accumulated the second, cannot simply roll
1661          * the accumulated second back, since the NTP subsystem has been
1662          * notified via second_overflow. So instead we push xtime_nsec forward
1663          * by the amount we underflowed, and add that amount into the error.
1664          *
1665          * We'll correct this error next time through this function, when
1666          * xtime_nsec is not as small.
1667          */
1668         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1669                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1670                 tk->tkr_mono.xtime_nsec = 0;
1671                 tk->ntp_error += neg << tk->ntp_error_shift;
1672         }
1673 }
1674
1675 /**
1676  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1677  *
1678  * Helper function that accumulates a the nsecs greater then a second
1679  * from the xtime_nsec field to the xtime_secs field.
1680  * It also calls into the NTP code to handle leapsecond processing.
1681  *
1682  */
1683 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1684 {
1685         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1686         unsigned int clock_set = 0;
1687
1688         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1689                 int leap;
1690
1691                 tk->tkr_mono.xtime_nsec -= nsecps;
1692                 tk->xtime_sec++;
1693
1694                 /* Figure out if its a leap sec and apply if needed */
1695                 leap = second_overflow(tk->xtime_sec);
1696                 if (unlikely(leap)) {
1697                         struct timespec64 ts;
1698
1699                         tk->xtime_sec += leap;
1700
1701                         ts.tv_sec = leap;
1702                         ts.tv_nsec = 0;
1703                         tk_set_wall_to_mono(tk,
1704                                 timespec64_sub(tk->wall_to_monotonic, ts));
1705
1706                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1707
1708                         clock_set = TK_CLOCK_WAS_SET;
1709                 }
1710         }
1711         return clock_set;
1712 }
1713
1714 /**
1715  * logarithmic_accumulation - shifted accumulation of cycles
1716  *
1717  * This functions accumulates a shifted interval of cycles into
1718  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1719  * loop.
1720  *
1721  * Returns the unconsumed cycles.
1722  */
1723 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1724                                                 u32 shift,
1725                                                 unsigned int *clock_set)
1726 {
1727         cycle_t interval = tk->cycle_interval << shift;
1728         u64 raw_nsecs;
1729
1730         /* If the offset is smaller then a shifted interval, do nothing */
1731         if (offset < interval)
1732                 return offset;
1733
1734         /* Accumulate one shifted interval */
1735         offset -= interval;
1736         tk->tkr_mono.cycle_last += interval;
1737         tk->tkr_raw.cycle_last  += interval;
1738
1739         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1740         *clock_set |= accumulate_nsecs_to_secs(tk);
1741
1742         /* Accumulate raw time */
1743         raw_nsecs = (u64)tk->raw_interval << shift;
1744         raw_nsecs += tk->raw_time.tv_nsec;
1745         if (raw_nsecs >= NSEC_PER_SEC) {
1746                 u64 raw_secs = raw_nsecs;
1747                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1748                 tk->raw_time.tv_sec += raw_secs;
1749         }
1750         tk->raw_time.tv_nsec = raw_nsecs;
1751
1752         /* Accumulate error between NTP and clock interval */
1753         tk->ntp_error += tk->ntp_tick << shift;
1754         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1755                                                 (tk->ntp_error_shift + shift);
1756
1757         return offset;
1758 }
1759
1760 /**
1761  * update_wall_time - Uses the current clocksource to increment the wall time
1762  *
1763  */
1764 void update_wall_time(void)
1765 {
1766         struct timekeeper *real_tk = &tk_core.timekeeper;
1767         struct timekeeper *tk = &shadow_timekeeper;
1768         cycle_t offset;
1769         int shift = 0, maxshift;
1770         unsigned int clock_set = 0;
1771         unsigned long flags;
1772
1773         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1774
1775         /* Make sure we're fully resumed: */
1776         if (unlikely(timekeeping_suspended))
1777                 goto out;
1778
1779 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1780         offset = real_tk->cycle_interval;
1781 #else
1782         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1783                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1784 #endif
1785
1786         /* Check if there's really nothing to do */
1787         if (offset < real_tk->cycle_interval)
1788                 goto out;
1789
1790         /* Do some additional sanity checking */
1791         timekeeping_check_update(real_tk, offset);
1792
1793         /*
1794          * With NO_HZ we may have to accumulate many cycle_intervals
1795          * (think "ticks") worth of time at once. To do this efficiently,
1796          * we calculate the largest doubling multiple of cycle_intervals
1797          * that is smaller than the offset.  We then accumulate that
1798          * chunk in one go, and then try to consume the next smaller
1799          * doubled multiple.
1800          */
1801         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1802         shift = max(0, shift);
1803         /* Bound shift to one less than what overflows tick_length */
1804         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1805         shift = min(shift, maxshift);
1806         while (offset >= tk->cycle_interval) {
1807                 offset = logarithmic_accumulation(tk, offset, shift,
1808                                                         &clock_set);
1809                 if (offset < tk->cycle_interval<<shift)
1810                         shift--;
1811         }
1812
1813         /* correct the clock when NTP error is too big */
1814         timekeeping_adjust(tk, offset);
1815
1816         /*
1817          * XXX This can be killed once everyone converts
1818          * to the new update_vsyscall.
1819          */
1820         old_vsyscall_fixup(tk);
1821
1822         /*
1823          * Finally, make sure that after the rounding
1824          * xtime_nsec isn't larger than NSEC_PER_SEC
1825          */
1826         clock_set |= accumulate_nsecs_to_secs(tk);
1827
1828         write_seqcount_begin(&tk_core.seq);
1829         /*
1830          * Update the real timekeeper.
1831          *
1832          * We could avoid this memcpy by switching pointers, but that
1833          * requires changes to all other timekeeper usage sites as
1834          * well, i.e. move the timekeeper pointer getter into the
1835          * spinlocked/seqcount protected sections. And we trade this
1836          * memcpy under the tk_core.seq against one before we start
1837          * updating.
1838          */
1839         memcpy(real_tk, tk, sizeof(*tk));
1840         timekeeping_update(real_tk, clock_set);
1841         write_seqcount_end(&tk_core.seq);
1842 out:
1843         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844         if (clock_set)
1845                 /* Have to call _delayed version, since in irq context*/
1846                 clock_was_set_delayed();
1847 }
1848
1849 /**
1850  * getboottime64 - Return the real time of system boot.
1851  * @ts:         pointer to the timespec64 to be set
1852  *
1853  * Returns the wall-time of boot in a timespec64.
1854  *
1855  * This is based on the wall_to_monotonic offset and the total suspend
1856  * time. Calls to settimeofday will affect the value returned (which
1857  * basically means that however wrong your real time clock is at boot time,
1858  * you get the right time here).
1859  */
1860 void getboottime64(struct timespec64 *ts)
1861 {
1862         struct timekeeper *tk = &tk_core.timekeeper;
1863         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1864
1865         *ts = ktime_to_timespec64(t);
1866 }
1867 EXPORT_SYMBOL_GPL(getboottime64);
1868
1869 unsigned long get_seconds(void)
1870 {
1871         struct timekeeper *tk = &tk_core.timekeeper;
1872
1873         return tk->xtime_sec;
1874 }
1875 EXPORT_SYMBOL(get_seconds);
1876
1877 struct timespec __current_kernel_time(void)
1878 {
1879         struct timekeeper *tk = &tk_core.timekeeper;
1880
1881         return timespec64_to_timespec(tk_xtime(tk));
1882 }
1883
1884 struct timespec current_kernel_time(void)
1885 {
1886         struct timekeeper *tk = &tk_core.timekeeper;
1887         struct timespec64 now;
1888         unsigned long seq;
1889
1890         do {
1891                 seq = read_seqcount_begin(&tk_core.seq);
1892
1893                 now = tk_xtime(tk);
1894         } while (read_seqcount_retry(&tk_core.seq, seq));
1895
1896         return timespec64_to_timespec(now);
1897 }
1898 EXPORT_SYMBOL(current_kernel_time);
1899
1900 struct timespec64 get_monotonic_coarse64(void)
1901 {
1902         struct timekeeper *tk = &tk_core.timekeeper;
1903         struct timespec64 now, mono;
1904         unsigned long seq;
1905
1906         do {
1907                 seq = read_seqcount_begin(&tk_core.seq);
1908
1909                 now = tk_xtime(tk);
1910                 mono = tk->wall_to_monotonic;
1911         } while (read_seqcount_retry(&tk_core.seq, seq));
1912
1913         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1914                                 now.tv_nsec + mono.tv_nsec);
1915
1916         return now;
1917 }
1918
1919 /*
1920  * Must hold jiffies_lock
1921  */
1922 void do_timer(unsigned long ticks)
1923 {
1924         jiffies_64 += ticks;
1925         calc_global_load(ticks);
1926 }
1927
1928 /**
1929  * ktime_get_update_offsets_tick - hrtimer helper
1930  * @offs_real:  pointer to storage for monotonic -> realtime offset
1931  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1932  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1933  *
1934  * Returns monotonic time at last tick and various offsets
1935  */
1936 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1937                                                         ktime_t *offs_tai)
1938 {
1939         struct timekeeper *tk = &tk_core.timekeeper;
1940         unsigned int seq;
1941         ktime_t base;
1942         u64 nsecs;
1943
1944         do {
1945                 seq = read_seqcount_begin(&tk_core.seq);
1946
1947                 base = tk->tkr_mono.base;
1948                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1949
1950                 *offs_real = tk->offs_real;
1951                 *offs_boot = tk->offs_boot;
1952                 *offs_tai = tk->offs_tai;
1953         } while (read_seqcount_retry(&tk_core.seq, seq));
1954
1955         return ktime_add_ns(base, nsecs);
1956 }
1957
1958 #ifdef CONFIG_HIGH_RES_TIMERS
1959 /**
1960  * ktime_get_update_offsets_now - hrtimer helper
1961  * @offs_real:  pointer to storage for monotonic -> realtime offset
1962  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1963  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1964  *
1965  * Returns current monotonic time and updates the offsets
1966  * Called from hrtimer_interrupt() or retrigger_next_event()
1967  */
1968 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1969                                                         ktime_t *offs_tai)
1970 {
1971         struct timekeeper *tk = &tk_core.timekeeper;
1972         unsigned int seq;
1973         ktime_t base;
1974         u64 nsecs;
1975
1976         do {
1977                 seq = read_seqcount_begin(&tk_core.seq);
1978
1979                 base = tk->tkr_mono.base;
1980                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1981
1982                 *offs_real = tk->offs_real;
1983                 *offs_boot = tk->offs_boot;
1984                 *offs_tai = tk->offs_tai;
1985         } while (read_seqcount_retry(&tk_core.seq, seq));
1986
1987         return ktime_add_ns(base, nsecs);
1988 }
1989 #endif
1990
1991 /**
1992  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1993  */
1994 int do_adjtimex(struct timex *txc)
1995 {
1996         struct timekeeper *tk = &tk_core.timekeeper;
1997         unsigned long flags;
1998         struct timespec64 ts;
1999         s32 orig_tai, tai;
2000         int ret;
2001
2002         /* Validate the data before disabling interrupts */
2003         ret = ntp_validate_timex(txc);
2004         if (ret)
2005                 return ret;
2006
2007         if (txc->modes & ADJ_SETOFFSET) {
2008                 struct timespec delta;
2009                 delta.tv_sec  = txc->time.tv_sec;
2010                 delta.tv_nsec = txc->time.tv_usec;
2011                 if (!(txc->modes & ADJ_NANO))
2012                         delta.tv_nsec *= 1000;
2013                 ret = timekeeping_inject_offset(&delta);
2014                 if (ret)
2015                         return ret;
2016         }
2017
2018         getnstimeofday64(&ts);
2019
2020         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2021         write_seqcount_begin(&tk_core.seq);
2022
2023         orig_tai = tai = tk->tai_offset;
2024         ret = __do_adjtimex(txc, &ts, &tai);
2025
2026         if (tai != orig_tai) {
2027                 __timekeeping_set_tai_offset(tk, tai);
2028                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2029         }
2030         write_seqcount_end(&tk_core.seq);
2031         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032
2033         if (tai != orig_tai)
2034                 clock_was_set();
2035
2036         ntp_notify_cmos_timer();
2037
2038         return ret;
2039 }
2040
2041 #ifdef CONFIG_NTP_PPS
2042 /**
2043  * hardpps() - Accessor function to NTP __hardpps function
2044  */
2045 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2046 {
2047         unsigned long flags;
2048
2049         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050         write_seqcount_begin(&tk_core.seq);
2051
2052         __hardpps(phase_ts, raw_ts);
2053
2054         write_seqcount_end(&tk_core.seq);
2055         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2056 }
2057 EXPORT_SYMBOL(hardpps);
2058 #endif
2059
2060 /**
2061  * xtime_update() - advances the timekeeping infrastructure
2062  * @ticks:      number of ticks, that have elapsed since the last call.
2063  *
2064  * Must be called with interrupts disabled.
2065  */
2066 void xtime_update(unsigned long ticks)
2067 {
2068         raw_spin_lock(&jiffies_lock);
2069         write_seqcount_begin(&jiffies_seq);
2070         do_timer(ticks);
2071         write_seqcount_end(&jiffies_seq);
2072         raw_spin_unlock(&jiffies_lock);
2073         update_wall_time();
2074 }