Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device.
225                          */
226                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227                         break;
228                 default:
229                         /* Nothing to do */
230                         ret = 0;
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static void tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262
263         /*
264          * Check, if the current cpu is in the mask
265          */
266         if (cpumask_test_cpu(cpu, mask)) {
267                 cpumask_clear_cpu(cpu, mask);
268                 td = &per_cpu(tick_cpu_device, cpu);
269                 td->evtdev->event_handler(td->evtdev);
270         }
271
272         if (!cpumask_empty(mask)) {
273                 /*
274                  * It might be necessary to actually check whether the devices
275                  * have different broadcast functions. For now, just use the
276                  * one of the first device. This works as long as we have this
277                  * misfeature only on x86 (lapic)
278                  */
279                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280                 td->evtdev->broadcast(mask);
281         }
282 }
283
284 /*
285  * Periodic broadcast:
286  * - invoke the broadcast handlers
287  */
288 static void tick_do_periodic_broadcast(void)
289 {
290         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
291         tick_do_broadcast(tmpmask);
292 }
293
294 /*
295  * Event handler for periodic broadcast ticks
296  */
297 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
298 {
299         ktime_t next;
300
301         raw_spin_lock(&tick_broadcast_lock);
302
303         tick_do_periodic_broadcast();
304
305         /*
306          * The device is in periodic mode. No reprogramming necessary:
307          */
308         if (dev->state == CLOCK_EVT_STATE_PERIODIC)
309                 goto unlock;
310
311         /*
312          * Setup the next period for devices, which do not have
313          * periodic mode. We read dev->next_event first and add to it
314          * when the event already expired. clockevents_program_event()
315          * sets dev->next_event only when the event is really
316          * programmed to the device.
317          */
318         for (next = dev->next_event; ;) {
319                 next = ktime_add(next, tick_period);
320
321                 if (!clockevents_program_event(dev, next, false))
322                         goto unlock;
323                 tick_do_periodic_broadcast();
324         }
325 unlock:
326         raw_spin_unlock(&tick_broadcast_lock);
327 }
328
329 /**
330  * tick_broadcast_control - Enable/disable or force broadcast mode
331  * @mode:       The selected broadcast mode
332  *
333  * Called when the system enters a state where affected tick devices
334  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
335  *
336  * Called with interrupts disabled, so clockevents_lock is not
337  * required here because the local clock event device cannot go away
338  * under us.
339  */
340 void tick_broadcast_control(enum tick_broadcast_mode mode)
341 {
342         struct clock_event_device *bc, *dev;
343         struct tick_device *td;
344         int cpu, bc_stopped;
345
346         td = this_cpu_ptr(&tick_cpu_device);
347         dev = td->evtdev;
348
349         /*
350          * Is the device not affected by the powerstate ?
351          */
352         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
353                 return;
354
355         if (!tick_device_is_functional(dev))
356                 return;
357
358         raw_spin_lock(&tick_broadcast_lock);
359         cpu = smp_processor_id();
360         bc = tick_broadcast_device.evtdev;
361         bc_stopped = cpumask_empty(tick_broadcast_mask);
362
363         switch (mode) {
364         case TICK_BROADCAST_FORCE:
365                 tick_broadcast_forced = 1;
366         case TICK_BROADCAST_ON:
367                 cpumask_set_cpu(cpu, tick_broadcast_on);
368                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
369                         if (tick_broadcast_device.mode ==
370                             TICKDEV_MODE_PERIODIC)
371                                 clockevents_shutdown(dev);
372                 }
373                 break;
374
375         case TICK_BROADCAST_OFF:
376                 if (tick_broadcast_forced)
377                         break;
378                 cpumask_clear_cpu(cpu, tick_broadcast_on);
379                 if (!tick_device_is_functional(dev))
380                         break;
381                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
382                         if (tick_broadcast_device.mode ==
383                             TICKDEV_MODE_PERIODIC)
384                                 tick_setup_periodic(dev, 0);
385                 }
386                 break;
387         }
388
389         if (cpumask_empty(tick_broadcast_mask)) {
390                 if (!bc_stopped)
391                         clockevents_shutdown(bc);
392         } else if (bc_stopped) {
393                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394                         tick_broadcast_start_periodic(bc);
395                 else
396                         tick_broadcast_setup_oneshot(bc);
397         }
398         raw_spin_unlock(&tick_broadcast_lock);
399 }
400 EXPORT_SYMBOL_GPL(tick_broadcast_control);
401
402 /*
403  * Set the periodic handler depending on broadcast on/off
404  */
405 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
406 {
407         if (!broadcast)
408                 dev->event_handler = tick_handle_periodic;
409         else
410                 dev->event_handler = tick_handle_periodic_broadcast;
411 }
412
413 #ifdef CONFIG_HOTPLUG_CPU
414 /*
415  * Remove a CPU from broadcasting
416  */
417 void tick_shutdown_broadcast(unsigned int cpu)
418 {
419         struct clock_event_device *bc;
420         unsigned long flags;
421
422         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
423
424         bc = tick_broadcast_device.evtdev;
425         cpumask_clear_cpu(cpu, tick_broadcast_mask);
426         cpumask_clear_cpu(cpu, tick_broadcast_on);
427
428         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
429                 if (bc && cpumask_empty(tick_broadcast_mask))
430                         clockevents_shutdown(bc);
431         }
432
433         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
434 }
435 #endif
436
437 void tick_suspend_broadcast(void)
438 {
439         struct clock_event_device *bc;
440         unsigned long flags;
441
442         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
443
444         bc = tick_broadcast_device.evtdev;
445         if (bc)
446                 clockevents_shutdown(bc);
447
448         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
449 }
450
451 /*
452  * This is called from tick_resume_local() on a resuming CPU. That's
453  * called from the core resume function, tick_unfreeze() and the magic XEN
454  * resume hackery.
455  *
456  * In none of these cases the broadcast device mode can change and the
457  * bit of the resuming CPU in the broadcast mask is safe as well.
458  */
459 bool tick_resume_check_broadcast(void)
460 {
461         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
462                 return false;
463         else
464                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
465 }
466
467 void tick_resume_broadcast(void)
468 {
469         struct clock_event_device *bc;
470         unsigned long flags;
471
472         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
473
474         bc = tick_broadcast_device.evtdev;
475
476         if (bc) {
477                 clockevents_tick_resume(bc);
478
479                 switch (tick_broadcast_device.mode) {
480                 case TICKDEV_MODE_PERIODIC:
481                         if (!cpumask_empty(tick_broadcast_mask))
482                                 tick_broadcast_start_periodic(bc);
483                         break;
484                 case TICKDEV_MODE_ONESHOT:
485                         if (!cpumask_empty(tick_broadcast_mask))
486                                 tick_resume_broadcast_oneshot(bc);
487                         break;
488                 }
489         }
490         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
491 }
492
493 #ifdef CONFIG_TICK_ONESHOT
494
495 static cpumask_var_t tick_broadcast_oneshot_mask;
496 static cpumask_var_t tick_broadcast_pending_mask;
497 static cpumask_var_t tick_broadcast_force_mask;
498
499 /*
500  * Exposed for debugging: see timer_list.c
501  */
502 struct cpumask *tick_get_broadcast_oneshot_mask(void)
503 {
504         return tick_broadcast_oneshot_mask;
505 }
506
507 /*
508  * Called before going idle with interrupts disabled. Checks whether a
509  * broadcast event from the other core is about to happen. We detected
510  * that in tick_broadcast_oneshot_control(). The callsite can use this
511  * to avoid a deep idle transition as we are about to get the
512  * broadcast IPI right away.
513  */
514 int tick_check_broadcast_expired(void)
515 {
516         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
517 }
518
519 /*
520  * Set broadcast interrupt affinity
521  */
522 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
523                                         const struct cpumask *cpumask)
524 {
525         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
526                 return;
527
528         if (cpumask_equal(bc->cpumask, cpumask))
529                 return;
530
531         bc->cpumask = cpumask;
532         irq_set_affinity(bc->irq, bc->cpumask);
533 }
534
535 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
536                                     ktime_t expires, int force)
537 {
538         int ret;
539
540         if (bc->state != CLOCK_EVT_STATE_ONESHOT)
541                 clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
542
543         ret = clockevents_program_event(bc, expires, force);
544         if (!ret)
545                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
546         return ret;
547 }
548
549 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
550 {
551         clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
552 }
553
554 /*
555  * Called from irq_enter() when idle was interrupted to reenable the
556  * per cpu device.
557  */
558 void tick_check_oneshot_broadcast_this_cpu(void)
559 {
560         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
561                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
562
563                 /*
564                  * We might be in the middle of switching over from
565                  * periodic to oneshot. If the CPU has not yet
566                  * switched over, leave the device alone.
567                  */
568                 if (td->mode == TICKDEV_MODE_ONESHOT) {
569                         clockevents_set_state(td->evtdev,
570                                               CLOCK_EVT_STATE_ONESHOT);
571                 }
572         }
573 }
574
575 /*
576  * Handle oneshot mode broadcasting
577  */
578 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
579 {
580         struct tick_device *td;
581         ktime_t now, next_event;
582         int cpu, next_cpu = 0;
583
584         raw_spin_lock(&tick_broadcast_lock);
585 again:
586         dev->next_event.tv64 = KTIME_MAX;
587         next_event.tv64 = KTIME_MAX;
588         cpumask_clear(tmpmask);
589         now = ktime_get();
590         /* Find all expired events */
591         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
592                 td = &per_cpu(tick_cpu_device, cpu);
593                 if (td->evtdev->next_event.tv64 <= now.tv64) {
594                         cpumask_set_cpu(cpu, tmpmask);
595                         /*
596                          * Mark the remote cpu in the pending mask, so
597                          * it can avoid reprogramming the cpu local
598                          * timer in tick_broadcast_oneshot_control().
599                          */
600                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
601                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
602                         next_event.tv64 = td->evtdev->next_event.tv64;
603                         next_cpu = cpu;
604                 }
605         }
606
607         /*
608          * Remove the current cpu from the pending mask. The event is
609          * delivered immediately in tick_do_broadcast() !
610          */
611         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
612
613         /* Take care of enforced broadcast requests */
614         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
615         cpumask_clear(tick_broadcast_force_mask);
616
617         /*
618          * Sanity check. Catch the case where we try to broadcast to
619          * offline cpus.
620          */
621         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
622                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
623
624         /*
625          * Wakeup the cpus which have an expired event.
626          */
627         tick_do_broadcast(tmpmask);
628
629         /*
630          * Two reasons for reprogram:
631          *
632          * - The global event did not expire any CPU local
633          * events. This happens in dyntick mode, as the maximum PIT
634          * delta is quite small.
635          *
636          * - There are pending events on sleeping CPUs which were not
637          * in the event mask
638          */
639         if (next_event.tv64 != KTIME_MAX) {
640                 /*
641                  * Rearm the broadcast device. If event expired,
642                  * repeat the above
643                  */
644                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
645                         goto again;
646         }
647         raw_spin_unlock(&tick_broadcast_lock);
648 }
649
650 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
651 {
652         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
653                 return 0;
654         if (bc->next_event.tv64 == KTIME_MAX)
655                 return 0;
656         return bc->bound_on == cpu ? -EBUSY : 0;
657 }
658
659 static void broadcast_shutdown_local(struct clock_event_device *bc,
660                                      struct clock_event_device *dev)
661 {
662         /*
663          * For hrtimer based broadcasting we cannot shutdown the cpu
664          * local device if our own event is the first one to expire or
665          * if we own the broadcast timer.
666          */
667         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
668                 if (broadcast_needs_cpu(bc, smp_processor_id()))
669                         return;
670                 if (dev->next_event.tv64 < bc->next_event.tv64)
671                         return;
672         }
673         clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
674 }
675
676 /**
677  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
678  * @state:      The target state (enter/exit)
679  *
680  * The system enters/leaves a state, where affected devices might stop
681  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
682  *
683  * Called with interrupts disabled, so clockevents_lock is not
684  * required here because the local clock event device cannot go away
685  * under us.
686  */
687 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
688 {
689         struct clock_event_device *bc, *dev;
690         struct tick_device *td;
691         int cpu, ret = 0;
692         ktime_t now;
693
694         /*
695          * Periodic mode does not care about the enter/exit of power
696          * states
697          */
698         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
699                 return 0;
700
701         /*
702          * We are called with preemtion disabled from the depth of the
703          * idle code, so we can't be moved away.
704          */
705         td = this_cpu_ptr(&tick_cpu_device);
706         dev = td->evtdev;
707
708         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
709                 return 0;
710
711         raw_spin_lock(&tick_broadcast_lock);
712         bc = tick_broadcast_device.evtdev;
713         cpu = smp_processor_id();
714
715         if (state == TICK_BROADCAST_ENTER) {
716                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
717                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
718                         broadcast_shutdown_local(bc, dev);
719                         /*
720                          * We only reprogram the broadcast timer if we
721                          * did not mark ourself in the force mask and
722                          * if the cpu local event is earlier than the
723                          * broadcast event. If the current CPU is in
724                          * the force mask, then we are going to be
725                          * woken by the IPI right away.
726                          */
727                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
728                             dev->next_event.tv64 < bc->next_event.tv64)
729                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
730                 }
731                 /*
732                  * If the current CPU owns the hrtimer broadcast
733                  * mechanism, it cannot go deep idle and we remove the
734                  * CPU from the broadcast mask. We don't have to go
735                  * through the EXIT path as the local timer is not
736                  * shutdown.
737                  */
738                 ret = broadcast_needs_cpu(bc, cpu);
739                 if (ret)
740                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
741         } else {
742                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
743                         clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
744                         /*
745                          * The cpu which was handling the broadcast
746                          * timer marked this cpu in the broadcast
747                          * pending mask and fired the broadcast
748                          * IPI. So we are going to handle the expired
749                          * event anyway via the broadcast IPI
750                          * handler. No need to reprogram the timer
751                          * with an already expired event.
752                          */
753                         if (cpumask_test_and_clear_cpu(cpu,
754                                        tick_broadcast_pending_mask))
755                                 goto out;
756
757                         /*
758                          * Bail out if there is no next event.
759                          */
760                         if (dev->next_event.tv64 == KTIME_MAX)
761                                 goto out;
762                         /*
763                          * If the pending bit is not set, then we are
764                          * either the CPU handling the broadcast
765                          * interrupt or we got woken by something else.
766                          *
767                          * We are not longer in the broadcast mask, so
768                          * if the cpu local expiry time is already
769                          * reached, we would reprogram the cpu local
770                          * timer with an already expired event.
771                          *
772                          * This can lead to a ping-pong when we return
773                          * to idle and therefor rearm the broadcast
774                          * timer before the cpu local timer was able
775                          * to fire. This happens because the forced
776                          * reprogramming makes sure that the event
777                          * will happen in the future and depending on
778                          * the min_delta setting this might be far
779                          * enough out that the ping-pong starts.
780                          *
781                          * If the cpu local next_event has expired
782                          * then we know that the broadcast timer
783                          * next_event has expired as well and
784                          * broadcast is about to be handled. So we
785                          * avoid reprogramming and enforce that the
786                          * broadcast handler, which did not run yet,
787                          * will invoke the cpu local handler.
788                          *
789                          * We cannot call the handler directly from
790                          * here, because we might be in a NOHZ phase
791                          * and we did not go through the irq_enter()
792                          * nohz fixups.
793                          */
794                         now = ktime_get();
795                         if (dev->next_event.tv64 <= now.tv64) {
796                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
797                                 goto out;
798                         }
799                         /*
800                          * We got woken by something else. Reprogram
801                          * the cpu local timer device.
802                          */
803                         tick_program_event(dev->next_event, 1);
804                 }
805         }
806 out:
807         raw_spin_unlock(&tick_broadcast_lock);
808         return ret;
809 }
810 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
811
812 /*
813  * Reset the one shot broadcast for a cpu
814  *
815  * Called with tick_broadcast_lock held
816  */
817 static void tick_broadcast_clear_oneshot(int cpu)
818 {
819         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821 }
822
823 static void tick_broadcast_init_next_event(struct cpumask *mask,
824                                            ktime_t expires)
825 {
826         struct tick_device *td;
827         int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 td = &per_cpu(tick_cpu_device, cpu);
831                 if (td->evtdev)
832                         td->evtdev->next_event = expires;
833         }
834 }
835
836 /**
837  * tick_broadcast_setup_oneshot - setup the broadcast device
838  */
839 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840 {
841         int cpu = smp_processor_id();
842
843         /* Set it up only once ! */
844         if (bc->event_handler != tick_handle_oneshot_broadcast) {
845                 int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
846
847                 bc->event_handler = tick_handle_oneshot_broadcast;
848
849                 /*
850                  * We must be careful here. There might be other CPUs
851                  * waiting for periodic broadcast. We need to set the
852                  * oneshot_mask bits for those and program the
853                  * broadcast device to fire.
854                  */
855                 cpumask_copy(tmpmask, tick_broadcast_mask);
856                 cpumask_clear_cpu(cpu, tmpmask);
857                 cpumask_or(tick_broadcast_oneshot_mask,
858                            tick_broadcast_oneshot_mask, tmpmask);
859
860                 if (was_periodic && !cpumask_empty(tmpmask)) {
861                         clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
862                         tick_broadcast_init_next_event(tmpmask,
863                                                        tick_next_period);
864                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
865                 } else
866                         bc->next_event.tv64 = KTIME_MAX;
867         } else {
868                 /*
869                  * The first cpu which switches to oneshot mode sets
870                  * the bit for all other cpus which are in the general
871                  * (periodic) broadcast mask. So the bit is set and
872                  * would prevent the first broadcast enter after this
873                  * to program the bc device.
874                  */
875                 tick_broadcast_clear_oneshot(cpu);
876         }
877 }
878
879 /*
880  * Select oneshot operating mode for the broadcast device
881  */
882 void tick_broadcast_switch_to_oneshot(void)
883 {
884         struct clock_event_device *bc;
885         unsigned long flags;
886
887         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888
889         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890         bc = tick_broadcast_device.evtdev;
891         if (bc)
892                 tick_broadcast_setup_oneshot(bc);
893
894         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895 }
896
897 #ifdef CONFIG_HOTPLUG_CPU
898 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
899 {
900         struct clock_event_device *bc;
901         unsigned long flags;
902
903         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
904         bc = tick_broadcast_device.evtdev;
905
906         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
907                 /* This moves the broadcast assignment to this CPU: */
908                 clockevents_program_event(bc, bc->next_event, 1);
909         }
910         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
911 }
912
913 /*
914  * Remove a dead CPU from broadcasting
915  */
916 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
917 {
918         unsigned long flags;
919
920         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
921
922         /*
923          * Clear the broadcast masks for the dead cpu, but do not stop
924          * the broadcast device!
925          */
926         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
927         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
928         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
929
930         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
931 }
932 #endif
933
934 /*
935  * Check, whether the broadcast device is in one shot mode
936  */
937 int tick_broadcast_oneshot_active(void)
938 {
939         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
940 }
941
942 /*
943  * Check whether the broadcast device supports oneshot.
944  */
945 bool tick_broadcast_oneshot_available(void)
946 {
947         struct clock_event_device *bc = tick_broadcast_device.evtdev;
948
949         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
950 }
951
952 #endif
953
954 void __init tick_broadcast_init(void)
955 {
956         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
957         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
958         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
959 #ifdef CONFIG_TICK_ONESHOT
960         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
961         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
962         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
963 #endif
964 }