Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / smpboot.c
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30         struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32         if (!tsk)
33                 return ERR_PTR(-ENOMEM);
34         init_idle(tsk, cpu);
35         return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40         per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:        The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51         struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53         if (!tsk) {
54                 tsk = fork_idle(cpu);
55                 if (IS_ERR(tsk))
56                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57                 else
58                         per_cpu(idle_threads, cpu) = tsk;
59         }
60 }
61
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67         unsigned int cpu, boot_cpu;
68
69         boot_cpu = smp_processor_id();
70
71         for_each_possible_cpu(cpu) {
72                 if (cpu != boot_cpu)
73                         idle_init(cpu);
74         }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84         unsigned int                    cpu;
85         unsigned int                    status;
86         struct smp_hotplug_thread       *ht;
87 };
88
89 enum {
90         HP_THREAD_NONE = 0,
91         HP_THREAD_ACTIVE,
92         HP_THREAD_PARKED,
93 };
94
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:       thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107         struct smpboot_thread_data *td = data;
108         struct smp_hotplug_thread *ht = td->ht;
109
110         while (1) {
111                 set_current_state(TASK_INTERRUPTIBLE);
112                 preempt_disable();
113                 if (kthread_should_stop()) {
114                         __set_current_state(TASK_RUNNING);
115                         preempt_enable();
116                         if (ht->cleanup)
117                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
118                         kfree(td);
119                         return 0;
120                 }
121
122                 if (kthread_should_park()) {
123                         __set_current_state(TASK_RUNNING);
124                         preempt_enable();
125                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
126                                 BUG_ON(td->cpu != smp_processor_id());
127                                 ht->park(td->cpu);
128                                 td->status = HP_THREAD_PARKED;
129                         }
130                         kthread_parkme();
131                         /* We might have been woken for stop */
132                         continue;
133                 }
134
135                 BUG_ON(td->cpu != smp_processor_id());
136
137                 /* Check for state change setup */
138                 switch (td->status) {
139                 case HP_THREAD_NONE:
140                         __set_current_state(TASK_RUNNING);
141                         preempt_enable();
142                         if (ht->setup)
143                                 ht->setup(td->cpu);
144                         td->status = HP_THREAD_ACTIVE;
145                         continue;
146
147                 case HP_THREAD_PARKED:
148                         __set_current_state(TASK_RUNNING);
149                         preempt_enable();
150                         if (ht->unpark)
151                                 ht->unpark(td->cpu);
152                         td->status = HP_THREAD_ACTIVE;
153                         continue;
154                 }
155
156                 if (!ht->thread_should_run(td->cpu)) {
157                         preempt_enable_no_resched();
158                         schedule();
159                 } else {
160                         __set_current_state(TASK_RUNNING);
161                         preempt_enable();
162                         ht->thread_fn(td->cpu);
163                 }
164         }
165 }
166
167 static int
168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
169 {
170         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
171         struct smpboot_thread_data *td;
172
173         if (tsk)
174                 return 0;
175
176         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
177         if (!td)
178                 return -ENOMEM;
179         td->cpu = cpu;
180         td->ht = ht;
181
182         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
183                                     ht->thread_comm);
184         if (IS_ERR(tsk)) {
185                 kfree(td);
186                 return PTR_ERR(tsk);
187         }
188         get_task_struct(tsk);
189         *per_cpu_ptr(ht->store, cpu) = tsk;
190         if (ht->create) {
191                 /*
192                  * Make sure that the task has actually scheduled out
193                  * into park position, before calling the create
194                  * callback. At least the migration thread callback
195                  * requires that the task is off the runqueue.
196                  */
197                 if (!wait_task_inactive(tsk, TASK_PARKED))
198                         WARN_ON(1);
199                 else
200                         ht->create(cpu);
201         }
202         return 0;
203 }
204
205 int smpboot_create_threads(unsigned int cpu)
206 {
207         struct smp_hotplug_thread *cur;
208         int ret = 0;
209
210         mutex_lock(&smpboot_threads_lock);
211         list_for_each_entry(cur, &hotplug_threads, list) {
212                 ret = __smpboot_create_thread(cur, cpu);
213                 if (ret)
214                         break;
215         }
216         mutex_unlock(&smpboot_threads_lock);
217         return ret;
218 }
219
220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
221 {
222         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
223
224         if (ht->pre_unpark)
225                 ht->pre_unpark(cpu);
226         kthread_unpark(tsk);
227 }
228
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231         struct smp_hotplug_thread *cur;
232
233         mutex_lock(&smpboot_threads_lock);
234         list_for_each_entry(cur, &hotplug_threads, list)
235                 smpboot_unpark_thread(cur, cpu);
236         mutex_unlock(&smpboot_threads_lock);
237 }
238
239 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
240 {
241         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
242
243         if (tsk && !ht->selfparking)
244                 kthread_park(tsk);
245 }
246
247 void smpboot_park_threads(unsigned int cpu)
248 {
249         struct smp_hotplug_thread *cur;
250
251         mutex_lock(&smpboot_threads_lock);
252         list_for_each_entry_reverse(cur, &hotplug_threads, list)
253                 smpboot_park_thread(cur, cpu);
254         mutex_unlock(&smpboot_threads_lock);
255 }
256
257 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
258 {
259         unsigned int cpu;
260
261         /* We need to destroy also the parked threads of offline cpus */
262         for_each_possible_cpu(cpu) {
263                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
264
265                 if (tsk) {
266                         kthread_stop(tsk);
267                         put_task_struct(tsk);
268                         *per_cpu_ptr(ht->store, cpu) = NULL;
269                 }
270         }
271 }
272
273 /**
274  * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
275  * @plug_thread:        Hotplug thread descriptor
276  *
277  * Creates and starts the threads on all online cpus.
278  */
279 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
280 {
281         unsigned int cpu;
282         int ret = 0;
283
284         get_online_cpus();
285         mutex_lock(&smpboot_threads_lock);
286         for_each_online_cpu(cpu) {
287                 ret = __smpboot_create_thread(plug_thread, cpu);
288                 if (ret) {
289                         smpboot_destroy_threads(plug_thread);
290                         goto out;
291                 }
292                 smpboot_unpark_thread(plug_thread, cpu);
293         }
294         list_add(&plug_thread->list, &hotplug_threads);
295 out:
296         mutex_unlock(&smpboot_threads_lock);
297         put_online_cpus();
298         return ret;
299 }
300 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
301
302 /**
303  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
304  * @plug_thread:        Hotplug thread descriptor
305  *
306  * Stops all threads on all possible cpus.
307  */
308 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
309 {
310         get_online_cpus();
311         mutex_lock(&smpboot_threads_lock);
312         list_del(&plug_thread->list);
313         smpboot_destroy_threads(plug_thread);
314         mutex_unlock(&smpboot_threads_lock);
315         put_online_cpus();
316 }
317 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
318
319 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
320
321 /*
322  * Called to poll specified CPU's state, for example, when waiting for
323  * a CPU to come online.
324  */
325 int cpu_report_state(int cpu)
326 {
327         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
328 }
329
330 /*
331  * If CPU has died properly, set its state to CPU_UP_PREPARE and
332  * return success.  Otherwise, return -EBUSY if the CPU died after
333  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
334  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
335  * to dying.  In the latter two cases, the CPU might not be set up
336  * properly, but it is up to the arch-specific code to decide.
337  * Finally, -EIO indicates an unanticipated problem.
338  *
339  * Note that it is permissible to omit this call entirely, as is
340  * done in architectures that do no CPU-hotplug error checking.
341  */
342 int cpu_check_up_prepare(int cpu)
343 {
344         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
345                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
346                 return 0;
347         }
348
349         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
350
351         case CPU_POST_DEAD:
352
353                 /* The CPU died properly, so just start it up again. */
354                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
355                 return 0;
356
357         case CPU_DEAD_FROZEN:
358
359                 /*
360                  * Timeout during CPU death, so let caller know.
361                  * The outgoing CPU completed its processing, but after
362                  * cpu_wait_death() timed out and reported the error. The
363                  * caller is free to proceed, in which case the state
364                  * will be reset properly by cpu_set_state_online().
365                  * Proceeding despite this -EBUSY return makes sense
366                  * for systems where the outgoing CPUs take themselves
367                  * offline, with no post-death manipulation required from
368                  * a surviving CPU.
369                  */
370                 return -EBUSY;
371
372         case CPU_BROKEN:
373
374                 /*
375                  * The most likely reason we got here is that there was
376                  * a timeout during CPU death, and the outgoing CPU never
377                  * did complete its processing.  This could happen on
378                  * a virtualized system if the outgoing VCPU gets preempted
379                  * for more than five seconds, and the user attempts to
380                  * immediately online that same CPU.  Trying again later
381                  * might return -EBUSY above, hence -EAGAIN.
382                  */
383                 return -EAGAIN;
384
385         default:
386
387                 /* Should not happen.  Famous last words. */
388                 return -EIO;
389         }
390 }
391
392 /*
393  * Mark the specified CPU online.
394  *
395  * Note that it is permissible to omit this call entirely, as is
396  * done in architectures that do no CPU-hotplug error checking.
397  */
398 void cpu_set_state_online(int cpu)
399 {
400         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
401 }
402
403 #ifdef CONFIG_HOTPLUG_CPU
404
405 /*
406  * Wait for the specified CPU to exit the idle loop and die.
407  */
408 bool cpu_wait_death(unsigned int cpu, int seconds)
409 {
410         int jf_left = seconds * HZ;
411         int oldstate;
412         bool ret = true;
413         int sleep_jf = 1;
414
415         might_sleep();
416
417         /* The outgoing CPU will normally get done quite quickly. */
418         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
419                 goto update_state;
420         udelay(5);
421
422         /* But if the outgoing CPU dawdles, wait increasingly long times. */
423         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
424                 schedule_timeout_uninterruptible(sleep_jf);
425                 jf_left -= sleep_jf;
426                 if (jf_left <= 0)
427                         break;
428                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
429         }
430 update_state:
431         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
432         if (oldstate == CPU_DEAD) {
433                 /* Outgoing CPU died normally, update state. */
434                 smp_mb(); /* atomic_read() before update. */
435                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
436         } else {
437                 /* Outgoing CPU still hasn't died, set state accordingly. */
438                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
439                                    oldstate, CPU_BROKEN) != oldstate)
440                         goto update_state;
441                 ret = false;
442         }
443         return ret;
444 }
445
446 /*
447  * Called by the outgoing CPU to report its successful death.  Return
448  * false if this report follows the surviving CPU's timing out.
449  *
450  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
451  * timed out.  This approach allows architectures to omit calls to
452  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
453  * the next cpu_wait_death()'s polling loop.
454  */
455 bool cpu_report_death(void)
456 {
457         int oldstate;
458         int newstate;
459         int cpu = smp_processor_id();
460
461         do {
462                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
463                 if (oldstate != CPU_BROKEN)
464                         newstate = CPU_DEAD;
465                 else
466                         newstate = CPU_DEAD_FROZEN;
467         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
468                                 oldstate, newstate) != oldstate);
469         return newstate == CPU_DEAD;
470 }
471
472 #endif /* #ifdef CONFIG_HOTPLUG_CPU */