These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.irqsafe = 1;
51         rt_b->rt_period_timer.function = sched_rt_period_timer;
52 }
53
54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 {
56         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
57                 return;
58
59         raw_spin_lock(&rt_b->rt_runtime_lock);
60         if (!rt_b->rt_period_active) {
61                 rt_b->rt_period_active = 1;
62                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
63                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
64         }
65         raw_spin_unlock(&rt_b->rt_runtime_lock);
66 }
67
68 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
69 static void push_irq_work_func(struct irq_work *work);
70 #endif
71
72 void init_rt_rq(struct rt_rq *rt_rq)
73 {
74         struct rt_prio_array *array;
75         int i;
76
77         array = &rt_rq->active;
78         for (i = 0; i < MAX_RT_PRIO; i++) {
79                 INIT_LIST_HEAD(array->queue + i);
80                 __clear_bit(i, array->bitmap);
81         }
82         /* delimiter for bitsearch: */
83         __set_bit(MAX_RT_PRIO, array->bitmap);
84
85 #if defined CONFIG_SMP
86         rt_rq->highest_prio.curr = MAX_RT_PRIO;
87         rt_rq->highest_prio.next = MAX_RT_PRIO;
88         rt_rq->rt_nr_migratory = 0;
89         rt_rq->overloaded = 0;
90         plist_head_init(&rt_rq->pushable_tasks);
91
92 #ifdef HAVE_RT_PUSH_IPI
93         rt_rq->push_flags = 0;
94         rt_rq->push_cpu = nr_cpu_ids;
95         raw_spin_lock_init(&rt_rq->push_lock);
96         init_irq_work(&rt_rq->push_work, push_irq_work_func);
97         rt_rq->push_work.flags |= IRQ_WORK_HARD_IRQ;
98 #endif
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void free_rt_sched_group(struct task_group *tg)
143 {
144         int i;
145
146         if (tg->rt_se)
147                 destroy_rt_bandwidth(&tg->rt_bandwidth);
148
149         for_each_possible_cpu(i) {
150                 if (tg->rt_rq)
151                         kfree(tg->rt_rq[i]);
152                 if (tg->rt_se)
153                         kfree(tg->rt_se[i]);
154         }
155
156         kfree(tg->rt_rq);
157         kfree(tg->rt_se);
158 }
159
160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161                 struct sched_rt_entity *rt_se, int cpu,
162                 struct sched_rt_entity *parent)
163 {
164         struct rq *rq = cpu_rq(cpu);
165
166         rt_rq->highest_prio.curr = MAX_RT_PRIO;
167         rt_rq->rt_nr_boosted = 0;
168         rt_rq->rq = rq;
169         rt_rq->tg = tg;
170
171         tg->rt_rq[cpu] = rt_rq;
172         tg->rt_se[cpu] = rt_se;
173
174         if (!rt_se)
175                 return;
176
177         if (!parent)
178                 rt_se->rt_rq = &rq->rt;
179         else
180                 rt_se->rt_rq = parent->my_q;
181
182         rt_se->my_q = rt_rq;
183         rt_se->parent = parent;
184         INIT_LIST_HEAD(&rt_se->run_list);
185 }
186
187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189         struct rt_rq *rt_rq;
190         struct sched_rt_entity *rt_se;
191         int i;
192
193         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
194         if (!tg->rt_rq)
195                 goto err;
196         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
197         if (!tg->rt_se)
198                 goto err;
199
200         init_rt_bandwidth(&tg->rt_bandwidth,
201                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202
203         for_each_possible_cpu(i) {
204                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_rq)
207                         goto err;
208
209                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210                                      GFP_KERNEL, cpu_to_node(i));
211                 if (!rt_se)
212                         goto err_free_rq;
213
214                 init_rt_rq(rt_rq);
215                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217         }
218
219         return 1;
220
221 err_free_rq:
222         kfree(rt_rq);
223 err:
224         return 0;
225 }
226
227 #else /* CONFIG_RT_GROUP_SCHED */
228
229 #define rt_entity_is_task(rt_se) (1)
230
231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233         return container_of(rt_se, struct task_struct, rt);
234 }
235
236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238         return container_of(rt_rq, struct rq, rt);
239 }
240
241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243         struct task_struct *p = rt_task_of(rt_se);
244
245         return task_rq(p);
246 }
247
248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250         struct rq *rq = rq_of_rt_se(rt_se);
251
252         return &rq->rt;
253 }
254
255 void free_rt_sched_group(struct task_group *tg) { }
256
257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259         return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262
263 #ifdef CONFIG_SMP
264
265 static void pull_rt_task(struct rq *this_rq);
266
267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269         /* Try to pull RT tasks here if we lower this rq's prio */
270         return rq->rt.highest_prio.curr > prev->prio;
271 }
272
273 static inline int rt_overloaded(struct rq *rq)
274 {
275         return atomic_read(&rq->rd->rto_count);
276 }
277
278 static inline void rt_set_overload(struct rq *rq)
279 {
280         if (!rq->online)
281                 return;
282
283         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284         /*
285          * Make sure the mask is visible before we set
286          * the overload count. That is checked to determine
287          * if we should look at the mask. It would be a shame
288          * if we looked at the mask, but the mask was not
289          * updated yet.
290          *
291          * Matched by the barrier in pull_rt_task().
292          */
293         smp_wmb();
294         atomic_inc(&rq->rd->rto_count);
295 }
296
297 static inline void rt_clear_overload(struct rq *rq)
298 {
299         if (!rq->online)
300                 return;
301
302         /* the order here really doesn't matter */
303         atomic_dec(&rq->rd->rto_count);
304         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306
307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310                 if (!rt_rq->overloaded) {
311                         rt_set_overload(rq_of_rt_rq(rt_rq));
312                         rt_rq->overloaded = 1;
313                 }
314         } else if (rt_rq->overloaded) {
315                 rt_clear_overload(rq_of_rt_rq(rt_rq));
316                 rt_rq->overloaded = 0;
317         }
318 }
319
320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322         struct task_struct *p;
323
324         if (!rt_entity_is_task(rt_se))
325                 return;
326
327         p = rt_task_of(rt_se);
328         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329
330         rt_rq->rt_nr_total++;
331         if (tsk_nr_cpus_allowed(p) > 1)
332                 rt_rq->rt_nr_migratory++;
333
334         update_rt_migration(rt_rq);
335 }
336
337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339         struct task_struct *p;
340
341         if (!rt_entity_is_task(rt_se))
342                 return;
343
344         p = rt_task_of(rt_se);
345         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346
347         rt_rq->rt_nr_total--;
348         if (tsk_nr_cpus_allowed(p) > 1)
349                 rt_rq->rt_nr_migratory--;
350
351         update_rt_migration(rt_rq);
352 }
353
354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356         return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364
365 static inline void queue_push_tasks(struct rq *rq)
366 {
367         if (!has_pushable_tasks(rq))
368                 return;
369
370         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372
373 static inline void queue_pull_task(struct rq *rq)
374 {
375         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377
378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381         plist_node_init(&p->pushable_tasks, p->prio);
382         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383
384         /* Update the highest prio pushable task */
385         if (p->prio < rq->rt.highest_prio.next)
386                 rq->rt.highest_prio.next = p->prio;
387 }
388
389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the new highest prio pushable task */
394         if (has_pushable_tasks(rq)) {
395                 p = plist_first_entry(&rq->rt.pushable_tasks,
396                                       struct task_struct, pushable_tasks);
397                 rq->rt.highest_prio.next = p->prio;
398         } else
399                 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401
402 #else
403
404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411
412 static inline
413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline
418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424         return false;
425 }
426
427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430
431 static inline void queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return !list_empty(&rt_se->run_list);
442 }
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445
446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448         if (!rt_rq->tg)
449                 return RUNTIME_INF;
450
451         return rt_rq->rt_runtime;
452 }
453
454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458
459 typedef struct task_group *rt_rq_iter_t;
460
461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463         do {
464                 tg = list_entry_rcu(tg->list.next,
465                         typeof(struct task_group), list);
466         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467
468         if (&tg->list == &task_groups)
469                 tg = NULL;
470
471         return tg;
472 }
473
474 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
475         for (iter = container_of(&task_groups, typeof(*iter), list);    \
476                 (iter = next_task_group(iter)) &&                       \
477                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
478
479 #define for_each_sched_rt_entity(rt_se) \
480         for (; rt_se; rt_se = rt_se->parent)
481
482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484         return rt_se->my_q;
485 }
486
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
489
490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493         struct rq *rq = rq_of_rt_rq(rt_rq);
494         struct sched_rt_entity *rt_se;
495
496         int cpu = cpu_of(rq);
497
498         rt_se = rt_rq->tg->rt_se[cpu];
499
500         if (rt_rq->rt_nr_running) {
501                 if (!rt_se)
502                         enqueue_top_rt_rq(rt_rq);
503                 else if (!on_rt_rq(rt_se))
504                         enqueue_rt_entity(rt_se, false);
505
506                 if (rt_rq->highest_prio.curr < curr->prio)
507                         resched_curr(rq);
508         }
509 }
510
511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513         struct sched_rt_entity *rt_se;
514         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515
516         rt_se = rt_rq->tg->rt_se[cpu];
517
518         if (!rt_se)
519                 dequeue_top_rt_rq(rt_rq);
520         else if (on_rt_rq(rt_se))
521                 dequeue_rt_entity(rt_se);
522 }
523
524 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
525 {
526         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
527 }
528
529 static int rt_se_boosted(struct sched_rt_entity *rt_se)
530 {
531         struct rt_rq *rt_rq = group_rt_rq(rt_se);
532         struct task_struct *p;
533
534         if (rt_rq)
535                 return !!rt_rq->rt_nr_boosted;
536
537         p = rt_task_of(rt_se);
538         return p->prio != p->normal_prio;
539 }
540
541 #ifdef CONFIG_SMP
542 static inline const struct cpumask *sched_rt_period_mask(void)
543 {
544         return this_rq()->rd->span;
545 }
546 #else
547 static inline const struct cpumask *sched_rt_period_mask(void)
548 {
549         return cpu_online_mask;
550 }
551 #endif
552
553 static inline
554 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
555 {
556         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
557 }
558
559 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
560 {
561         return &rt_rq->tg->rt_bandwidth;
562 }
563
564 #else /* !CONFIG_RT_GROUP_SCHED */
565
566 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
567 {
568         return rt_rq->rt_runtime;
569 }
570
571 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
572 {
573         return ktime_to_ns(def_rt_bandwidth.rt_period);
574 }
575
576 typedef struct rt_rq *rt_rq_iter_t;
577
578 #define for_each_rt_rq(rt_rq, iter, rq) \
579         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
580
581 #define for_each_sched_rt_entity(rt_se) \
582         for (; rt_se; rt_se = NULL)
583
584 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
585 {
586         return NULL;
587 }
588
589 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
590 {
591         struct rq *rq = rq_of_rt_rq(rt_rq);
592
593         if (!rt_rq->rt_nr_running)
594                 return;
595
596         enqueue_top_rt_rq(rt_rq);
597         resched_curr(rq);
598 }
599
600 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602         dequeue_top_rt_rq(rt_rq);
603 }
604
605 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
606 {
607         return rt_rq->rt_throttled;
608 }
609
610 static inline const struct cpumask *sched_rt_period_mask(void)
611 {
612         return cpu_online_mask;
613 }
614
615 static inline
616 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
617 {
618         return &cpu_rq(cpu)->rt;
619 }
620
621 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
622 {
623         return &def_rt_bandwidth;
624 }
625
626 #endif /* CONFIG_RT_GROUP_SCHED */
627
628 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
629 {
630         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
631
632         return (hrtimer_active(&rt_b->rt_period_timer) ||
633                 rt_rq->rt_time < rt_b->rt_runtime);
634 }
635
636 #ifdef CONFIG_SMP
637 /*
638  * We ran out of runtime, see if we can borrow some from our neighbours.
639  */
640 static void do_balance_runtime(struct rt_rq *rt_rq)
641 {
642         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
643         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
644         int i, weight;
645         u64 rt_period;
646
647         weight = cpumask_weight(rd->span);
648
649         raw_spin_lock(&rt_b->rt_runtime_lock);
650         rt_period = ktime_to_ns(rt_b->rt_period);
651         for_each_cpu(i, rd->span) {
652                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653                 s64 diff;
654
655                 if (iter == rt_rq)
656                         continue;
657
658                 raw_spin_lock(&iter->rt_runtime_lock);
659                 /*
660                  * Either all rqs have inf runtime and there's nothing to steal
661                  * or __disable_runtime() below sets a specific rq to inf to
662                  * indicate its been disabled and disalow stealing.
663                  */
664                 if (iter->rt_runtime == RUNTIME_INF)
665                         goto next;
666
667                 /*
668                  * From runqueues with spare time, take 1/n part of their
669                  * spare time, but no more than our period.
670                  */
671                 diff = iter->rt_runtime - iter->rt_time;
672                 if (diff > 0) {
673                         diff = div_u64((u64)diff, weight);
674                         if (rt_rq->rt_runtime + diff > rt_period)
675                                 diff = rt_period - rt_rq->rt_runtime;
676                         iter->rt_runtime -= diff;
677                         rt_rq->rt_runtime += diff;
678                         if (rt_rq->rt_runtime == rt_period) {
679                                 raw_spin_unlock(&iter->rt_runtime_lock);
680                                 break;
681                         }
682                 }
683 next:
684                 raw_spin_unlock(&iter->rt_runtime_lock);
685         }
686         raw_spin_unlock(&rt_b->rt_runtime_lock);
687 }
688
689 /*
690  * Ensure this RQ takes back all the runtime it lend to its neighbours.
691  */
692 static void __disable_runtime(struct rq *rq)
693 {
694         struct root_domain *rd = rq->rd;
695         rt_rq_iter_t iter;
696         struct rt_rq *rt_rq;
697
698         if (unlikely(!scheduler_running))
699                 return;
700
701         for_each_rt_rq(rt_rq, iter, rq) {
702                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
703                 s64 want;
704                 int i;
705
706                 raw_spin_lock(&rt_b->rt_runtime_lock);
707                 raw_spin_lock(&rt_rq->rt_runtime_lock);
708                 /*
709                  * Either we're all inf and nobody needs to borrow, or we're
710                  * already disabled and thus have nothing to do, or we have
711                  * exactly the right amount of runtime to take out.
712                  */
713                 if (rt_rq->rt_runtime == RUNTIME_INF ||
714                                 rt_rq->rt_runtime == rt_b->rt_runtime)
715                         goto balanced;
716                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
717
718                 /*
719                  * Calculate the difference between what we started out with
720                  * and what we current have, that's the amount of runtime
721                  * we lend and now have to reclaim.
722                  */
723                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
724
725                 /*
726                  * Greedy reclaim, take back as much as we can.
727                  */
728                 for_each_cpu(i, rd->span) {
729                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
730                         s64 diff;
731
732                         /*
733                          * Can't reclaim from ourselves or disabled runqueues.
734                          */
735                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
736                                 continue;
737
738                         raw_spin_lock(&iter->rt_runtime_lock);
739                         if (want > 0) {
740                                 diff = min_t(s64, iter->rt_runtime, want);
741                                 iter->rt_runtime -= diff;
742                                 want -= diff;
743                         } else {
744                                 iter->rt_runtime -= want;
745                                 want -= want;
746                         }
747                         raw_spin_unlock(&iter->rt_runtime_lock);
748
749                         if (!want)
750                                 break;
751                 }
752
753                 raw_spin_lock(&rt_rq->rt_runtime_lock);
754                 /*
755                  * We cannot be left wanting - that would mean some runtime
756                  * leaked out of the system.
757                  */
758                 BUG_ON(want);
759 balanced:
760                 /*
761                  * Disable all the borrow logic by pretending we have inf
762                  * runtime - in which case borrowing doesn't make sense.
763                  */
764                 rt_rq->rt_runtime = RUNTIME_INF;
765                 rt_rq->rt_throttled = 0;
766                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
767                 raw_spin_unlock(&rt_b->rt_runtime_lock);
768
769                 /* Make rt_rq available for pick_next_task() */
770                 sched_rt_rq_enqueue(rt_rq);
771         }
772 }
773
774 static void __enable_runtime(struct rq *rq)
775 {
776         rt_rq_iter_t iter;
777         struct rt_rq *rt_rq;
778
779         if (unlikely(!scheduler_running))
780                 return;
781
782         /*
783          * Reset each runqueue's bandwidth settings
784          */
785         for_each_rt_rq(rt_rq, iter, rq) {
786                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
787
788                 raw_spin_lock(&rt_b->rt_runtime_lock);
789                 raw_spin_lock(&rt_rq->rt_runtime_lock);
790                 rt_rq->rt_runtime = rt_b->rt_runtime;
791                 rt_rq->rt_time = 0;
792                 rt_rq->rt_throttled = 0;
793                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
794                 raw_spin_unlock(&rt_b->rt_runtime_lock);
795         }
796 }
797
798 static void balance_runtime(struct rt_rq *rt_rq)
799 {
800         if (!sched_feat(RT_RUNTIME_SHARE))
801                 return;
802
803         if (rt_rq->rt_time > rt_rq->rt_runtime) {
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805                 do_balance_runtime(rt_rq);
806                 raw_spin_lock(&rt_rq->rt_runtime_lock);
807         }
808 }
809 #else /* !CONFIG_SMP */
810 static inline void balance_runtime(struct rt_rq *rt_rq) {}
811 #endif /* CONFIG_SMP */
812
813 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
814 {
815         int i, idle = 1, throttled = 0;
816         const struct cpumask *span;
817
818         span = sched_rt_period_mask();
819 #ifdef CONFIG_RT_GROUP_SCHED
820         /*
821          * FIXME: isolated CPUs should really leave the root task group,
822          * whether they are isolcpus or were isolated via cpusets, lest
823          * the timer run on a CPU which does not service all runqueues,
824          * potentially leaving other CPUs indefinitely throttled.  If
825          * isolation is really required, the user will turn the throttle
826          * off to kill the perturbations it causes anyway.  Meanwhile,
827          * this maintains functionality for boot and/or troubleshooting.
828          */
829         if (rt_b == &root_task_group.rt_bandwidth)
830                 span = cpu_online_mask;
831 #endif
832         for_each_cpu(i, span) {
833                 int enqueue = 0;
834                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
835                 struct rq *rq = rq_of_rt_rq(rt_rq);
836
837                 raw_spin_lock(&rq->lock);
838                 if (rt_rq->rt_time) {
839                         u64 runtime;
840
841                         raw_spin_lock(&rt_rq->rt_runtime_lock);
842                         if (rt_rq->rt_throttled)
843                                 balance_runtime(rt_rq);
844                         runtime = rt_rq->rt_runtime;
845                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
846                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
847                                 rt_rq->rt_throttled = 0;
848                                 enqueue = 1;
849
850                                 /*
851                                  * When we're idle and a woken (rt) task is
852                                  * throttled check_preempt_curr() will set
853                                  * skip_update and the time between the wakeup
854                                  * and this unthrottle will get accounted as
855                                  * 'runtime'.
856                                  */
857                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
858                                         rq_clock_skip_update(rq, false);
859                         }
860                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
861                                 idle = 0;
862                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
863                 } else if (rt_rq->rt_nr_running) {
864                         idle = 0;
865                         if (!rt_rq_throttled(rt_rq))
866                                 enqueue = 1;
867                 }
868                 if (rt_rq->rt_throttled)
869                         throttled = 1;
870
871                 if (enqueue)
872                         sched_rt_rq_enqueue(rt_rq);
873                 raw_spin_unlock(&rq->lock);
874         }
875
876         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
877                 return 1;
878
879         return idle;
880 }
881
882 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
883 {
884 #ifdef CONFIG_RT_GROUP_SCHED
885         struct rt_rq *rt_rq = group_rt_rq(rt_se);
886
887         if (rt_rq)
888                 return rt_rq->highest_prio.curr;
889 #endif
890
891         return rt_task_of(rt_se)->prio;
892 }
893
894 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
895 {
896         u64 runtime = sched_rt_runtime(rt_rq);
897
898         if (rt_rq->rt_throttled)
899                 return rt_rq_throttled(rt_rq);
900
901         if (runtime >= sched_rt_period(rt_rq))
902                 return 0;
903
904         balance_runtime(rt_rq);
905         runtime = sched_rt_runtime(rt_rq);
906         if (runtime == RUNTIME_INF)
907                 return 0;
908
909         if (rt_rq->rt_time > runtime) {
910                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
911
912                 /*
913                  * Don't actually throttle groups that have no runtime assigned
914                  * but accrue some time due to boosting.
915                  */
916                 if (likely(rt_b->rt_runtime)) {
917                         rt_rq->rt_throttled = 1;
918                         printk_deferred_once("sched: RT throttling activated\n");
919                 } else {
920                         /*
921                          * In case we did anyway, make it go away,
922                          * replenishment is a joke, since it will replenish us
923                          * with exactly 0 ns.
924                          */
925                         rt_rq->rt_time = 0;
926                 }
927
928                 if (rt_rq_throttled(rt_rq)) {
929                         sched_rt_rq_dequeue(rt_rq);
930                         return 1;
931                 }
932         }
933
934         return 0;
935 }
936
937 /*
938  * Update the current task's runtime statistics. Skip current tasks that
939  * are not in our scheduling class.
940  */
941 static void update_curr_rt(struct rq *rq)
942 {
943         struct task_struct *curr = rq->curr;
944         struct sched_rt_entity *rt_se = &curr->rt;
945         u64 delta_exec;
946
947         if (curr->sched_class != &rt_sched_class)
948                 return;
949
950         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
951         if (unlikely((s64)delta_exec <= 0))
952                 return;
953
954         schedstat_set(curr->se.statistics.exec_max,
955                       max(curr->se.statistics.exec_max, delta_exec));
956
957         curr->se.sum_exec_runtime += delta_exec;
958         account_group_exec_runtime(curr, delta_exec);
959
960         curr->se.exec_start = rq_clock_task(rq);
961         cpuacct_charge(curr, delta_exec);
962
963         sched_rt_avg_update(rq, delta_exec);
964
965         if (!rt_bandwidth_enabled())
966                 return;
967
968         for_each_sched_rt_entity(rt_se) {
969                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
970
971                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
972                         raw_spin_lock(&rt_rq->rt_runtime_lock);
973                         rt_rq->rt_time += delta_exec;
974                         if (sched_rt_runtime_exceeded(rt_rq))
975                                 resched_curr(rq);
976                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
977                 }
978         }
979 }
980
981 static void
982 dequeue_top_rt_rq(struct rt_rq *rt_rq)
983 {
984         struct rq *rq = rq_of_rt_rq(rt_rq);
985
986         BUG_ON(&rq->rt != rt_rq);
987
988         if (!rt_rq->rt_queued)
989                 return;
990
991         BUG_ON(!rq->nr_running);
992
993         sub_nr_running(rq, rt_rq->rt_nr_running);
994         rt_rq->rt_queued = 0;
995 }
996
997 static void
998 enqueue_top_rt_rq(struct rt_rq *rt_rq)
999 {
1000         struct rq *rq = rq_of_rt_rq(rt_rq);
1001
1002         BUG_ON(&rq->rt != rt_rq);
1003
1004         if (rt_rq->rt_queued)
1005                 return;
1006         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1007                 return;
1008
1009         add_nr_running(rq, rt_rq->rt_nr_running);
1010         rt_rq->rt_queued = 1;
1011 }
1012
1013 #if defined CONFIG_SMP
1014
1015 static void
1016 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1017 {
1018         struct rq *rq = rq_of_rt_rq(rt_rq);
1019
1020 #ifdef CONFIG_RT_GROUP_SCHED
1021         /*
1022          * Change rq's cpupri only if rt_rq is the top queue.
1023          */
1024         if (&rq->rt != rt_rq)
1025                 return;
1026 #endif
1027         if (rq->online && prio < prev_prio)
1028                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1029 }
1030
1031 static void
1032 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1033 {
1034         struct rq *rq = rq_of_rt_rq(rt_rq);
1035
1036 #ifdef CONFIG_RT_GROUP_SCHED
1037         /*
1038          * Change rq's cpupri only if rt_rq is the top queue.
1039          */
1040         if (&rq->rt != rt_rq)
1041                 return;
1042 #endif
1043         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1044                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1045 }
1046
1047 #else /* CONFIG_SMP */
1048
1049 static inline
1050 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1051 static inline
1052 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1053
1054 #endif /* CONFIG_SMP */
1055
1056 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1057 static void
1058 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1059 {
1060         int prev_prio = rt_rq->highest_prio.curr;
1061
1062         if (prio < prev_prio)
1063                 rt_rq->highest_prio.curr = prio;
1064
1065         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1066 }
1067
1068 static void
1069 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1070 {
1071         int prev_prio = rt_rq->highest_prio.curr;
1072
1073         if (rt_rq->rt_nr_running) {
1074
1075                 WARN_ON(prio < prev_prio);
1076
1077                 /*
1078                  * This may have been our highest task, and therefore
1079                  * we may have some recomputation to do
1080                  */
1081                 if (prio == prev_prio) {
1082                         struct rt_prio_array *array = &rt_rq->active;
1083
1084                         rt_rq->highest_prio.curr =
1085                                 sched_find_first_bit(array->bitmap);
1086                 }
1087
1088         } else
1089                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1090
1091         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1092 }
1093
1094 #else
1095
1096 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1097 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1098
1099 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1100
1101 #ifdef CONFIG_RT_GROUP_SCHED
1102
1103 static void
1104 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1105 {
1106         if (rt_se_boosted(rt_se))
1107                 rt_rq->rt_nr_boosted++;
1108
1109         if (rt_rq->tg)
1110                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1111 }
1112
1113 static void
1114 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115 {
1116         if (rt_se_boosted(rt_se))
1117                 rt_rq->rt_nr_boosted--;
1118
1119         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1120 }
1121
1122 #else /* CONFIG_RT_GROUP_SCHED */
1123
1124 static void
1125 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126 {
1127         start_rt_bandwidth(&def_rt_bandwidth);
1128 }
1129
1130 static inline
1131 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1132
1133 #endif /* CONFIG_RT_GROUP_SCHED */
1134
1135 static inline
1136 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1137 {
1138         struct rt_rq *group_rq = group_rt_rq(rt_se);
1139
1140         if (group_rq)
1141                 return group_rq->rt_nr_running;
1142         else
1143                 return 1;
1144 }
1145
1146 static inline
1147 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1148 {
1149         int prio = rt_se_prio(rt_se);
1150
1151         WARN_ON(!rt_prio(prio));
1152         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1153
1154         inc_rt_prio(rt_rq, prio);
1155         inc_rt_migration(rt_se, rt_rq);
1156         inc_rt_group(rt_se, rt_rq);
1157 }
1158
1159 static inline
1160 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1161 {
1162         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1163         WARN_ON(!rt_rq->rt_nr_running);
1164         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1165
1166         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1167         dec_rt_migration(rt_se, rt_rq);
1168         dec_rt_group(rt_se, rt_rq);
1169 }
1170
1171 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1172 {
1173         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1174         struct rt_prio_array *array = &rt_rq->active;
1175         struct rt_rq *group_rq = group_rt_rq(rt_se);
1176         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1177
1178         /*
1179          * Don't enqueue the group if its throttled, or when empty.
1180          * The latter is a consequence of the former when a child group
1181          * get throttled and the current group doesn't have any other
1182          * active members.
1183          */
1184         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1185                 return;
1186
1187         if (head)
1188                 list_add(&rt_se->run_list, queue);
1189         else
1190                 list_add_tail(&rt_se->run_list, queue);
1191         __set_bit(rt_se_prio(rt_se), array->bitmap);
1192
1193         inc_rt_tasks(rt_se, rt_rq);
1194 }
1195
1196 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1197 {
1198         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1199         struct rt_prio_array *array = &rt_rq->active;
1200
1201         list_del_init(&rt_se->run_list);
1202         if (list_empty(array->queue + rt_se_prio(rt_se)))
1203                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1204
1205         dec_rt_tasks(rt_se, rt_rq);
1206 }
1207
1208 /*
1209  * Because the prio of an upper entry depends on the lower
1210  * entries, we must remove entries top - down.
1211  */
1212 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1213 {
1214         struct sched_rt_entity *back = NULL;
1215
1216         for_each_sched_rt_entity(rt_se) {
1217                 rt_se->back = back;
1218                 back = rt_se;
1219         }
1220
1221         dequeue_top_rt_rq(rt_rq_of_se(back));
1222
1223         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1224                 if (on_rt_rq(rt_se))
1225                         __dequeue_rt_entity(rt_se);
1226         }
1227 }
1228
1229 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1230 {
1231         struct rq *rq = rq_of_rt_se(rt_se);
1232
1233         dequeue_rt_stack(rt_se);
1234         for_each_sched_rt_entity(rt_se)
1235                 __enqueue_rt_entity(rt_se, head);
1236         enqueue_top_rt_rq(&rq->rt);
1237 }
1238
1239 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1240 {
1241         struct rq *rq = rq_of_rt_se(rt_se);
1242
1243         dequeue_rt_stack(rt_se);
1244
1245         for_each_sched_rt_entity(rt_se) {
1246                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1247
1248                 if (rt_rq && rt_rq->rt_nr_running)
1249                         __enqueue_rt_entity(rt_se, false);
1250         }
1251         enqueue_top_rt_rq(&rq->rt);
1252 }
1253
1254 /*
1255  * Adding/removing a task to/from a priority array:
1256  */
1257 static void
1258 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1259 {
1260         struct sched_rt_entity *rt_se = &p->rt;
1261
1262         if (flags & ENQUEUE_WAKEUP)
1263                 rt_se->timeout = 0;
1264
1265         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1266
1267         if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1268                 enqueue_pushable_task(rq, p);
1269 }
1270
1271 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1272 {
1273         struct sched_rt_entity *rt_se = &p->rt;
1274
1275         update_curr_rt(rq);
1276         dequeue_rt_entity(rt_se);
1277
1278         dequeue_pushable_task(rq, p);
1279 }
1280
1281 /*
1282  * Put task to the head or the end of the run list without the overhead of
1283  * dequeue followed by enqueue.
1284  */
1285 static void
1286 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1287 {
1288         if (on_rt_rq(rt_se)) {
1289                 struct rt_prio_array *array = &rt_rq->active;
1290                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1291
1292                 if (head)
1293                         list_move(&rt_se->run_list, queue);
1294                 else
1295                         list_move_tail(&rt_se->run_list, queue);
1296         }
1297 }
1298
1299 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1300 {
1301         struct sched_rt_entity *rt_se = &p->rt;
1302         struct rt_rq *rt_rq;
1303
1304         for_each_sched_rt_entity(rt_se) {
1305                 rt_rq = rt_rq_of_se(rt_se);
1306                 requeue_rt_entity(rt_rq, rt_se, head);
1307         }
1308 }
1309
1310 static void yield_task_rt(struct rq *rq)
1311 {
1312         requeue_task_rt(rq, rq->curr, 0);
1313 }
1314
1315 #ifdef CONFIG_SMP
1316 static int find_lowest_rq(struct task_struct *task);
1317
1318 static int
1319 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1320 {
1321         struct task_struct *curr;
1322         struct rq *rq;
1323
1324         /* For anything but wake ups, just return the task_cpu */
1325         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1326                 goto out;
1327
1328         rq = cpu_rq(cpu);
1329
1330         rcu_read_lock();
1331         curr = READ_ONCE(rq->curr); /* unlocked access */
1332
1333         /*
1334          * If the current task on @p's runqueue is an RT task, then
1335          * try to see if we can wake this RT task up on another
1336          * runqueue. Otherwise simply start this RT task
1337          * on its current runqueue.
1338          *
1339          * We want to avoid overloading runqueues. If the woken
1340          * task is a higher priority, then it will stay on this CPU
1341          * and the lower prio task should be moved to another CPU.
1342          * Even though this will probably make the lower prio task
1343          * lose its cache, we do not want to bounce a higher task
1344          * around just because it gave up its CPU, perhaps for a
1345          * lock?
1346          *
1347          * For equal prio tasks, we just let the scheduler sort it out.
1348          *
1349          * Otherwise, just let it ride on the affined RQ and the
1350          * post-schedule router will push the preempted task away
1351          *
1352          * This test is optimistic, if we get it wrong the load-balancer
1353          * will have to sort it out.
1354          */
1355         if (curr && unlikely(rt_task(curr)) &&
1356             (tsk_nr_cpus_allowed(curr) < 2 ||
1357              curr->prio <= p->prio)) {
1358                 int target = find_lowest_rq(p);
1359
1360                 /*
1361                  * Don't bother moving it if the destination CPU is
1362                  * not running a lower priority task.
1363                  */
1364                 if (target != -1 &&
1365                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1366                         cpu = target;
1367         }
1368         rcu_read_unlock();
1369
1370 out:
1371         return cpu;
1372 }
1373
1374 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1375 {
1376         /*
1377          * Current can't be migrated, useless to reschedule,
1378          * let's hope p can move out.
1379          */
1380         if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1381             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1382                 return;
1383
1384         /*
1385          * p is migratable, so let's not schedule it and
1386          * see if it is pushed or pulled somewhere else.
1387          */
1388         if (tsk_nr_cpus_allowed(p) != 1
1389             && cpupri_find(&rq->rd->cpupri, p, NULL))
1390                 return;
1391
1392         /*
1393          * There appears to be other cpus that can accept
1394          * current and none to run 'p', so lets reschedule
1395          * to try and push current away:
1396          */
1397         requeue_task_rt(rq, p, 1);
1398         resched_curr(rq);
1399 }
1400
1401 #endif /* CONFIG_SMP */
1402
1403 /*
1404  * Preempt the current task with a newly woken task if needed:
1405  */
1406 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1407 {
1408         if (p->prio < rq->curr->prio) {
1409                 resched_curr(rq);
1410                 return;
1411         }
1412
1413 #ifdef CONFIG_SMP
1414         /*
1415          * If:
1416          *
1417          * - the newly woken task is of equal priority to the current task
1418          * - the newly woken task is non-migratable while current is migratable
1419          * - current will be preempted on the next reschedule
1420          *
1421          * we should check to see if current can readily move to a different
1422          * cpu.  If so, we will reschedule to allow the push logic to try
1423          * to move current somewhere else, making room for our non-migratable
1424          * task.
1425          */
1426         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1427                 check_preempt_equal_prio(rq, p);
1428 #endif
1429 }
1430
1431 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1432                                                    struct rt_rq *rt_rq)
1433 {
1434         struct rt_prio_array *array = &rt_rq->active;
1435         struct sched_rt_entity *next = NULL;
1436         struct list_head *queue;
1437         int idx;
1438
1439         idx = sched_find_first_bit(array->bitmap);
1440         BUG_ON(idx >= MAX_RT_PRIO);
1441
1442         queue = array->queue + idx;
1443         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1444
1445         return next;
1446 }
1447
1448 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1449 {
1450         struct sched_rt_entity *rt_se;
1451         struct task_struct *p;
1452         struct rt_rq *rt_rq  = &rq->rt;
1453
1454         do {
1455                 rt_se = pick_next_rt_entity(rq, rt_rq);
1456                 BUG_ON(!rt_se);
1457                 rt_rq = group_rt_rq(rt_se);
1458         } while (rt_rq);
1459
1460         p = rt_task_of(rt_se);
1461         p->se.exec_start = rq_clock_task(rq);
1462
1463         return p;
1464 }
1465
1466 static struct task_struct *
1467 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1468 {
1469         struct task_struct *p;
1470         struct rt_rq *rt_rq = &rq->rt;
1471
1472         if (need_pull_rt_task(rq, prev)) {
1473                 /*
1474                  * This is OK, because current is on_cpu, which avoids it being
1475                  * picked for load-balance and preemption/IRQs are still
1476                  * disabled avoiding further scheduler activity on it and we're
1477                  * being very careful to re-start the picking loop.
1478                  */
1479                 lockdep_unpin_lock(&rq->lock);
1480                 pull_rt_task(rq);
1481                 lockdep_pin_lock(&rq->lock);
1482                 /*
1483                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1484                  * means a dl or stop task can slip in, in which case we need
1485                  * to re-start task selection.
1486                  */
1487                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1488                              rq->dl.dl_nr_running))
1489                         return RETRY_TASK;
1490         }
1491
1492         /*
1493          * We may dequeue prev's rt_rq in put_prev_task().
1494          * So, we update time before rt_nr_running check.
1495          */
1496         if (prev->sched_class == &rt_sched_class)
1497                 update_curr_rt(rq);
1498
1499         if (!rt_rq->rt_queued)
1500                 return NULL;
1501
1502         put_prev_task(rq, prev);
1503
1504         p = _pick_next_task_rt(rq);
1505
1506         /* The running task is never eligible for pushing */
1507         dequeue_pushable_task(rq, p);
1508
1509         queue_push_tasks(rq);
1510
1511         return p;
1512 }
1513
1514 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1515 {
1516         update_curr_rt(rq);
1517
1518         /*
1519          * The previous task needs to be made eligible for pushing
1520          * if it is still active
1521          */
1522         if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1523                 enqueue_pushable_task(rq, p);
1524 }
1525
1526 #ifdef CONFIG_SMP
1527
1528 /* Only try algorithms three times */
1529 #define RT_MAX_TRIES 3
1530
1531 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1532 {
1533         if (!task_running(rq, p) &&
1534             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1535                 return 1;
1536         return 0;
1537 }
1538
1539 /*
1540  * Return the highest pushable rq's task, which is suitable to be executed
1541  * on the cpu, NULL otherwise
1542  */
1543 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1544 {
1545         struct plist_head *head = &rq->rt.pushable_tasks;
1546         struct task_struct *p;
1547
1548         if (!has_pushable_tasks(rq))
1549                 return NULL;
1550
1551         plist_for_each_entry(p, head, pushable_tasks) {
1552                 if (pick_rt_task(rq, p, cpu))
1553                         return p;
1554         }
1555
1556         return NULL;
1557 }
1558
1559 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1560
1561 static int find_lowest_rq(struct task_struct *task)
1562 {
1563         struct sched_domain *sd;
1564         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1565         int this_cpu = smp_processor_id();
1566         int cpu      = task_cpu(task);
1567
1568         /* Make sure the mask is initialized first */
1569         if (unlikely(!lowest_mask))
1570                 return -1;
1571
1572         if (tsk_nr_cpus_allowed(task) == 1)
1573                 return -1; /* No other targets possible */
1574
1575         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1576                 return -1; /* No targets found */
1577
1578         /*
1579          * At this point we have built a mask of cpus representing the
1580          * lowest priority tasks in the system.  Now we want to elect
1581          * the best one based on our affinity and topology.
1582          *
1583          * We prioritize the last cpu that the task executed on since
1584          * it is most likely cache-hot in that location.
1585          */
1586         if (cpumask_test_cpu(cpu, lowest_mask))
1587                 return cpu;
1588
1589         /*
1590          * Otherwise, we consult the sched_domains span maps to figure
1591          * out which cpu is logically closest to our hot cache data.
1592          */
1593         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1594                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1595
1596         rcu_read_lock();
1597         for_each_domain(cpu, sd) {
1598                 if (sd->flags & SD_WAKE_AFFINE) {
1599                         int best_cpu;
1600
1601                         /*
1602                          * "this_cpu" is cheaper to preempt than a
1603                          * remote processor.
1604                          */
1605                         if (this_cpu != -1 &&
1606                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1607                                 rcu_read_unlock();
1608                                 return this_cpu;
1609                         }
1610
1611                         best_cpu = cpumask_first_and(lowest_mask,
1612                                                      sched_domain_span(sd));
1613                         if (best_cpu < nr_cpu_ids) {
1614                                 rcu_read_unlock();
1615                                 return best_cpu;
1616                         }
1617                 }
1618         }
1619         rcu_read_unlock();
1620
1621         /*
1622          * And finally, if there were no matches within the domains
1623          * just give the caller *something* to work with from the compatible
1624          * locations.
1625          */
1626         if (this_cpu != -1)
1627                 return this_cpu;
1628
1629         cpu = cpumask_any(lowest_mask);
1630         if (cpu < nr_cpu_ids)
1631                 return cpu;
1632         return -1;
1633 }
1634
1635 /* Will lock the rq it finds */
1636 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1637 {
1638         struct rq *lowest_rq = NULL;
1639         int tries;
1640         int cpu;
1641
1642         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1643                 cpu = find_lowest_rq(task);
1644
1645                 if ((cpu == -1) || (cpu == rq->cpu))
1646                         break;
1647
1648                 lowest_rq = cpu_rq(cpu);
1649
1650                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1651                         /*
1652                          * Target rq has tasks of equal or higher priority,
1653                          * retrying does not release any lock and is unlikely
1654                          * to yield a different result.
1655                          */
1656                         lowest_rq = NULL;
1657                         break;
1658                 }
1659
1660                 /* if the prio of this runqueue changed, try again */
1661                 if (double_lock_balance(rq, lowest_rq)) {
1662                         /*
1663                          * We had to unlock the run queue. In
1664                          * the mean time, task could have
1665                          * migrated already or had its affinity changed.
1666                          * Also make sure that it wasn't scheduled on its rq.
1667                          */
1668                         if (unlikely(task_rq(task) != rq ||
1669                                      !cpumask_test_cpu(lowest_rq->cpu,
1670                                                        tsk_cpus_allowed(task)) ||
1671                                      task_running(rq, task) ||
1672                                      !task_on_rq_queued(task))) {
1673
1674                                 double_unlock_balance(rq, lowest_rq);
1675                                 lowest_rq = NULL;
1676                                 break;
1677                         }
1678                 }
1679
1680                 /* If this rq is still suitable use it. */
1681                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1682                         break;
1683
1684                 /* try again */
1685                 double_unlock_balance(rq, lowest_rq);
1686                 lowest_rq = NULL;
1687         }
1688
1689         return lowest_rq;
1690 }
1691
1692 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1693 {
1694         struct task_struct *p;
1695
1696         if (!has_pushable_tasks(rq))
1697                 return NULL;
1698
1699         p = plist_first_entry(&rq->rt.pushable_tasks,
1700                               struct task_struct, pushable_tasks);
1701
1702         BUG_ON(rq->cpu != task_cpu(p));
1703         BUG_ON(task_current(rq, p));
1704         BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1705
1706         BUG_ON(!task_on_rq_queued(p));
1707         BUG_ON(!rt_task(p));
1708
1709         return p;
1710 }
1711
1712 /*
1713  * If the current CPU has more than one RT task, see if the non
1714  * running task can migrate over to a CPU that is running a task
1715  * of lesser priority.
1716  */
1717 static int push_rt_task(struct rq *rq)
1718 {
1719         struct task_struct *next_task;
1720         struct rq *lowest_rq;
1721         int ret = 0;
1722
1723         if (!rq->rt.overloaded)
1724                 return 0;
1725
1726         next_task = pick_next_pushable_task(rq);
1727         if (!next_task)
1728                 return 0;
1729
1730 retry:
1731         if (unlikely(next_task == rq->curr)) {
1732                 WARN_ON(1);
1733                 return 0;
1734         }
1735
1736         /*
1737          * It's possible that the next_task slipped in of
1738          * higher priority than current. If that's the case
1739          * just reschedule current.
1740          */
1741         if (unlikely(next_task->prio < rq->curr->prio)) {
1742                 resched_curr(rq);
1743                 return 0;
1744         }
1745
1746         /* We might release rq lock */
1747         get_task_struct(next_task);
1748
1749         /* find_lock_lowest_rq locks the rq if found */
1750         lowest_rq = find_lock_lowest_rq(next_task, rq);
1751         if (!lowest_rq) {
1752                 struct task_struct *task;
1753                 /*
1754                  * find_lock_lowest_rq releases rq->lock
1755                  * so it is possible that next_task has migrated.
1756                  *
1757                  * We need to make sure that the task is still on the same
1758                  * run-queue and is also still the next task eligible for
1759                  * pushing.
1760                  */
1761                 task = pick_next_pushable_task(rq);
1762                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1763                         /*
1764                          * The task hasn't migrated, and is still the next
1765                          * eligible task, but we failed to find a run-queue
1766                          * to push it to.  Do not retry in this case, since
1767                          * other cpus will pull from us when ready.
1768                          */
1769                         goto out;
1770                 }
1771
1772                 if (!task)
1773                         /* No more tasks, just exit */
1774                         goto out;
1775
1776                 /*
1777                  * Something has shifted, try again.
1778                  */
1779                 put_task_struct(next_task);
1780                 next_task = task;
1781                 goto retry;
1782         }
1783
1784         deactivate_task(rq, next_task, 0);
1785         set_task_cpu(next_task, lowest_rq->cpu);
1786         activate_task(lowest_rq, next_task, 0);
1787         ret = 1;
1788
1789         resched_curr(lowest_rq);
1790
1791         double_unlock_balance(rq, lowest_rq);
1792
1793 out:
1794         put_task_struct(next_task);
1795
1796         return ret;
1797 }
1798
1799 static void push_rt_tasks(struct rq *rq)
1800 {
1801         /* push_rt_task will return true if it moved an RT */
1802         while (push_rt_task(rq))
1803                 ;
1804 }
1805
1806 #ifdef HAVE_RT_PUSH_IPI
1807 /*
1808  * The search for the next cpu always starts at rq->cpu and ends
1809  * when we reach rq->cpu again. It will never return rq->cpu.
1810  * This returns the next cpu to check, or nr_cpu_ids if the loop
1811  * is complete.
1812  *
1813  * rq->rt.push_cpu holds the last cpu returned by this function,
1814  * or if this is the first instance, it must hold rq->cpu.
1815  */
1816 static int rto_next_cpu(struct rq *rq)
1817 {
1818         int prev_cpu = rq->rt.push_cpu;
1819         int cpu;
1820
1821         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1822
1823         /*
1824          * If the previous cpu is less than the rq's CPU, then it already
1825          * passed the end of the mask, and has started from the beginning.
1826          * We end if the next CPU is greater or equal to rq's CPU.
1827          */
1828         if (prev_cpu < rq->cpu) {
1829                 if (cpu >= rq->cpu)
1830                         return nr_cpu_ids;
1831
1832         } else if (cpu >= nr_cpu_ids) {
1833                 /*
1834                  * We passed the end of the mask, start at the beginning.
1835                  * If the result is greater or equal to the rq's CPU, then
1836                  * the loop is finished.
1837                  */
1838                 cpu = cpumask_first(rq->rd->rto_mask);
1839                 if (cpu >= rq->cpu)
1840                         return nr_cpu_ids;
1841         }
1842         rq->rt.push_cpu = cpu;
1843
1844         /* Return cpu to let the caller know if the loop is finished or not */
1845         return cpu;
1846 }
1847
1848 static int find_next_push_cpu(struct rq *rq)
1849 {
1850         struct rq *next_rq;
1851         int cpu;
1852
1853         while (1) {
1854                 cpu = rto_next_cpu(rq);
1855                 if (cpu >= nr_cpu_ids)
1856                         break;
1857                 next_rq = cpu_rq(cpu);
1858
1859                 /* Make sure the next rq can push to this rq */
1860                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1861                         break;
1862         }
1863
1864         return cpu;
1865 }
1866
1867 #define RT_PUSH_IPI_EXECUTING           1
1868 #define RT_PUSH_IPI_RESTART             2
1869
1870 static void tell_cpu_to_push(struct rq *rq)
1871 {
1872         int cpu;
1873
1874         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1875                 raw_spin_lock(&rq->rt.push_lock);
1876                 /* Make sure it's still executing */
1877                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1878                         /*
1879                          * Tell the IPI to restart the loop as things have
1880                          * changed since it started.
1881                          */
1882                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1883                         raw_spin_unlock(&rq->rt.push_lock);
1884                         return;
1885                 }
1886                 raw_spin_unlock(&rq->rt.push_lock);
1887         }
1888
1889         /* When here, there's no IPI going around */
1890
1891         rq->rt.push_cpu = rq->cpu;
1892         cpu = find_next_push_cpu(rq);
1893         if (cpu >= nr_cpu_ids)
1894                 return;
1895
1896         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1897
1898         irq_work_queue_on(&rq->rt.push_work, cpu);
1899 }
1900
1901 /* Called from hardirq context */
1902 static void try_to_push_tasks(void *arg)
1903 {
1904         struct rt_rq *rt_rq = arg;
1905         struct rq *rq, *src_rq;
1906         int this_cpu;
1907         int cpu;
1908
1909         this_cpu = rt_rq->push_cpu;
1910
1911         /* Paranoid check */
1912         BUG_ON(this_cpu != smp_processor_id());
1913
1914         rq = cpu_rq(this_cpu);
1915         src_rq = rq_of_rt_rq(rt_rq);
1916
1917 again:
1918         if (has_pushable_tasks(rq)) {
1919                 raw_spin_lock(&rq->lock);
1920                 push_rt_task(rq);
1921                 raw_spin_unlock(&rq->lock);
1922         }
1923
1924         /* Pass the IPI to the next rt overloaded queue */
1925         raw_spin_lock(&rt_rq->push_lock);
1926         /*
1927          * If the source queue changed since the IPI went out,
1928          * we need to restart the search from that CPU again.
1929          */
1930         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1931                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1932                 rt_rq->push_cpu = src_rq->cpu;
1933         }
1934
1935         cpu = find_next_push_cpu(src_rq);
1936
1937         if (cpu >= nr_cpu_ids)
1938                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1939         raw_spin_unlock(&rt_rq->push_lock);
1940
1941         if (cpu >= nr_cpu_ids)
1942                 return;
1943
1944         /*
1945          * It is possible that a restart caused this CPU to be
1946          * chosen again. Don't bother with an IPI, just see if we
1947          * have more to push.
1948          */
1949         if (unlikely(cpu == rq->cpu))
1950                 goto again;
1951
1952         /* Try the next RT overloaded CPU */
1953         irq_work_queue_on(&rt_rq->push_work, cpu);
1954 }
1955
1956 static void push_irq_work_func(struct irq_work *work)
1957 {
1958         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1959
1960         try_to_push_tasks(rt_rq);
1961 }
1962 #endif /* HAVE_RT_PUSH_IPI */
1963
1964 static void pull_rt_task(struct rq *this_rq)
1965 {
1966         int this_cpu = this_rq->cpu, cpu;
1967         bool resched = false;
1968         struct task_struct *p;
1969         struct rq *src_rq;
1970
1971         if (likely(!rt_overloaded(this_rq)))
1972                 return;
1973
1974         /*
1975          * Match the barrier from rt_set_overloaded; this guarantees that if we
1976          * see overloaded we must also see the rto_mask bit.
1977          */
1978         smp_rmb();
1979
1980 #ifdef HAVE_RT_PUSH_IPI
1981         if (sched_feat(RT_PUSH_IPI)) {
1982                 tell_cpu_to_push(this_rq);
1983                 return;
1984         }
1985 #endif
1986
1987         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1988                 if (this_cpu == cpu)
1989                         continue;
1990
1991                 src_rq = cpu_rq(cpu);
1992
1993                 /*
1994                  * Don't bother taking the src_rq->lock if the next highest
1995                  * task is known to be lower-priority than our current task.
1996                  * This may look racy, but if this value is about to go
1997                  * logically higher, the src_rq will push this task away.
1998                  * And if its going logically lower, we do not care
1999                  */
2000                 if (src_rq->rt.highest_prio.next >=
2001                     this_rq->rt.highest_prio.curr)
2002                         continue;
2003
2004                 /*
2005                  * We can potentially drop this_rq's lock in
2006                  * double_lock_balance, and another CPU could
2007                  * alter this_rq
2008                  */
2009                 double_lock_balance(this_rq, src_rq);
2010
2011                 /*
2012                  * We can pull only a task, which is pushable
2013                  * on its rq, and no others.
2014                  */
2015                 p = pick_highest_pushable_task(src_rq, this_cpu);
2016
2017                 /*
2018                  * Do we have an RT task that preempts
2019                  * the to-be-scheduled task?
2020                  */
2021                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2022                         WARN_ON(p == src_rq->curr);
2023                         WARN_ON(!task_on_rq_queued(p));
2024
2025                         /*
2026                          * There's a chance that p is higher in priority
2027                          * than what's currently running on its cpu.
2028                          * This is just that p is wakeing up and hasn't
2029                          * had a chance to schedule. We only pull
2030                          * p if it is lower in priority than the
2031                          * current task on the run queue
2032                          */
2033                         if (p->prio < src_rq->curr->prio)
2034                                 goto skip;
2035
2036                         resched = true;
2037
2038                         deactivate_task(src_rq, p, 0);
2039                         set_task_cpu(p, this_cpu);
2040                         activate_task(this_rq, p, 0);
2041                         /*
2042                          * We continue with the search, just in
2043                          * case there's an even higher prio task
2044                          * in another runqueue. (low likelihood
2045                          * but possible)
2046                          */
2047                 }
2048 skip:
2049                 double_unlock_balance(this_rq, src_rq);
2050         }
2051
2052         if (resched)
2053                 resched_curr(this_rq);
2054 }
2055
2056 /*
2057  * If we are not running and we are not going to reschedule soon, we should
2058  * try to push tasks away now
2059  */
2060 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2061 {
2062         if (!task_running(rq, p) &&
2063             !test_tsk_need_resched(rq->curr) &&
2064             tsk_nr_cpus_allowed(p) > 1 &&
2065             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2066             (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2067              rq->curr->prio <= p->prio))
2068                 push_rt_tasks(rq);
2069 }
2070
2071 /* Assumes rq->lock is held */
2072 static void rq_online_rt(struct rq *rq)
2073 {
2074         if (rq->rt.overloaded)
2075                 rt_set_overload(rq);
2076
2077         __enable_runtime(rq);
2078
2079         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2080 }
2081
2082 /* Assumes rq->lock is held */
2083 static void rq_offline_rt(struct rq *rq)
2084 {
2085         if (rq->rt.overloaded)
2086                 rt_clear_overload(rq);
2087
2088         __disable_runtime(rq);
2089
2090         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2091 }
2092
2093 /*
2094  * When switch from the rt queue, we bring ourselves to a position
2095  * that we might want to pull RT tasks from other runqueues.
2096  */
2097 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2098 {
2099         /*
2100          * If there are other RT tasks then we will reschedule
2101          * and the scheduling of the other RT tasks will handle
2102          * the balancing. But if we are the last RT task
2103          * we may need to handle the pulling of RT tasks
2104          * now.
2105          */
2106         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2107                 return;
2108
2109         queue_pull_task(rq);
2110 }
2111
2112 void __init init_sched_rt_class(void)
2113 {
2114         unsigned int i;
2115
2116         for_each_possible_cpu(i) {
2117                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2118                                         GFP_KERNEL, cpu_to_node(i));
2119         }
2120 }
2121 #endif /* CONFIG_SMP */
2122
2123 /*
2124  * When switching a task to RT, we may overload the runqueue
2125  * with RT tasks. In this case we try to push them off to
2126  * other runqueues.
2127  */
2128 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2129 {
2130         /*
2131          * If we are already running, then there's nothing
2132          * that needs to be done. But if we are not running
2133          * we may need to preempt the current running task.
2134          * If that current running task is also an RT task
2135          * then see if we can move to another run queue.
2136          */
2137         if (task_on_rq_queued(p) && rq->curr != p) {
2138 #ifdef CONFIG_SMP
2139                 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2140                         queue_push_tasks(rq);
2141 #else
2142                 if (p->prio < rq->curr->prio)
2143                         resched_curr(rq);
2144 #endif /* CONFIG_SMP */
2145         }
2146 }
2147
2148 /*
2149  * Priority of the task has changed. This may cause
2150  * us to initiate a push or pull.
2151  */
2152 static void
2153 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2154 {
2155         if (!task_on_rq_queued(p))
2156                 return;
2157
2158         if (rq->curr == p) {
2159 #ifdef CONFIG_SMP
2160                 /*
2161                  * If our priority decreases while running, we
2162                  * may need to pull tasks to this runqueue.
2163                  */
2164                 if (oldprio < p->prio)
2165                         queue_pull_task(rq);
2166
2167                 /*
2168                  * If there's a higher priority task waiting to run
2169                  * then reschedule.
2170                  */
2171                 if (p->prio > rq->rt.highest_prio.curr)
2172                         resched_curr(rq);
2173 #else
2174                 /* For UP simply resched on drop of prio */
2175                 if (oldprio < p->prio)
2176                         resched_curr(rq);
2177 #endif /* CONFIG_SMP */
2178         } else {
2179                 /*
2180                  * This task is not running, but if it is
2181                  * greater than the current running task
2182                  * then reschedule.
2183                  */
2184                 if (p->prio < rq->curr->prio)
2185                         resched_curr(rq);
2186         }
2187 }
2188
2189 static void watchdog(struct rq *rq, struct task_struct *p)
2190 {
2191         unsigned long soft, hard;
2192
2193         /* max may change after cur was read, this will be fixed next tick */
2194         soft = task_rlimit(p, RLIMIT_RTTIME);
2195         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2196
2197         if (soft != RLIM_INFINITY) {
2198                 unsigned long next;
2199
2200                 if (p->rt.watchdog_stamp != jiffies) {
2201                         p->rt.timeout++;
2202                         p->rt.watchdog_stamp = jiffies;
2203                 }
2204
2205                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2206                 if (p->rt.timeout > next)
2207                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2208         }
2209 }
2210
2211 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2212 {
2213         struct sched_rt_entity *rt_se = &p->rt;
2214
2215         update_curr_rt(rq);
2216
2217         watchdog(rq, p);
2218
2219         /*
2220          * RR tasks need a special form of timeslice management.
2221          * FIFO tasks have no timeslices.
2222          */
2223         if (p->policy != SCHED_RR)
2224                 return;
2225
2226         if (--p->rt.time_slice)
2227                 return;
2228
2229         p->rt.time_slice = sched_rr_timeslice;
2230
2231         /*
2232          * Requeue to the end of queue if we (and all of our ancestors) are not
2233          * the only element on the queue
2234          */
2235         for_each_sched_rt_entity(rt_se) {
2236                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2237                         requeue_task_rt(rq, p, 0);
2238                         resched_curr(rq);
2239                         return;
2240                 }
2241         }
2242 }
2243
2244 static void set_curr_task_rt(struct rq *rq)
2245 {
2246         struct task_struct *p = rq->curr;
2247
2248         p->se.exec_start = rq_clock_task(rq);
2249
2250         /* The running task is never eligible for pushing */
2251         dequeue_pushable_task(rq, p);
2252 }
2253
2254 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2255 {
2256         /*
2257          * Time slice is 0 for SCHED_FIFO tasks
2258          */
2259         if (task->policy == SCHED_RR)
2260                 return sched_rr_timeslice;
2261         else
2262                 return 0;
2263 }
2264
2265 const struct sched_class rt_sched_class = {
2266         .next                   = &fair_sched_class,
2267         .enqueue_task           = enqueue_task_rt,
2268         .dequeue_task           = dequeue_task_rt,
2269         .yield_task             = yield_task_rt,
2270
2271         .check_preempt_curr     = check_preempt_curr_rt,
2272
2273         .pick_next_task         = pick_next_task_rt,
2274         .put_prev_task          = put_prev_task_rt,
2275
2276 #ifdef CONFIG_SMP
2277         .select_task_rq         = select_task_rq_rt,
2278
2279         .set_cpus_allowed       = set_cpus_allowed_common,
2280         .rq_online              = rq_online_rt,
2281         .rq_offline             = rq_offline_rt,
2282         .task_woken             = task_woken_rt,
2283         .switched_from          = switched_from_rt,
2284 #endif
2285
2286         .set_curr_task          = set_curr_task_rt,
2287         .task_tick              = task_tick_rt,
2288
2289         .get_rr_interval        = get_rr_interval_rt,
2290
2291         .prio_changed           = prio_changed_rt,
2292         .switched_to            = switched_to_rt,
2293
2294         .update_curr            = update_curr_rt,
2295 };
2296
2297 #ifdef CONFIG_SCHED_DEBUG
2298 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2299
2300 void print_rt_stats(struct seq_file *m, int cpu)
2301 {
2302         rt_rq_iter_t iter;
2303         struct rt_rq *rt_rq;
2304
2305         rcu_read_lock();
2306         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2307                 print_rt_rq(m, cpu, rt_rq);
2308         rcu_read_unlock();
2309 }
2310 #endif /* CONFIG_SCHED_DEBUG */