Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / sched / clock.c
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 #include <linux/compiler.h>
64
65 /*
66  * Scheduler clock - returns current time in nanosec units.
67  * This is default implementation.
68  * Architectures and sub-architectures can override this.
69  */
70 unsigned long long __weak sched_clock(void)
71 {
72         return (unsigned long long)(jiffies - INITIAL_JIFFIES)
73                                         * (NSEC_PER_SEC / HZ);
74 }
75 EXPORT_SYMBOL_GPL(sched_clock);
76
77 __read_mostly int sched_clock_running;
78
79 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
80 static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
81 static int __sched_clock_stable_early;
82
83 int sched_clock_stable(void)
84 {
85         return static_key_false(&__sched_clock_stable);
86 }
87
88 static void __set_sched_clock_stable(void)
89 {
90         if (!sched_clock_stable())
91                 static_key_slow_inc(&__sched_clock_stable);
92 }
93
94 void set_sched_clock_stable(void)
95 {
96         __sched_clock_stable_early = 1;
97
98         smp_mb(); /* matches sched_clock_init() */
99
100         if (!sched_clock_running)
101                 return;
102
103         __set_sched_clock_stable();
104 }
105
106 static void __clear_sched_clock_stable(struct work_struct *work)
107 {
108         /* XXX worry about clock continuity */
109         if (sched_clock_stable())
110                 static_key_slow_dec(&__sched_clock_stable);
111 }
112
113 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
114
115 void clear_sched_clock_stable(void)
116 {
117         __sched_clock_stable_early = 0;
118
119         smp_mb(); /* matches sched_clock_init() */
120
121         if (!sched_clock_running)
122                 return;
123
124         schedule_work(&sched_clock_work);
125 }
126
127 struct sched_clock_data {
128         u64                     tick_raw;
129         u64                     tick_gtod;
130         u64                     clock;
131 };
132
133 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
134
135 static inline struct sched_clock_data *this_scd(void)
136 {
137         return this_cpu_ptr(&sched_clock_data);
138 }
139
140 static inline struct sched_clock_data *cpu_sdc(int cpu)
141 {
142         return &per_cpu(sched_clock_data, cpu);
143 }
144
145 void sched_clock_init(void)
146 {
147         u64 ktime_now = ktime_to_ns(ktime_get());
148         int cpu;
149
150         for_each_possible_cpu(cpu) {
151                 struct sched_clock_data *scd = cpu_sdc(cpu);
152
153                 scd->tick_raw = 0;
154                 scd->tick_gtod = ktime_now;
155                 scd->clock = ktime_now;
156         }
157
158         sched_clock_running = 1;
159
160         /*
161          * Ensure that it is impossible to not do a static_key update.
162          *
163          * Either {set,clear}_sched_clock_stable() must see sched_clock_running
164          * and do the update, or we must see their __sched_clock_stable_early
165          * and do the update, or both.
166          */
167         smp_mb(); /* matches {set,clear}_sched_clock_stable() */
168
169         if (__sched_clock_stable_early)
170                 __set_sched_clock_stable();
171         else
172                 __clear_sched_clock_stable(NULL);
173 }
174
175 /*
176  * min, max except they take wrapping into account
177  */
178
179 static inline u64 wrap_min(u64 x, u64 y)
180 {
181         return (s64)(x - y) < 0 ? x : y;
182 }
183
184 static inline u64 wrap_max(u64 x, u64 y)
185 {
186         return (s64)(x - y) > 0 ? x : y;
187 }
188
189 /*
190  * update the percpu scd from the raw @now value
191  *
192  *  - filter out backward motion
193  *  - use the GTOD tick value to create a window to filter crazy TSC values
194  */
195 static u64 sched_clock_local(struct sched_clock_data *scd)
196 {
197         u64 now, clock, old_clock, min_clock, max_clock;
198         s64 delta;
199
200 again:
201         now = sched_clock();
202         delta = now - scd->tick_raw;
203         if (unlikely(delta < 0))
204                 delta = 0;
205
206         old_clock = scd->clock;
207
208         /*
209          * scd->clock = clamp(scd->tick_gtod + delta,
210          *                    max(scd->tick_gtod, scd->clock),
211          *                    scd->tick_gtod + TICK_NSEC);
212          */
213
214         clock = scd->tick_gtod + delta;
215         min_clock = wrap_max(scd->tick_gtod, old_clock);
216         max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
217
218         clock = wrap_max(clock, min_clock);
219         clock = wrap_min(clock, max_clock);
220
221         if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
222                 goto again;
223
224         return clock;
225 }
226
227 static u64 sched_clock_remote(struct sched_clock_data *scd)
228 {
229         struct sched_clock_data *my_scd = this_scd();
230         u64 this_clock, remote_clock;
231         u64 *ptr, old_val, val;
232
233 #if BITS_PER_LONG != 64
234 again:
235         /*
236          * Careful here: The local and the remote clock values need to
237          * be read out atomic as we need to compare the values and
238          * then update either the local or the remote side. So the
239          * cmpxchg64 below only protects one readout.
240          *
241          * We must reread via sched_clock_local() in the retry case on
242          * 32bit as an NMI could use sched_clock_local() via the
243          * tracer and hit between the readout of
244          * the low32bit and the high 32bit portion.
245          */
246         this_clock = sched_clock_local(my_scd);
247         /*
248          * We must enforce atomic readout on 32bit, otherwise the
249          * update on the remote cpu can hit inbetween the readout of
250          * the low32bit and the high 32bit portion.
251          */
252         remote_clock = cmpxchg64(&scd->clock, 0, 0);
253 #else
254         /*
255          * On 64bit the read of [my]scd->clock is atomic versus the
256          * update, so we can avoid the above 32bit dance.
257          */
258         sched_clock_local(my_scd);
259 again:
260         this_clock = my_scd->clock;
261         remote_clock = scd->clock;
262 #endif
263
264         /*
265          * Use the opportunity that we have both locks
266          * taken to couple the two clocks: we take the
267          * larger time as the latest time for both
268          * runqueues. (this creates monotonic movement)
269          */
270         if (likely((s64)(remote_clock - this_clock) < 0)) {
271                 ptr = &scd->clock;
272                 old_val = remote_clock;
273                 val = this_clock;
274         } else {
275                 /*
276                  * Should be rare, but possible:
277                  */
278                 ptr = &my_scd->clock;
279                 old_val = this_clock;
280                 val = remote_clock;
281         }
282
283         if (cmpxchg64(ptr, old_val, val) != old_val)
284                 goto again;
285
286         return val;
287 }
288
289 /*
290  * Similar to cpu_clock(), but requires local IRQs to be disabled.
291  *
292  * See cpu_clock().
293  */
294 u64 sched_clock_cpu(int cpu)
295 {
296         struct sched_clock_data *scd;
297         u64 clock;
298
299         if (sched_clock_stable())
300                 return sched_clock();
301
302         if (unlikely(!sched_clock_running))
303                 return 0ull;
304
305         preempt_disable_notrace();
306         scd = cpu_sdc(cpu);
307
308         if (cpu != smp_processor_id())
309                 clock = sched_clock_remote(scd);
310         else
311                 clock = sched_clock_local(scd);
312         preempt_enable_notrace();
313
314         return clock;
315 }
316
317 void sched_clock_tick(void)
318 {
319         struct sched_clock_data *scd;
320         u64 now, now_gtod;
321
322         if (sched_clock_stable())
323                 return;
324
325         if (unlikely(!sched_clock_running))
326                 return;
327
328         WARN_ON_ONCE(!irqs_disabled());
329
330         scd = this_scd();
331         now_gtod = ktime_to_ns(ktime_get());
332         now = sched_clock();
333
334         scd->tick_raw = now;
335         scd->tick_gtod = now_gtod;
336         sched_clock_local(scd);
337 }
338
339 /*
340  * We are going deep-idle (irqs are disabled):
341  */
342 void sched_clock_idle_sleep_event(void)
343 {
344         sched_clock_cpu(smp_processor_id());
345 }
346 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
347
348 /*
349  * We just idled delta nanoseconds (called with irqs disabled):
350  */
351 void sched_clock_idle_wakeup_event(u64 delta_ns)
352 {
353         if (timekeeping_suspended)
354                 return;
355
356         sched_clock_tick();
357         touch_softlockup_watchdog();
358 }
359 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
360
361 /*
362  * As outlined at the top, provides a fast, high resolution, nanosecond
363  * time source that is monotonic per cpu argument and has bounded drift
364  * between cpus.
365  *
366  * ######################### BIG FAT WARNING ##########################
367  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
368  * # go backwards !!                                                  #
369  * ####################################################################
370  */
371 u64 cpu_clock(int cpu)
372 {
373         if (!sched_clock_stable())
374                 return sched_clock_cpu(cpu);
375
376         return sched_clock();
377 }
378
379 /*
380  * Similar to cpu_clock() for the current cpu. Time will only be observed
381  * to be monotonic if care is taken to only compare timestampt taken on the
382  * same CPU.
383  *
384  * See cpu_clock().
385  */
386 u64 local_clock(void)
387 {
388         if (!sched_clock_stable())
389                 return sched_clock_cpu(raw_smp_processor_id());
390
391         return sched_clock();
392 }
393
394 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
395
396 void sched_clock_init(void)
397 {
398         sched_clock_running = 1;
399 }
400
401 u64 sched_clock_cpu(int cpu)
402 {
403         if (unlikely(!sched_clock_running))
404                 return 0;
405
406         return sched_clock();
407 }
408
409 u64 cpu_clock(int cpu)
410 {
411         return sched_clock();
412 }
413
414 u64 local_clock(void)
415 {
416         return sched_clock();
417 }
418
419 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
420
421 EXPORT_SYMBOL_GPL(cpu_clock);
422 EXPORT_SYMBOL_GPL(local_clock);
423
424 /*
425  * Running clock - returns the time that has elapsed while a guest has been
426  * running.
427  * On a guest this value should be local_clock minus the time the guest was
428  * suspended by the hypervisor (for any reason).
429  * On bare metal this function should return the same as local_clock.
430  * Architectures and sub-architectures can override this.
431  */
432 u64 __weak running_clock(void)
433 {
434         return local_clock();
435 }