These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35         struct rchan_buf *buf = vma->vm_private_data;
36         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44         struct page *page;
45         struct rchan_buf *buf = vma->vm_private_data;
46         pgoff_t pgoff = vmf->pgoff;
47
48         if (!buf)
49                 return VM_FAULT_OOM;
50
51         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52         if (!page)
53                 return VM_FAULT_SIGBUS;
54         get_page(page);
55         vmf->page = page;
56
57         return 0;
58 }
59
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64         .fault = relay_buf_fault,
65         .close = relay_file_mmap_close,
66 };
67
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73         const size_t pa_size = n_pages * sizeof(struct page *);
74         if (pa_size > PAGE_SIZE)
75                 return vzalloc(pa_size);
76         return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84         kvfree(array);
85 }
86
87 /**
88  *      relay_mmap_buf: - mmap channel buffer to process address space
89  *      @buf: relay channel buffer
90  *      @vma: vm_area_struct describing memory to be mapped
91  *
92  *      Returns 0 if ok, negative on error
93  *
94  *      Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98         unsigned long length = vma->vm_end - vma->vm_start;
99         struct file *filp = vma->vm_file;
100
101         if (!buf)
102                 return -EBADF;
103
104         if (length != (unsigned long)buf->chan->alloc_size)
105                 return -EINVAL;
106
107         vma->vm_ops = &relay_file_mmap_ops;
108         vma->vm_flags |= VM_DONTEXPAND;
109         vma->vm_private_data = buf;
110         buf->chan->cb->buf_mapped(buf, filp);
111
112         return 0;
113 }
114
115 /**
116  *      relay_alloc_buf - allocate a channel buffer
117  *      @buf: the buffer struct
118  *      @size: total size of the buffer
119  *
120  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *      passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125         void *mem;
126         unsigned int i, j, n_pages;
127
128         *size = PAGE_ALIGN(*size);
129         n_pages = *size >> PAGE_SHIFT;
130
131         buf->page_array = relay_alloc_page_array(n_pages);
132         if (!buf->page_array)
133                 return NULL;
134
135         for (i = 0; i < n_pages; i++) {
136                 buf->page_array[i] = alloc_page(GFP_KERNEL);
137                 if (unlikely(!buf->page_array[i]))
138                         goto depopulate;
139                 set_page_private(buf->page_array[i], (unsigned long)buf);
140         }
141         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142         if (!mem)
143                 goto depopulate;
144
145         memset(mem, 0, *size);
146         buf->page_count = n_pages;
147         return mem;
148
149 depopulate:
150         for (j = 0; j < i; j++)
151                 __free_page(buf->page_array[j]);
152         relay_free_page_array(buf->page_array);
153         return NULL;
154 }
155
156 /**
157  *      relay_create_buf - allocate and initialize a channel buffer
158  *      @chan: the relay channel
159  *
160  *      Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164         struct rchan_buf *buf;
165
166         if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167                 return NULL;
168
169         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170         if (!buf)
171                 return NULL;
172         buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173         if (!buf->padding)
174                 goto free_buf;
175
176         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177         if (!buf->start)
178                 goto free_buf;
179
180         buf->chan = chan;
181         kref_get(&buf->chan->kref);
182         return buf;
183
184 free_buf:
185         kfree(buf->padding);
186         kfree(buf);
187         return NULL;
188 }
189
190 /**
191  *      relay_destroy_channel - free the channel struct
192  *      @kref: target kernel reference that contains the relay channel
193  *
194  *      Should only be called from kref_put().
195  */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198         struct rchan *chan = container_of(kref, struct rchan, kref);
199         kfree(chan);
200 }
201
202 /**
203  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204  *      @buf: the buffer struct
205  */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208         struct rchan *chan = buf->chan;
209         unsigned int i;
210
211         if (likely(buf->start)) {
212                 vunmap(buf->start);
213                 for (i = 0; i < buf->page_count; i++)
214                         __free_page(buf->page_array[i]);
215                 relay_free_page_array(buf->page_array);
216         }
217         chan->buf[buf->cpu] = NULL;
218         kfree(buf->padding);
219         kfree(buf);
220         kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224  *      relay_remove_buf - remove a channel buffer
225  *      @kref: target kernel reference that contains the relay buffer
226  *
227  *      Removes the file from the filesystem, which also frees the
228  *      rchan_buf_struct and the channel buffer.  Should only be called from
229  *      kref_put().
230  */
231 static void relay_remove_buf(struct kref *kref)
232 {
233         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234         relay_destroy_buf(buf);
235 }
236
237 /**
238  *      relay_buf_empty - boolean, is the channel buffer empty?
239  *      @buf: channel buffer
240  *
241  *      Returns 1 if the buffer is empty, 0 otherwise.
242  */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249  *      relay_buf_full - boolean, is the channel buffer full?
250  *      @buf: channel buffer
251  *
252  *      Returns 1 if the buffer is full, 0 otherwise.
253  */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274                                           void *subbuf,
275                                           void *prev_subbuf,
276                                           size_t prev_padding)
277 {
278         if (relay_buf_full(buf))
279                 return 0;
280
281         return 1;
282 }
283
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288                                         struct file *filp)
289 {
290 }
291
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296                                           struct file *filp)
297 {
298 }
299
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304                                                        struct dentry *parent,
305                                                        umode_t mode,
306                                                        struct rchan_buf *buf,
307                                                        int *is_global)
308 {
309         return NULL;
310 }
311
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317         return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322         .subbuf_start = subbuf_start_default_callback,
323         .buf_mapped = buf_mapped_default_callback,
324         .buf_unmapped = buf_unmapped_default_callback,
325         .create_buf_file = create_buf_file_default_callback,
326         .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330  *      wakeup_readers - wake up readers waiting on a channel
331  *      @data: contains the channel buffer
332  *
333  *      This is the timer function used to defer reader waking.
334  */
335 static void wakeup_readers(unsigned long data)
336 {
337         struct rchan_buf *buf = (struct rchan_buf *)data;
338         wake_up_interruptible(&buf->read_wait);
339         /*
340          * Stupid polling for now:
341          */
342         mod_timer(&buf->timer, jiffies + 1);
343 }
344
345 /**
346  *      __relay_reset - reset a channel buffer
347  *      @buf: the channel buffer
348  *      @init: 1 if this is a first-time initialization
349  *
350  *      See relay_reset() for description of effect.
351  */
352 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
353 {
354         size_t i;
355
356         if (init) {
357                 init_waitqueue_head(&buf->read_wait);
358                 kref_init(&buf->kref);
359                 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
360                 mod_timer(&buf->timer, jiffies + 1);
361         } else
362                 del_timer_sync(&buf->timer);
363
364         buf->subbufs_produced = 0;
365         buf->subbufs_consumed = 0;
366         buf->bytes_consumed = 0;
367         buf->finalized = 0;
368         buf->data = buf->start;
369         buf->offset = 0;
370
371         for (i = 0; i < buf->chan->n_subbufs; i++)
372                 buf->padding[i] = 0;
373
374         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
375 }
376
377 /**
378  *      relay_reset - reset the channel
379  *      @chan: the channel
380  *
381  *      This has the effect of erasing all data from all channel buffers
382  *      and restarting the channel in its initial state.  The buffers
383  *      are not freed, so any mappings are still in effect.
384  *
385  *      NOTE. Care should be taken that the channel isn't actually
386  *      being used by anything when this call is made.
387  */
388 void relay_reset(struct rchan *chan)
389 {
390         unsigned int i;
391
392         if (!chan)
393                 return;
394
395         if (chan->is_global && chan->buf[0]) {
396                 __relay_reset(chan->buf[0], 0);
397                 return;
398         }
399
400         mutex_lock(&relay_channels_mutex);
401         for_each_possible_cpu(i)
402                 if (chan->buf[i])
403                         __relay_reset(chan->buf[i], 0);
404         mutex_unlock(&relay_channels_mutex);
405 }
406 EXPORT_SYMBOL_GPL(relay_reset);
407
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409                                         struct dentry *dentry)
410 {
411         buf->dentry = dentry;
412         d_inode(buf->dentry)->i_size = buf->early_bytes;
413 }
414
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416                                             struct rchan_buf *buf,
417                                             unsigned int cpu)
418 {
419         struct dentry *dentry;
420         char *tmpname;
421
422         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423         if (!tmpname)
424                 return NULL;
425         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426
427         /* Create file in fs */
428         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429                                            S_IRUSR, buf,
430                                            &chan->is_global);
431
432         kfree(tmpname);
433
434         return dentry;
435 }
436
437 /*
438  *      relay_open_buf - create a new relay channel buffer
439  *
440  *      used by relay_open() and CPU hotplug.
441  */
442 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
443 {
444         struct rchan_buf *buf = NULL;
445         struct dentry *dentry;
446
447         if (chan->is_global)
448                 return chan->buf[0];
449
450         buf = relay_create_buf(chan);
451         if (!buf)
452                 return NULL;
453
454         if (chan->has_base_filename) {
455                 dentry = relay_create_buf_file(chan, buf, cpu);
456                 if (!dentry)
457                         goto free_buf;
458                 relay_set_buf_dentry(buf, dentry);
459         }
460
461         buf->cpu = cpu;
462         __relay_reset(buf, 1);
463
464         if(chan->is_global) {
465                 chan->buf[0] = buf;
466                 buf->cpu = 0;
467         }
468
469         return buf;
470
471 free_buf:
472         relay_destroy_buf(buf);
473         return NULL;
474 }
475
476 /**
477  *      relay_close_buf - close a channel buffer
478  *      @buf: channel buffer
479  *
480  *      Marks the buffer finalized and restores the default callbacks.
481  *      The channel buffer and channel buffer data structure are then freed
482  *      automatically when the last reference is given up.
483  */
484 static void relay_close_buf(struct rchan_buf *buf)
485 {
486         buf->finalized = 1;
487         del_timer_sync(&buf->timer);
488         buf->chan->cb->remove_buf_file(buf->dentry);
489         kref_put(&buf->kref, relay_remove_buf);
490 }
491
492 static void setup_callbacks(struct rchan *chan,
493                                    struct rchan_callbacks *cb)
494 {
495         if (!cb) {
496                 chan->cb = &default_channel_callbacks;
497                 return;
498         }
499
500         if (!cb->subbuf_start)
501                 cb->subbuf_start = subbuf_start_default_callback;
502         if (!cb->buf_mapped)
503                 cb->buf_mapped = buf_mapped_default_callback;
504         if (!cb->buf_unmapped)
505                 cb->buf_unmapped = buf_unmapped_default_callback;
506         if (!cb->create_buf_file)
507                 cb->create_buf_file = create_buf_file_default_callback;
508         if (!cb->remove_buf_file)
509                 cb->remove_buf_file = remove_buf_file_default_callback;
510         chan->cb = cb;
511 }
512
513 /**
514  *      relay_hotcpu_callback - CPU hotplug callback
515  *      @nb: notifier block
516  *      @action: hotplug action to take
517  *      @hcpu: CPU number
518  *
519  *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
520  */
521 static int relay_hotcpu_callback(struct notifier_block *nb,
522                                 unsigned long action,
523                                 void *hcpu)
524 {
525         unsigned int hotcpu = (unsigned long)hcpu;
526         struct rchan *chan;
527
528         switch(action) {
529         case CPU_UP_PREPARE:
530         case CPU_UP_PREPARE_FROZEN:
531                 mutex_lock(&relay_channels_mutex);
532                 list_for_each_entry(chan, &relay_channels, list) {
533                         if (chan->buf[hotcpu])
534                                 continue;
535                         chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
536                         if(!chan->buf[hotcpu]) {
537                                 printk(KERN_ERR
538                                         "relay_hotcpu_callback: cpu %d buffer "
539                                         "creation failed\n", hotcpu);
540                                 mutex_unlock(&relay_channels_mutex);
541                                 return notifier_from_errno(-ENOMEM);
542                         }
543                 }
544                 mutex_unlock(&relay_channels_mutex);
545                 break;
546         case CPU_DEAD:
547         case CPU_DEAD_FROZEN:
548                 /* No need to flush the cpu : will be flushed upon
549                  * final relay_flush() call. */
550                 break;
551         }
552         return NOTIFY_OK;
553 }
554
555 /**
556  *      relay_open - create a new relay channel
557  *      @base_filename: base name of files to create, %NULL for buffering only
558  *      @parent: dentry of parent directory, %NULL for root directory or buffer
559  *      @subbuf_size: size of sub-buffers
560  *      @n_subbufs: number of sub-buffers
561  *      @cb: client callback functions
562  *      @private_data: user-defined data
563  *
564  *      Returns channel pointer if successful, %NULL otherwise.
565  *
566  *      Creates a channel buffer for each cpu using the sizes and
567  *      attributes specified.  The created channel buffer files
568  *      will be named base_filename0...base_filenameN-1.  File
569  *      permissions will be %S_IRUSR.
570  */
571 struct rchan *relay_open(const char *base_filename,
572                          struct dentry *parent,
573                          size_t subbuf_size,
574                          size_t n_subbufs,
575                          struct rchan_callbacks *cb,
576                          void *private_data)
577 {
578         unsigned int i;
579         struct rchan *chan;
580
581         if (!(subbuf_size && n_subbufs))
582                 return NULL;
583         if (subbuf_size > UINT_MAX / n_subbufs)
584                 return NULL;
585
586         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
587         if (!chan)
588                 return NULL;
589
590         chan->version = RELAYFS_CHANNEL_VERSION;
591         chan->n_subbufs = n_subbufs;
592         chan->subbuf_size = subbuf_size;
593         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
594         chan->parent = parent;
595         chan->private_data = private_data;
596         if (base_filename) {
597                 chan->has_base_filename = 1;
598                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
599         }
600         setup_callbacks(chan, cb);
601         kref_init(&chan->kref);
602
603         mutex_lock(&relay_channels_mutex);
604         for_each_online_cpu(i) {
605                 chan->buf[i] = relay_open_buf(chan, i);
606                 if (!chan->buf[i])
607                         goto free_bufs;
608         }
609         list_add(&chan->list, &relay_channels);
610         mutex_unlock(&relay_channels_mutex);
611
612         return chan;
613
614 free_bufs:
615         for_each_possible_cpu(i) {
616                 if (chan->buf[i])
617                         relay_close_buf(chan->buf[i]);
618         }
619
620         kref_put(&chan->kref, relay_destroy_channel);
621         mutex_unlock(&relay_channels_mutex);
622         return NULL;
623 }
624 EXPORT_SYMBOL_GPL(relay_open);
625
626 struct rchan_percpu_buf_dispatcher {
627         struct rchan_buf *buf;
628         struct dentry *dentry;
629 };
630
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
633 {
634         struct rchan_percpu_buf_dispatcher *p = info;
635
636         relay_set_buf_dentry(p->buf, p->dentry);
637 }
638
639 /**
640  *      relay_late_setup_files - triggers file creation
641  *      @chan: channel to operate on
642  *      @base_filename: base name of files to create
643  *      @parent: dentry of parent directory, %NULL for root directory
644  *
645  *      Returns 0 if successful, non-zero otherwise.
646  *
647  *      Use to setup files for a previously buffer-only channel.
648  *      Useful to do early tracing in kernel, before VFS is up, for example.
649  */
650 int relay_late_setup_files(struct rchan *chan,
651                            const char *base_filename,
652                            struct dentry *parent)
653 {
654         int err = 0;
655         unsigned int i, curr_cpu;
656         unsigned long flags;
657         struct dentry *dentry;
658         struct rchan_percpu_buf_dispatcher disp;
659
660         if (!chan || !base_filename)
661                 return -EINVAL;
662
663         strlcpy(chan->base_filename, base_filename, NAME_MAX);
664
665         mutex_lock(&relay_channels_mutex);
666         /* Is chan already set up? */
667         if (unlikely(chan->has_base_filename)) {
668                 mutex_unlock(&relay_channels_mutex);
669                 return -EEXIST;
670         }
671         chan->has_base_filename = 1;
672         chan->parent = parent;
673         curr_cpu = get_cpu();
674         /*
675          * The CPU hotplug notifier ran before us and created buffers with
676          * no files associated. So it's safe to call relay_setup_buf_file()
677          * on all currently online CPUs.
678          */
679         for_each_online_cpu(i) {
680                 if (unlikely(!chan->buf[i])) {
681                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
682                         err = -EINVAL;
683                         break;
684                 }
685
686                 dentry = relay_create_buf_file(chan, chan->buf[i], i);
687                 if (unlikely(!dentry)) {
688                         err = -EINVAL;
689                         break;
690                 }
691
692                 if (curr_cpu == i) {
693                         local_irq_save(flags);
694                         relay_set_buf_dentry(chan->buf[i], dentry);
695                         local_irq_restore(flags);
696                 } else {
697                         disp.buf = chan->buf[i];
698                         disp.dentry = dentry;
699                         smp_mb();
700                         /* relay_channels_mutex must be held, so wait. */
701                         err = smp_call_function_single(i,
702                                                        __relay_set_buf_dentry,
703                                                        &disp, 1);
704                 }
705                 if (unlikely(err))
706                         break;
707         }
708         put_cpu();
709         mutex_unlock(&relay_channels_mutex);
710
711         return err;
712 }
713
714 /**
715  *      relay_switch_subbuf - switch to a new sub-buffer
716  *      @buf: channel buffer
717  *      @length: size of current event
718  *
719  *      Returns either the length passed in or 0 if full.
720  *
721  *      Performs sub-buffer-switch tasks such as invoking callbacks,
722  *      updating padding counts, waking up readers, etc.
723  */
724 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
725 {
726         void *old, *new;
727         size_t old_subbuf, new_subbuf;
728
729         if (unlikely(length > buf->chan->subbuf_size))
730                 goto toobig;
731
732         if (buf->offset != buf->chan->subbuf_size + 1) {
733                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
734                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
735                 buf->padding[old_subbuf] = buf->prev_padding;
736                 buf->subbufs_produced++;
737                 if (buf->dentry)
738                         d_inode(buf->dentry)->i_size +=
739                                 buf->chan->subbuf_size -
740                                 buf->padding[old_subbuf];
741                 else
742                         buf->early_bytes += buf->chan->subbuf_size -
743                                             buf->padding[old_subbuf];
744         }
745
746         old = buf->data;
747         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
748         new = buf->start + new_subbuf * buf->chan->subbuf_size;
749         buf->offset = 0;
750         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
751                 buf->offset = buf->chan->subbuf_size + 1;
752                 return 0;
753         }
754         buf->data = new;
755         buf->padding[new_subbuf] = 0;
756
757         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
758                 goto toobig;
759
760         return length;
761
762 toobig:
763         buf->chan->last_toobig = length;
764         return 0;
765 }
766 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
767
768 /**
769  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
770  *      @chan: the channel
771  *      @cpu: the cpu associated with the channel buffer to update
772  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
773  *
774  *      Adds to the channel buffer's consumed sub-buffer count.
775  *      subbufs_consumed should be the number of sub-buffers newly consumed,
776  *      not the total consumed.
777  *
778  *      NOTE. Kernel clients don't need to call this function if the channel
779  *      mode is 'overwrite'.
780  */
781 void relay_subbufs_consumed(struct rchan *chan,
782                             unsigned int cpu,
783                             size_t subbufs_consumed)
784 {
785         struct rchan_buf *buf;
786
787         if (!chan)
788                 return;
789
790         if (cpu >= NR_CPUS || !chan->buf[cpu] ||
791                                         subbufs_consumed > chan->n_subbufs)
792                 return;
793
794         buf = chan->buf[cpu];
795         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
796                 buf->subbufs_consumed = buf->subbufs_produced;
797         else
798                 buf->subbufs_consumed += subbufs_consumed;
799 }
800 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
801
802 /**
803  *      relay_close - close the channel
804  *      @chan: the channel
805  *
806  *      Closes all channel buffers and frees the channel.
807  */
808 void relay_close(struct rchan *chan)
809 {
810         unsigned int i;
811
812         if (!chan)
813                 return;
814
815         mutex_lock(&relay_channels_mutex);
816         if (chan->is_global && chan->buf[0])
817                 relay_close_buf(chan->buf[0]);
818         else
819                 for_each_possible_cpu(i)
820                         if (chan->buf[i])
821                                 relay_close_buf(chan->buf[i]);
822
823         if (chan->last_toobig)
824                 printk(KERN_WARNING "relay: one or more items not logged "
825                        "[item size (%Zd) > sub-buffer size (%Zd)]\n",
826                        chan->last_toobig, chan->subbuf_size);
827
828         list_del(&chan->list);
829         kref_put(&chan->kref, relay_destroy_channel);
830         mutex_unlock(&relay_channels_mutex);
831 }
832 EXPORT_SYMBOL_GPL(relay_close);
833
834 /**
835  *      relay_flush - close the channel
836  *      @chan: the channel
837  *
838  *      Flushes all channel buffers, i.e. forces buffer switch.
839  */
840 void relay_flush(struct rchan *chan)
841 {
842         unsigned int i;
843
844         if (!chan)
845                 return;
846
847         if (chan->is_global && chan->buf[0]) {
848                 relay_switch_subbuf(chan->buf[0], 0);
849                 return;
850         }
851
852         mutex_lock(&relay_channels_mutex);
853         for_each_possible_cpu(i)
854                 if (chan->buf[i])
855                         relay_switch_subbuf(chan->buf[i], 0);
856         mutex_unlock(&relay_channels_mutex);
857 }
858 EXPORT_SYMBOL_GPL(relay_flush);
859
860 /**
861  *      relay_file_open - open file op for relay files
862  *      @inode: the inode
863  *      @filp: the file
864  *
865  *      Increments the channel buffer refcount.
866  */
867 static int relay_file_open(struct inode *inode, struct file *filp)
868 {
869         struct rchan_buf *buf = inode->i_private;
870         kref_get(&buf->kref);
871         filp->private_data = buf;
872
873         return nonseekable_open(inode, filp);
874 }
875
876 /**
877  *      relay_file_mmap - mmap file op for relay files
878  *      @filp: the file
879  *      @vma: the vma describing what to map
880  *
881  *      Calls upon relay_mmap_buf() to map the file into user space.
882  */
883 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
884 {
885         struct rchan_buf *buf = filp->private_data;
886         return relay_mmap_buf(buf, vma);
887 }
888
889 /**
890  *      relay_file_poll - poll file op for relay files
891  *      @filp: the file
892  *      @wait: poll table
893  *
894  *      Poll implemention.
895  */
896 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
897 {
898         unsigned int mask = 0;
899         struct rchan_buf *buf = filp->private_data;
900
901         if (buf->finalized)
902                 return POLLERR;
903
904         if (filp->f_mode & FMODE_READ) {
905                 poll_wait(filp, &buf->read_wait, wait);
906                 if (!relay_buf_empty(buf))
907                         mask |= POLLIN | POLLRDNORM;
908         }
909
910         return mask;
911 }
912
913 /**
914  *      relay_file_release - release file op for relay files
915  *      @inode: the inode
916  *      @filp: the file
917  *
918  *      Decrements the channel refcount, as the filesystem is
919  *      no longer using it.
920  */
921 static int relay_file_release(struct inode *inode, struct file *filp)
922 {
923         struct rchan_buf *buf = filp->private_data;
924         kref_put(&buf->kref, relay_remove_buf);
925
926         return 0;
927 }
928
929 /*
930  *      relay_file_read_consume - update the consumed count for the buffer
931  */
932 static void relay_file_read_consume(struct rchan_buf *buf,
933                                     size_t read_pos,
934                                     size_t bytes_consumed)
935 {
936         size_t subbuf_size = buf->chan->subbuf_size;
937         size_t n_subbufs = buf->chan->n_subbufs;
938         size_t read_subbuf;
939
940         if (buf->subbufs_produced == buf->subbufs_consumed &&
941             buf->offset == buf->bytes_consumed)
942                 return;
943
944         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
945                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
946                 buf->bytes_consumed = 0;
947         }
948
949         buf->bytes_consumed += bytes_consumed;
950         if (!read_pos)
951                 read_subbuf = buf->subbufs_consumed % n_subbufs;
952         else
953                 read_subbuf = read_pos / buf->chan->subbuf_size;
954         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
955                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
956                     (buf->offset == subbuf_size))
957                         return;
958                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
959                 buf->bytes_consumed = 0;
960         }
961 }
962
963 /*
964  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
965  */
966 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
967 {
968         size_t subbuf_size = buf->chan->subbuf_size;
969         size_t n_subbufs = buf->chan->n_subbufs;
970         size_t produced = buf->subbufs_produced;
971         size_t consumed = buf->subbufs_consumed;
972
973         relay_file_read_consume(buf, read_pos, 0);
974
975         consumed = buf->subbufs_consumed;
976
977         if (unlikely(buf->offset > subbuf_size)) {
978                 if (produced == consumed)
979                         return 0;
980                 return 1;
981         }
982
983         if (unlikely(produced - consumed >= n_subbufs)) {
984                 consumed = produced - n_subbufs + 1;
985                 buf->subbufs_consumed = consumed;
986                 buf->bytes_consumed = 0;
987         }
988
989         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
990         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
991
992         if (consumed > produced)
993                 produced += n_subbufs * subbuf_size;
994
995         if (consumed == produced) {
996                 if (buf->offset == subbuf_size &&
997                     buf->subbufs_produced > buf->subbufs_consumed)
998                         return 1;
999                 return 0;
1000         }
1001
1002         return 1;
1003 }
1004
1005 /**
1006  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1007  *      @read_pos: file read position
1008  *      @buf: relay channel buffer
1009  */
1010 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1011                                            struct rchan_buf *buf)
1012 {
1013         size_t padding, avail = 0;
1014         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1015         size_t subbuf_size = buf->chan->subbuf_size;
1016
1017         write_subbuf = (buf->data - buf->start) / subbuf_size;
1018         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1019         read_subbuf = read_pos / subbuf_size;
1020         read_offset = read_pos % subbuf_size;
1021         padding = buf->padding[read_subbuf];
1022
1023         if (read_subbuf == write_subbuf) {
1024                 if (read_offset + padding < write_offset)
1025                         avail = write_offset - (read_offset + padding);
1026         } else
1027                 avail = (subbuf_size - padding) - read_offset;
1028
1029         return avail;
1030 }
1031
1032 /**
1033  *      relay_file_read_start_pos - find the first available byte to read
1034  *      @read_pos: file read position
1035  *      @buf: relay channel buffer
1036  *
1037  *      If the @read_pos is in the middle of padding, return the
1038  *      position of the first actually available byte, otherwise
1039  *      return the original value.
1040  */
1041 static size_t relay_file_read_start_pos(size_t read_pos,
1042                                         struct rchan_buf *buf)
1043 {
1044         size_t read_subbuf, padding, padding_start, padding_end;
1045         size_t subbuf_size = buf->chan->subbuf_size;
1046         size_t n_subbufs = buf->chan->n_subbufs;
1047         size_t consumed = buf->subbufs_consumed % n_subbufs;
1048
1049         if (!read_pos)
1050                 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1051         read_subbuf = read_pos / subbuf_size;
1052         padding = buf->padding[read_subbuf];
1053         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1054         padding_end = (read_subbuf + 1) * subbuf_size;
1055         if (read_pos >= padding_start && read_pos < padding_end) {
1056                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1057                 read_pos = read_subbuf * subbuf_size;
1058         }
1059
1060         return read_pos;
1061 }
1062
1063 /**
1064  *      relay_file_read_end_pos - return the new read position
1065  *      @read_pos: file read position
1066  *      @buf: relay channel buffer
1067  *      @count: number of bytes to be read
1068  */
1069 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1070                                       size_t read_pos,
1071                                       size_t count)
1072 {
1073         size_t read_subbuf, padding, end_pos;
1074         size_t subbuf_size = buf->chan->subbuf_size;
1075         size_t n_subbufs = buf->chan->n_subbufs;
1076
1077         read_subbuf = read_pos / subbuf_size;
1078         padding = buf->padding[read_subbuf];
1079         if (read_pos % subbuf_size + count + padding == subbuf_size)
1080                 end_pos = (read_subbuf + 1) * subbuf_size;
1081         else
1082                 end_pos = read_pos + count;
1083         if (end_pos >= subbuf_size * n_subbufs)
1084                 end_pos = 0;
1085
1086         return end_pos;
1087 }
1088
1089 /*
1090  *      subbuf_read_actor - read up to one subbuf's worth of data
1091  */
1092 static int subbuf_read_actor(size_t read_start,
1093                              struct rchan_buf *buf,
1094                              size_t avail,
1095                              read_descriptor_t *desc)
1096 {
1097         void *from;
1098         int ret = 0;
1099
1100         from = buf->start + read_start;
1101         ret = avail;
1102         if (copy_to_user(desc->arg.buf, from, avail)) {
1103                 desc->error = -EFAULT;
1104                 ret = 0;
1105         }
1106         desc->arg.data += ret;
1107         desc->written += ret;
1108         desc->count -= ret;
1109
1110         return ret;
1111 }
1112
1113 typedef int (*subbuf_actor_t) (size_t read_start,
1114                                struct rchan_buf *buf,
1115                                size_t avail,
1116                                read_descriptor_t *desc);
1117
1118 /*
1119  *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1120  */
1121 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1122                                         subbuf_actor_t subbuf_actor,
1123                                         read_descriptor_t *desc)
1124 {
1125         struct rchan_buf *buf = filp->private_data;
1126         size_t read_start, avail;
1127         int ret;
1128
1129         if (!desc->count)
1130                 return 0;
1131
1132         mutex_lock(&file_inode(filp)->i_mutex);
1133         do {
1134                 if (!relay_file_read_avail(buf, *ppos))
1135                         break;
1136
1137                 read_start = relay_file_read_start_pos(*ppos, buf);
1138                 avail = relay_file_read_subbuf_avail(read_start, buf);
1139                 if (!avail)
1140                         break;
1141
1142                 avail = min(desc->count, avail);
1143                 ret = subbuf_actor(read_start, buf, avail, desc);
1144                 if (desc->error < 0)
1145                         break;
1146
1147                 if (ret) {
1148                         relay_file_read_consume(buf, read_start, ret);
1149                         *ppos = relay_file_read_end_pos(buf, read_start, ret);
1150                 }
1151         } while (desc->count && ret);
1152         mutex_unlock(&file_inode(filp)->i_mutex);
1153
1154         return desc->written;
1155 }
1156
1157 static ssize_t relay_file_read(struct file *filp,
1158                                char __user *buffer,
1159                                size_t count,
1160                                loff_t *ppos)
1161 {
1162         read_descriptor_t desc;
1163         desc.written = 0;
1164         desc.count = count;
1165         desc.arg.buf = buffer;
1166         desc.error = 0;
1167         return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1168 }
1169
1170 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1171 {
1172         rbuf->bytes_consumed += bytes_consumed;
1173
1174         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1175                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1176                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1177         }
1178 }
1179
1180 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1181                                    struct pipe_buffer *buf)
1182 {
1183         struct rchan_buf *rbuf;
1184
1185         rbuf = (struct rchan_buf *)page_private(buf->page);
1186         relay_consume_bytes(rbuf, buf->private);
1187 }
1188
1189 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1190         .can_merge = 0,
1191         .confirm = generic_pipe_buf_confirm,
1192         .release = relay_pipe_buf_release,
1193         .steal = generic_pipe_buf_steal,
1194         .get = generic_pipe_buf_get,
1195 };
1196
1197 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1198 {
1199 }
1200
1201 /*
1202  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1203  */
1204 static ssize_t subbuf_splice_actor(struct file *in,
1205                                loff_t *ppos,
1206                                struct pipe_inode_info *pipe,
1207                                size_t len,
1208                                unsigned int flags,
1209                                int *nonpad_ret)
1210 {
1211         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1212         struct rchan_buf *rbuf = in->private_data;
1213         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1214         uint64_t pos = (uint64_t) *ppos;
1215         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1216         size_t read_start = (size_t) do_div(pos, alloc_size);
1217         size_t read_subbuf = read_start / subbuf_size;
1218         size_t padding = rbuf->padding[read_subbuf];
1219         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1220         struct page *pages[PIPE_DEF_BUFFERS];
1221         struct partial_page partial[PIPE_DEF_BUFFERS];
1222         struct splice_pipe_desc spd = {
1223                 .pages = pages,
1224                 .nr_pages = 0,
1225                 .nr_pages_max = PIPE_DEF_BUFFERS,
1226                 .partial = partial,
1227                 .flags = flags,
1228                 .ops = &relay_pipe_buf_ops,
1229                 .spd_release = relay_page_release,
1230         };
1231         ssize_t ret;
1232
1233         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1234                 return 0;
1235         if (splice_grow_spd(pipe, &spd))
1236                 return -ENOMEM;
1237
1238         /*
1239          * Adjust read len, if longer than what is available
1240          */
1241         if (len > (subbuf_size - read_start % subbuf_size))
1242                 len = subbuf_size - read_start % subbuf_size;
1243
1244         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1245         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1246         poff = read_start & ~PAGE_MASK;
1247         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1248
1249         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1250                 unsigned int this_len, this_end, private;
1251                 unsigned int cur_pos = read_start + total_len;
1252
1253                 if (!len)
1254                         break;
1255
1256                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1257                 private = this_len;
1258
1259                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1260                 spd.partial[spd.nr_pages].offset = poff;
1261
1262                 this_end = cur_pos + this_len;
1263                 if (this_end >= nonpad_end) {
1264                         this_len = nonpad_end - cur_pos;
1265                         private = this_len + padding;
1266                 }
1267                 spd.partial[spd.nr_pages].len = this_len;
1268                 spd.partial[spd.nr_pages].private = private;
1269
1270                 len -= this_len;
1271                 total_len += this_len;
1272                 poff = 0;
1273                 pidx = (pidx + 1) % subbuf_pages;
1274
1275                 if (this_end >= nonpad_end) {
1276                         spd.nr_pages++;
1277                         break;
1278                 }
1279         }
1280
1281         ret = 0;
1282         if (!spd.nr_pages)
1283                 goto out;
1284
1285         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1286         if (ret < 0 || ret < total_len)
1287                 goto out;
1288
1289         if (read_start + ret == nonpad_end)
1290                 ret += padding;
1291
1292 out:
1293         splice_shrink_spd(&spd);
1294         return ret;
1295 }
1296
1297 static ssize_t relay_file_splice_read(struct file *in,
1298                                       loff_t *ppos,
1299                                       struct pipe_inode_info *pipe,
1300                                       size_t len,
1301                                       unsigned int flags)
1302 {
1303         ssize_t spliced;
1304         int ret;
1305         int nonpad_ret = 0;
1306
1307         ret = 0;
1308         spliced = 0;
1309
1310         while (len && !spliced) {
1311                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1312                 if (ret < 0)
1313                         break;
1314                 else if (!ret) {
1315                         if (flags & SPLICE_F_NONBLOCK)
1316                                 ret = -EAGAIN;
1317                         break;
1318                 }
1319
1320                 *ppos += ret;
1321                 if (ret > len)
1322                         len = 0;
1323                 else
1324                         len -= ret;
1325                 spliced += nonpad_ret;
1326                 nonpad_ret = 0;
1327         }
1328
1329         if (spliced)
1330                 return spliced;
1331
1332         return ret;
1333 }
1334
1335 const struct file_operations relay_file_operations = {
1336         .open           = relay_file_open,
1337         .poll           = relay_file_poll,
1338         .mmap           = relay_file_mmap,
1339         .read           = relay_file_read,
1340         .llseek         = no_llseek,
1341         .release        = relay_file_release,
1342         .splice_read    = relay_file_splice_read,
1343 };
1344 EXPORT_SYMBOL_GPL(relay_file_operations);
1345
1346 static __init int relay_init(void)
1347 {
1348
1349         hotcpu_notifier(relay_hotcpu_callback, 0);
1350         return 0;
1351 }
1352
1353 early_initcall(relay_init);