Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35         struct rchan_buf *buf = vma->vm_private_data;
36         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44         struct page *page;
45         struct rchan_buf *buf = vma->vm_private_data;
46         pgoff_t pgoff = vmf->pgoff;
47
48         if (!buf)
49                 return VM_FAULT_OOM;
50
51         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52         if (!page)
53                 return VM_FAULT_SIGBUS;
54         get_page(page);
55         vmf->page = page;
56
57         return 0;
58 }
59
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64         .fault = relay_buf_fault,
65         .close = relay_file_mmap_close,
66 };
67
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73         const size_t pa_size = n_pages * sizeof(struct page *);
74         if (pa_size > PAGE_SIZE)
75                 return vzalloc(pa_size);
76         return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84         if (is_vmalloc_addr(array))
85                 vfree(array);
86         else
87                 kfree(array);
88 }
89
90 /**
91  *      relay_mmap_buf: - mmap channel buffer to process address space
92  *      @buf: relay channel buffer
93  *      @vma: vm_area_struct describing memory to be mapped
94  *
95  *      Returns 0 if ok, negative on error
96  *
97  *      Caller should already have grabbed mmap_sem.
98  */
99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100 {
101         unsigned long length = vma->vm_end - vma->vm_start;
102         struct file *filp = vma->vm_file;
103
104         if (!buf)
105                 return -EBADF;
106
107         if (length != (unsigned long)buf->chan->alloc_size)
108                 return -EINVAL;
109
110         vma->vm_ops = &relay_file_mmap_ops;
111         vma->vm_flags |= VM_DONTEXPAND;
112         vma->vm_private_data = buf;
113         buf->chan->cb->buf_mapped(buf, filp);
114
115         return 0;
116 }
117
118 /**
119  *      relay_alloc_buf - allocate a channel buffer
120  *      @buf: the buffer struct
121  *      @size: total size of the buffer
122  *
123  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124  *      passed in size will get page aligned, if it isn't already.
125  */
126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127 {
128         void *mem;
129         unsigned int i, j, n_pages;
130
131         *size = PAGE_ALIGN(*size);
132         n_pages = *size >> PAGE_SHIFT;
133
134         buf->page_array = relay_alloc_page_array(n_pages);
135         if (!buf->page_array)
136                 return NULL;
137
138         for (i = 0; i < n_pages; i++) {
139                 buf->page_array[i] = alloc_page(GFP_KERNEL);
140                 if (unlikely(!buf->page_array[i]))
141                         goto depopulate;
142                 set_page_private(buf->page_array[i], (unsigned long)buf);
143         }
144         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145         if (!mem)
146                 goto depopulate;
147
148         memset(mem, 0, *size);
149         buf->page_count = n_pages;
150         return mem;
151
152 depopulate:
153         for (j = 0; j < i; j++)
154                 __free_page(buf->page_array[j]);
155         relay_free_page_array(buf->page_array);
156         return NULL;
157 }
158
159 /**
160  *      relay_create_buf - allocate and initialize a channel buffer
161  *      @chan: the relay channel
162  *
163  *      Returns channel buffer if successful, %NULL otherwise.
164  */
165 static struct rchan_buf *relay_create_buf(struct rchan *chan)
166 {
167         struct rchan_buf *buf;
168
169         if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
170                 return NULL;
171
172         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
173         if (!buf)
174                 return NULL;
175         buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
176         if (!buf->padding)
177                 goto free_buf;
178
179         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
180         if (!buf->start)
181                 goto free_buf;
182
183         buf->chan = chan;
184         kref_get(&buf->chan->kref);
185         return buf;
186
187 free_buf:
188         kfree(buf->padding);
189         kfree(buf);
190         return NULL;
191 }
192
193 /**
194  *      relay_destroy_channel - free the channel struct
195  *      @kref: target kernel reference that contains the relay channel
196  *
197  *      Should only be called from kref_put().
198  */
199 static void relay_destroy_channel(struct kref *kref)
200 {
201         struct rchan *chan = container_of(kref, struct rchan, kref);
202         kfree(chan);
203 }
204
205 /**
206  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
207  *      @buf: the buffer struct
208  */
209 static void relay_destroy_buf(struct rchan_buf *buf)
210 {
211         struct rchan *chan = buf->chan;
212         unsigned int i;
213
214         if (likely(buf->start)) {
215                 vunmap(buf->start);
216                 for (i = 0; i < buf->page_count; i++)
217                         __free_page(buf->page_array[i]);
218                 relay_free_page_array(buf->page_array);
219         }
220         chan->buf[buf->cpu] = NULL;
221         kfree(buf->padding);
222         kfree(buf);
223         kref_put(&chan->kref, relay_destroy_channel);
224 }
225
226 /**
227  *      relay_remove_buf - remove a channel buffer
228  *      @kref: target kernel reference that contains the relay buffer
229  *
230  *      Removes the file from the filesystem, which also frees the
231  *      rchan_buf_struct and the channel buffer.  Should only be called from
232  *      kref_put().
233  */
234 static void relay_remove_buf(struct kref *kref)
235 {
236         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
237         relay_destroy_buf(buf);
238 }
239
240 /**
241  *      relay_buf_empty - boolean, is the channel buffer empty?
242  *      @buf: channel buffer
243  *
244  *      Returns 1 if the buffer is empty, 0 otherwise.
245  */
246 static int relay_buf_empty(struct rchan_buf *buf)
247 {
248         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
249 }
250
251 /**
252  *      relay_buf_full - boolean, is the channel buffer full?
253  *      @buf: channel buffer
254  *
255  *      Returns 1 if the buffer is full, 0 otherwise.
256  */
257 int relay_buf_full(struct rchan_buf *buf)
258 {
259         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
260         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
261 }
262 EXPORT_SYMBOL_GPL(relay_buf_full);
263
264 /*
265  * High-level relay kernel API and associated functions.
266  */
267
268 /*
269  * rchan_callback implementations defining default channel behavior.  Used
270  * in place of corresponding NULL values in client callback struct.
271  */
272
273 /*
274  * subbuf_start() default callback.  Does nothing.
275  */
276 static int subbuf_start_default_callback (struct rchan_buf *buf,
277                                           void *subbuf,
278                                           void *prev_subbuf,
279                                           size_t prev_padding)
280 {
281         if (relay_buf_full(buf))
282                 return 0;
283
284         return 1;
285 }
286
287 /*
288  * buf_mapped() default callback.  Does nothing.
289  */
290 static void buf_mapped_default_callback(struct rchan_buf *buf,
291                                         struct file *filp)
292 {
293 }
294
295 /*
296  * buf_unmapped() default callback.  Does nothing.
297  */
298 static void buf_unmapped_default_callback(struct rchan_buf *buf,
299                                           struct file *filp)
300 {
301 }
302
303 /*
304  * create_buf_file_create() default callback.  Does nothing.
305  */
306 static struct dentry *create_buf_file_default_callback(const char *filename,
307                                                        struct dentry *parent,
308                                                        umode_t mode,
309                                                        struct rchan_buf *buf,
310                                                        int *is_global)
311 {
312         return NULL;
313 }
314
315 /*
316  * remove_buf_file() default callback.  Does nothing.
317  */
318 static int remove_buf_file_default_callback(struct dentry *dentry)
319 {
320         return -EINVAL;
321 }
322
323 /* relay channel default callbacks */
324 static struct rchan_callbacks default_channel_callbacks = {
325         .subbuf_start = subbuf_start_default_callback,
326         .buf_mapped = buf_mapped_default_callback,
327         .buf_unmapped = buf_unmapped_default_callback,
328         .create_buf_file = create_buf_file_default_callback,
329         .remove_buf_file = remove_buf_file_default_callback,
330 };
331
332 /**
333  *      wakeup_readers - wake up readers waiting on a channel
334  *      @data: contains the channel buffer
335  *
336  *      This is the timer function used to defer reader waking.
337  */
338 static void wakeup_readers(unsigned long data)
339 {
340         struct rchan_buf *buf = (struct rchan_buf *)data;
341         wake_up_interruptible(&buf->read_wait);
342         /*
343          * Stupid polling for now:
344          */
345         mod_timer(&buf->timer, jiffies + 1);
346 }
347
348 /**
349  *      __relay_reset - reset a channel buffer
350  *      @buf: the channel buffer
351  *      @init: 1 if this is a first-time initialization
352  *
353  *      See relay_reset() for description of effect.
354  */
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357         size_t i;
358
359         if (init) {
360                 init_waitqueue_head(&buf->read_wait);
361                 kref_init(&buf->kref);
362                 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363                 mod_timer(&buf->timer, jiffies + 1);
364         } else
365                 del_timer_sync(&buf->timer);
366
367         buf->subbufs_produced = 0;
368         buf->subbufs_consumed = 0;
369         buf->bytes_consumed = 0;
370         buf->finalized = 0;
371         buf->data = buf->start;
372         buf->offset = 0;
373
374         for (i = 0; i < buf->chan->n_subbufs; i++)
375                 buf->padding[i] = 0;
376
377         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
378 }
379
380 /**
381  *      relay_reset - reset the channel
382  *      @chan: the channel
383  *
384  *      This has the effect of erasing all data from all channel buffers
385  *      and restarting the channel in its initial state.  The buffers
386  *      are not freed, so any mappings are still in effect.
387  *
388  *      NOTE. Care should be taken that the channel isn't actually
389  *      being used by anything when this call is made.
390  */
391 void relay_reset(struct rchan *chan)
392 {
393         unsigned int i;
394
395         if (!chan)
396                 return;
397
398         if (chan->is_global && chan->buf[0]) {
399                 __relay_reset(chan->buf[0], 0);
400                 return;
401         }
402
403         mutex_lock(&relay_channels_mutex);
404         for_each_possible_cpu(i)
405                 if (chan->buf[i])
406                         __relay_reset(chan->buf[i], 0);
407         mutex_unlock(&relay_channels_mutex);
408 }
409 EXPORT_SYMBOL_GPL(relay_reset);
410
411 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
412                                         struct dentry *dentry)
413 {
414         buf->dentry = dentry;
415         d_inode(buf->dentry)->i_size = buf->early_bytes;
416 }
417
418 static struct dentry *relay_create_buf_file(struct rchan *chan,
419                                             struct rchan_buf *buf,
420                                             unsigned int cpu)
421 {
422         struct dentry *dentry;
423         char *tmpname;
424
425         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
426         if (!tmpname)
427                 return NULL;
428         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
429
430         /* Create file in fs */
431         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
432                                            S_IRUSR, buf,
433                                            &chan->is_global);
434
435         kfree(tmpname);
436
437         return dentry;
438 }
439
440 /*
441  *      relay_open_buf - create a new relay channel buffer
442  *
443  *      used by relay_open() and CPU hotplug.
444  */
445 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
446 {
447         struct rchan_buf *buf = NULL;
448         struct dentry *dentry;
449
450         if (chan->is_global)
451                 return chan->buf[0];
452
453         buf = relay_create_buf(chan);
454         if (!buf)
455                 return NULL;
456
457         if (chan->has_base_filename) {
458                 dentry = relay_create_buf_file(chan, buf, cpu);
459                 if (!dentry)
460                         goto free_buf;
461                 relay_set_buf_dentry(buf, dentry);
462         }
463
464         buf->cpu = cpu;
465         __relay_reset(buf, 1);
466
467         if(chan->is_global) {
468                 chan->buf[0] = buf;
469                 buf->cpu = 0;
470         }
471
472         return buf;
473
474 free_buf:
475         relay_destroy_buf(buf);
476         return NULL;
477 }
478
479 /**
480  *      relay_close_buf - close a channel buffer
481  *      @buf: channel buffer
482  *
483  *      Marks the buffer finalized and restores the default callbacks.
484  *      The channel buffer and channel buffer data structure are then freed
485  *      automatically when the last reference is given up.
486  */
487 static void relay_close_buf(struct rchan_buf *buf)
488 {
489         buf->finalized = 1;
490         del_timer_sync(&buf->timer);
491         buf->chan->cb->remove_buf_file(buf->dentry);
492         kref_put(&buf->kref, relay_remove_buf);
493 }
494
495 static void setup_callbacks(struct rchan *chan,
496                                    struct rchan_callbacks *cb)
497 {
498         if (!cb) {
499                 chan->cb = &default_channel_callbacks;
500                 return;
501         }
502
503         if (!cb->subbuf_start)
504                 cb->subbuf_start = subbuf_start_default_callback;
505         if (!cb->buf_mapped)
506                 cb->buf_mapped = buf_mapped_default_callback;
507         if (!cb->buf_unmapped)
508                 cb->buf_unmapped = buf_unmapped_default_callback;
509         if (!cb->create_buf_file)
510                 cb->create_buf_file = create_buf_file_default_callback;
511         if (!cb->remove_buf_file)
512                 cb->remove_buf_file = remove_buf_file_default_callback;
513         chan->cb = cb;
514 }
515
516 /**
517  *      relay_hotcpu_callback - CPU hotplug callback
518  *      @nb: notifier block
519  *      @action: hotplug action to take
520  *      @hcpu: CPU number
521  *
522  *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
523  */
524 static int relay_hotcpu_callback(struct notifier_block *nb,
525                                 unsigned long action,
526                                 void *hcpu)
527 {
528         unsigned int hotcpu = (unsigned long)hcpu;
529         struct rchan *chan;
530
531         switch(action) {
532         case CPU_UP_PREPARE:
533         case CPU_UP_PREPARE_FROZEN:
534                 mutex_lock(&relay_channels_mutex);
535                 list_for_each_entry(chan, &relay_channels, list) {
536                         if (chan->buf[hotcpu])
537                                 continue;
538                         chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
539                         if(!chan->buf[hotcpu]) {
540                                 printk(KERN_ERR
541                                         "relay_hotcpu_callback: cpu %d buffer "
542                                         "creation failed\n", hotcpu);
543                                 mutex_unlock(&relay_channels_mutex);
544                                 return notifier_from_errno(-ENOMEM);
545                         }
546                 }
547                 mutex_unlock(&relay_channels_mutex);
548                 break;
549         case CPU_DEAD:
550         case CPU_DEAD_FROZEN:
551                 /* No need to flush the cpu : will be flushed upon
552                  * final relay_flush() call. */
553                 break;
554         }
555         return NOTIFY_OK;
556 }
557
558 /**
559  *      relay_open - create a new relay channel
560  *      @base_filename: base name of files to create, %NULL for buffering only
561  *      @parent: dentry of parent directory, %NULL for root directory or buffer
562  *      @subbuf_size: size of sub-buffers
563  *      @n_subbufs: number of sub-buffers
564  *      @cb: client callback functions
565  *      @private_data: user-defined data
566  *
567  *      Returns channel pointer if successful, %NULL otherwise.
568  *
569  *      Creates a channel buffer for each cpu using the sizes and
570  *      attributes specified.  The created channel buffer files
571  *      will be named base_filename0...base_filenameN-1.  File
572  *      permissions will be %S_IRUSR.
573  */
574 struct rchan *relay_open(const char *base_filename,
575                          struct dentry *parent,
576                          size_t subbuf_size,
577                          size_t n_subbufs,
578                          struct rchan_callbacks *cb,
579                          void *private_data)
580 {
581         unsigned int i;
582         struct rchan *chan;
583
584         if (!(subbuf_size && n_subbufs))
585                 return NULL;
586         if (subbuf_size > UINT_MAX / n_subbufs)
587                 return NULL;
588
589         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
590         if (!chan)
591                 return NULL;
592
593         chan->version = RELAYFS_CHANNEL_VERSION;
594         chan->n_subbufs = n_subbufs;
595         chan->subbuf_size = subbuf_size;
596         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
597         chan->parent = parent;
598         chan->private_data = private_data;
599         if (base_filename) {
600                 chan->has_base_filename = 1;
601                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
602         }
603         setup_callbacks(chan, cb);
604         kref_init(&chan->kref);
605
606         mutex_lock(&relay_channels_mutex);
607         for_each_online_cpu(i) {
608                 chan->buf[i] = relay_open_buf(chan, i);
609                 if (!chan->buf[i])
610                         goto free_bufs;
611         }
612         list_add(&chan->list, &relay_channels);
613         mutex_unlock(&relay_channels_mutex);
614
615         return chan;
616
617 free_bufs:
618         for_each_possible_cpu(i) {
619                 if (chan->buf[i])
620                         relay_close_buf(chan->buf[i]);
621         }
622
623         kref_put(&chan->kref, relay_destroy_channel);
624         mutex_unlock(&relay_channels_mutex);
625         return NULL;
626 }
627 EXPORT_SYMBOL_GPL(relay_open);
628
629 struct rchan_percpu_buf_dispatcher {
630         struct rchan_buf *buf;
631         struct dentry *dentry;
632 };
633
634 /* Called in atomic context. */
635 static void __relay_set_buf_dentry(void *info)
636 {
637         struct rchan_percpu_buf_dispatcher *p = info;
638
639         relay_set_buf_dentry(p->buf, p->dentry);
640 }
641
642 /**
643  *      relay_late_setup_files - triggers file creation
644  *      @chan: channel to operate on
645  *      @base_filename: base name of files to create
646  *      @parent: dentry of parent directory, %NULL for root directory
647  *
648  *      Returns 0 if successful, non-zero otherwise.
649  *
650  *      Use to setup files for a previously buffer-only channel.
651  *      Useful to do early tracing in kernel, before VFS is up, for example.
652  */
653 int relay_late_setup_files(struct rchan *chan,
654                            const char *base_filename,
655                            struct dentry *parent)
656 {
657         int err = 0;
658         unsigned int i, curr_cpu;
659         unsigned long flags;
660         struct dentry *dentry;
661         struct rchan_percpu_buf_dispatcher disp;
662
663         if (!chan || !base_filename)
664                 return -EINVAL;
665
666         strlcpy(chan->base_filename, base_filename, NAME_MAX);
667
668         mutex_lock(&relay_channels_mutex);
669         /* Is chan already set up? */
670         if (unlikely(chan->has_base_filename)) {
671                 mutex_unlock(&relay_channels_mutex);
672                 return -EEXIST;
673         }
674         chan->has_base_filename = 1;
675         chan->parent = parent;
676         curr_cpu = get_cpu();
677         /*
678          * The CPU hotplug notifier ran before us and created buffers with
679          * no files associated. So it's safe to call relay_setup_buf_file()
680          * on all currently online CPUs.
681          */
682         for_each_online_cpu(i) {
683                 if (unlikely(!chan->buf[i])) {
684                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
685                         err = -EINVAL;
686                         break;
687                 }
688
689                 dentry = relay_create_buf_file(chan, chan->buf[i], i);
690                 if (unlikely(!dentry)) {
691                         err = -EINVAL;
692                         break;
693                 }
694
695                 if (curr_cpu == i) {
696                         local_irq_save(flags);
697                         relay_set_buf_dentry(chan->buf[i], dentry);
698                         local_irq_restore(flags);
699                 } else {
700                         disp.buf = chan->buf[i];
701                         disp.dentry = dentry;
702                         smp_mb();
703                         /* relay_channels_mutex must be held, so wait. */
704                         err = smp_call_function_single(i,
705                                                        __relay_set_buf_dentry,
706                                                        &disp, 1);
707                 }
708                 if (unlikely(err))
709                         break;
710         }
711         put_cpu();
712         mutex_unlock(&relay_channels_mutex);
713
714         return err;
715 }
716
717 /**
718  *      relay_switch_subbuf - switch to a new sub-buffer
719  *      @buf: channel buffer
720  *      @length: size of current event
721  *
722  *      Returns either the length passed in or 0 if full.
723  *
724  *      Performs sub-buffer-switch tasks such as invoking callbacks,
725  *      updating padding counts, waking up readers, etc.
726  */
727 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
728 {
729         void *old, *new;
730         size_t old_subbuf, new_subbuf;
731
732         if (unlikely(length > buf->chan->subbuf_size))
733                 goto toobig;
734
735         if (buf->offset != buf->chan->subbuf_size + 1) {
736                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
737                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
738                 buf->padding[old_subbuf] = buf->prev_padding;
739                 buf->subbufs_produced++;
740                 if (buf->dentry)
741                         d_inode(buf->dentry)->i_size +=
742                                 buf->chan->subbuf_size -
743                                 buf->padding[old_subbuf];
744                 else
745                         buf->early_bytes += buf->chan->subbuf_size -
746                                             buf->padding[old_subbuf];
747         }
748
749         old = buf->data;
750         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
751         new = buf->start + new_subbuf * buf->chan->subbuf_size;
752         buf->offset = 0;
753         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
754                 buf->offset = buf->chan->subbuf_size + 1;
755                 return 0;
756         }
757         buf->data = new;
758         buf->padding[new_subbuf] = 0;
759
760         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
761                 goto toobig;
762
763         return length;
764
765 toobig:
766         buf->chan->last_toobig = length;
767         return 0;
768 }
769 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
770
771 /**
772  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
773  *      @chan: the channel
774  *      @cpu: the cpu associated with the channel buffer to update
775  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
776  *
777  *      Adds to the channel buffer's consumed sub-buffer count.
778  *      subbufs_consumed should be the number of sub-buffers newly consumed,
779  *      not the total consumed.
780  *
781  *      NOTE. Kernel clients don't need to call this function if the channel
782  *      mode is 'overwrite'.
783  */
784 void relay_subbufs_consumed(struct rchan *chan,
785                             unsigned int cpu,
786                             size_t subbufs_consumed)
787 {
788         struct rchan_buf *buf;
789
790         if (!chan)
791                 return;
792
793         if (cpu >= NR_CPUS || !chan->buf[cpu] ||
794                                         subbufs_consumed > chan->n_subbufs)
795                 return;
796
797         buf = chan->buf[cpu];
798         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
799                 buf->subbufs_consumed = buf->subbufs_produced;
800         else
801                 buf->subbufs_consumed += subbufs_consumed;
802 }
803 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
804
805 /**
806  *      relay_close - close the channel
807  *      @chan: the channel
808  *
809  *      Closes all channel buffers and frees the channel.
810  */
811 void relay_close(struct rchan *chan)
812 {
813         unsigned int i;
814
815         if (!chan)
816                 return;
817
818         mutex_lock(&relay_channels_mutex);
819         if (chan->is_global && chan->buf[0])
820                 relay_close_buf(chan->buf[0]);
821         else
822                 for_each_possible_cpu(i)
823                         if (chan->buf[i])
824                                 relay_close_buf(chan->buf[i]);
825
826         if (chan->last_toobig)
827                 printk(KERN_WARNING "relay: one or more items not logged "
828                        "[item size (%Zd) > sub-buffer size (%Zd)]\n",
829                        chan->last_toobig, chan->subbuf_size);
830
831         list_del(&chan->list);
832         kref_put(&chan->kref, relay_destroy_channel);
833         mutex_unlock(&relay_channels_mutex);
834 }
835 EXPORT_SYMBOL_GPL(relay_close);
836
837 /**
838  *      relay_flush - close the channel
839  *      @chan: the channel
840  *
841  *      Flushes all channel buffers, i.e. forces buffer switch.
842  */
843 void relay_flush(struct rchan *chan)
844 {
845         unsigned int i;
846
847         if (!chan)
848                 return;
849
850         if (chan->is_global && chan->buf[0]) {
851                 relay_switch_subbuf(chan->buf[0], 0);
852                 return;
853         }
854
855         mutex_lock(&relay_channels_mutex);
856         for_each_possible_cpu(i)
857                 if (chan->buf[i])
858                         relay_switch_subbuf(chan->buf[i], 0);
859         mutex_unlock(&relay_channels_mutex);
860 }
861 EXPORT_SYMBOL_GPL(relay_flush);
862
863 /**
864  *      relay_file_open - open file op for relay files
865  *      @inode: the inode
866  *      @filp: the file
867  *
868  *      Increments the channel buffer refcount.
869  */
870 static int relay_file_open(struct inode *inode, struct file *filp)
871 {
872         struct rchan_buf *buf = inode->i_private;
873         kref_get(&buf->kref);
874         filp->private_data = buf;
875
876         return nonseekable_open(inode, filp);
877 }
878
879 /**
880  *      relay_file_mmap - mmap file op for relay files
881  *      @filp: the file
882  *      @vma: the vma describing what to map
883  *
884  *      Calls upon relay_mmap_buf() to map the file into user space.
885  */
886 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
887 {
888         struct rchan_buf *buf = filp->private_data;
889         return relay_mmap_buf(buf, vma);
890 }
891
892 /**
893  *      relay_file_poll - poll file op for relay files
894  *      @filp: the file
895  *      @wait: poll table
896  *
897  *      Poll implemention.
898  */
899 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
900 {
901         unsigned int mask = 0;
902         struct rchan_buf *buf = filp->private_data;
903
904         if (buf->finalized)
905                 return POLLERR;
906
907         if (filp->f_mode & FMODE_READ) {
908                 poll_wait(filp, &buf->read_wait, wait);
909                 if (!relay_buf_empty(buf))
910                         mask |= POLLIN | POLLRDNORM;
911         }
912
913         return mask;
914 }
915
916 /**
917  *      relay_file_release - release file op for relay files
918  *      @inode: the inode
919  *      @filp: the file
920  *
921  *      Decrements the channel refcount, as the filesystem is
922  *      no longer using it.
923  */
924 static int relay_file_release(struct inode *inode, struct file *filp)
925 {
926         struct rchan_buf *buf = filp->private_data;
927         kref_put(&buf->kref, relay_remove_buf);
928
929         return 0;
930 }
931
932 /*
933  *      relay_file_read_consume - update the consumed count for the buffer
934  */
935 static void relay_file_read_consume(struct rchan_buf *buf,
936                                     size_t read_pos,
937                                     size_t bytes_consumed)
938 {
939         size_t subbuf_size = buf->chan->subbuf_size;
940         size_t n_subbufs = buf->chan->n_subbufs;
941         size_t read_subbuf;
942
943         if (buf->subbufs_produced == buf->subbufs_consumed &&
944             buf->offset == buf->bytes_consumed)
945                 return;
946
947         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
948                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
949                 buf->bytes_consumed = 0;
950         }
951
952         buf->bytes_consumed += bytes_consumed;
953         if (!read_pos)
954                 read_subbuf = buf->subbufs_consumed % n_subbufs;
955         else
956                 read_subbuf = read_pos / buf->chan->subbuf_size;
957         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
958                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
959                     (buf->offset == subbuf_size))
960                         return;
961                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
962                 buf->bytes_consumed = 0;
963         }
964 }
965
966 /*
967  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
968  */
969 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
970 {
971         size_t subbuf_size = buf->chan->subbuf_size;
972         size_t n_subbufs = buf->chan->n_subbufs;
973         size_t produced = buf->subbufs_produced;
974         size_t consumed = buf->subbufs_consumed;
975
976         relay_file_read_consume(buf, read_pos, 0);
977
978         consumed = buf->subbufs_consumed;
979
980         if (unlikely(buf->offset > subbuf_size)) {
981                 if (produced == consumed)
982                         return 0;
983                 return 1;
984         }
985
986         if (unlikely(produced - consumed >= n_subbufs)) {
987                 consumed = produced - n_subbufs + 1;
988                 buf->subbufs_consumed = consumed;
989                 buf->bytes_consumed = 0;
990         }
991
992         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
993         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
994
995         if (consumed > produced)
996                 produced += n_subbufs * subbuf_size;
997
998         if (consumed == produced) {
999                 if (buf->offset == subbuf_size &&
1000                     buf->subbufs_produced > buf->subbufs_consumed)
1001                         return 1;
1002                 return 0;
1003         }
1004
1005         return 1;
1006 }
1007
1008 /**
1009  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1010  *      @read_pos: file read position
1011  *      @buf: relay channel buffer
1012  */
1013 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1014                                            struct rchan_buf *buf)
1015 {
1016         size_t padding, avail = 0;
1017         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1018         size_t subbuf_size = buf->chan->subbuf_size;
1019
1020         write_subbuf = (buf->data - buf->start) / subbuf_size;
1021         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1022         read_subbuf = read_pos / subbuf_size;
1023         read_offset = read_pos % subbuf_size;
1024         padding = buf->padding[read_subbuf];
1025
1026         if (read_subbuf == write_subbuf) {
1027                 if (read_offset + padding < write_offset)
1028                         avail = write_offset - (read_offset + padding);
1029         } else
1030                 avail = (subbuf_size - padding) - read_offset;
1031
1032         return avail;
1033 }
1034
1035 /**
1036  *      relay_file_read_start_pos - find the first available byte to read
1037  *      @read_pos: file read position
1038  *      @buf: relay channel buffer
1039  *
1040  *      If the @read_pos is in the middle of padding, return the
1041  *      position of the first actually available byte, otherwise
1042  *      return the original value.
1043  */
1044 static size_t relay_file_read_start_pos(size_t read_pos,
1045                                         struct rchan_buf *buf)
1046 {
1047         size_t read_subbuf, padding, padding_start, padding_end;
1048         size_t subbuf_size = buf->chan->subbuf_size;
1049         size_t n_subbufs = buf->chan->n_subbufs;
1050         size_t consumed = buf->subbufs_consumed % n_subbufs;
1051
1052         if (!read_pos)
1053                 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1054         read_subbuf = read_pos / subbuf_size;
1055         padding = buf->padding[read_subbuf];
1056         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1057         padding_end = (read_subbuf + 1) * subbuf_size;
1058         if (read_pos >= padding_start && read_pos < padding_end) {
1059                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1060                 read_pos = read_subbuf * subbuf_size;
1061         }
1062
1063         return read_pos;
1064 }
1065
1066 /**
1067  *      relay_file_read_end_pos - return the new read position
1068  *      @read_pos: file read position
1069  *      @buf: relay channel buffer
1070  *      @count: number of bytes to be read
1071  */
1072 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1073                                       size_t read_pos,
1074                                       size_t count)
1075 {
1076         size_t read_subbuf, padding, end_pos;
1077         size_t subbuf_size = buf->chan->subbuf_size;
1078         size_t n_subbufs = buf->chan->n_subbufs;
1079
1080         read_subbuf = read_pos / subbuf_size;
1081         padding = buf->padding[read_subbuf];
1082         if (read_pos % subbuf_size + count + padding == subbuf_size)
1083                 end_pos = (read_subbuf + 1) * subbuf_size;
1084         else
1085                 end_pos = read_pos + count;
1086         if (end_pos >= subbuf_size * n_subbufs)
1087                 end_pos = 0;
1088
1089         return end_pos;
1090 }
1091
1092 /*
1093  *      subbuf_read_actor - read up to one subbuf's worth of data
1094  */
1095 static int subbuf_read_actor(size_t read_start,
1096                              struct rchan_buf *buf,
1097                              size_t avail,
1098                              read_descriptor_t *desc)
1099 {
1100         void *from;
1101         int ret = 0;
1102
1103         from = buf->start + read_start;
1104         ret = avail;
1105         if (copy_to_user(desc->arg.buf, from, avail)) {
1106                 desc->error = -EFAULT;
1107                 ret = 0;
1108         }
1109         desc->arg.data += ret;
1110         desc->written += ret;
1111         desc->count -= ret;
1112
1113         return ret;
1114 }
1115
1116 typedef int (*subbuf_actor_t) (size_t read_start,
1117                                struct rchan_buf *buf,
1118                                size_t avail,
1119                                read_descriptor_t *desc);
1120
1121 /*
1122  *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1123  */
1124 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1125                                         subbuf_actor_t subbuf_actor,
1126                                         read_descriptor_t *desc)
1127 {
1128         struct rchan_buf *buf = filp->private_data;
1129         size_t read_start, avail;
1130         int ret;
1131
1132         if (!desc->count)
1133                 return 0;
1134
1135         mutex_lock(&file_inode(filp)->i_mutex);
1136         do {
1137                 if (!relay_file_read_avail(buf, *ppos))
1138                         break;
1139
1140                 read_start = relay_file_read_start_pos(*ppos, buf);
1141                 avail = relay_file_read_subbuf_avail(read_start, buf);
1142                 if (!avail)
1143                         break;
1144
1145                 avail = min(desc->count, avail);
1146                 ret = subbuf_actor(read_start, buf, avail, desc);
1147                 if (desc->error < 0)
1148                         break;
1149
1150                 if (ret) {
1151                         relay_file_read_consume(buf, read_start, ret);
1152                         *ppos = relay_file_read_end_pos(buf, read_start, ret);
1153                 }
1154         } while (desc->count && ret);
1155         mutex_unlock(&file_inode(filp)->i_mutex);
1156
1157         return desc->written;
1158 }
1159
1160 static ssize_t relay_file_read(struct file *filp,
1161                                char __user *buffer,
1162                                size_t count,
1163                                loff_t *ppos)
1164 {
1165         read_descriptor_t desc;
1166         desc.written = 0;
1167         desc.count = count;
1168         desc.arg.buf = buffer;
1169         desc.error = 0;
1170         return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1171 }
1172
1173 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1174 {
1175         rbuf->bytes_consumed += bytes_consumed;
1176
1177         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1178                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1179                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1180         }
1181 }
1182
1183 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1184                                    struct pipe_buffer *buf)
1185 {
1186         struct rchan_buf *rbuf;
1187
1188         rbuf = (struct rchan_buf *)page_private(buf->page);
1189         relay_consume_bytes(rbuf, buf->private);
1190 }
1191
1192 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1193         .can_merge = 0,
1194         .confirm = generic_pipe_buf_confirm,
1195         .release = relay_pipe_buf_release,
1196         .steal = generic_pipe_buf_steal,
1197         .get = generic_pipe_buf_get,
1198 };
1199
1200 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1201 {
1202 }
1203
1204 /*
1205  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1206  */
1207 static ssize_t subbuf_splice_actor(struct file *in,
1208                                loff_t *ppos,
1209                                struct pipe_inode_info *pipe,
1210                                size_t len,
1211                                unsigned int flags,
1212                                int *nonpad_ret)
1213 {
1214         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1215         struct rchan_buf *rbuf = in->private_data;
1216         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1217         uint64_t pos = (uint64_t) *ppos;
1218         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1219         size_t read_start = (size_t) do_div(pos, alloc_size);
1220         size_t read_subbuf = read_start / subbuf_size;
1221         size_t padding = rbuf->padding[read_subbuf];
1222         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1223         struct page *pages[PIPE_DEF_BUFFERS];
1224         struct partial_page partial[PIPE_DEF_BUFFERS];
1225         struct splice_pipe_desc spd = {
1226                 .pages = pages,
1227                 .nr_pages = 0,
1228                 .nr_pages_max = PIPE_DEF_BUFFERS,
1229                 .partial = partial,
1230                 .flags = flags,
1231                 .ops = &relay_pipe_buf_ops,
1232                 .spd_release = relay_page_release,
1233         };
1234         ssize_t ret;
1235
1236         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1237                 return 0;
1238         if (splice_grow_spd(pipe, &spd))
1239                 return -ENOMEM;
1240
1241         /*
1242          * Adjust read len, if longer than what is available
1243          */
1244         if (len > (subbuf_size - read_start % subbuf_size))
1245                 len = subbuf_size - read_start % subbuf_size;
1246
1247         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1248         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1249         poff = read_start & ~PAGE_MASK;
1250         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1251
1252         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1253                 unsigned int this_len, this_end, private;
1254                 unsigned int cur_pos = read_start + total_len;
1255
1256                 if (!len)
1257                         break;
1258
1259                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1260                 private = this_len;
1261
1262                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1263                 spd.partial[spd.nr_pages].offset = poff;
1264
1265                 this_end = cur_pos + this_len;
1266                 if (this_end >= nonpad_end) {
1267                         this_len = nonpad_end - cur_pos;
1268                         private = this_len + padding;
1269                 }
1270                 spd.partial[spd.nr_pages].len = this_len;
1271                 spd.partial[spd.nr_pages].private = private;
1272
1273                 len -= this_len;
1274                 total_len += this_len;
1275                 poff = 0;
1276                 pidx = (pidx + 1) % subbuf_pages;
1277
1278                 if (this_end >= nonpad_end) {
1279                         spd.nr_pages++;
1280                         break;
1281                 }
1282         }
1283
1284         ret = 0;
1285         if (!spd.nr_pages)
1286                 goto out;
1287
1288         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1289         if (ret < 0 || ret < total_len)
1290                 goto out;
1291
1292         if (read_start + ret == nonpad_end)
1293                 ret += padding;
1294
1295 out:
1296         splice_shrink_spd(&spd);
1297         return ret;
1298 }
1299
1300 static ssize_t relay_file_splice_read(struct file *in,
1301                                       loff_t *ppos,
1302                                       struct pipe_inode_info *pipe,
1303                                       size_t len,
1304                                       unsigned int flags)
1305 {
1306         ssize_t spliced;
1307         int ret;
1308         int nonpad_ret = 0;
1309
1310         ret = 0;
1311         spliced = 0;
1312
1313         while (len && !spliced) {
1314                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1315                 if (ret < 0)
1316                         break;
1317                 else if (!ret) {
1318                         if (flags & SPLICE_F_NONBLOCK)
1319                                 ret = -EAGAIN;
1320                         break;
1321                 }
1322
1323                 *ppos += ret;
1324                 if (ret > len)
1325                         len = 0;
1326                 else
1327                         len -= ret;
1328                 spliced += nonpad_ret;
1329                 nonpad_ret = 0;
1330         }
1331
1332         if (spliced)
1333                 return spliced;
1334
1335         return ret;
1336 }
1337
1338 const struct file_operations relay_file_operations = {
1339         .open           = relay_file_open,
1340         .poll           = relay_file_poll,
1341         .mmap           = relay_file_mmap,
1342         .read           = relay_file_read,
1343         .llseek         = no_llseek,
1344         .release        = relay_file_release,
1345         .splice_read    = relay_file_splice_read,
1346 };
1347 EXPORT_SYMBOL_GPL(relay_file_operations);
1348
1349 static __init int relay_init(void)
1350 {
1351
1352         hotcpu_notifier(relay_hotcpu_callback, 0);
1353         return 0;
1354 }
1355
1356 early_initcall(relay_init);