Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as full barrier (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies MB (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies MB (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit MB (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page, *page_head;
473         int err, ro = 0;
474
475         /*
476          * The futex address must be "naturally" aligned.
477          */
478         key->both.offset = address % PAGE_SIZE;
479         if (unlikely((address % sizeof(u32)) != 0))
480                 return -EINVAL;
481         address -= key->both.offset;
482
483         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484                 return -EFAULT;
485
486         if (unlikely(should_fail_futex(fshared)))
487                 return -EFAULT;
488
489         /*
490          * PROCESS_PRIVATE futexes are fast.
491          * As the mm cannot disappear under us and the 'key' only needs
492          * virtual address, we dont even have to find the underlying vma.
493          * Note : We do have to check 'uaddr' is a valid user address,
494          *        but access_ok() should be faster than find_vma()
495          */
496         if (!fshared) {
497                 key->private.mm = mm;
498                 key->private.address = address;
499                 get_futex_key_refs(key);  /* implies MB (B) */
500                 return 0;
501         }
502
503 again:
504         /* Ignore any VERIFY_READ mapping (futex common case) */
505         if (unlikely(should_fail_futex(fshared)))
506                 return -EFAULT;
507
508         err = get_user_pages_fast(address, 1, 1, &page);
509         /*
510          * If write access is not required (eg. FUTEX_WAIT), try
511          * and get read-only access.
512          */
513         if (err == -EFAULT && rw == VERIFY_READ) {
514                 err = get_user_pages_fast(address, 1, 0, &page);
515                 ro = 1;
516         }
517         if (err < 0)
518                 return err;
519         else
520                 err = 0;
521
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523         page_head = page;
524         if (unlikely(PageTail(page))) {
525                 put_page(page);
526                 /* serialize against __split_huge_page_splitting() */
527                 local_irq_disable();
528                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
529                         page_head = compound_head(page);
530                         /*
531                          * page_head is valid pointer but we must pin
532                          * it before taking the PG_lock and/or
533                          * PG_compound_lock. The moment we re-enable
534                          * irqs __split_huge_page_splitting() can
535                          * return and the head page can be freed from
536                          * under us. We can't take the PG_lock and/or
537                          * PG_compound_lock on a page that could be
538                          * freed from under us.
539                          */
540                         if (page != page_head) {
541                                 get_page(page_head);
542                                 put_page(page);
543                         }
544                         local_irq_enable();
545                 } else {
546                         local_irq_enable();
547                         goto again;
548                 }
549         }
550 #else
551         page_head = compound_head(page);
552         if (page != page_head) {
553                 get_page(page_head);
554                 put_page(page);
555         }
556 #endif
557
558         lock_page(page_head);
559
560         /*
561          * If page_head->mapping is NULL, then it cannot be a PageAnon
562          * page; but it might be the ZERO_PAGE or in the gate area or
563          * in a special mapping (all cases which we are happy to fail);
564          * or it may have been a good file page when get_user_pages_fast
565          * found it, but truncated or holepunched or subjected to
566          * invalidate_complete_page2 before we got the page lock (also
567          * cases which we are happy to fail).  And we hold a reference,
568          * so refcount care in invalidate_complete_page's remove_mapping
569          * prevents drop_caches from setting mapping to NULL beneath us.
570          *
571          * The case we do have to guard against is when memory pressure made
572          * shmem_writepage move it from filecache to swapcache beneath us:
573          * an unlikely race, but we do need to retry for page_head->mapping.
574          */
575         if (!page_head->mapping) {
576                 int shmem_swizzled = PageSwapCache(page_head);
577                 unlock_page(page_head);
578                 put_page(page_head);
579                 if (shmem_swizzled)
580                         goto again;
581                 return -EFAULT;
582         }
583
584         /*
585          * Private mappings are handled in a simple way.
586          *
587          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588          * it's a read-only handle, it's expected that futexes attach to
589          * the object not the particular process.
590          */
591         if (PageAnon(page_head)) {
592                 /*
593                  * A RO anonymous page will never change and thus doesn't make
594                  * sense for futex operations.
595                  */
596                 if (unlikely(should_fail_futex(fshared)) || ro) {
597                         err = -EFAULT;
598                         goto out;
599                 }
600
601                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
602                 key->private.mm = mm;
603                 key->private.address = address;
604         } else {
605                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
606                 key->shared.inode = page_head->mapping->host;
607                 key->shared.pgoff = basepage_index(page);
608         }
609
610         get_futex_key_refs(key); /* implies MB (B) */
611
612 out:
613         unlock_page(page_head);
614         put_page(page_head);
615         return err;
616 }
617
618 static inline void put_futex_key(union futex_key *key)
619 {
620         drop_futex_key_refs(key);
621 }
622
623 /**
624  * fault_in_user_writeable() - Fault in user address and verify RW access
625  * @uaddr:      pointer to faulting user space address
626  *
627  * Slow path to fixup the fault we just took in the atomic write
628  * access to @uaddr.
629  *
630  * We have no generic implementation of a non-destructive write to the
631  * user address. We know that we faulted in the atomic pagefault
632  * disabled section so we can as well avoid the #PF overhead by
633  * calling get_user_pages() right away.
634  */
635 static int fault_in_user_writeable(u32 __user *uaddr)
636 {
637         struct mm_struct *mm = current->mm;
638         int ret;
639
640         down_read(&mm->mmap_sem);
641         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642                                FAULT_FLAG_WRITE);
643         up_read(&mm->mmap_sem);
644
645         return ret < 0 ? ret : 0;
646 }
647
648 /**
649  * futex_top_waiter() - Return the highest priority waiter on a futex
650  * @hb:         the hash bucket the futex_q's reside in
651  * @key:        the futex key (to distinguish it from other futex futex_q's)
652  *
653  * Must be called with the hb lock held.
654  */
655 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656                                         union futex_key *key)
657 {
658         struct futex_q *this;
659
660         plist_for_each_entry(this, &hb->chain, list) {
661                 if (match_futex(&this->key, key))
662                         return this;
663         }
664         return NULL;
665 }
666
667 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668                                       u32 uval, u32 newval)
669 {
670         int ret;
671
672         pagefault_disable();
673         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
674         pagefault_enable();
675
676         return ret;
677 }
678
679 static int get_futex_value_locked(u32 *dest, u32 __user *from)
680 {
681         int ret;
682
683         pagefault_disable();
684         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
685         pagefault_enable();
686
687         return ret ? -EFAULT : 0;
688 }
689
690
691 /*
692  * PI code:
693  */
694 static int refill_pi_state_cache(void)
695 {
696         struct futex_pi_state *pi_state;
697
698         if (likely(current->pi_state_cache))
699                 return 0;
700
701         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
702
703         if (!pi_state)
704                 return -ENOMEM;
705
706         INIT_LIST_HEAD(&pi_state->list);
707         /* pi_mutex gets initialized later */
708         pi_state->owner = NULL;
709         atomic_set(&pi_state->refcount, 1);
710         pi_state->key = FUTEX_KEY_INIT;
711
712         current->pi_state_cache = pi_state;
713
714         return 0;
715 }
716
717 static struct futex_pi_state * alloc_pi_state(void)
718 {
719         struct futex_pi_state *pi_state = current->pi_state_cache;
720
721         WARN_ON(!pi_state);
722         current->pi_state_cache = NULL;
723
724         return pi_state;
725 }
726
727 /*
728  * Must be called with the hb lock held.
729  */
730 static void free_pi_state(struct futex_pi_state *pi_state)
731 {
732         if (!pi_state)
733                 return;
734
735         if (!atomic_dec_and_test(&pi_state->refcount))
736                 return;
737
738         /*
739          * If pi_state->owner is NULL, the owner is most probably dying
740          * and has cleaned up the pi_state already
741          */
742         if (pi_state->owner) {
743                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
744                 list_del_init(&pi_state->list);
745                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
746
747                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
748         }
749
750         if (current->pi_state_cache)
751                 kfree(pi_state);
752         else {
753                 /*
754                  * pi_state->list is already empty.
755                  * clear pi_state->owner.
756                  * refcount is at 0 - put it back to 1.
757                  */
758                 pi_state->owner = NULL;
759                 atomic_set(&pi_state->refcount, 1);
760                 current->pi_state_cache = pi_state;
761         }
762 }
763
764 /*
765  * Look up the task based on what TID userspace gave us.
766  * We dont trust it.
767  */
768 static struct task_struct * futex_find_get_task(pid_t pid)
769 {
770         struct task_struct *p;
771
772         rcu_read_lock();
773         p = find_task_by_vpid(pid);
774         if (p)
775                 get_task_struct(p);
776
777         rcu_read_unlock();
778
779         return p;
780 }
781
782 /*
783  * This task is holding PI mutexes at exit time => bad.
784  * Kernel cleans up PI-state, but userspace is likely hosed.
785  * (Robust-futex cleanup is separate and might save the day for userspace.)
786  */
787 void exit_pi_state_list(struct task_struct *curr)
788 {
789         struct list_head *next, *head = &curr->pi_state_list;
790         struct futex_pi_state *pi_state;
791         struct futex_hash_bucket *hb;
792         union futex_key key = FUTEX_KEY_INIT;
793
794         if (!futex_cmpxchg_enabled)
795                 return;
796         /*
797          * We are a ZOMBIE and nobody can enqueue itself on
798          * pi_state_list anymore, but we have to be careful
799          * versus waiters unqueueing themselves:
800          */
801         raw_spin_lock_irq(&curr->pi_lock);
802         while (!list_empty(head)) {
803
804                 next = head->next;
805                 pi_state = list_entry(next, struct futex_pi_state, list);
806                 key = pi_state->key;
807                 hb = hash_futex(&key);
808                 raw_spin_unlock_irq(&curr->pi_lock);
809
810                 spin_lock(&hb->lock);
811
812                 raw_spin_lock_irq(&curr->pi_lock);
813                 /*
814                  * We dropped the pi-lock, so re-check whether this
815                  * task still owns the PI-state:
816                  */
817                 if (head->next != next) {
818                         raw_spin_unlock_irq(&curr->pi_lock);
819                         spin_unlock(&hb->lock);
820                         raw_spin_lock_irq(&curr->pi_lock);
821                         continue;
822                 }
823
824                 WARN_ON(pi_state->owner != curr);
825                 WARN_ON(list_empty(&pi_state->list));
826                 list_del_init(&pi_state->list);
827                 pi_state->owner = NULL;
828                 raw_spin_unlock_irq(&curr->pi_lock);
829
830                 rt_mutex_unlock(&pi_state->pi_mutex);
831
832                 spin_unlock(&hb->lock);
833
834                 raw_spin_lock_irq(&curr->pi_lock);
835         }
836         raw_spin_unlock_irq(&curr->pi_lock);
837 }
838
839 /*
840  * We need to check the following states:
841  *
842  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
843  *
844  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
845  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
846  *
847  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
848  *
849  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
850  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
851  *
852  * [6]  Found  | Found    | task      | 0         | 1      | Valid
853  *
854  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
855  *
856  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
857  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
858  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
859  *
860  * [1]  Indicates that the kernel can acquire the futex atomically. We
861  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
862  *
863  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
864  *      thread is found then it indicates that the owner TID has died.
865  *
866  * [3]  Invalid. The waiter is queued on a non PI futex
867  *
868  * [4]  Valid state after exit_robust_list(), which sets the user space
869  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
870  *
871  * [5]  The user space value got manipulated between exit_robust_list()
872  *      and exit_pi_state_list()
873  *
874  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
875  *      the pi_state but cannot access the user space value.
876  *
877  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
878  *
879  * [8]  Owner and user space value match
880  *
881  * [9]  There is no transient state which sets the user space TID to 0
882  *      except exit_robust_list(), but this is indicated by the
883  *      FUTEX_OWNER_DIED bit. See [4]
884  *
885  * [10] There is no transient state which leaves owner and user space
886  *      TID out of sync.
887  */
888
889 /*
890  * Validate that the existing waiter has a pi_state and sanity check
891  * the pi_state against the user space value. If correct, attach to
892  * it.
893  */
894 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
895                               struct futex_pi_state **ps)
896 {
897         pid_t pid = uval & FUTEX_TID_MASK;
898
899         /*
900          * Userspace might have messed up non-PI and PI futexes [3]
901          */
902         if (unlikely(!pi_state))
903                 return -EINVAL;
904
905         WARN_ON(!atomic_read(&pi_state->refcount));
906
907         /*
908          * Handle the owner died case:
909          */
910         if (uval & FUTEX_OWNER_DIED) {
911                 /*
912                  * exit_pi_state_list sets owner to NULL and wakes the
913                  * topmost waiter. The task which acquires the
914                  * pi_state->rt_mutex will fixup owner.
915                  */
916                 if (!pi_state->owner) {
917                         /*
918                          * No pi state owner, but the user space TID
919                          * is not 0. Inconsistent state. [5]
920                          */
921                         if (pid)
922                                 return -EINVAL;
923                         /*
924                          * Take a ref on the state and return success. [4]
925                          */
926                         goto out_state;
927                 }
928
929                 /*
930                  * If TID is 0, then either the dying owner has not
931                  * yet executed exit_pi_state_list() or some waiter
932                  * acquired the rtmutex in the pi state, but did not
933                  * yet fixup the TID in user space.
934                  *
935                  * Take a ref on the state and return success. [6]
936                  */
937                 if (!pid)
938                         goto out_state;
939         } else {
940                 /*
941                  * If the owner died bit is not set, then the pi_state
942                  * must have an owner. [7]
943                  */
944                 if (!pi_state->owner)
945                         return -EINVAL;
946         }
947
948         /*
949          * Bail out if user space manipulated the futex value. If pi
950          * state exists then the owner TID must be the same as the
951          * user space TID. [9/10]
952          */
953         if (pid != task_pid_vnr(pi_state->owner))
954                 return -EINVAL;
955 out_state:
956         atomic_inc(&pi_state->refcount);
957         *ps = pi_state;
958         return 0;
959 }
960
961 /*
962  * Lookup the task for the TID provided from user space and attach to
963  * it after doing proper sanity checks.
964  */
965 static int attach_to_pi_owner(u32 uval, union futex_key *key,
966                               struct futex_pi_state **ps)
967 {
968         pid_t pid = uval & FUTEX_TID_MASK;
969         struct futex_pi_state *pi_state;
970         struct task_struct *p;
971
972         /*
973          * We are the first waiter - try to look up the real owner and attach
974          * the new pi_state to it, but bail out when TID = 0 [1]
975          */
976         if (!pid)
977                 return -ESRCH;
978         p = futex_find_get_task(pid);
979         if (!p)
980                 return -ESRCH;
981
982         if (unlikely(p->flags & PF_KTHREAD)) {
983                 put_task_struct(p);
984                 return -EPERM;
985         }
986
987         /*
988          * We need to look at the task state flags to figure out,
989          * whether the task is exiting. To protect against the do_exit
990          * change of the task flags, we do this protected by
991          * p->pi_lock:
992          */
993         raw_spin_lock_irq(&p->pi_lock);
994         if (unlikely(p->flags & PF_EXITING)) {
995                 /*
996                  * The task is on the way out. When PF_EXITPIDONE is
997                  * set, we know that the task has finished the
998                  * cleanup:
999                  */
1000                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1001
1002                 raw_spin_unlock_irq(&p->pi_lock);
1003                 put_task_struct(p);
1004                 return ret;
1005         }
1006
1007         /*
1008          * No existing pi state. First waiter. [2]
1009          */
1010         pi_state = alloc_pi_state();
1011
1012         /*
1013          * Initialize the pi_mutex in locked state and make @p
1014          * the owner of it:
1015          */
1016         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1017
1018         /* Store the key for possible exit cleanups: */
1019         pi_state->key = *key;
1020
1021         WARN_ON(!list_empty(&pi_state->list));
1022         list_add(&pi_state->list, &p->pi_state_list);
1023         pi_state->owner = p;
1024         raw_spin_unlock_irq(&p->pi_lock);
1025
1026         put_task_struct(p);
1027
1028         *ps = pi_state;
1029
1030         return 0;
1031 }
1032
1033 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1034                            union futex_key *key, struct futex_pi_state **ps)
1035 {
1036         struct futex_q *match = futex_top_waiter(hb, key);
1037
1038         /*
1039          * If there is a waiter on that futex, validate it and
1040          * attach to the pi_state when the validation succeeds.
1041          */
1042         if (match)
1043                 return attach_to_pi_state(uval, match->pi_state, ps);
1044
1045         /*
1046          * We are the first waiter - try to look up the owner based on
1047          * @uval and attach to it.
1048          */
1049         return attach_to_pi_owner(uval, key, ps);
1050 }
1051
1052 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1053 {
1054         u32 uninitialized_var(curval);
1055
1056         if (unlikely(should_fail_futex(true)))
1057                 return -EFAULT;
1058
1059         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1060                 return -EFAULT;
1061
1062         /*If user space value changed, let the caller retry */
1063         return curval != uval ? -EAGAIN : 0;
1064 }
1065
1066 /**
1067  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1068  * @uaddr:              the pi futex user address
1069  * @hb:                 the pi futex hash bucket
1070  * @key:                the futex key associated with uaddr and hb
1071  * @ps:                 the pi_state pointer where we store the result of the
1072  *                      lookup
1073  * @task:               the task to perform the atomic lock work for.  This will
1074  *                      be "current" except in the case of requeue pi.
1075  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1076  *
1077  * Return:
1078  *  0 - ready to wait;
1079  *  1 - acquired the lock;
1080  * <0 - error
1081  *
1082  * The hb->lock and futex_key refs shall be held by the caller.
1083  */
1084 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1085                                 union futex_key *key,
1086                                 struct futex_pi_state **ps,
1087                                 struct task_struct *task, int set_waiters)
1088 {
1089         u32 uval, newval, vpid = task_pid_vnr(task);
1090         struct futex_q *match;
1091         int ret;
1092
1093         /*
1094          * Read the user space value first so we can validate a few
1095          * things before proceeding further.
1096          */
1097         if (get_futex_value_locked(&uval, uaddr))
1098                 return -EFAULT;
1099
1100         if (unlikely(should_fail_futex(true)))
1101                 return -EFAULT;
1102
1103         /*
1104          * Detect deadlocks.
1105          */
1106         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1107                 return -EDEADLK;
1108
1109         if ((unlikely(should_fail_futex(true))))
1110                 return -EDEADLK;
1111
1112         /*
1113          * Lookup existing state first. If it exists, try to attach to
1114          * its pi_state.
1115          */
1116         match = futex_top_waiter(hb, key);
1117         if (match)
1118                 return attach_to_pi_state(uval, match->pi_state, ps);
1119
1120         /*
1121          * No waiter and user TID is 0. We are here because the
1122          * waiters or the owner died bit is set or called from
1123          * requeue_cmp_pi or for whatever reason something took the
1124          * syscall.
1125          */
1126         if (!(uval & FUTEX_TID_MASK)) {
1127                 /*
1128                  * We take over the futex. No other waiters and the user space
1129                  * TID is 0. We preserve the owner died bit.
1130                  */
1131                 newval = uval & FUTEX_OWNER_DIED;
1132                 newval |= vpid;
1133
1134                 /* The futex requeue_pi code can enforce the waiters bit */
1135                 if (set_waiters)
1136                         newval |= FUTEX_WAITERS;
1137
1138                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1139                 /* If the take over worked, return 1 */
1140                 return ret < 0 ? ret : 1;
1141         }
1142
1143         /*
1144          * First waiter. Set the waiters bit before attaching ourself to
1145          * the owner. If owner tries to unlock, it will be forced into
1146          * the kernel and blocked on hb->lock.
1147          */
1148         newval = uval | FUTEX_WAITERS;
1149         ret = lock_pi_update_atomic(uaddr, uval, newval);
1150         if (ret)
1151                 return ret;
1152         /*
1153          * If the update of the user space value succeeded, we try to
1154          * attach to the owner. If that fails, no harm done, we only
1155          * set the FUTEX_WAITERS bit in the user space variable.
1156          */
1157         return attach_to_pi_owner(uval, key, ps);
1158 }
1159
1160 /**
1161  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1162  * @q:  The futex_q to unqueue
1163  *
1164  * The q->lock_ptr must not be NULL and must be held by the caller.
1165  */
1166 static void __unqueue_futex(struct futex_q *q)
1167 {
1168         struct futex_hash_bucket *hb;
1169
1170         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1171             || WARN_ON(plist_node_empty(&q->list)))
1172                 return;
1173
1174         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1175         plist_del(&q->list, &hb->chain);
1176         hb_waiters_dec(hb);
1177 }
1178
1179 /*
1180  * The hash bucket lock must be held when this is called.
1181  * Afterwards, the futex_q must not be accessed. Callers
1182  * must ensure to later call wake_up_q() for the actual
1183  * wakeups to occur.
1184  */
1185 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1186 {
1187         struct task_struct *p = q->task;
1188
1189         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1190                 return;
1191
1192         /*
1193          * Queue the task for later wakeup for after we've released
1194          * the hb->lock. wake_q_add() grabs reference to p.
1195          */
1196         wake_q_add(wake_q, p);
1197         __unqueue_futex(q);
1198         /*
1199          * The waiting task can free the futex_q as soon as
1200          * q->lock_ptr = NULL is written, without taking any locks. A
1201          * memory barrier is required here to prevent the following
1202          * store to lock_ptr from getting ahead of the plist_del.
1203          */
1204         smp_wmb();
1205         q->lock_ptr = NULL;
1206 }
1207
1208 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1209                          struct futex_hash_bucket *hb)
1210 {
1211         struct task_struct *new_owner;
1212         struct futex_pi_state *pi_state = this->pi_state;
1213         u32 uninitialized_var(curval), newval;
1214         WAKE_Q(wake_q);
1215         WAKE_Q(wake_sleeper_q);
1216         bool deboost;
1217         int ret = 0;
1218
1219         if (!pi_state)
1220                 return -EINVAL;
1221
1222         /*
1223          * If current does not own the pi_state then the futex is
1224          * inconsistent and user space fiddled with the futex value.
1225          */
1226         if (pi_state->owner != current)
1227                 return -EINVAL;
1228
1229         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1230         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1231
1232         /*
1233          * It is possible that the next waiter (the one that brought
1234          * this owner to the kernel) timed out and is no longer
1235          * waiting on the lock.
1236          */
1237         if (!new_owner)
1238                 new_owner = this->task;
1239
1240         /*
1241          * We pass it to the next owner. The WAITERS bit is always
1242          * kept enabled while there is PI state around. We cleanup the
1243          * owner died bit, because we are the owner.
1244          */
1245         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1246
1247         if (unlikely(should_fail_futex(true)))
1248                 ret = -EFAULT;
1249
1250         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1251                 ret = -EFAULT;
1252         } else if (curval != uval) {
1253                 /*
1254                  * If a unconditional UNLOCK_PI operation (user space did not
1255                  * try the TID->0 transition) raced with a waiter setting the
1256                  * FUTEX_WAITERS flag between get_user() and locking the hash
1257                  * bucket lock, retry the operation.
1258                  */
1259                 if ((FUTEX_TID_MASK & curval) == uval)
1260                         ret = -EAGAIN;
1261                 else
1262                         ret = -EINVAL;
1263         }
1264         if (ret) {
1265                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1266                 return ret;
1267         }
1268
1269         raw_spin_lock(&pi_state->owner->pi_lock);
1270         WARN_ON(list_empty(&pi_state->list));
1271         list_del_init(&pi_state->list);
1272         raw_spin_unlock(&pi_state->owner->pi_lock);
1273
1274         raw_spin_lock(&new_owner->pi_lock);
1275         WARN_ON(!list_empty(&pi_state->list));
1276         list_add(&pi_state->list, &new_owner->pi_state_list);
1277         pi_state->owner = new_owner;
1278         raw_spin_unlock(&new_owner->pi_lock);
1279
1280         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1281
1282         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q,
1283                                         &wake_sleeper_q);
1284
1285         /*
1286          * First unlock HB so the waiter does not spin on it once he got woken
1287          * up. Second wake up the waiter before the priority is adjusted. If we
1288          * deboost first (and lose our higher priority), then the task might get
1289          * scheduled away before the wake up can take place.
1290          */
1291         deboost |= spin_unlock_no_deboost(&hb->lock);
1292         wake_up_q(&wake_q);
1293         wake_up_q_sleeper(&wake_sleeper_q);
1294         if (deboost)
1295                 rt_mutex_adjust_prio(current);
1296
1297         return 0;
1298 }
1299
1300 /*
1301  * Express the locking dependencies for lockdep:
1302  */
1303 static inline void
1304 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1305 {
1306         if (hb1 <= hb2) {
1307                 spin_lock(&hb1->lock);
1308                 if (hb1 < hb2)
1309                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1310         } else { /* hb1 > hb2 */
1311                 spin_lock(&hb2->lock);
1312                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1313         }
1314 }
1315
1316 static inline void
1317 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1318 {
1319         spin_unlock(&hb1->lock);
1320         if (hb1 != hb2)
1321                 spin_unlock(&hb2->lock);
1322 }
1323
1324 /*
1325  * Wake up waiters matching bitset queued on this futex (uaddr).
1326  */
1327 static int
1328 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1329 {
1330         struct futex_hash_bucket *hb;
1331         struct futex_q *this, *next;
1332         union futex_key key = FUTEX_KEY_INIT;
1333         int ret;
1334         WAKE_Q(wake_q);
1335
1336         if (!bitset)
1337                 return -EINVAL;
1338
1339         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1340         if (unlikely(ret != 0))
1341                 goto out;
1342
1343         hb = hash_futex(&key);
1344
1345         /* Make sure we really have tasks to wakeup */
1346         if (!hb_waiters_pending(hb))
1347                 goto out_put_key;
1348
1349         spin_lock(&hb->lock);
1350
1351         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1352                 if (match_futex (&this->key, &key)) {
1353                         if (this->pi_state || this->rt_waiter) {
1354                                 ret = -EINVAL;
1355                                 break;
1356                         }
1357
1358                         /* Check if one of the bits is set in both bitsets */
1359                         if (!(this->bitset & bitset))
1360                                 continue;
1361
1362                         mark_wake_futex(&wake_q, this);
1363                         if (++ret >= nr_wake)
1364                                 break;
1365                 }
1366         }
1367
1368         spin_unlock(&hb->lock);
1369         wake_up_q(&wake_q);
1370 out_put_key:
1371         put_futex_key(&key);
1372 out:
1373         return ret;
1374 }
1375
1376 /*
1377  * Wake up all waiters hashed on the physical page that is mapped
1378  * to this virtual address:
1379  */
1380 static int
1381 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1382               int nr_wake, int nr_wake2, int op)
1383 {
1384         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1385         struct futex_hash_bucket *hb1, *hb2;
1386         struct futex_q *this, *next;
1387         int ret, op_ret;
1388         WAKE_Q(wake_q);
1389
1390 retry:
1391         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1392         if (unlikely(ret != 0))
1393                 goto out;
1394         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1395         if (unlikely(ret != 0))
1396                 goto out_put_key1;
1397
1398         hb1 = hash_futex(&key1);
1399         hb2 = hash_futex(&key2);
1400
1401 retry_private:
1402         double_lock_hb(hb1, hb2);
1403         op_ret = futex_atomic_op_inuser(op, uaddr2);
1404         if (unlikely(op_ret < 0)) {
1405
1406                 double_unlock_hb(hb1, hb2);
1407
1408 #ifndef CONFIG_MMU
1409                 /*
1410                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1411                  * but we might get them from range checking
1412                  */
1413                 ret = op_ret;
1414                 goto out_put_keys;
1415 #endif
1416
1417                 if (unlikely(op_ret != -EFAULT)) {
1418                         ret = op_ret;
1419                         goto out_put_keys;
1420                 }
1421
1422                 ret = fault_in_user_writeable(uaddr2);
1423                 if (ret)
1424                         goto out_put_keys;
1425
1426                 if (!(flags & FLAGS_SHARED))
1427                         goto retry_private;
1428
1429                 put_futex_key(&key2);
1430                 put_futex_key(&key1);
1431                 goto retry;
1432         }
1433
1434         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1435                 if (match_futex (&this->key, &key1)) {
1436                         if (this->pi_state || this->rt_waiter) {
1437                                 ret = -EINVAL;
1438                                 goto out_unlock;
1439                         }
1440                         mark_wake_futex(&wake_q, this);
1441                         if (++ret >= nr_wake)
1442                                 break;
1443                 }
1444         }
1445
1446         if (op_ret > 0) {
1447                 op_ret = 0;
1448                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1449                         if (match_futex (&this->key, &key2)) {
1450                                 if (this->pi_state || this->rt_waiter) {
1451                                         ret = -EINVAL;
1452                                         goto out_unlock;
1453                                 }
1454                                 mark_wake_futex(&wake_q, this);
1455                                 if (++op_ret >= nr_wake2)
1456                                         break;
1457                         }
1458                 }
1459                 ret += op_ret;
1460         }
1461
1462 out_unlock:
1463         double_unlock_hb(hb1, hb2);
1464         wake_up_q(&wake_q);
1465 out_put_keys:
1466         put_futex_key(&key2);
1467 out_put_key1:
1468         put_futex_key(&key1);
1469 out:
1470         return ret;
1471 }
1472
1473 /**
1474  * requeue_futex() - Requeue a futex_q from one hb to another
1475  * @q:          the futex_q to requeue
1476  * @hb1:        the source hash_bucket
1477  * @hb2:        the target hash_bucket
1478  * @key2:       the new key for the requeued futex_q
1479  */
1480 static inline
1481 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1482                    struct futex_hash_bucket *hb2, union futex_key *key2)
1483 {
1484
1485         /*
1486          * If key1 and key2 hash to the same bucket, no need to
1487          * requeue.
1488          */
1489         if (likely(&hb1->chain != &hb2->chain)) {
1490                 plist_del(&q->list, &hb1->chain);
1491                 hb_waiters_dec(hb1);
1492                 hb_waiters_inc(hb2);
1493                 plist_add(&q->list, &hb2->chain);
1494                 q->lock_ptr = &hb2->lock;
1495         }
1496         get_futex_key_refs(key2);
1497         q->key = *key2;
1498 }
1499
1500 /**
1501  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1502  * @q:          the futex_q
1503  * @key:        the key of the requeue target futex
1504  * @hb:         the hash_bucket of the requeue target futex
1505  *
1506  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1507  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1508  * to the requeue target futex so the waiter can detect the wakeup on the right
1509  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1510  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1511  * to protect access to the pi_state to fixup the owner later.  Must be called
1512  * with both q->lock_ptr and hb->lock held.
1513  */
1514 static inline
1515 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1516                            struct futex_hash_bucket *hb)
1517 {
1518         get_futex_key_refs(key);
1519         q->key = *key;
1520
1521         __unqueue_futex(q);
1522
1523         WARN_ON(!q->rt_waiter);
1524         q->rt_waiter = NULL;
1525
1526         q->lock_ptr = &hb->lock;
1527
1528         wake_up_state(q->task, TASK_NORMAL);
1529 }
1530
1531 /**
1532  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1533  * @pifutex:            the user address of the to futex
1534  * @hb1:                the from futex hash bucket, must be locked by the caller
1535  * @hb2:                the to futex hash bucket, must be locked by the caller
1536  * @key1:               the from futex key
1537  * @key2:               the to futex key
1538  * @ps:                 address to store the pi_state pointer
1539  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1540  *
1541  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1542  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1543  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1544  * hb1 and hb2 must be held by the caller.
1545  *
1546  * Return:
1547  *  0 - failed to acquire the lock atomically;
1548  * >0 - acquired the lock, return value is vpid of the top_waiter
1549  * <0 - error
1550  */
1551 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1552                                  struct futex_hash_bucket *hb1,
1553                                  struct futex_hash_bucket *hb2,
1554                                  union futex_key *key1, union futex_key *key2,
1555                                  struct futex_pi_state **ps, int set_waiters)
1556 {
1557         struct futex_q *top_waiter = NULL;
1558         u32 curval;
1559         int ret, vpid;
1560
1561         if (get_futex_value_locked(&curval, pifutex))
1562                 return -EFAULT;
1563
1564         if (unlikely(should_fail_futex(true)))
1565                 return -EFAULT;
1566
1567         /*
1568          * Find the top_waiter and determine if there are additional waiters.
1569          * If the caller intends to requeue more than 1 waiter to pifutex,
1570          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1571          * as we have means to handle the possible fault.  If not, don't set
1572          * the bit unecessarily as it will force the subsequent unlock to enter
1573          * the kernel.
1574          */
1575         top_waiter = futex_top_waiter(hb1, key1);
1576
1577         /* There are no waiters, nothing for us to do. */
1578         if (!top_waiter)
1579                 return 0;
1580
1581         /* Ensure we requeue to the expected futex. */
1582         if (!match_futex(top_waiter->requeue_pi_key, key2))
1583                 return -EINVAL;
1584
1585         /*
1586          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1587          * the contended case or if set_waiters is 1.  The pi_state is returned
1588          * in ps in contended cases.
1589          */
1590         vpid = task_pid_vnr(top_waiter->task);
1591         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1592                                    set_waiters);
1593         if (ret == 1) {
1594                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1595                 return vpid;
1596         }
1597         return ret;
1598 }
1599
1600 /**
1601  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1602  * @uaddr1:     source futex user address
1603  * @flags:      futex flags (FLAGS_SHARED, etc.)
1604  * @uaddr2:     target futex user address
1605  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1606  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1607  * @cmpval:     @uaddr1 expected value (or %NULL)
1608  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1609  *              pi futex (pi to pi requeue is not supported)
1610  *
1611  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1612  * uaddr2 atomically on behalf of the top waiter.
1613  *
1614  * Return:
1615  * >=0 - on success, the number of tasks requeued or woken;
1616  *  <0 - on error
1617  */
1618 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1619                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1620                          u32 *cmpval, int requeue_pi)
1621 {
1622         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1623         int drop_count = 0, task_count = 0, ret;
1624         struct futex_pi_state *pi_state = NULL;
1625         struct futex_hash_bucket *hb1, *hb2;
1626         struct futex_q *this, *next;
1627         WAKE_Q(wake_q);
1628
1629         if (requeue_pi) {
1630                 /*
1631                  * Requeue PI only works on two distinct uaddrs. This
1632                  * check is only valid for private futexes. See below.
1633                  */
1634                 if (uaddr1 == uaddr2)
1635                         return -EINVAL;
1636
1637                 /*
1638                  * requeue_pi requires a pi_state, try to allocate it now
1639                  * without any locks in case it fails.
1640                  */
1641                 if (refill_pi_state_cache())
1642                         return -ENOMEM;
1643                 /*
1644                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1645                  * + nr_requeue, since it acquires the rt_mutex prior to
1646                  * returning to userspace, so as to not leave the rt_mutex with
1647                  * waiters and no owner.  However, second and third wake-ups
1648                  * cannot be predicted as they involve race conditions with the
1649                  * first wake and a fault while looking up the pi_state.  Both
1650                  * pthread_cond_signal() and pthread_cond_broadcast() should
1651                  * use nr_wake=1.
1652                  */
1653                 if (nr_wake != 1)
1654                         return -EINVAL;
1655         }
1656
1657 retry:
1658         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1659         if (unlikely(ret != 0))
1660                 goto out;
1661         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1662                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1663         if (unlikely(ret != 0))
1664                 goto out_put_key1;
1665
1666         /*
1667          * The check above which compares uaddrs is not sufficient for
1668          * shared futexes. We need to compare the keys:
1669          */
1670         if (requeue_pi && match_futex(&key1, &key2)) {
1671                 ret = -EINVAL;
1672                 goto out_put_keys;
1673         }
1674
1675         hb1 = hash_futex(&key1);
1676         hb2 = hash_futex(&key2);
1677
1678 retry_private:
1679         hb_waiters_inc(hb2);
1680         double_lock_hb(hb1, hb2);
1681
1682         if (likely(cmpval != NULL)) {
1683                 u32 curval;
1684
1685                 ret = get_futex_value_locked(&curval, uaddr1);
1686
1687                 if (unlikely(ret)) {
1688                         double_unlock_hb(hb1, hb2);
1689                         hb_waiters_dec(hb2);
1690
1691                         ret = get_user(curval, uaddr1);
1692                         if (ret)
1693                                 goto out_put_keys;
1694
1695                         if (!(flags & FLAGS_SHARED))
1696                                 goto retry_private;
1697
1698                         put_futex_key(&key2);
1699                         put_futex_key(&key1);
1700                         goto retry;
1701                 }
1702                 if (curval != *cmpval) {
1703                         ret = -EAGAIN;
1704                         goto out_unlock;
1705                 }
1706         }
1707
1708         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1709                 /*
1710                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1711                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1712                  * bit.  We force this here where we are able to easily handle
1713                  * faults rather in the requeue loop below.
1714                  */
1715                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1716                                                  &key2, &pi_state, nr_requeue);
1717
1718                 /*
1719                  * At this point the top_waiter has either taken uaddr2 or is
1720                  * waiting on it.  If the former, then the pi_state will not
1721                  * exist yet, look it up one more time to ensure we have a
1722                  * reference to it. If the lock was taken, ret contains the
1723                  * vpid of the top waiter task.
1724                  */
1725                 if (ret > 0) {
1726                         WARN_ON(pi_state);
1727                         drop_count++;
1728                         task_count++;
1729                         /*
1730                          * If we acquired the lock, then the user
1731                          * space value of uaddr2 should be vpid. It
1732                          * cannot be changed by the top waiter as it
1733                          * is blocked on hb2 lock if it tries to do
1734                          * so. If something fiddled with it behind our
1735                          * back the pi state lookup might unearth
1736                          * it. So we rather use the known value than
1737                          * rereading and handing potential crap to
1738                          * lookup_pi_state.
1739                          */
1740                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1741                 }
1742
1743                 switch (ret) {
1744                 case 0:
1745                         break;
1746                 case -EFAULT:
1747                         free_pi_state(pi_state);
1748                         pi_state = NULL;
1749                         double_unlock_hb(hb1, hb2);
1750                         hb_waiters_dec(hb2);
1751                         put_futex_key(&key2);
1752                         put_futex_key(&key1);
1753                         ret = fault_in_user_writeable(uaddr2);
1754                         if (!ret)
1755                                 goto retry;
1756                         goto out;
1757                 case -EAGAIN:
1758                         /*
1759                          * Two reasons for this:
1760                          * - Owner is exiting and we just wait for the
1761                          *   exit to complete.
1762                          * - The user space value changed.
1763                          */
1764                         free_pi_state(pi_state);
1765                         pi_state = NULL;
1766                         double_unlock_hb(hb1, hb2);
1767                         hb_waiters_dec(hb2);
1768                         put_futex_key(&key2);
1769                         put_futex_key(&key1);
1770                         cond_resched();
1771                         goto retry;
1772                 default:
1773                         goto out_unlock;
1774                 }
1775         }
1776
1777         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1778                 if (task_count - nr_wake >= nr_requeue)
1779                         break;
1780
1781                 if (!match_futex(&this->key, &key1))
1782                         continue;
1783
1784                 /*
1785                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1786                  * be paired with each other and no other futex ops.
1787                  *
1788                  * We should never be requeueing a futex_q with a pi_state,
1789                  * which is awaiting a futex_unlock_pi().
1790                  */
1791                 if ((requeue_pi && !this->rt_waiter) ||
1792                     (!requeue_pi && this->rt_waiter) ||
1793                     this->pi_state) {
1794                         ret = -EINVAL;
1795                         break;
1796                 }
1797
1798                 /*
1799                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1800                  * lock, we already woke the top_waiter.  If not, it will be
1801                  * woken by futex_unlock_pi().
1802                  */
1803                 if (++task_count <= nr_wake && !requeue_pi) {
1804                         mark_wake_futex(&wake_q, this);
1805                         continue;
1806                 }
1807
1808                 /* Ensure we requeue to the expected futex for requeue_pi. */
1809                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1810                         ret = -EINVAL;
1811                         break;
1812                 }
1813
1814                 /*
1815                  * Requeue nr_requeue waiters and possibly one more in the case
1816                  * of requeue_pi if we couldn't acquire the lock atomically.
1817                  */
1818                 if (requeue_pi) {
1819                         /* Prepare the waiter to take the rt_mutex. */
1820                         atomic_inc(&pi_state->refcount);
1821                         this->pi_state = pi_state;
1822                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1823                                                         this->rt_waiter,
1824                                                         this->task);
1825                         if (ret == 1) {
1826                                 /* We got the lock. */
1827                                 requeue_pi_wake_futex(this, &key2, hb2);
1828                                 drop_count++;
1829                                 continue;
1830                         } else if (ret == -EAGAIN) {
1831                                 /*
1832                                  * Waiter was woken by timeout or
1833                                  * signal and has set pi_blocked_on to
1834                                  * PI_WAKEUP_INPROGRESS before we
1835                                  * tried to enqueue it on the rtmutex.
1836                                  */
1837                                 this->pi_state = NULL;
1838                                 free_pi_state(pi_state);
1839                                 continue;
1840                         } else if (ret) {
1841                                 /* -EDEADLK */
1842                                 this->pi_state = NULL;
1843                                 free_pi_state(pi_state);
1844                                 goto out_unlock;
1845                         }
1846                 }
1847                 requeue_futex(this, hb1, hb2, &key2);
1848                 drop_count++;
1849         }
1850
1851 out_unlock:
1852         free_pi_state(pi_state);
1853         double_unlock_hb(hb1, hb2);
1854         wake_up_q(&wake_q);
1855         hb_waiters_dec(hb2);
1856
1857         /*
1858          * drop_futex_key_refs() must be called outside the spinlocks. During
1859          * the requeue we moved futex_q's from the hash bucket at key1 to the
1860          * one at key2 and updated their key pointer.  We no longer need to
1861          * hold the references to key1.
1862          */
1863         while (--drop_count >= 0)
1864                 drop_futex_key_refs(&key1);
1865
1866 out_put_keys:
1867         put_futex_key(&key2);
1868 out_put_key1:
1869         put_futex_key(&key1);
1870 out:
1871         return ret ? ret : task_count;
1872 }
1873
1874 /* The key must be already stored in q->key. */
1875 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1876         __acquires(&hb->lock)
1877 {
1878         struct futex_hash_bucket *hb;
1879
1880         hb = hash_futex(&q->key);
1881
1882         /*
1883          * Increment the counter before taking the lock so that
1884          * a potential waker won't miss a to-be-slept task that is
1885          * waiting for the spinlock. This is safe as all queue_lock()
1886          * users end up calling queue_me(). Similarly, for housekeeping,
1887          * decrement the counter at queue_unlock() when some error has
1888          * occurred and we don't end up adding the task to the list.
1889          */
1890         hb_waiters_inc(hb);
1891
1892         q->lock_ptr = &hb->lock;
1893
1894         spin_lock(&hb->lock); /* implies MB (A) */
1895         return hb;
1896 }
1897
1898 static inline void
1899 queue_unlock(struct futex_hash_bucket *hb)
1900         __releases(&hb->lock)
1901 {
1902         spin_unlock(&hb->lock);
1903         hb_waiters_dec(hb);
1904 }
1905
1906 /**
1907  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1908  * @q:  The futex_q to enqueue
1909  * @hb: The destination hash bucket
1910  *
1911  * The hb->lock must be held by the caller, and is released here. A call to
1912  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1913  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1914  * or nothing if the unqueue is done as part of the wake process and the unqueue
1915  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1916  * an example).
1917  */
1918 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1919         __releases(&hb->lock)
1920 {
1921         int prio;
1922
1923         /*
1924          * The priority used to register this element is
1925          * - either the real thread-priority for the real-time threads
1926          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1927          * - or MAX_RT_PRIO for non-RT threads.
1928          * Thus, all RT-threads are woken first in priority order, and
1929          * the others are woken last, in FIFO order.
1930          */
1931         prio = min(current->normal_prio, MAX_RT_PRIO);
1932
1933         plist_node_init(&q->list, prio);
1934         plist_add(&q->list, &hb->chain);
1935         q->task = current;
1936         spin_unlock(&hb->lock);
1937 }
1938
1939 /**
1940  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1941  * @q:  The futex_q to unqueue
1942  *
1943  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1944  * be paired with exactly one earlier call to queue_me().
1945  *
1946  * Return:
1947  *   1 - if the futex_q was still queued (and we removed unqueued it);
1948  *   0 - if the futex_q was already removed by the waking thread
1949  */
1950 static int unqueue_me(struct futex_q *q)
1951 {
1952         spinlock_t *lock_ptr;
1953         int ret = 0;
1954
1955         /* In the common case we don't take the spinlock, which is nice. */
1956 retry:
1957         lock_ptr = q->lock_ptr;
1958         barrier();
1959         if (lock_ptr != NULL) {
1960                 spin_lock(lock_ptr);
1961                 /*
1962                  * q->lock_ptr can change between reading it and
1963                  * spin_lock(), causing us to take the wrong lock.  This
1964                  * corrects the race condition.
1965                  *
1966                  * Reasoning goes like this: if we have the wrong lock,
1967                  * q->lock_ptr must have changed (maybe several times)
1968                  * between reading it and the spin_lock().  It can
1969                  * change again after the spin_lock() but only if it was
1970                  * already changed before the spin_lock().  It cannot,
1971                  * however, change back to the original value.  Therefore
1972                  * we can detect whether we acquired the correct lock.
1973                  */
1974                 if (unlikely(lock_ptr != q->lock_ptr)) {
1975                         spin_unlock(lock_ptr);
1976                         goto retry;
1977                 }
1978                 __unqueue_futex(q);
1979
1980                 BUG_ON(q->pi_state);
1981
1982                 spin_unlock(lock_ptr);
1983                 ret = 1;
1984         }
1985
1986         drop_futex_key_refs(&q->key);
1987         return ret;
1988 }
1989
1990 /*
1991  * PI futexes can not be requeued and must remove themself from the
1992  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1993  * and dropped here.
1994  */
1995 static void unqueue_me_pi(struct futex_q *q)
1996         __releases(q->lock_ptr)
1997 {
1998         __unqueue_futex(q);
1999
2000         BUG_ON(!q->pi_state);
2001         free_pi_state(q->pi_state);
2002         q->pi_state = NULL;
2003
2004         spin_unlock(q->lock_ptr);
2005 }
2006
2007 /*
2008  * Fixup the pi_state owner with the new owner.
2009  *
2010  * Must be called with hash bucket lock held and mm->sem held for non
2011  * private futexes.
2012  */
2013 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2014                                 struct task_struct *newowner)
2015 {
2016         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2017         struct futex_pi_state *pi_state = q->pi_state;
2018         struct task_struct *oldowner = pi_state->owner;
2019         u32 uval, uninitialized_var(curval), newval;
2020         int ret;
2021
2022         /* Owner died? */
2023         if (!pi_state->owner)
2024                 newtid |= FUTEX_OWNER_DIED;
2025
2026         /*
2027          * We are here either because we stole the rtmutex from the
2028          * previous highest priority waiter or we are the highest priority
2029          * waiter but failed to get the rtmutex the first time.
2030          * We have to replace the newowner TID in the user space variable.
2031          * This must be atomic as we have to preserve the owner died bit here.
2032          *
2033          * Note: We write the user space value _before_ changing the pi_state
2034          * because we can fault here. Imagine swapped out pages or a fork
2035          * that marked all the anonymous memory readonly for cow.
2036          *
2037          * Modifying pi_state _before_ the user space value would
2038          * leave the pi_state in an inconsistent state when we fault
2039          * here, because we need to drop the hash bucket lock to
2040          * handle the fault. This might be observed in the PID check
2041          * in lookup_pi_state.
2042          */
2043 retry:
2044         if (get_futex_value_locked(&uval, uaddr))
2045                 goto handle_fault;
2046
2047         while (1) {
2048                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2049
2050                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2051                         goto handle_fault;
2052                 if (curval == uval)
2053                         break;
2054                 uval = curval;
2055         }
2056
2057         /*
2058          * We fixed up user space. Now we need to fix the pi_state
2059          * itself.
2060          */
2061         if (pi_state->owner != NULL) {
2062                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2063                 WARN_ON(list_empty(&pi_state->list));
2064                 list_del_init(&pi_state->list);
2065                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2066         }
2067
2068         pi_state->owner = newowner;
2069
2070         raw_spin_lock_irq(&newowner->pi_lock);
2071         WARN_ON(!list_empty(&pi_state->list));
2072         list_add(&pi_state->list, &newowner->pi_state_list);
2073         raw_spin_unlock_irq(&newowner->pi_lock);
2074         return 0;
2075
2076         /*
2077          * To handle the page fault we need to drop the hash bucket
2078          * lock here. That gives the other task (either the highest priority
2079          * waiter itself or the task which stole the rtmutex) the
2080          * chance to try the fixup of the pi_state. So once we are
2081          * back from handling the fault we need to check the pi_state
2082          * after reacquiring the hash bucket lock and before trying to
2083          * do another fixup. When the fixup has been done already we
2084          * simply return.
2085          */
2086 handle_fault:
2087         spin_unlock(q->lock_ptr);
2088
2089         ret = fault_in_user_writeable(uaddr);
2090
2091         spin_lock(q->lock_ptr);
2092
2093         /*
2094          * Check if someone else fixed it for us:
2095          */
2096         if (pi_state->owner != oldowner)
2097                 return 0;
2098
2099         if (ret)
2100                 return ret;
2101
2102         goto retry;
2103 }
2104
2105 static long futex_wait_restart(struct restart_block *restart);
2106
2107 /**
2108  * fixup_owner() - Post lock pi_state and corner case management
2109  * @uaddr:      user address of the futex
2110  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2111  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2112  *
2113  * After attempting to lock an rt_mutex, this function is called to cleanup
2114  * the pi_state owner as well as handle race conditions that may allow us to
2115  * acquire the lock. Must be called with the hb lock held.
2116  *
2117  * Return:
2118  *  1 - success, lock taken;
2119  *  0 - success, lock not taken;
2120  * <0 - on error (-EFAULT)
2121  */
2122 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2123 {
2124         struct task_struct *owner;
2125         int ret = 0;
2126
2127         if (locked) {
2128                 /*
2129                  * Got the lock. We might not be the anticipated owner if we
2130                  * did a lock-steal - fix up the PI-state in that case:
2131                  */
2132                 if (q->pi_state->owner != current)
2133                         ret = fixup_pi_state_owner(uaddr, q, current);
2134                 goto out;
2135         }
2136
2137         /*
2138          * Catch the rare case, where the lock was released when we were on the
2139          * way back before we locked the hash bucket.
2140          */
2141         if (q->pi_state->owner == current) {
2142                 /*
2143                  * Try to get the rt_mutex now. This might fail as some other
2144                  * task acquired the rt_mutex after we removed ourself from the
2145                  * rt_mutex waiters list.
2146                  */
2147                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2148                         locked = 1;
2149                         goto out;
2150                 }
2151
2152                 /*
2153                  * pi_state is incorrect, some other task did a lock steal and
2154                  * we returned due to timeout or signal without taking the
2155                  * rt_mutex. Too late.
2156                  */
2157                 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2158                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2159                 if (!owner)
2160                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2161                 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2162                 ret = fixup_pi_state_owner(uaddr, q, owner);
2163                 goto out;
2164         }
2165
2166         /*
2167          * Paranoia check. If we did not take the lock, then we should not be
2168          * the owner of the rt_mutex.
2169          */
2170         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2171                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2172                                 "pi-state %p\n", ret,
2173                                 q->pi_state->pi_mutex.owner,
2174                                 q->pi_state->owner);
2175
2176 out:
2177         return ret ? ret : locked;
2178 }
2179
2180 /**
2181  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2182  * @hb:         the futex hash bucket, must be locked by the caller
2183  * @q:          the futex_q to queue up on
2184  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2185  */
2186 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2187                                 struct hrtimer_sleeper *timeout)
2188 {
2189         /*
2190          * The task state is guaranteed to be set before another task can
2191          * wake it. set_current_state() is implemented using smp_store_mb() and
2192          * queue_me() calls spin_unlock() upon completion, both serializing
2193          * access to the hash list and forcing another memory barrier.
2194          */
2195         set_current_state(TASK_INTERRUPTIBLE);
2196         queue_me(q, hb);
2197
2198         /* Arm the timer */
2199         if (timeout)
2200                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2201
2202         /*
2203          * If we have been removed from the hash list, then another task
2204          * has tried to wake us, and we can skip the call to schedule().
2205          */
2206         if (likely(!plist_node_empty(&q->list))) {
2207                 /*
2208                  * If the timer has already expired, current will already be
2209                  * flagged for rescheduling. Only call schedule if there
2210                  * is no timeout, or if it has yet to expire.
2211                  */
2212                 if (!timeout || timeout->task)
2213                         freezable_schedule();
2214         }
2215         __set_current_state(TASK_RUNNING);
2216 }
2217
2218 /**
2219  * futex_wait_setup() - Prepare to wait on a futex
2220  * @uaddr:      the futex userspace address
2221  * @val:        the expected value
2222  * @flags:      futex flags (FLAGS_SHARED, etc.)
2223  * @q:          the associated futex_q
2224  * @hb:         storage for hash_bucket pointer to be returned to caller
2225  *
2226  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2227  * compare it with the expected value.  Handle atomic faults internally.
2228  * Return with the hb lock held and a q.key reference on success, and unlocked
2229  * with no q.key reference on failure.
2230  *
2231  * Return:
2232  *  0 - uaddr contains val and hb has been locked;
2233  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2234  */
2235 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2236                            struct futex_q *q, struct futex_hash_bucket **hb)
2237 {
2238         u32 uval;
2239         int ret;
2240
2241         /*
2242          * Access the page AFTER the hash-bucket is locked.
2243          * Order is important:
2244          *
2245          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2246          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2247          *
2248          * The basic logical guarantee of a futex is that it blocks ONLY
2249          * if cond(var) is known to be true at the time of blocking, for
2250          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2251          * would open a race condition where we could block indefinitely with
2252          * cond(var) false, which would violate the guarantee.
2253          *
2254          * On the other hand, we insert q and release the hash-bucket only
2255          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2256          * absorb a wakeup if *uaddr does not match the desired values
2257          * while the syscall executes.
2258          */
2259 retry:
2260         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2261         if (unlikely(ret != 0))
2262                 return ret;
2263
2264 retry_private:
2265         *hb = queue_lock(q);
2266
2267         ret = get_futex_value_locked(&uval, uaddr);
2268
2269         if (ret) {
2270                 queue_unlock(*hb);
2271
2272                 ret = get_user(uval, uaddr);
2273                 if (ret)
2274                         goto out;
2275
2276                 if (!(flags & FLAGS_SHARED))
2277                         goto retry_private;
2278
2279                 put_futex_key(&q->key);
2280                 goto retry;
2281         }
2282
2283         if (uval != val) {
2284                 queue_unlock(*hb);
2285                 ret = -EWOULDBLOCK;
2286         }
2287
2288 out:
2289         if (ret)
2290                 put_futex_key(&q->key);
2291         return ret;
2292 }
2293
2294 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2295                       ktime_t *abs_time, u32 bitset)
2296 {
2297         struct hrtimer_sleeper timeout, *to = NULL;
2298         struct restart_block *restart;
2299         struct futex_hash_bucket *hb;
2300         struct futex_q q = futex_q_init;
2301         int ret;
2302
2303         if (!bitset)
2304                 return -EINVAL;
2305         q.bitset = bitset;
2306
2307         if (abs_time) {
2308                 to = &timeout;
2309
2310                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2311                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2312                                       HRTIMER_MODE_ABS);
2313                 hrtimer_init_sleeper(to, current);
2314                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2315                                              current->timer_slack_ns);
2316         }
2317
2318 retry:
2319         /*
2320          * Prepare to wait on uaddr. On success, holds hb lock and increments
2321          * q.key refs.
2322          */
2323         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2324         if (ret)
2325                 goto out;
2326
2327         /* queue_me and wait for wakeup, timeout, or a signal. */
2328         futex_wait_queue_me(hb, &q, to);
2329
2330         /* If we were woken (and unqueued), we succeeded, whatever. */
2331         ret = 0;
2332         /* unqueue_me() drops q.key ref */
2333         if (!unqueue_me(&q))
2334                 goto out;
2335         ret = -ETIMEDOUT;
2336         if (to && !to->task)
2337                 goto out;
2338
2339         /*
2340          * We expect signal_pending(current), but we might be the
2341          * victim of a spurious wakeup as well.
2342          */
2343         if (!signal_pending(current))
2344                 goto retry;
2345
2346         ret = -ERESTARTSYS;
2347         if (!abs_time)
2348                 goto out;
2349
2350         restart = &current->restart_block;
2351         restart->fn = futex_wait_restart;
2352         restart->futex.uaddr = uaddr;
2353         restart->futex.val = val;
2354         restart->futex.time = abs_time->tv64;
2355         restart->futex.bitset = bitset;
2356         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2357
2358         ret = -ERESTART_RESTARTBLOCK;
2359
2360 out:
2361         if (to) {
2362                 hrtimer_cancel(&to->timer);
2363                 destroy_hrtimer_on_stack(&to->timer);
2364         }
2365         return ret;
2366 }
2367
2368
2369 static long futex_wait_restart(struct restart_block *restart)
2370 {
2371         u32 __user *uaddr = restart->futex.uaddr;
2372         ktime_t t, *tp = NULL;
2373
2374         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2375                 t.tv64 = restart->futex.time;
2376                 tp = &t;
2377         }
2378         restart->fn = do_no_restart_syscall;
2379
2380         return (long)futex_wait(uaddr, restart->futex.flags,
2381                                 restart->futex.val, tp, restart->futex.bitset);
2382 }
2383
2384
2385 /*
2386  * Userspace tried a 0 -> TID atomic transition of the futex value
2387  * and failed. The kernel side here does the whole locking operation:
2388  * if there are waiters then it will block as a consequence of relying
2389  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2390  * a 0 value of the futex too.).
2391  *
2392  * Also serves as futex trylock_pi()'ing, and due semantics.
2393  */
2394 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2395                          ktime_t *time, int trylock)
2396 {
2397         struct hrtimer_sleeper timeout, *to = NULL;
2398         struct futex_hash_bucket *hb;
2399         struct futex_q q = futex_q_init;
2400         int res, ret;
2401
2402         if (refill_pi_state_cache())
2403                 return -ENOMEM;
2404
2405         if (time) {
2406                 to = &timeout;
2407                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2408                                       HRTIMER_MODE_ABS);
2409                 hrtimer_init_sleeper(to, current);
2410                 hrtimer_set_expires(&to->timer, *time);
2411         }
2412
2413 retry:
2414         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2415         if (unlikely(ret != 0))
2416                 goto out;
2417
2418 retry_private:
2419         hb = queue_lock(&q);
2420
2421         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2422         if (unlikely(ret)) {
2423                 /*
2424                  * Atomic work succeeded and we got the lock,
2425                  * or failed. Either way, we do _not_ block.
2426                  */
2427                 switch (ret) {
2428                 case 1:
2429                         /* We got the lock. */
2430                         ret = 0;
2431                         goto out_unlock_put_key;
2432                 case -EFAULT:
2433                         goto uaddr_faulted;
2434                 case -EAGAIN:
2435                         /*
2436                          * Two reasons for this:
2437                          * - Task is exiting and we just wait for the
2438                          *   exit to complete.
2439                          * - The user space value changed.
2440                          */
2441                         queue_unlock(hb);
2442                         put_futex_key(&q.key);
2443                         cond_resched();
2444                         goto retry;
2445                 default:
2446                         goto out_unlock_put_key;
2447                 }
2448         }
2449
2450         /*
2451          * Only actually queue now that the atomic ops are done:
2452          */
2453         queue_me(&q, hb);
2454
2455         WARN_ON(!q.pi_state);
2456         /*
2457          * Block on the PI mutex:
2458          */
2459         if (!trylock) {
2460                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2461         } else {
2462                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2463                 /* Fixup the trylock return value: */
2464                 ret = ret ? 0 : -EWOULDBLOCK;
2465         }
2466
2467         spin_lock(q.lock_ptr);
2468         /*
2469          * Fixup the pi_state owner and possibly acquire the lock if we
2470          * haven't already.
2471          */
2472         res = fixup_owner(uaddr, &q, !ret);
2473         /*
2474          * If fixup_owner() returned an error, proprogate that.  If it acquired
2475          * the lock, clear our -ETIMEDOUT or -EINTR.
2476          */
2477         if (res)
2478                 ret = (res < 0) ? res : 0;
2479
2480         /*
2481          * If fixup_owner() faulted and was unable to handle the fault, unlock
2482          * it and return the fault to userspace.
2483          */
2484         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2485                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2486
2487         /* Unqueue and drop the lock */
2488         unqueue_me_pi(&q);
2489
2490         goto out_put_key;
2491
2492 out_unlock_put_key:
2493         queue_unlock(hb);
2494
2495 out_put_key:
2496         put_futex_key(&q.key);
2497 out:
2498         if (to)
2499                 destroy_hrtimer_on_stack(&to->timer);
2500         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2501
2502 uaddr_faulted:
2503         queue_unlock(hb);
2504
2505         ret = fault_in_user_writeable(uaddr);
2506         if (ret)
2507                 goto out_put_key;
2508
2509         if (!(flags & FLAGS_SHARED))
2510                 goto retry_private;
2511
2512         put_futex_key(&q.key);
2513         goto retry;
2514 }
2515
2516 /*
2517  * Userspace attempted a TID -> 0 atomic transition, and failed.
2518  * This is the in-kernel slowpath: we look up the PI state (if any),
2519  * and do the rt-mutex unlock.
2520  */
2521 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2522 {
2523         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2524         union futex_key key = FUTEX_KEY_INIT;
2525         struct futex_hash_bucket *hb;
2526         struct futex_q *match;
2527         int ret;
2528
2529 retry:
2530         if (get_user(uval, uaddr))
2531                 return -EFAULT;
2532         /*
2533          * We release only a lock we actually own:
2534          */
2535         if ((uval & FUTEX_TID_MASK) != vpid)
2536                 return -EPERM;
2537
2538         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2539         if (ret)
2540                 return ret;
2541
2542         hb = hash_futex(&key);
2543         spin_lock(&hb->lock);
2544
2545         /*
2546          * Check waiters first. We do not trust user space values at
2547          * all and we at least want to know if user space fiddled
2548          * with the futex value instead of blindly unlocking.
2549          */
2550         match = futex_top_waiter(hb, &key);
2551         if (match) {
2552                 ret = wake_futex_pi(uaddr, uval, match, hb);
2553                 /*
2554                  * In case of success wake_futex_pi dropped the hash
2555                  * bucket lock.
2556                  */
2557                 if (!ret)
2558                         goto out_putkey;
2559                 /*
2560                  * The atomic access to the futex value generated a
2561                  * pagefault, so retry the user-access and the wakeup:
2562                  */
2563                 if (ret == -EFAULT)
2564                         goto pi_faulted;
2565                 /*
2566                  * A unconditional UNLOCK_PI op raced against a waiter
2567                  * setting the FUTEX_WAITERS bit. Try again.
2568                  */
2569                 if (ret == -EAGAIN) {
2570                         spin_unlock(&hb->lock);
2571                         put_futex_key(&key);
2572                         goto retry;
2573                 }
2574                 /*
2575                  * wake_futex_pi has detected invalid state. Tell user
2576                  * space.
2577                  */
2578                 goto out_unlock;
2579         }
2580
2581         /*
2582          * We have no kernel internal state, i.e. no waiters in the
2583          * kernel. Waiters which are about to queue themselves are stuck
2584          * on hb->lock. So we can safely ignore them. We do neither
2585          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2586          * owner.
2587          */
2588         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2589                 goto pi_faulted;
2590
2591         /*
2592          * If uval has changed, let user space handle it.
2593          */
2594         ret = (curval == uval) ? 0 : -EAGAIN;
2595
2596 out_unlock:
2597         spin_unlock(&hb->lock);
2598 out_putkey:
2599         put_futex_key(&key);
2600         return ret;
2601
2602 pi_faulted:
2603         spin_unlock(&hb->lock);
2604         put_futex_key(&key);
2605
2606         ret = fault_in_user_writeable(uaddr);
2607         if (!ret)
2608                 goto retry;
2609
2610         return ret;
2611 }
2612
2613 /**
2614  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2615  * @hb:         the hash_bucket futex_q was original enqueued on
2616  * @q:          the futex_q woken while waiting to be requeued
2617  * @key2:       the futex_key of the requeue target futex
2618  * @timeout:    the timeout associated with the wait (NULL if none)
2619  *
2620  * Detect if the task was woken on the initial futex as opposed to the requeue
2621  * target futex.  If so, determine if it was a timeout or a signal that caused
2622  * the wakeup and return the appropriate error code to the caller.  Must be
2623  * called with the hb lock held.
2624  *
2625  * Return:
2626  *  0 = no early wakeup detected;
2627  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2628  */
2629 static inline
2630 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2631                                    struct futex_q *q, union futex_key *key2,
2632                                    struct hrtimer_sleeper *timeout)
2633 {
2634         int ret = 0;
2635
2636         /*
2637          * With the hb lock held, we avoid races while we process the wakeup.
2638          * We only need to hold hb (and not hb2) to ensure atomicity as the
2639          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2640          * It can't be requeued from uaddr2 to something else since we don't
2641          * support a PI aware source futex for requeue.
2642          */
2643         if (!match_futex(&q->key, key2)) {
2644                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2645                 /*
2646                  * We were woken prior to requeue by a timeout or a signal.
2647                  * Unqueue the futex_q and determine which it was.
2648                  */
2649                 plist_del(&q->list, &hb->chain);
2650                 hb_waiters_dec(hb);
2651
2652                 /* Handle spurious wakeups gracefully */
2653                 ret = -EWOULDBLOCK;
2654                 if (timeout && !timeout->task)
2655                         ret = -ETIMEDOUT;
2656                 else if (signal_pending(current))
2657                         ret = -ERESTARTNOINTR;
2658         }
2659         return ret;
2660 }
2661
2662 /**
2663  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2664  * @uaddr:      the futex we initially wait on (non-pi)
2665  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2666  *              the same type, no requeueing from private to shared, etc.
2667  * @val:        the expected value of uaddr
2668  * @abs_time:   absolute timeout
2669  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2670  * @uaddr2:     the pi futex we will take prior to returning to user-space
2671  *
2672  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2673  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2674  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2675  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2676  * without one, the pi logic would not know which task to boost/deboost, if
2677  * there was a need to.
2678  *
2679  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2680  * via the following--
2681  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2682  * 2) wakeup on uaddr2 after a requeue
2683  * 3) signal
2684  * 4) timeout
2685  *
2686  * If 3, cleanup and return -ERESTARTNOINTR.
2687  *
2688  * If 2, we may then block on trying to take the rt_mutex and return via:
2689  * 5) successful lock
2690  * 6) signal
2691  * 7) timeout
2692  * 8) other lock acquisition failure
2693  *
2694  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2695  *
2696  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2697  *
2698  * Return:
2699  *  0 - On success;
2700  * <0 - On error
2701  */
2702 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2703                                  u32 val, ktime_t *abs_time, u32 bitset,
2704                                  u32 __user *uaddr2)
2705 {
2706         struct hrtimer_sleeper timeout, *to = NULL;
2707         struct rt_mutex_waiter rt_waiter;
2708         struct rt_mutex *pi_mutex = NULL;
2709         struct futex_hash_bucket *hb, *hb2;
2710         union futex_key key2 = FUTEX_KEY_INIT;
2711         struct futex_q q = futex_q_init;
2712         int res, ret;
2713
2714         if (uaddr == uaddr2)
2715                 return -EINVAL;
2716
2717         if (!bitset)
2718                 return -EINVAL;
2719
2720         if (abs_time) {
2721                 to = &timeout;
2722                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2723                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2724                                       HRTIMER_MODE_ABS);
2725                 hrtimer_init_sleeper(to, current);
2726                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2727                                              current->timer_slack_ns);
2728         }
2729
2730         /*
2731          * The waiter is allocated on our stack, manipulated by the requeue
2732          * code while we sleep on uaddr.
2733          */
2734         rt_mutex_init_waiter(&rt_waiter, false);
2735
2736         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2737         if (unlikely(ret != 0))
2738                 goto out;
2739
2740         q.bitset = bitset;
2741         q.rt_waiter = &rt_waiter;
2742         q.requeue_pi_key = &key2;
2743
2744         /*
2745          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2746          * count.
2747          */
2748         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2749         if (ret)
2750                 goto out_key2;
2751
2752         /*
2753          * The check above which compares uaddrs is not sufficient for
2754          * shared futexes. We need to compare the keys:
2755          */
2756         if (match_futex(&q.key, &key2)) {
2757                 queue_unlock(hb);
2758                 ret = -EINVAL;
2759                 goto out_put_keys;
2760         }
2761
2762         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2763         futex_wait_queue_me(hb, &q, to);
2764
2765         /*
2766          * On RT we must avoid races with requeue and trying to block
2767          * on two mutexes (hb->lock and uaddr2's rtmutex) by
2768          * serializing access to pi_blocked_on with pi_lock.
2769          */
2770         raw_spin_lock_irq(&current->pi_lock);
2771         if (current->pi_blocked_on) {
2772                 /*
2773                  * We have been requeued or are in the process of
2774                  * being requeued.
2775                  */
2776                 raw_spin_unlock_irq(&current->pi_lock);
2777         } else {
2778                 /*
2779                  * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
2780                  * prevents a concurrent requeue from moving us to the
2781                  * uaddr2 rtmutex. After that we can safely acquire
2782                  * (and possibly block on) hb->lock.
2783                  */
2784                 current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
2785                 raw_spin_unlock_irq(&current->pi_lock);
2786
2787                 spin_lock(&hb->lock);
2788
2789                 /*
2790                  * Clean up pi_blocked_on. We might leak it otherwise
2791                  * when we succeeded with the hb->lock in the fast
2792                  * path.
2793                  */
2794                 raw_spin_lock_irq(&current->pi_lock);
2795                 current->pi_blocked_on = NULL;
2796                 raw_spin_unlock_irq(&current->pi_lock);
2797
2798                 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2799                 spin_unlock(&hb->lock);
2800                 if (ret)
2801                         goto out_put_keys;
2802         }
2803
2804         /*
2805          * In order to be here, we have either been requeued, are in
2806          * the process of being requeued, or requeue successfully
2807          * acquired uaddr2 on our behalf.  If pi_blocked_on was
2808          * non-null above, we may be racing with a requeue.  Do not
2809          * rely on q->lock_ptr to be hb2->lock until after blocking on
2810          * hb->lock or hb2->lock. The futex_requeue dropped our key1
2811          * reference and incremented our key2 reference count.
2812          */
2813         hb2 = hash_futex(&key2);
2814
2815         /* Check if the requeue code acquired the second futex for us. */
2816         if (!q.rt_waiter) {
2817                 /*
2818                  * Got the lock. We might not be the anticipated owner if we
2819                  * did a lock-steal - fix up the PI-state in that case.
2820                  */
2821                 if (q.pi_state && (q.pi_state->owner != current)) {
2822                         spin_lock(&hb2->lock);
2823                         BUG_ON(&hb2->lock != q.lock_ptr);
2824                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2825                         /*
2826                          * Drop the reference to the pi state which
2827                          * the requeue_pi() code acquired for us.
2828                          */
2829                         free_pi_state(q.pi_state);
2830                         spin_unlock(&hb2->lock);
2831                 }
2832         } else {
2833                 /*
2834                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2835                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2836                  * the pi_state.
2837                  */
2838                 WARN_ON(!q.pi_state);
2839                 pi_mutex = &q.pi_state->pi_mutex;
2840                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2841                 debug_rt_mutex_free_waiter(&rt_waiter);
2842
2843                 spin_lock(&hb2->lock);
2844                 BUG_ON(&hb2->lock != q.lock_ptr);
2845                 /*
2846                  * Fixup the pi_state owner and possibly acquire the lock if we
2847                  * haven't already.
2848                  */
2849                 res = fixup_owner(uaddr2, &q, !ret);
2850                 /*
2851                  * If fixup_owner() returned an error, proprogate that.  If it
2852                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2853                  */
2854                 if (res)
2855                         ret = (res < 0) ? res : 0;
2856
2857                 /* Unqueue and drop the lock. */
2858                 unqueue_me_pi(&q);
2859         }
2860
2861         /*
2862          * If fixup_pi_state_owner() faulted and was unable to handle the
2863          * fault, unlock the rt_mutex and return the fault to userspace.
2864          */
2865         if (ret == -EFAULT) {
2866                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2867                         rt_mutex_unlock(pi_mutex);
2868         } else if (ret == -EINTR) {
2869                 /*
2870                  * We've already been requeued, but cannot restart by calling
2871                  * futex_lock_pi() directly. We could restart this syscall, but
2872                  * it would detect that the user space "val" changed and return
2873                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2874                  * -EWOULDBLOCK directly.
2875                  */
2876                 ret = -EWOULDBLOCK;
2877         }
2878
2879 out_put_keys:
2880         put_futex_key(&q.key);
2881 out_key2:
2882         put_futex_key(&key2);
2883
2884 out:
2885         if (to) {
2886                 hrtimer_cancel(&to->timer);
2887                 destroy_hrtimer_on_stack(&to->timer);
2888         }
2889         return ret;
2890 }
2891
2892 /*
2893  * Support for robust futexes: the kernel cleans up held futexes at
2894  * thread exit time.
2895  *
2896  * Implementation: user-space maintains a per-thread list of locks it
2897  * is holding. Upon do_exit(), the kernel carefully walks this list,
2898  * and marks all locks that are owned by this thread with the
2899  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2900  * always manipulated with the lock held, so the list is private and
2901  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2902  * field, to allow the kernel to clean up if the thread dies after
2903  * acquiring the lock, but just before it could have added itself to
2904  * the list. There can only be one such pending lock.
2905  */
2906
2907 /**
2908  * sys_set_robust_list() - Set the robust-futex list head of a task
2909  * @head:       pointer to the list-head
2910  * @len:        length of the list-head, as userspace expects
2911  */
2912 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2913                 size_t, len)
2914 {
2915         if (!futex_cmpxchg_enabled)
2916                 return -ENOSYS;
2917         /*
2918          * The kernel knows only one size for now:
2919          */
2920         if (unlikely(len != sizeof(*head)))
2921                 return -EINVAL;
2922
2923         current->robust_list = head;
2924
2925         return 0;
2926 }
2927
2928 /**
2929  * sys_get_robust_list() - Get the robust-futex list head of a task
2930  * @pid:        pid of the process [zero for current task]
2931  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2932  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2933  */
2934 SYSCALL_DEFINE3(get_robust_list, int, pid,
2935                 struct robust_list_head __user * __user *, head_ptr,
2936                 size_t __user *, len_ptr)
2937 {
2938         struct robust_list_head __user *head;
2939         unsigned long ret;
2940         struct task_struct *p;
2941
2942         if (!futex_cmpxchg_enabled)
2943                 return -ENOSYS;
2944
2945         rcu_read_lock();
2946
2947         ret = -ESRCH;
2948         if (!pid)
2949                 p = current;
2950         else {
2951                 p = find_task_by_vpid(pid);
2952                 if (!p)
2953                         goto err_unlock;
2954         }
2955
2956         ret = -EPERM;
2957         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2958                 goto err_unlock;
2959
2960         head = p->robust_list;
2961         rcu_read_unlock();
2962
2963         if (put_user(sizeof(*head), len_ptr))
2964                 return -EFAULT;
2965         return put_user(head, head_ptr);
2966
2967 err_unlock:
2968         rcu_read_unlock();
2969
2970         return ret;
2971 }
2972
2973 /*
2974  * Process a futex-list entry, check whether it's owned by the
2975  * dying task, and do notification if so:
2976  */
2977 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2978 {
2979         u32 uval, uninitialized_var(nval), mval;
2980
2981 retry:
2982         if (get_user(uval, uaddr))
2983                 return -1;
2984
2985         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2986                 /*
2987                  * Ok, this dying thread is truly holding a futex
2988                  * of interest. Set the OWNER_DIED bit atomically
2989                  * via cmpxchg, and if the value had FUTEX_WAITERS
2990                  * set, wake up a waiter (if any). (We have to do a
2991                  * futex_wake() even if OWNER_DIED is already set -
2992                  * to handle the rare but possible case of recursive
2993                  * thread-death.) The rest of the cleanup is done in
2994                  * userspace.
2995                  */
2996                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2997                 /*
2998                  * We are not holding a lock here, but we want to have
2999                  * the pagefault_disable/enable() protection because
3000                  * we want to handle the fault gracefully. If the
3001                  * access fails we try to fault in the futex with R/W
3002                  * verification via get_user_pages. get_user() above
3003                  * does not guarantee R/W access. If that fails we
3004                  * give up and leave the futex locked.
3005                  */
3006                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3007                         if (fault_in_user_writeable(uaddr))
3008                                 return -1;
3009                         goto retry;
3010                 }
3011                 if (nval != uval)
3012                         goto retry;
3013
3014                 /*
3015                  * Wake robust non-PI futexes here. The wakeup of
3016                  * PI futexes happens in exit_pi_state():
3017                  */
3018                 if (!pi && (uval & FUTEX_WAITERS))
3019                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3020         }
3021         return 0;
3022 }
3023
3024 /*
3025  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3026  */
3027 static inline int fetch_robust_entry(struct robust_list __user **entry,
3028                                      struct robust_list __user * __user *head,
3029                                      unsigned int *pi)
3030 {
3031         unsigned long uentry;
3032
3033         if (get_user(uentry, (unsigned long __user *)head))
3034                 return -EFAULT;
3035
3036         *entry = (void __user *)(uentry & ~1UL);
3037         *pi = uentry & 1;
3038
3039         return 0;
3040 }
3041
3042 /*
3043  * Walk curr->robust_list (very carefully, it's a userspace list!)
3044  * and mark any locks found there dead, and notify any waiters.
3045  *
3046  * We silently return on any sign of list-walking problem.
3047  */
3048 void exit_robust_list(struct task_struct *curr)
3049 {
3050         struct robust_list_head __user *head = curr->robust_list;
3051         struct robust_list __user *entry, *next_entry, *pending;
3052         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3053         unsigned int uninitialized_var(next_pi);
3054         unsigned long futex_offset;
3055         int rc;
3056
3057         if (!futex_cmpxchg_enabled)
3058                 return;
3059
3060         /*
3061          * Fetch the list head (which was registered earlier, via
3062          * sys_set_robust_list()):
3063          */
3064         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3065                 return;
3066         /*
3067          * Fetch the relative futex offset:
3068          */
3069         if (get_user(futex_offset, &head->futex_offset))
3070                 return;
3071         /*
3072          * Fetch any possibly pending lock-add first, and handle it
3073          * if it exists:
3074          */
3075         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3076                 return;
3077
3078         next_entry = NULL;      /* avoid warning with gcc */
3079         while (entry != &head->list) {
3080                 /*
3081                  * Fetch the next entry in the list before calling
3082                  * handle_futex_death:
3083                  */
3084                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3085                 /*
3086                  * A pending lock might already be on the list, so
3087                  * don't process it twice:
3088                  */
3089                 if (entry != pending)
3090                         if (handle_futex_death((void __user *)entry + futex_offset,
3091                                                 curr, pi))
3092                                 return;
3093                 if (rc)
3094                         return;
3095                 entry = next_entry;
3096                 pi = next_pi;
3097                 /*
3098                  * Avoid excessively long or circular lists:
3099                  */
3100                 if (!--limit)
3101                         break;
3102
3103                 cond_resched();
3104         }
3105
3106         if (pending)
3107                 handle_futex_death((void __user *)pending + futex_offset,
3108                                    curr, pip);
3109 }
3110
3111 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3112                 u32 __user *uaddr2, u32 val2, u32 val3)
3113 {
3114         int cmd = op & FUTEX_CMD_MASK;
3115         unsigned int flags = 0;
3116
3117         if (!(op & FUTEX_PRIVATE_FLAG))
3118                 flags |= FLAGS_SHARED;
3119
3120         if (op & FUTEX_CLOCK_REALTIME) {
3121                 flags |= FLAGS_CLOCKRT;
3122                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3123                         return -ENOSYS;
3124         }
3125
3126         switch (cmd) {
3127         case FUTEX_LOCK_PI:
3128         case FUTEX_UNLOCK_PI:
3129         case FUTEX_TRYLOCK_PI:
3130         case FUTEX_WAIT_REQUEUE_PI:
3131         case FUTEX_CMP_REQUEUE_PI:
3132                 if (!futex_cmpxchg_enabled)
3133                         return -ENOSYS;
3134         }
3135
3136         switch (cmd) {
3137         case FUTEX_WAIT:
3138                 val3 = FUTEX_BITSET_MATCH_ANY;
3139         case FUTEX_WAIT_BITSET:
3140                 return futex_wait(uaddr, flags, val, timeout, val3);
3141         case FUTEX_WAKE:
3142                 val3 = FUTEX_BITSET_MATCH_ANY;
3143         case FUTEX_WAKE_BITSET:
3144                 return futex_wake(uaddr, flags, val, val3);
3145         case FUTEX_REQUEUE:
3146                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3147         case FUTEX_CMP_REQUEUE:
3148                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3149         case FUTEX_WAKE_OP:
3150                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3151         case FUTEX_LOCK_PI:
3152                 return futex_lock_pi(uaddr, flags, timeout, 0);
3153         case FUTEX_UNLOCK_PI:
3154                 return futex_unlock_pi(uaddr, flags);
3155         case FUTEX_TRYLOCK_PI:
3156                 return futex_lock_pi(uaddr, flags, NULL, 1);
3157         case FUTEX_WAIT_REQUEUE_PI:
3158                 val3 = FUTEX_BITSET_MATCH_ANY;
3159                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3160                                              uaddr2);
3161         case FUTEX_CMP_REQUEUE_PI:
3162                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3163         }
3164         return -ENOSYS;
3165 }
3166
3167
3168 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3169                 struct timespec __user *, utime, u32 __user *, uaddr2,
3170                 u32, val3)
3171 {
3172         struct timespec ts;
3173         ktime_t t, *tp = NULL;
3174         u32 val2 = 0;
3175         int cmd = op & FUTEX_CMD_MASK;
3176
3177         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3178                       cmd == FUTEX_WAIT_BITSET ||
3179                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3180                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3181                         return -EFAULT;
3182                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3183                         return -EFAULT;
3184                 if (!timespec_valid(&ts))
3185                         return -EINVAL;
3186
3187                 t = timespec_to_ktime(ts);
3188                 if (cmd == FUTEX_WAIT)
3189                         t = ktime_add_safe(ktime_get(), t);
3190                 tp = &t;
3191         }
3192         /*
3193          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3194          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3195          */
3196         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3197             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3198                 val2 = (u32) (unsigned long) utime;
3199
3200         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3201 }
3202
3203 static void __init futex_detect_cmpxchg(void)
3204 {
3205 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3206         u32 curval;
3207
3208         /*
3209          * This will fail and we want it. Some arch implementations do
3210          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3211          * functionality. We want to know that before we call in any
3212          * of the complex code paths. Also we want to prevent
3213          * registration of robust lists in that case. NULL is
3214          * guaranteed to fault and we get -EFAULT on functional
3215          * implementation, the non-functional ones will return
3216          * -ENOSYS.
3217          */
3218         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3219                 futex_cmpxchg_enabled = 1;
3220 #endif
3221 }
3222
3223 static int __init futex_init(void)
3224 {
3225         unsigned int futex_shift;
3226         unsigned long i;
3227
3228 #if CONFIG_BASE_SMALL
3229         futex_hashsize = 16;
3230 #else
3231         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3232 #endif
3233
3234         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3235                                                futex_hashsize, 0,
3236                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3237                                                &futex_shift, NULL,
3238                                                futex_hashsize, futex_hashsize);
3239         futex_hashsize = 1UL << futex_shift;
3240
3241         futex_detect_cmpxchg();
3242
3243         for (i = 0; i < futex_hashsize; i++) {
3244                 atomic_set(&futex_queues[i].waiters, 0);
3245                 plist_head_init(&futex_queues[i].chain);
3246                 spin_lock_init(&futex_queues[i].lock);
3247         }
3248
3249         return 0;
3250 }
3251 __initcall(futex_init);