These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as full barrier (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies MB (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies MB (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit MB (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page, *page_head;
473         int err, ro = 0;
474
475         /*
476          * The futex address must be "naturally" aligned.
477          */
478         key->both.offset = address % PAGE_SIZE;
479         if (unlikely((address % sizeof(u32)) != 0))
480                 return -EINVAL;
481         address -= key->both.offset;
482
483         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484                 return -EFAULT;
485
486         if (unlikely(should_fail_futex(fshared)))
487                 return -EFAULT;
488
489         /*
490          * PROCESS_PRIVATE futexes are fast.
491          * As the mm cannot disappear under us and the 'key' only needs
492          * virtual address, we dont even have to find the underlying vma.
493          * Note : We do have to check 'uaddr' is a valid user address,
494          *        but access_ok() should be faster than find_vma()
495          */
496         if (!fshared) {
497                 key->private.mm = mm;
498                 key->private.address = address;
499                 get_futex_key_refs(key);  /* implies MB (B) */
500                 return 0;
501         }
502
503 again:
504         /* Ignore any VERIFY_READ mapping (futex common case) */
505         if (unlikely(should_fail_futex(fshared)))
506                 return -EFAULT;
507
508         err = get_user_pages_fast(address, 1, 1, &page);
509         /*
510          * If write access is not required (eg. FUTEX_WAIT), try
511          * and get read-only access.
512          */
513         if (err == -EFAULT && rw == VERIFY_READ) {
514                 err = get_user_pages_fast(address, 1, 0, &page);
515                 ro = 1;
516         }
517         if (err < 0)
518                 return err;
519         else
520                 err = 0;
521
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523         page_head = page;
524         if (unlikely(PageTail(page))) {
525                 put_page(page);
526                 /* serialize against __split_huge_page_splitting() */
527                 local_irq_disable();
528                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
529                         page_head = compound_head(page);
530                         /*
531                          * page_head is valid pointer but we must pin
532                          * it before taking the PG_lock and/or
533                          * PG_compound_lock. The moment we re-enable
534                          * irqs __split_huge_page_splitting() can
535                          * return and the head page can be freed from
536                          * under us. We can't take the PG_lock and/or
537                          * PG_compound_lock on a page that could be
538                          * freed from under us.
539                          */
540                         if (page != page_head) {
541                                 get_page(page_head);
542                                 put_page(page);
543                         }
544                         local_irq_enable();
545                 } else {
546                         local_irq_enable();
547                         goto again;
548                 }
549         }
550 #else
551         page_head = compound_head(page);
552         if (page != page_head) {
553                 get_page(page_head);
554                 put_page(page);
555         }
556 #endif
557
558         lock_page(page_head);
559
560         /*
561          * If page_head->mapping is NULL, then it cannot be a PageAnon
562          * page; but it might be the ZERO_PAGE or in the gate area or
563          * in a special mapping (all cases which we are happy to fail);
564          * or it may have been a good file page when get_user_pages_fast
565          * found it, but truncated or holepunched or subjected to
566          * invalidate_complete_page2 before we got the page lock (also
567          * cases which we are happy to fail).  And we hold a reference,
568          * so refcount care in invalidate_complete_page's remove_mapping
569          * prevents drop_caches from setting mapping to NULL beneath us.
570          *
571          * The case we do have to guard against is when memory pressure made
572          * shmem_writepage move it from filecache to swapcache beneath us:
573          * an unlikely race, but we do need to retry for page_head->mapping.
574          */
575         if (!page_head->mapping) {
576                 int shmem_swizzled = PageSwapCache(page_head);
577                 unlock_page(page_head);
578                 put_page(page_head);
579                 if (shmem_swizzled)
580                         goto again;
581                 return -EFAULT;
582         }
583
584         /*
585          * Private mappings are handled in a simple way.
586          *
587          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588          * it's a read-only handle, it's expected that futexes attach to
589          * the object not the particular process.
590          */
591         if (PageAnon(page_head)) {
592                 /*
593                  * A RO anonymous page will never change and thus doesn't make
594                  * sense for futex operations.
595                  */
596                 if (unlikely(should_fail_futex(fshared)) || ro) {
597                         err = -EFAULT;
598                         goto out;
599                 }
600
601                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
602                 key->private.mm = mm;
603                 key->private.address = address;
604         } else {
605                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
606                 key->shared.inode = page_head->mapping->host;
607                 key->shared.pgoff = basepage_index(page);
608         }
609
610         get_futex_key_refs(key); /* implies MB (B) */
611
612 out:
613         unlock_page(page_head);
614         put_page(page_head);
615         return err;
616 }
617
618 static inline void put_futex_key(union futex_key *key)
619 {
620         drop_futex_key_refs(key);
621 }
622
623 /**
624  * fault_in_user_writeable() - Fault in user address and verify RW access
625  * @uaddr:      pointer to faulting user space address
626  *
627  * Slow path to fixup the fault we just took in the atomic write
628  * access to @uaddr.
629  *
630  * We have no generic implementation of a non-destructive write to the
631  * user address. We know that we faulted in the atomic pagefault
632  * disabled section so we can as well avoid the #PF overhead by
633  * calling get_user_pages() right away.
634  */
635 static int fault_in_user_writeable(u32 __user *uaddr)
636 {
637         struct mm_struct *mm = current->mm;
638         int ret;
639
640         down_read(&mm->mmap_sem);
641         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642                                FAULT_FLAG_WRITE);
643         up_read(&mm->mmap_sem);
644
645         return ret < 0 ? ret : 0;
646 }
647
648 /**
649  * futex_top_waiter() - Return the highest priority waiter on a futex
650  * @hb:         the hash bucket the futex_q's reside in
651  * @key:        the futex key (to distinguish it from other futex futex_q's)
652  *
653  * Must be called with the hb lock held.
654  */
655 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656                                         union futex_key *key)
657 {
658         struct futex_q *this;
659
660         plist_for_each_entry(this, &hb->chain, list) {
661                 if (match_futex(&this->key, key))
662                         return this;
663         }
664         return NULL;
665 }
666
667 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668                                       u32 uval, u32 newval)
669 {
670         int ret;
671
672         pagefault_disable();
673         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
674         pagefault_enable();
675
676         return ret;
677 }
678
679 static int get_futex_value_locked(u32 *dest, u32 __user *from)
680 {
681         int ret;
682
683         pagefault_disable();
684         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
685         pagefault_enable();
686
687         return ret ? -EFAULT : 0;
688 }
689
690
691 /*
692  * PI code:
693  */
694 static int refill_pi_state_cache(void)
695 {
696         struct futex_pi_state *pi_state;
697
698         if (likely(current->pi_state_cache))
699                 return 0;
700
701         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
702
703         if (!pi_state)
704                 return -ENOMEM;
705
706         INIT_LIST_HEAD(&pi_state->list);
707         /* pi_mutex gets initialized later */
708         pi_state->owner = NULL;
709         atomic_set(&pi_state->refcount, 1);
710         pi_state->key = FUTEX_KEY_INIT;
711
712         current->pi_state_cache = pi_state;
713
714         return 0;
715 }
716
717 static struct futex_pi_state * alloc_pi_state(void)
718 {
719         struct futex_pi_state *pi_state = current->pi_state_cache;
720
721         WARN_ON(!pi_state);
722         current->pi_state_cache = NULL;
723
724         return pi_state;
725 }
726
727 /*
728  * Must be called with the hb lock held.
729  */
730 static void free_pi_state(struct futex_pi_state *pi_state)
731 {
732         if (!pi_state)
733                 return;
734
735         if (!atomic_dec_and_test(&pi_state->refcount))
736                 return;
737
738         /*
739          * If pi_state->owner is NULL, the owner is most probably dying
740          * and has cleaned up the pi_state already
741          */
742         if (pi_state->owner) {
743                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
744                 list_del_init(&pi_state->list);
745                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
746
747                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
748         }
749
750         if (current->pi_state_cache)
751                 kfree(pi_state);
752         else {
753                 /*
754                  * pi_state->list is already empty.
755                  * clear pi_state->owner.
756                  * refcount is at 0 - put it back to 1.
757                  */
758                 pi_state->owner = NULL;
759                 atomic_set(&pi_state->refcount, 1);
760                 current->pi_state_cache = pi_state;
761         }
762 }
763
764 /*
765  * Look up the task based on what TID userspace gave us.
766  * We dont trust it.
767  */
768 static struct task_struct * futex_find_get_task(pid_t pid)
769 {
770         struct task_struct *p;
771
772         rcu_read_lock();
773         p = find_task_by_vpid(pid);
774         if (p)
775                 get_task_struct(p);
776
777         rcu_read_unlock();
778
779         return p;
780 }
781
782 /*
783  * This task is holding PI mutexes at exit time => bad.
784  * Kernel cleans up PI-state, but userspace is likely hosed.
785  * (Robust-futex cleanup is separate and might save the day for userspace.)
786  */
787 void exit_pi_state_list(struct task_struct *curr)
788 {
789         struct list_head *next, *head = &curr->pi_state_list;
790         struct futex_pi_state *pi_state;
791         struct futex_hash_bucket *hb;
792         union futex_key key = FUTEX_KEY_INIT;
793
794         if (!futex_cmpxchg_enabled)
795                 return;
796         /*
797          * We are a ZOMBIE and nobody can enqueue itself on
798          * pi_state_list anymore, but we have to be careful
799          * versus waiters unqueueing themselves:
800          */
801         raw_spin_lock_irq(&curr->pi_lock);
802         while (!list_empty(head)) {
803
804                 next = head->next;
805                 pi_state = list_entry(next, struct futex_pi_state, list);
806                 key = pi_state->key;
807                 hb = hash_futex(&key);
808                 raw_spin_unlock_irq(&curr->pi_lock);
809
810                 spin_lock(&hb->lock);
811
812                 raw_spin_lock_irq(&curr->pi_lock);
813                 /*
814                  * We dropped the pi-lock, so re-check whether this
815                  * task still owns the PI-state:
816                  */
817                 if (head->next != next) {
818                         raw_spin_unlock_irq(&curr->pi_lock);
819                         spin_unlock(&hb->lock);
820                         raw_spin_lock_irq(&curr->pi_lock);
821                         continue;
822                 }
823
824                 WARN_ON(pi_state->owner != curr);
825                 WARN_ON(list_empty(&pi_state->list));
826                 list_del_init(&pi_state->list);
827                 pi_state->owner = NULL;
828                 raw_spin_unlock_irq(&curr->pi_lock);
829
830                 rt_mutex_unlock(&pi_state->pi_mutex);
831
832                 spin_unlock(&hb->lock);
833
834                 raw_spin_lock_irq(&curr->pi_lock);
835         }
836         raw_spin_unlock_irq(&curr->pi_lock);
837 }
838
839 /*
840  * We need to check the following states:
841  *
842  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
843  *
844  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
845  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
846  *
847  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
848  *
849  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
850  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
851  *
852  * [6]  Found  | Found    | task      | 0         | 1      | Valid
853  *
854  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
855  *
856  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
857  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
858  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
859  *
860  * [1]  Indicates that the kernel can acquire the futex atomically. We
861  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
862  *
863  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
864  *      thread is found then it indicates that the owner TID has died.
865  *
866  * [3]  Invalid. The waiter is queued on a non PI futex
867  *
868  * [4]  Valid state after exit_robust_list(), which sets the user space
869  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
870  *
871  * [5]  The user space value got manipulated between exit_robust_list()
872  *      and exit_pi_state_list()
873  *
874  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
875  *      the pi_state but cannot access the user space value.
876  *
877  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
878  *
879  * [8]  Owner and user space value match
880  *
881  * [9]  There is no transient state which sets the user space TID to 0
882  *      except exit_robust_list(), but this is indicated by the
883  *      FUTEX_OWNER_DIED bit. See [4]
884  *
885  * [10] There is no transient state which leaves owner and user space
886  *      TID out of sync.
887  */
888
889 /*
890  * Validate that the existing waiter has a pi_state and sanity check
891  * the pi_state against the user space value. If correct, attach to
892  * it.
893  */
894 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
895                               struct futex_pi_state **ps)
896 {
897         pid_t pid = uval & FUTEX_TID_MASK;
898
899         /*
900          * Userspace might have messed up non-PI and PI futexes [3]
901          */
902         if (unlikely(!pi_state))
903                 return -EINVAL;
904
905         WARN_ON(!atomic_read(&pi_state->refcount));
906
907         /*
908          * Handle the owner died case:
909          */
910         if (uval & FUTEX_OWNER_DIED) {
911                 /*
912                  * exit_pi_state_list sets owner to NULL and wakes the
913                  * topmost waiter. The task which acquires the
914                  * pi_state->rt_mutex will fixup owner.
915                  */
916                 if (!pi_state->owner) {
917                         /*
918                          * No pi state owner, but the user space TID
919                          * is not 0. Inconsistent state. [5]
920                          */
921                         if (pid)
922                                 return -EINVAL;
923                         /*
924                          * Take a ref on the state and return success. [4]
925                          */
926                         goto out_state;
927                 }
928
929                 /*
930                  * If TID is 0, then either the dying owner has not
931                  * yet executed exit_pi_state_list() or some waiter
932                  * acquired the rtmutex in the pi state, but did not
933                  * yet fixup the TID in user space.
934                  *
935                  * Take a ref on the state and return success. [6]
936                  */
937                 if (!pid)
938                         goto out_state;
939         } else {
940                 /*
941                  * If the owner died bit is not set, then the pi_state
942                  * must have an owner. [7]
943                  */
944                 if (!pi_state->owner)
945                         return -EINVAL;
946         }
947
948         /*
949          * Bail out if user space manipulated the futex value. If pi
950          * state exists then the owner TID must be the same as the
951          * user space TID. [9/10]
952          */
953         if (pid != task_pid_vnr(pi_state->owner))
954                 return -EINVAL;
955 out_state:
956         atomic_inc(&pi_state->refcount);
957         *ps = pi_state;
958         return 0;
959 }
960
961 /*
962  * Lookup the task for the TID provided from user space and attach to
963  * it after doing proper sanity checks.
964  */
965 static int attach_to_pi_owner(u32 uval, union futex_key *key,
966                               struct futex_pi_state **ps)
967 {
968         pid_t pid = uval & FUTEX_TID_MASK;
969         struct futex_pi_state *pi_state;
970         struct task_struct *p;
971
972         /*
973          * We are the first waiter - try to look up the real owner and attach
974          * the new pi_state to it, but bail out when TID = 0 [1]
975          */
976         if (!pid)
977                 return -ESRCH;
978         p = futex_find_get_task(pid);
979         if (!p)
980                 return -ESRCH;
981
982         if (unlikely(p->flags & PF_KTHREAD)) {
983                 put_task_struct(p);
984                 return -EPERM;
985         }
986
987         /*
988          * We need to look at the task state flags to figure out,
989          * whether the task is exiting. To protect against the do_exit
990          * change of the task flags, we do this protected by
991          * p->pi_lock:
992          */
993         raw_spin_lock_irq(&p->pi_lock);
994         if (unlikely(p->flags & PF_EXITING)) {
995                 /*
996                  * The task is on the way out. When PF_EXITPIDONE is
997                  * set, we know that the task has finished the
998                  * cleanup:
999                  */
1000                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1001
1002                 raw_spin_unlock_irq(&p->pi_lock);
1003                 put_task_struct(p);
1004                 return ret;
1005         }
1006
1007         /*
1008          * No existing pi state. First waiter. [2]
1009          */
1010         pi_state = alloc_pi_state();
1011
1012         /*
1013          * Initialize the pi_mutex in locked state and make @p
1014          * the owner of it:
1015          */
1016         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1017
1018         /* Store the key for possible exit cleanups: */
1019         pi_state->key = *key;
1020
1021         WARN_ON(!list_empty(&pi_state->list));
1022         list_add(&pi_state->list, &p->pi_state_list);
1023         pi_state->owner = p;
1024         raw_spin_unlock_irq(&p->pi_lock);
1025
1026         put_task_struct(p);
1027
1028         *ps = pi_state;
1029
1030         return 0;
1031 }
1032
1033 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1034                            union futex_key *key, struct futex_pi_state **ps)
1035 {
1036         struct futex_q *match = futex_top_waiter(hb, key);
1037
1038         /*
1039          * If there is a waiter on that futex, validate it and
1040          * attach to the pi_state when the validation succeeds.
1041          */
1042         if (match)
1043                 return attach_to_pi_state(uval, match->pi_state, ps);
1044
1045         /*
1046          * We are the first waiter - try to look up the owner based on
1047          * @uval and attach to it.
1048          */
1049         return attach_to_pi_owner(uval, key, ps);
1050 }
1051
1052 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1053 {
1054         u32 uninitialized_var(curval);
1055
1056         if (unlikely(should_fail_futex(true)))
1057                 return -EFAULT;
1058
1059         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1060                 return -EFAULT;
1061
1062         /*If user space value changed, let the caller retry */
1063         return curval != uval ? -EAGAIN : 0;
1064 }
1065
1066 /**
1067  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1068  * @uaddr:              the pi futex user address
1069  * @hb:                 the pi futex hash bucket
1070  * @key:                the futex key associated with uaddr and hb
1071  * @ps:                 the pi_state pointer where we store the result of the
1072  *                      lookup
1073  * @task:               the task to perform the atomic lock work for.  This will
1074  *                      be "current" except in the case of requeue pi.
1075  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1076  *
1077  * Return:
1078  *  0 - ready to wait;
1079  *  1 - acquired the lock;
1080  * <0 - error
1081  *
1082  * The hb->lock and futex_key refs shall be held by the caller.
1083  */
1084 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1085                                 union futex_key *key,
1086                                 struct futex_pi_state **ps,
1087                                 struct task_struct *task, int set_waiters)
1088 {
1089         u32 uval, newval, vpid = task_pid_vnr(task);
1090         struct futex_q *match;
1091         int ret;
1092
1093         /*
1094          * Read the user space value first so we can validate a few
1095          * things before proceeding further.
1096          */
1097         if (get_futex_value_locked(&uval, uaddr))
1098                 return -EFAULT;
1099
1100         if (unlikely(should_fail_futex(true)))
1101                 return -EFAULT;
1102
1103         /*
1104          * Detect deadlocks.
1105          */
1106         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1107                 return -EDEADLK;
1108
1109         if ((unlikely(should_fail_futex(true))))
1110                 return -EDEADLK;
1111
1112         /*
1113          * Lookup existing state first. If it exists, try to attach to
1114          * its pi_state.
1115          */
1116         match = futex_top_waiter(hb, key);
1117         if (match)
1118                 return attach_to_pi_state(uval, match->pi_state, ps);
1119
1120         /*
1121          * No waiter and user TID is 0. We are here because the
1122          * waiters or the owner died bit is set or called from
1123          * requeue_cmp_pi or for whatever reason something took the
1124          * syscall.
1125          */
1126         if (!(uval & FUTEX_TID_MASK)) {
1127                 /*
1128                  * We take over the futex. No other waiters and the user space
1129                  * TID is 0. We preserve the owner died bit.
1130                  */
1131                 newval = uval & FUTEX_OWNER_DIED;
1132                 newval |= vpid;
1133
1134                 /* The futex requeue_pi code can enforce the waiters bit */
1135                 if (set_waiters)
1136                         newval |= FUTEX_WAITERS;
1137
1138                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1139                 /* If the take over worked, return 1 */
1140                 return ret < 0 ? ret : 1;
1141         }
1142
1143         /*
1144          * First waiter. Set the waiters bit before attaching ourself to
1145          * the owner. If owner tries to unlock, it will be forced into
1146          * the kernel and blocked on hb->lock.
1147          */
1148         newval = uval | FUTEX_WAITERS;
1149         ret = lock_pi_update_atomic(uaddr, uval, newval);
1150         if (ret)
1151                 return ret;
1152         /*
1153          * If the update of the user space value succeeded, we try to
1154          * attach to the owner. If that fails, no harm done, we only
1155          * set the FUTEX_WAITERS bit in the user space variable.
1156          */
1157         return attach_to_pi_owner(uval, key, ps);
1158 }
1159
1160 /**
1161  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1162  * @q:  The futex_q to unqueue
1163  *
1164  * The q->lock_ptr must not be NULL and must be held by the caller.
1165  */
1166 static void __unqueue_futex(struct futex_q *q)
1167 {
1168         struct futex_hash_bucket *hb;
1169
1170         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1171             || WARN_ON(plist_node_empty(&q->list)))
1172                 return;
1173
1174         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1175         plist_del(&q->list, &hb->chain);
1176         hb_waiters_dec(hb);
1177 }
1178
1179 /*
1180  * The hash bucket lock must be held when this is called.
1181  * Afterwards, the futex_q must not be accessed. Callers
1182  * must ensure to later call wake_up_q() for the actual
1183  * wakeups to occur.
1184  */
1185 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1186 {
1187         struct task_struct *p = q->task;
1188
1189         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1190                 return;
1191
1192         /*
1193          * Queue the task for later wakeup for after we've released
1194          * the hb->lock. wake_q_add() grabs reference to p.
1195          */
1196         wake_q_add(wake_q, p);
1197         __unqueue_futex(q);
1198         /*
1199          * The waiting task can free the futex_q as soon as
1200          * q->lock_ptr = NULL is written, without taking any locks. A
1201          * memory barrier is required here to prevent the following
1202          * store to lock_ptr from getting ahead of the plist_del.
1203          */
1204         smp_wmb();
1205         q->lock_ptr = NULL;
1206 }
1207
1208 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1209                          struct futex_hash_bucket *hb)
1210 {
1211         struct task_struct *new_owner;
1212         struct futex_pi_state *pi_state = this->pi_state;
1213         u32 uninitialized_var(curval), newval;
1214         WAKE_Q(wake_q);
1215         WAKE_Q(wake_sleeper_q);
1216         bool deboost;
1217         int ret = 0;
1218
1219         if (!pi_state)
1220                 return -EINVAL;
1221
1222         /*
1223          * If current does not own the pi_state then the futex is
1224          * inconsistent and user space fiddled with the futex value.
1225          */
1226         if (pi_state->owner != current)
1227                 return -EINVAL;
1228
1229         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1230         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1231
1232         /*
1233          * It is possible that the next waiter (the one that brought
1234          * this owner to the kernel) timed out and is no longer
1235          * waiting on the lock.
1236          */
1237         if (!new_owner)
1238                 new_owner = this->task;
1239
1240         /*
1241          * We pass it to the next owner. The WAITERS bit is always
1242          * kept enabled while there is PI state around. We cleanup the
1243          * owner died bit, because we are the owner.
1244          */
1245         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1246
1247         if (unlikely(should_fail_futex(true)))
1248                 ret = -EFAULT;
1249
1250         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1251                 ret = -EFAULT;
1252         else if (curval != uval)
1253                 ret = -EINVAL;
1254         if (ret) {
1255                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1256                 return ret;
1257         }
1258
1259         raw_spin_lock(&pi_state->owner->pi_lock);
1260         WARN_ON(list_empty(&pi_state->list));
1261         list_del_init(&pi_state->list);
1262         raw_spin_unlock(&pi_state->owner->pi_lock);
1263
1264         raw_spin_lock(&new_owner->pi_lock);
1265         WARN_ON(!list_empty(&pi_state->list));
1266         list_add(&pi_state->list, &new_owner->pi_state_list);
1267         pi_state->owner = new_owner;
1268         raw_spin_unlock(&new_owner->pi_lock);
1269
1270         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1271
1272         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q,
1273                                         &wake_sleeper_q);
1274
1275         /*
1276          * First unlock HB so the waiter does not spin on it once he got woken
1277          * up. Second wake up the waiter before the priority is adjusted. If we
1278          * deboost first (and lose our higher priority), then the task might get
1279          * scheduled away before the wake up can take place.
1280          */
1281         spin_unlock(&hb->lock);
1282         wake_up_q(&wake_q);
1283         wake_up_q_sleeper(&wake_sleeper_q);
1284         if (deboost)
1285                 rt_mutex_adjust_prio(current);
1286
1287         return 0;
1288 }
1289
1290 /*
1291  * Express the locking dependencies for lockdep:
1292  */
1293 static inline void
1294 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1295 {
1296         if (hb1 <= hb2) {
1297                 spin_lock(&hb1->lock);
1298                 if (hb1 < hb2)
1299                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1300         } else { /* hb1 > hb2 */
1301                 spin_lock(&hb2->lock);
1302                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1303         }
1304 }
1305
1306 static inline void
1307 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1308 {
1309         spin_unlock(&hb1->lock);
1310         if (hb1 != hb2)
1311                 spin_unlock(&hb2->lock);
1312 }
1313
1314 /*
1315  * Wake up waiters matching bitset queued on this futex (uaddr).
1316  */
1317 static int
1318 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1319 {
1320         struct futex_hash_bucket *hb;
1321         struct futex_q *this, *next;
1322         union futex_key key = FUTEX_KEY_INIT;
1323         int ret;
1324         WAKE_Q(wake_q);
1325
1326         if (!bitset)
1327                 return -EINVAL;
1328
1329         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1330         if (unlikely(ret != 0))
1331                 goto out;
1332
1333         hb = hash_futex(&key);
1334
1335         /* Make sure we really have tasks to wakeup */
1336         if (!hb_waiters_pending(hb))
1337                 goto out_put_key;
1338
1339         spin_lock(&hb->lock);
1340
1341         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1342                 if (match_futex (&this->key, &key)) {
1343                         if (this->pi_state || this->rt_waiter) {
1344                                 ret = -EINVAL;
1345                                 break;
1346                         }
1347
1348                         /* Check if one of the bits is set in both bitsets */
1349                         if (!(this->bitset & bitset))
1350                                 continue;
1351
1352                         mark_wake_futex(&wake_q, this);
1353                         if (++ret >= nr_wake)
1354                                 break;
1355                 }
1356         }
1357
1358         spin_unlock(&hb->lock);
1359         wake_up_q(&wake_q);
1360 out_put_key:
1361         put_futex_key(&key);
1362 out:
1363         return ret;
1364 }
1365
1366 /*
1367  * Wake up all waiters hashed on the physical page that is mapped
1368  * to this virtual address:
1369  */
1370 static int
1371 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1372               int nr_wake, int nr_wake2, int op)
1373 {
1374         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1375         struct futex_hash_bucket *hb1, *hb2;
1376         struct futex_q *this, *next;
1377         int ret, op_ret;
1378         WAKE_Q(wake_q);
1379
1380 retry:
1381         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1382         if (unlikely(ret != 0))
1383                 goto out;
1384         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1385         if (unlikely(ret != 0))
1386                 goto out_put_key1;
1387
1388         hb1 = hash_futex(&key1);
1389         hb2 = hash_futex(&key2);
1390
1391 retry_private:
1392         double_lock_hb(hb1, hb2);
1393         op_ret = futex_atomic_op_inuser(op, uaddr2);
1394         if (unlikely(op_ret < 0)) {
1395
1396                 double_unlock_hb(hb1, hb2);
1397
1398 #ifndef CONFIG_MMU
1399                 /*
1400                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1401                  * but we might get them from range checking
1402                  */
1403                 ret = op_ret;
1404                 goto out_put_keys;
1405 #endif
1406
1407                 if (unlikely(op_ret != -EFAULT)) {
1408                         ret = op_ret;
1409                         goto out_put_keys;
1410                 }
1411
1412                 ret = fault_in_user_writeable(uaddr2);
1413                 if (ret)
1414                         goto out_put_keys;
1415
1416                 if (!(flags & FLAGS_SHARED))
1417                         goto retry_private;
1418
1419                 put_futex_key(&key2);
1420                 put_futex_key(&key1);
1421                 goto retry;
1422         }
1423
1424         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1425                 if (match_futex (&this->key, &key1)) {
1426                         if (this->pi_state || this->rt_waiter) {
1427                                 ret = -EINVAL;
1428                                 goto out_unlock;
1429                         }
1430                         mark_wake_futex(&wake_q, this);
1431                         if (++ret >= nr_wake)
1432                                 break;
1433                 }
1434         }
1435
1436         if (op_ret > 0) {
1437                 op_ret = 0;
1438                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1439                         if (match_futex (&this->key, &key2)) {
1440                                 if (this->pi_state || this->rt_waiter) {
1441                                         ret = -EINVAL;
1442                                         goto out_unlock;
1443                                 }
1444                                 mark_wake_futex(&wake_q, this);
1445                                 if (++op_ret >= nr_wake2)
1446                                         break;
1447                         }
1448                 }
1449                 ret += op_ret;
1450         }
1451
1452 out_unlock:
1453         double_unlock_hb(hb1, hb2);
1454         wake_up_q(&wake_q);
1455 out_put_keys:
1456         put_futex_key(&key2);
1457 out_put_key1:
1458         put_futex_key(&key1);
1459 out:
1460         return ret;
1461 }
1462
1463 /**
1464  * requeue_futex() - Requeue a futex_q from one hb to another
1465  * @q:          the futex_q to requeue
1466  * @hb1:        the source hash_bucket
1467  * @hb2:        the target hash_bucket
1468  * @key2:       the new key for the requeued futex_q
1469  */
1470 static inline
1471 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1472                    struct futex_hash_bucket *hb2, union futex_key *key2)
1473 {
1474
1475         /*
1476          * If key1 and key2 hash to the same bucket, no need to
1477          * requeue.
1478          */
1479         if (likely(&hb1->chain != &hb2->chain)) {
1480                 plist_del(&q->list, &hb1->chain);
1481                 hb_waiters_dec(hb1);
1482                 plist_add(&q->list, &hb2->chain);
1483                 hb_waiters_inc(hb2);
1484                 q->lock_ptr = &hb2->lock;
1485         }
1486         get_futex_key_refs(key2);
1487         q->key = *key2;
1488 }
1489
1490 /**
1491  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1492  * @q:          the futex_q
1493  * @key:        the key of the requeue target futex
1494  * @hb:         the hash_bucket of the requeue target futex
1495  *
1496  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1497  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1498  * to the requeue target futex so the waiter can detect the wakeup on the right
1499  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1500  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1501  * to protect access to the pi_state to fixup the owner later.  Must be called
1502  * with both q->lock_ptr and hb->lock held.
1503  */
1504 static inline
1505 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1506                            struct futex_hash_bucket *hb)
1507 {
1508         get_futex_key_refs(key);
1509         q->key = *key;
1510
1511         __unqueue_futex(q);
1512
1513         WARN_ON(!q->rt_waiter);
1514         q->rt_waiter = NULL;
1515
1516         q->lock_ptr = &hb->lock;
1517
1518         wake_up_state(q->task, TASK_NORMAL);
1519 }
1520
1521 /**
1522  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1523  * @pifutex:            the user address of the to futex
1524  * @hb1:                the from futex hash bucket, must be locked by the caller
1525  * @hb2:                the to futex hash bucket, must be locked by the caller
1526  * @key1:               the from futex key
1527  * @key2:               the to futex key
1528  * @ps:                 address to store the pi_state pointer
1529  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1530  *
1531  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1532  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1533  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1534  * hb1 and hb2 must be held by the caller.
1535  *
1536  * Return:
1537  *  0 - failed to acquire the lock atomically;
1538  * >0 - acquired the lock, return value is vpid of the top_waiter
1539  * <0 - error
1540  */
1541 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1542                                  struct futex_hash_bucket *hb1,
1543                                  struct futex_hash_bucket *hb2,
1544                                  union futex_key *key1, union futex_key *key2,
1545                                  struct futex_pi_state **ps, int set_waiters)
1546 {
1547         struct futex_q *top_waiter = NULL;
1548         u32 curval;
1549         int ret, vpid;
1550
1551         if (get_futex_value_locked(&curval, pifutex))
1552                 return -EFAULT;
1553
1554         if (unlikely(should_fail_futex(true)))
1555                 return -EFAULT;
1556
1557         /*
1558          * Find the top_waiter and determine if there are additional waiters.
1559          * If the caller intends to requeue more than 1 waiter to pifutex,
1560          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1561          * as we have means to handle the possible fault.  If not, don't set
1562          * the bit unecessarily as it will force the subsequent unlock to enter
1563          * the kernel.
1564          */
1565         top_waiter = futex_top_waiter(hb1, key1);
1566
1567         /* There are no waiters, nothing for us to do. */
1568         if (!top_waiter)
1569                 return 0;
1570
1571         /* Ensure we requeue to the expected futex. */
1572         if (!match_futex(top_waiter->requeue_pi_key, key2))
1573                 return -EINVAL;
1574
1575         /*
1576          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1577          * the contended case or if set_waiters is 1.  The pi_state is returned
1578          * in ps in contended cases.
1579          */
1580         vpid = task_pid_vnr(top_waiter->task);
1581         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1582                                    set_waiters);
1583         if (ret == 1) {
1584                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1585                 return vpid;
1586         }
1587         return ret;
1588 }
1589
1590 /**
1591  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1592  * @uaddr1:     source futex user address
1593  * @flags:      futex flags (FLAGS_SHARED, etc.)
1594  * @uaddr2:     target futex user address
1595  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1596  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1597  * @cmpval:     @uaddr1 expected value (or %NULL)
1598  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1599  *              pi futex (pi to pi requeue is not supported)
1600  *
1601  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1602  * uaddr2 atomically on behalf of the top waiter.
1603  *
1604  * Return:
1605  * >=0 - on success, the number of tasks requeued or woken;
1606  *  <0 - on error
1607  */
1608 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1609                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1610                          u32 *cmpval, int requeue_pi)
1611 {
1612         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1613         int drop_count = 0, task_count = 0, ret;
1614         struct futex_pi_state *pi_state = NULL;
1615         struct futex_hash_bucket *hb1, *hb2;
1616         struct futex_q *this, *next;
1617         WAKE_Q(wake_q);
1618
1619         if (requeue_pi) {
1620                 /*
1621                  * Requeue PI only works on two distinct uaddrs. This
1622                  * check is only valid for private futexes. See below.
1623                  */
1624                 if (uaddr1 == uaddr2)
1625                         return -EINVAL;
1626
1627                 /*
1628                  * requeue_pi requires a pi_state, try to allocate it now
1629                  * without any locks in case it fails.
1630                  */
1631                 if (refill_pi_state_cache())
1632                         return -ENOMEM;
1633                 /*
1634                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1635                  * + nr_requeue, since it acquires the rt_mutex prior to
1636                  * returning to userspace, so as to not leave the rt_mutex with
1637                  * waiters and no owner.  However, second and third wake-ups
1638                  * cannot be predicted as they involve race conditions with the
1639                  * first wake and a fault while looking up the pi_state.  Both
1640                  * pthread_cond_signal() and pthread_cond_broadcast() should
1641                  * use nr_wake=1.
1642                  */
1643                 if (nr_wake != 1)
1644                         return -EINVAL;
1645         }
1646
1647 retry:
1648         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1649         if (unlikely(ret != 0))
1650                 goto out;
1651         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1652                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1653         if (unlikely(ret != 0))
1654                 goto out_put_key1;
1655
1656         /*
1657          * The check above which compares uaddrs is not sufficient for
1658          * shared futexes. We need to compare the keys:
1659          */
1660         if (requeue_pi && match_futex(&key1, &key2)) {
1661                 ret = -EINVAL;
1662                 goto out_put_keys;
1663         }
1664
1665         hb1 = hash_futex(&key1);
1666         hb2 = hash_futex(&key2);
1667
1668 retry_private:
1669         hb_waiters_inc(hb2);
1670         double_lock_hb(hb1, hb2);
1671
1672         if (likely(cmpval != NULL)) {
1673                 u32 curval;
1674
1675                 ret = get_futex_value_locked(&curval, uaddr1);
1676
1677                 if (unlikely(ret)) {
1678                         double_unlock_hb(hb1, hb2);
1679                         hb_waiters_dec(hb2);
1680
1681                         ret = get_user(curval, uaddr1);
1682                         if (ret)
1683                                 goto out_put_keys;
1684
1685                         if (!(flags & FLAGS_SHARED))
1686                                 goto retry_private;
1687
1688                         put_futex_key(&key2);
1689                         put_futex_key(&key1);
1690                         goto retry;
1691                 }
1692                 if (curval != *cmpval) {
1693                         ret = -EAGAIN;
1694                         goto out_unlock;
1695                 }
1696         }
1697
1698         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1699                 /*
1700                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1701                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1702                  * bit.  We force this here where we are able to easily handle
1703                  * faults rather in the requeue loop below.
1704                  */
1705                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1706                                                  &key2, &pi_state, nr_requeue);
1707
1708                 /*
1709                  * At this point the top_waiter has either taken uaddr2 or is
1710                  * waiting on it.  If the former, then the pi_state will not
1711                  * exist yet, look it up one more time to ensure we have a
1712                  * reference to it. If the lock was taken, ret contains the
1713                  * vpid of the top waiter task.
1714                  */
1715                 if (ret > 0) {
1716                         WARN_ON(pi_state);
1717                         drop_count++;
1718                         task_count++;
1719                         /*
1720                          * If we acquired the lock, then the user
1721                          * space value of uaddr2 should be vpid. It
1722                          * cannot be changed by the top waiter as it
1723                          * is blocked on hb2 lock if it tries to do
1724                          * so. If something fiddled with it behind our
1725                          * back the pi state lookup might unearth
1726                          * it. So we rather use the known value than
1727                          * rereading and handing potential crap to
1728                          * lookup_pi_state.
1729                          */
1730                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1731                 }
1732
1733                 switch (ret) {
1734                 case 0:
1735                         break;
1736                 case -EFAULT:
1737                         free_pi_state(pi_state);
1738                         pi_state = NULL;
1739                         double_unlock_hb(hb1, hb2);
1740                         hb_waiters_dec(hb2);
1741                         put_futex_key(&key2);
1742                         put_futex_key(&key1);
1743                         ret = fault_in_user_writeable(uaddr2);
1744                         if (!ret)
1745                                 goto retry;
1746                         goto out;
1747                 case -EAGAIN:
1748                         /*
1749                          * Two reasons for this:
1750                          * - Owner is exiting and we just wait for the
1751                          *   exit to complete.
1752                          * - The user space value changed.
1753                          */
1754                         free_pi_state(pi_state);
1755                         pi_state = NULL;
1756                         double_unlock_hb(hb1, hb2);
1757                         hb_waiters_dec(hb2);
1758                         put_futex_key(&key2);
1759                         put_futex_key(&key1);
1760                         cond_resched();
1761                         goto retry;
1762                 default:
1763                         goto out_unlock;
1764                 }
1765         }
1766
1767         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1768                 if (task_count - nr_wake >= nr_requeue)
1769                         break;
1770
1771                 if (!match_futex(&this->key, &key1))
1772                         continue;
1773
1774                 /*
1775                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1776                  * be paired with each other and no other futex ops.
1777                  *
1778                  * We should never be requeueing a futex_q with a pi_state,
1779                  * which is awaiting a futex_unlock_pi().
1780                  */
1781                 if ((requeue_pi && !this->rt_waiter) ||
1782                     (!requeue_pi && this->rt_waiter) ||
1783                     this->pi_state) {
1784                         ret = -EINVAL;
1785                         break;
1786                 }
1787
1788                 /*
1789                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1790                  * lock, we already woke the top_waiter.  If not, it will be
1791                  * woken by futex_unlock_pi().
1792                  */
1793                 if (++task_count <= nr_wake && !requeue_pi) {
1794                         mark_wake_futex(&wake_q, this);
1795                         continue;
1796                 }
1797
1798                 /* Ensure we requeue to the expected futex for requeue_pi. */
1799                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1800                         ret = -EINVAL;
1801                         break;
1802                 }
1803
1804                 /*
1805                  * Requeue nr_requeue waiters and possibly one more in the case
1806                  * of requeue_pi if we couldn't acquire the lock atomically.
1807                  */
1808                 if (requeue_pi) {
1809                         /* Prepare the waiter to take the rt_mutex. */
1810                         atomic_inc(&pi_state->refcount);
1811                         this->pi_state = pi_state;
1812                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1813                                                         this->rt_waiter,
1814                                                         this->task);
1815                         if (ret == 1) {
1816                                 /* We got the lock. */
1817                                 requeue_pi_wake_futex(this, &key2, hb2);
1818                                 drop_count++;
1819                                 continue;
1820                         } else if (ret == -EAGAIN) {
1821                                 /*
1822                                  * Waiter was woken by timeout or
1823                                  * signal and has set pi_blocked_on to
1824                                  * PI_WAKEUP_INPROGRESS before we
1825                                  * tried to enqueue it on the rtmutex.
1826                                  */
1827                                 this->pi_state = NULL;
1828                                 free_pi_state(pi_state);
1829                                 continue;
1830                         } else if (ret) {
1831                                 /* -EDEADLK */
1832                                 this->pi_state = NULL;
1833                                 free_pi_state(pi_state);
1834                                 goto out_unlock;
1835                         }
1836                 }
1837                 requeue_futex(this, hb1, hb2, &key2);
1838                 drop_count++;
1839         }
1840
1841 out_unlock:
1842         free_pi_state(pi_state);
1843         double_unlock_hb(hb1, hb2);
1844         wake_up_q(&wake_q);
1845         hb_waiters_dec(hb2);
1846
1847         /*
1848          * drop_futex_key_refs() must be called outside the spinlocks. During
1849          * the requeue we moved futex_q's from the hash bucket at key1 to the
1850          * one at key2 and updated their key pointer.  We no longer need to
1851          * hold the references to key1.
1852          */
1853         while (--drop_count >= 0)
1854                 drop_futex_key_refs(&key1);
1855
1856 out_put_keys:
1857         put_futex_key(&key2);
1858 out_put_key1:
1859         put_futex_key(&key1);
1860 out:
1861         return ret ? ret : task_count;
1862 }
1863
1864 /* The key must be already stored in q->key. */
1865 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1866         __acquires(&hb->lock)
1867 {
1868         struct futex_hash_bucket *hb;
1869
1870         hb = hash_futex(&q->key);
1871
1872         /*
1873          * Increment the counter before taking the lock so that
1874          * a potential waker won't miss a to-be-slept task that is
1875          * waiting for the spinlock. This is safe as all queue_lock()
1876          * users end up calling queue_me(). Similarly, for housekeeping,
1877          * decrement the counter at queue_unlock() when some error has
1878          * occurred and we don't end up adding the task to the list.
1879          */
1880         hb_waiters_inc(hb);
1881
1882         q->lock_ptr = &hb->lock;
1883
1884         spin_lock(&hb->lock); /* implies MB (A) */
1885         return hb;
1886 }
1887
1888 static inline void
1889 queue_unlock(struct futex_hash_bucket *hb)
1890         __releases(&hb->lock)
1891 {
1892         spin_unlock(&hb->lock);
1893         hb_waiters_dec(hb);
1894 }
1895
1896 /**
1897  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1898  * @q:  The futex_q to enqueue
1899  * @hb: The destination hash bucket
1900  *
1901  * The hb->lock must be held by the caller, and is released here. A call to
1902  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1903  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1904  * or nothing if the unqueue is done as part of the wake process and the unqueue
1905  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1906  * an example).
1907  */
1908 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1909         __releases(&hb->lock)
1910 {
1911         int prio;
1912
1913         /*
1914          * The priority used to register this element is
1915          * - either the real thread-priority for the real-time threads
1916          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1917          * - or MAX_RT_PRIO for non-RT threads.
1918          * Thus, all RT-threads are woken first in priority order, and
1919          * the others are woken last, in FIFO order.
1920          */
1921         prio = min(current->normal_prio, MAX_RT_PRIO);
1922
1923         plist_node_init(&q->list, prio);
1924         plist_add(&q->list, &hb->chain);
1925         q->task = current;
1926         spin_unlock(&hb->lock);
1927 }
1928
1929 /**
1930  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1931  * @q:  The futex_q to unqueue
1932  *
1933  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1934  * be paired with exactly one earlier call to queue_me().
1935  *
1936  * Return:
1937  *   1 - if the futex_q was still queued (and we removed unqueued it);
1938  *   0 - if the futex_q was already removed by the waking thread
1939  */
1940 static int unqueue_me(struct futex_q *q)
1941 {
1942         spinlock_t *lock_ptr;
1943         int ret = 0;
1944
1945         /* In the common case we don't take the spinlock, which is nice. */
1946 retry:
1947         lock_ptr = q->lock_ptr;
1948         barrier();
1949         if (lock_ptr != NULL) {
1950                 spin_lock(lock_ptr);
1951                 /*
1952                  * q->lock_ptr can change between reading it and
1953                  * spin_lock(), causing us to take the wrong lock.  This
1954                  * corrects the race condition.
1955                  *
1956                  * Reasoning goes like this: if we have the wrong lock,
1957                  * q->lock_ptr must have changed (maybe several times)
1958                  * between reading it and the spin_lock().  It can
1959                  * change again after the spin_lock() but only if it was
1960                  * already changed before the spin_lock().  It cannot,
1961                  * however, change back to the original value.  Therefore
1962                  * we can detect whether we acquired the correct lock.
1963                  */
1964                 if (unlikely(lock_ptr != q->lock_ptr)) {
1965                         spin_unlock(lock_ptr);
1966                         goto retry;
1967                 }
1968                 __unqueue_futex(q);
1969
1970                 BUG_ON(q->pi_state);
1971
1972                 spin_unlock(lock_ptr);
1973                 ret = 1;
1974         }
1975
1976         drop_futex_key_refs(&q->key);
1977         return ret;
1978 }
1979
1980 /*
1981  * PI futexes can not be requeued and must remove themself from the
1982  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1983  * and dropped here.
1984  */
1985 static void unqueue_me_pi(struct futex_q *q)
1986         __releases(q->lock_ptr)
1987 {
1988         __unqueue_futex(q);
1989
1990         BUG_ON(!q->pi_state);
1991         free_pi_state(q->pi_state);
1992         q->pi_state = NULL;
1993
1994         spin_unlock(q->lock_ptr);
1995 }
1996
1997 /*
1998  * Fixup the pi_state owner with the new owner.
1999  *
2000  * Must be called with hash bucket lock held and mm->sem held for non
2001  * private futexes.
2002  */
2003 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2004                                 struct task_struct *newowner)
2005 {
2006         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2007         struct futex_pi_state *pi_state = q->pi_state;
2008         struct task_struct *oldowner = pi_state->owner;
2009         u32 uval, uninitialized_var(curval), newval;
2010         int ret;
2011
2012         /* Owner died? */
2013         if (!pi_state->owner)
2014                 newtid |= FUTEX_OWNER_DIED;
2015
2016         /*
2017          * We are here either because we stole the rtmutex from the
2018          * previous highest priority waiter or we are the highest priority
2019          * waiter but failed to get the rtmutex the first time.
2020          * We have to replace the newowner TID in the user space variable.
2021          * This must be atomic as we have to preserve the owner died bit here.
2022          *
2023          * Note: We write the user space value _before_ changing the pi_state
2024          * because we can fault here. Imagine swapped out pages or a fork
2025          * that marked all the anonymous memory readonly for cow.
2026          *
2027          * Modifying pi_state _before_ the user space value would
2028          * leave the pi_state in an inconsistent state when we fault
2029          * here, because we need to drop the hash bucket lock to
2030          * handle the fault. This might be observed in the PID check
2031          * in lookup_pi_state.
2032          */
2033 retry:
2034         if (get_futex_value_locked(&uval, uaddr))
2035                 goto handle_fault;
2036
2037         while (1) {
2038                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2039
2040                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2041                         goto handle_fault;
2042                 if (curval == uval)
2043                         break;
2044                 uval = curval;
2045         }
2046
2047         /*
2048          * We fixed up user space. Now we need to fix the pi_state
2049          * itself.
2050          */
2051         if (pi_state->owner != NULL) {
2052                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2053                 WARN_ON(list_empty(&pi_state->list));
2054                 list_del_init(&pi_state->list);
2055                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2056         }
2057
2058         pi_state->owner = newowner;
2059
2060         raw_spin_lock_irq(&newowner->pi_lock);
2061         WARN_ON(!list_empty(&pi_state->list));
2062         list_add(&pi_state->list, &newowner->pi_state_list);
2063         raw_spin_unlock_irq(&newowner->pi_lock);
2064         return 0;
2065
2066         /*
2067          * To handle the page fault we need to drop the hash bucket
2068          * lock here. That gives the other task (either the highest priority
2069          * waiter itself or the task which stole the rtmutex) the
2070          * chance to try the fixup of the pi_state. So once we are
2071          * back from handling the fault we need to check the pi_state
2072          * after reacquiring the hash bucket lock and before trying to
2073          * do another fixup. When the fixup has been done already we
2074          * simply return.
2075          */
2076 handle_fault:
2077         spin_unlock(q->lock_ptr);
2078
2079         ret = fault_in_user_writeable(uaddr);
2080
2081         spin_lock(q->lock_ptr);
2082
2083         /*
2084          * Check if someone else fixed it for us:
2085          */
2086         if (pi_state->owner != oldowner)
2087                 return 0;
2088
2089         if (ret)
2090                 return ret;
2091
2092         goto retry;
2093 }
2094
2095 static long futex_wait_restart(struct restart_block *restart);
2096
2097 /**
2098  * fixup_owner() - Post lock pi_state and corner case management
2099  * @uaddr:      user address of the futex
2100  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2101  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2102  *
2103  * After attempting to lock an rt_mutex, this function is called to cleanup
2104  * the pi_state owner as well as handle race conditions that may allow us to
2105  * acquire the lock. Must be called with the hb lock held.
2106  *
2107  * Return:
2108  *  1 - success, lock taken;
2109  *  0 - success, lock not taken;
2110  * <0 - on error (-EFAULT)
2111  */
2112 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2113 {
2114         struct task_struct *owner;
2115         int ret = 0;
2116
2117         if (locked) {
2118                 /*
2119                  * Got the lock. We might not be the anticipated owner if we
2120                  * did a lock-steal - fix up the PI-state in that case:
2121                  */
2122                 if (q->pi_state->owner != current)
2123                         ret = fixup_pi_state_owner(uaddr, q, current);
2124                 goto out;
2125         }
2126
2127         /*
2128          * Catch the rare case, where the lock was released when we were on the
2129          * way back before we locked the hash bucket.
2130          */
2131         if (q->pi_state->owner == current) {
2132                 /*
2133                  * Try to get the rt_mutex now. This might fail as some other
2134                  * task acquired the rt_mutex after we removed ourself from the
2135                  * rt_mutex waiters list.
2136                  */
2137                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2138                         locked = 1;
2139                         goto out;
2140                 }
2141
2142                 /*
2143                  * pi_state is incorrect, some other task did a lock steal and
2144                  * we returned due to timeout or signal without taking the
2145                  * rt_mutex. Too late.
2146                  */
2147                 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2148                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2149                 if (!owner)
2150                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2151                 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2152                 ret = fixup_pi_state_owner(uaddr, q, owner);
2153                 goto out;
2154         }
2155
2156         /*
2157          * Paranoia check. If we did not take the lock, then we should not be
2158          * the owner of the rt_mutex.
2159          */
2160         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2161                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2162                                 "pi-state %p\n", ret,
2163                                 q->pi_state->pi_mutex.owner,
2164                                 q->pi_state->owner);
2165
2166 out:
2167         return ret ? ret : locked;
2168 }
2169
2170 /**
2171  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2172  * @hb:         the futex hash bucket, must be locked by the caller
2173  * @q:          the futex_q to queue up on
2174  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2175  */
2176 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2177                                 struct hrtimer_sleeper *timeout)
2178 {
2179         /*
2180          * The task state is guaranteed to be set before another task can
2181          * wake it. set_current_state() is implemented using smp_store_mb() and
2182          * queue_me() calls spin_unlock() upon completion, both serializing
2183          * access to the hash list and forcing another memory barrier.
2184          */
2185         set_current_state(TASK_INTERRUPTIBLE);
2186         queue_me(q, hb);
2187
2188         /* Arm the timer */
2189         if (timeout)
2190                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2191
2192         /*
2193          * If we have been removed from the hash list, then another task
2194          * has tried to wake us, and we can skip the call to schedule().
2195          */
2196         if (likely(!plist_node_empty(&q->list))) {
2197                 /*
2198                  * If the timer has already expired, current will already be
2199                  * flagged for rescheduling. Only call schedule if there
2200                  * is no timeout, or if it has yet to expire.
2201                  */
2202                 if (!timeout || timeout->task)
2203                         freezable_schedule();
2204         }
2205         __set_current_state(TASK_RUNNING);
2206 }
2207
2208 /**
2209  * futex_wait_setup() - Prepare to wait on a futex
2210  * @uaddr:      the futex userspace address
2211  * @val:        the expected value
2212  * @flags:      futex flags (FLAGS_SHARED, etc.)
2213  * @q:          the associated futex_q
2214  * @hb:         storage for hash_bucket pointer to be returned to caller
2215  *
2216  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2217  * compare it with the expected value.  Handle atomic faults internally.
2218  * Return with the hb lock held and a q.key reference on success, and unlocked
2219  * with no q.key reference on failure.
2220  *
2221  * Return:
2222  *  0 - uaddr contains val and hb has been locked;
2223  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2224  */
2225 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2226                            struct futex_q *q, struct futex_hash_bucket **hb)
2227 {
2228         u32 uval;
2229         int ret;
2230
2231         /*
2232          * Access the page AFTER the hash-bucket is locked.
2233          * Order is important:
2234          *
2235          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2236          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2237          *
2238          * The basic logical guarantee of a futex is that it blocks ONLY
2239          * if cond(var) is known to be true at the time of blocking, for
2240          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2241          * would open a race condition where we could block indefinitely with
2242          * cond(var) false, which would violate the guarantee.
2243          *
2244          * On the other hand, we insert q and release the hash-bucket only
2245          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2246          * absorb a wakeup if *uaddr does not match the desired values
2247          * while the syscall executes.
2248          */
2249 retry:
2250         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2251         if (unlikely(ret != 0))
2252                 return ret;
2253
2254 retry_private:
2255         *hb = queue_lock(q);
2256
2257         ret = get_futex_value_locked(&uval, uaddr);
2258
2259         if (ret) {
2260                 queue_unlock(*hb);
2261
2262                 ret = get_user(uval, uaddr);
2263                 if (ret)
2264                         goto out;
2265
2266                 if (!(flags & FLAGS_SHARED))
2267                         goto retry_private;
2268
2269                 put_futex_key(&q->key);
2270                 goto retry;
2271         }
2272
2273         if (uval != val) {
2274                 queue_unlock(*hb);
2275                 ret = -EWOULDBLOCK;
2276         }
2277
2278 out:
2279         if (ret)
2280                 put_futex_key(&q->key);
2281         return ret;
2282 }
2283
2284 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2285                       ktime_t *abs_time, u32 bitset)
2286 {
2287         struct hrtimer_sleeper timeout, *to = NULL;
2288         struct restart_block *restart;
2289         struct futex_hash_bucket *hb;
2290         struct futex_q q = futex_q_init;
2291         int ret;
2292
2293         if (!bitset)
2294                 return -EINVAL;
2295         q.bitset = bitset;
2296
2297         if (abs_time) {
2298                 to = &timeout;
2299
2300                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2301                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2302                                       HRTIMER_MODE_ABS);
2303                 hrtimer_init_sleeper(to, current);
2304                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2305                                              current->timer_slack_ns);
2306         }
2307
2308 retry:
2309         /*
2310          * Prepare to wait on uaddr. On success, holds hb lock and increments
2311          * q.key refs.
2312          */
2313         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2314         if (ret)
2315                 goto out;
2316
2317         /* queue_me and wait for wakeup, timeout, or a signal. */
2318         futex_wait_queue_me(hb, &q, to);
2319
2320         /* If we were woken (and unqueued), we succeeded, whatever. */
2321         ret = 0;
2322         /* unqueue_me() drops q.key ref */
2323         if (!unqueue_me(&q))
2324                 goto out;
2325         ret = -ETIMEDOUT;
2326         if (to && !to->task)
2327                 goto out;
2328
2329         /*
2330          * We expect signal_pending(current), but we might be the
2331          * victim of a spurious wakeup as well.
2332          */
2333         if (!signal_pending(current))
2334                 goto retry;
2335
2336         ret = -ERESTARTSYS;
2337         if (!abs_time)
2338                 goto out;
2339
2340         restart = &current->restart_block;
2341         restart->fn = futex_wait_restart;
2342         restart->futex.uaddr = uaddr;
2343         restart->futex.val = val;
2344         restart->futex.time = abs_time->tv64;
2345         restart->futex.bitset = bitset;
2346         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2347
2348         ret = -ERESTART_RESTARTBLOCK;
2349
2350 out:
2351         if (to) {
2352                 hrtimer_cancel(&to->timer);
2353                 destroy_hrtimer_on_stack(&to->timer);
2354         }
2355         return ret;
2356 }
2357
2358
2359 static long futex_wait_restart(struct restart_block *restart)
2360 {
2361         u32 __user *uaddr = restart->futex.uaddr;
2362         ktime_t t, *tp = NULL;
2363
2364         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2365                 t.tv64 = restart->futex.time;
2366                 tp = &t;
2367         }
2368         restart->fn = do_no_restart_syscall;
2369
2370         return (long)futex_wait(uaddr, restart->futex.flags,
2371                                 restart->futex.val, tp, restart->futex.bitset);
2372 }
2373
2374
2375 /*
2376  * Userspace tried a 0 -> TID atomic transition of the futex value
2377  * and failed. The kernel side here does the whole locking operation:
2378  * if there are waiters then it will block as a consequence of relying
2379  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2380  * a 0 value of the futex too.).
2381  *
2382  * Also serves as futex trylock_pi()'ing, and due semantics.
2383  */
2384 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2385                          ktime_t *time, int trylock)
2386 {
2387         struct hrtimer_sleeper timeout, *to = NULL;
2388         struct futex_hash_bucket *hb;
2389         struct futex_q q = futex_q_init;
2390         int res, ret;
2391
2392         if (refill_pi_state_cache())
2393                 return -ENOMEM;
2394
2395         if (time) {
2396                 to = &timeout;
2397                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2398                                       HRTIMER_MODE_ABS);
2399                 hrtimer_init_sleeper(to, current);
2400                 hrtimer_set_expires(&to->timer, *time);
2401         }
2402
2403 retry:
2404         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2405         if (unlikely(ret != 0))
2406                 goto out;
2407
2408 retry_private:
2409         hb = queue_lock(&q);
2410
2411         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2412         if (unlikely(ret)) {
2413                 /*
2414                  * Atomic work succeeded and we got the lock,
2415                  * or failed. Either way, we do _not_ block.
2416                  */
2417                 switch (ret) {
2418                 case 1:
2419                         /* We got the lock. */
2420                         ret = 0;
2421                         goto out_unlock_put_key;
2422                 case -EFAULT:
2423                         goto uaddr_faulted;
2424                 case -EAGAIN:
2425                         /*
2426                          * Two reasons for this:
2427                          * - Task is exiting and we just wait for the
2428                          *   exit to complete.
2429                          * - The user space value changed.
2430                          */
2431                         queue_unlock(hb);
2432                         put_futex_key(&q.key);
2433                         cond_resched();
2434                         goto retry;
2435                 default:
2436                         goto out_unlock_put_key;
2437                 }
2438         }
2439
2440         /*
2441          * Only actually queue now that the atomic ops are done:
2442          */
2443         queue_me(&q, hb);
2444
2445         WARN_ON(!q.pi_state);
2446         /*
2447          * Block on the PI mutex:
2448          */
2449         if (!trylock) {
2450                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2451         } else {
2452                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2453                 /* Fixup the trylock return value: */
2454                 ret = ret ? 0 : -EWOULDBLOCK;
2455         }
2456
2457         spin_lock(q.lock_ptr);
2458         /*
2459          * Fixup the pi_state owner and possibly acquire the lock if we
2460          * haven't already.
2461          */
2462         res = fixup_owner(uaddr, &q, !ret);
2463         /*
2464          * If fixup_owner() returned an error, proprogate that.  If it acquired
2465          * the lock, clear our -ETIMEDOUT or -EINTR.
2466          */
2467         if (res)
2468                 ret = (res < 0) ? res : 0;
2469
2470         /*
2471          * If fixup_owner() faulted and was unable to handle the fault, unlock
2472          * it and return the fault to userspace.
2473          */
2474         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2475                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2476
2477         /* Unqueue and drop the lock */
2478         unqueue_me_pi(&q);
2479
2480         goto out_put_key;
2481
2482 out_unlock_put_key:
2483         queue_unlock(hb);
2484
2485 out_put_key:
2486         put_futex_key(&q.key);
2487 out:
2488         if (to)
2489                 destroy_hrtimer_on_stack(&to->timer);
2490         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2491
2492 uaddr_faulted:
2493         queue_unlock(hb);
2494
2495         ret = fault_in_user_writeable(uaddr);
2496         if (ret)
2497                 goto out_put_key;
2498
2499         if (!(flags & FLAGS_SHARED))
2500                 goto retry_private;
2501
2502         put_futex_key(&q.key);
2503         goto retry;
2504 }
2505
2506 /*
2507  * Userspace attempted a TID -> 0 atomic transition, and failed.
2508  * This is the in-kernel slowpath: we look up the PI state (if any),
2509  * and do the rt-mutex unlock.
2510  */
2511 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2512 {
2513         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2514         union futex_key key = FUTEX_KEY_INIT;
2515         struct futex_hash_bucket *hb;
2516         struct futex_q *match;
2517         int ret;
2518
2519 retry:
2520         if (get_user(uval, uaddr))
2521                 return -EFAULT;
2522         /*
2523          * We release only a lock we actually own:
2524          */
2525         if ((uval & FUTEX_TID_MASK) != vpid)
2526                 return -EPERM;
2527
2528         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2529         if (ret)
2530                 return ret;
2531
2532         hb = hash_futex(&key);
2533         spin_lock(&hb->lock);
2534
2535         /*
2536          * Check waiters first. We do not trust user space values at
2537          * all and we at least want to know if user space fiddled
2538          * with the futex value instead of blindly unlocking.
2539          */
2540         match = futex_top_waiter(hb, &key);
2541         if (match) {
2542                 ret = wake_futex_pi(uaddr, uval, match, hb);
2543                 /*
2544                  * In case of success wake_futex_pi dropped the hash
2545                  * bucket lock.
2546                  */
2547                 if (!ret)
2548                         goto out_putkey;
2549                 /*
2550                  * The atomic access to the futex value generated a
2551                  * pagefault, so retry the user-access and the wakeup:
2552                  */
2553                 if (ret == -EFAULT)
2554                         goto pi_faulted;
2555                 /*
2556                  * wake_futex_pi has detected invalid state. Tell user
2557                  * space.
2558                  */
2559                 goto out_unlock;
2560         }
2561
2562         /*
2563          * We have no kernel internal state, i.e. no waiters in the
2564          * kernel. Waiters which are about to queue themselves are stuck
2565          * on hb->lock. So we can safely ignore them. We do neither
2566          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2567          * owner.
2568          */
2569         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2570                 goto pi_faulted;
2571
2572         /*
2573          * If uval has changed, let user space handle it.
2574          */
2575         ret = (curval == uval) ? 0 : -EAGAIN;
2576
2577 out_unlock:
2578         spin_unlock(&hb->lock);
2579 out_putkey:
2580         put_futex_key(&key);
2581         return ret;
2582
2583 pi_faulted:
2584         spin_unlock(&hb->lock);
2585         put_futex_key(&key);
2586
2587         ret = fault_in_user_writeable(uaddr);
2588         if (!ret)
2589                 goto retry;
2590
2591         return ret;
2592 }
2593
2594 /**
2595  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2596  * @hb:         the hash_bucket futex_q was original enqueued on
2597  * @q:          the futex_q woken while waiting to be requeued
2598  * @key2:       the futex_key of the requeue target futex
2599  * @timeout:    the timeout associated with the wait (NULL if none)
2600  *
2601  * Detect if the task was woken on the initial futex as opposed to the requeue
2602  * target futex.  If so, determine if it was a timeout or a signal that caused
2603  * the wakeup and return the appropriate error code to the caller.  Must be
2604  * called with the hb lock held.
2605  *
2606  * Return:
2607  *  0 = no early wakeup detected;
2608  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2609  */
2610 static inline
2611 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2612                                    struct futex_q *q, union futex_key *key2,
2613                                    struct hrtimer_sleeper *timeout)
2614 {
2615         int ret = 0;
2616
2617         /*
2618          * With the hb lock held, we avoid races while we process the wakeup.
2619          * We only need to hold hb (and not hb2) to ensure atomicity as the
2620          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2621          * It can't be requeued from uaddr2 to something else since we don't
2622          * support a PI aware source futex for requeue.
2623          */
2624         if (!match_futex(&q->key, key2)) {
2625                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2626                 /*
2627                  * We were woken prior to requeue by a timeout or a signal.
2628                  * Unqueue the futex_q and determine which it was.
2629                  */
2630                 plist_del(&q->list, &hb->chain);
2631                 hb_waiters_dec(hb);
2632
2633                 /* Handle spurious wakeups gracefully */
2634                 ret = -EWOULDBLOCK;
2635                 if (timeout && !timeout->task)
2636                         ret = -ETIMEDOUT;
2637                 else if (signal_pending(current))
2638                         ret = -ERESTARTNOINTR;
2639         }
2640         return ret;
2641 }
2642
2643 /**
2644  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2645  * @uaddr:      the futex we initially wait on (non-pi)
2646  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2647  *              the same type, no requeueing from private to shared, etc.
2648  * @val:        the expected value of uaddr
2649  * @abs_time:   absolute timeout
2650  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2651  * @uaddr2:     the pi futex we will take prior to returning to user-space
2652  *
2653  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2654  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2655  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2656  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2657  * without one, the pi logic would not know which task to boost/deboost, if
2658  * there was a need to.
2659  *
2660  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2661  * via the following--
2662  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2663  * 2) wakeup on uaddr2 after a requeue
2664  * 3) signal
2665  * 4) timeout
2666  *
2667  * If 3, cleanup and return -ERESTARTNOINTR.
2668  *
2669  * If 2, we may then block on trying to take the rt_mutex and return via:
2670  * 5) successful lock
2671  * 6) signal
2672  * 7) timeout
2673  * 8) other lock acquisition failure
2674  *
2675  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2676  *
2677  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2678  *
2679  * Return:
2680  *  0 - On success;
2681  * <0 - On error
2682  */
2683 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2684                                  u32 val, ktime_t *abs_time, u32 bitset,
2685                                  u32 __user *uaddr2)
2686 {
2687         struct hrtimer_sleeper timeout, *to = NULL;
2688         struct rt_mutex_waiter rt_waiter;
2689         struct rt_mutex *pi_mutex = NULL;
2690         struct futex_hash_bucket *hb, *hb2;
2691         union futex_key key2 = FUTEX_KEY_INIT;
2692         struct futex_q q = futex_q_init;
2693         int res, ret;
2694
2695         if (uaddr == uaddr2)
2696                 return -EINVAL;
2697
2698         if (!bitset)
2699                 return -EINVAL;
2700
2701         if (abs_time) {
2702                 to = &timeout;
2703                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2704                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2705                                       HRTIMER_MODE_ABS);
2706                 hrtimer_init_sleeper(to, current);
2707                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2708                                              current->timer_slack_ns);
2709         }
2710
2711         /*
2712          * The waiter is allocated on our stack, manipulated by the requeue
2713          * code while we sleep on uaddr.
2714          */
2715         rt_mutex_init_waiter(&rt_waiter, false);
2716
2717         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2718         if (unlikely(ret != 0))
2719                 goto out;
2720
2721         q.bitset = bitset;
2722         q.rt_waiter = &rt_waiter;
2723         q.requeue_pi_key = &key2;
2724
2725         /*
2726          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2727          * count.
2728          */
2729         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2730         if (ret)
2731                 goto out_key2;
2732
2733         /*
2734          * The check above which compares uaddrs is not sufficient for
2735          * shared futexes. We need to compare the keys:
2736          */
2737         if (match_futex(&q.key, &key2)) {
2738                 queue_unlock(hb);
2739                 ret = -EINVAL;
2740                 goto out_put_keys;
2741         }
2742
2743         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2744         futex_wait_queue_me(hb, &q, to);
2745
2746         /*
2747          * On RT we must avoid races with requeue and trying to block
2748          * on two mutexes (hb->lock and uaddr2's rtmutex) by
2749          * serializing access to pi_blocked_on with pi_lock.
2750          */
2751         raw_spin_lock_irq(&current->pi_lock);
2752         if (current->pi_blocked_on) {
2753                 /*
2754                  * We have been requeued or are in the process of
2755                  * being requeued.
2756                  */
2757                 raw_spin_unlock_irq(&current->pi_lock);
2758         } else {
2759                 /*
2760                  * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
2761                  * prevents a concurrent requeue from moving us to the
2762                  * uaddr2 rtmutex. After that we can safely acquire
2763                  * (and possibly block on) hb->lock.
2764                  */
2765                 current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
2766                 raw_spin_unlock_irq(&current->pi_lock);
2767
2768                 spin_lock(&hb->lock);
2769
2770                 /*
2771                  * Clean up pi_blocked_on. We might leak it otherwise
2772                  * when we succeeded with the hb->lock in the fast
2773                  * path.
2774                  */
2775                 raw_spin_lock_irq(&current->pi_lock);
2776                 current->pi_blocked_on = NULL;
2777                 raw_spin_unlock_irq(&current->pi_lock);
2778
2779                 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2780                 spin_unlock(&hb->lock);
2781                 if (ret)
2782                         goto out_put_keys;
2783         }
2784
2785         /*
2786          * In order to be here, we have either been requeued, are in
2787          * the process of being requeued, or requeue successfully
2788          * acquired uaddr2 on our behalf.  If pi_blocked_on was
2789          * non-null above, we may be racing with a requeue.  Do not
2790          * rely on q->lock_ptr to be hb2->lock until after blocking on
2791          * hb->lock or hb2->lock. The futex_requeue dropped our key1
2792          * reference and incremented our key2 reference count.
2793          */
2794         hb2 = hash_futex(&key2);
2795
2796         /* Check if the requeue code acquired the second futex for us. */
2797         if (!q.rt_waiter) {
2798                 /*
2799                  * Got the lock. We might not be the anticipated owner if we
2800                  * did a lock-steal - fix up the PI-state in that case.
2801                  */
2802                 if (q.pi_state && (q.pi_state->owner != current)) {
2803                         spin_lock(&hb2->lock);
2804                         BUG_ON(&hb2->lock != q.lock_ptr);
2805                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2806                         /*
2807                          * Drop the reference to the pi state which
2808                          * the requeue_pi() code acquired for us.
2809                          */
2810                         free_pi_state(q.pi_state);
2811                         spin_unlock(&hb2->lock);
2812                 }
2813         } else {
2814                 /*
2815                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2816                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2817                  * the pi_state.
2818                  */
2819                 WARN_ON(!q.pi_state);
2820                 pi_mutex = &q.pi_state->pi_mutex;
2821                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2822                 debug_rt_mutex_free_waiter(&rt_waiter);
2823
2824                 spin_lock(&hb2->lock);
2825                 BUG_ON(&hb2->lock != q.lock_ptr);
2826                 /*
2827                  * Fixup the pi_state owner and possibly acquire the lock if we
2828                  * haven't already.
2829                  */
2830                 res = fixup_owner(uaddr2, &q, !ret);
2831                 /*
2832                  * If fixup_owner() returned an error, proprogate that.  If it
2833                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2834                  */
2835                 if (res)
2836                         ret = (res < 0) ? res : 0;
2837
2838                 /* Unqueue and drop the lock. */
2839                 unqueue_me_pi(&q);
2840         }
2841
2842         /*
2843          * If fixup_pi_state_owner() faulted and was unable to handle the
2844          * fault, unlock the rt_mutex and return the fault to userspace.
2845          */
2846         if (ret == -EFAULT) {
2847                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2848                         rt_mutex_unlock(pi_mutex);
2849         } else if (ret == -EINTR) {
2850                 /*
2851                  * We've already been requeued, but cannot restart by calling
2852                  * futex_lock_pi() directly. We could restart this syscall, but
2853                  * it would detect that the user space "val" changed and return
2854                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2855                  * -EWOULDBLOCK directly.
2856                  */
2857                 ret = -EWOULDBLOCK;
2858         }
2859
2860 out_put_keys:
2861         put_futex_key(&q.key);
2862 out_key2:
2863         put_futex_key(&key2);
2864
2865 out:
2866         if (to) {
2867                 hrtimer_cancel(&to->timer);
2868                 destroy_hrtimer_on_stack(&to->timer);
2869         }
2870         return ret;
2871 }
2872
2873 /*
2874  * Support for robust futexes: the kernel cleans up held futexes at
2875  * thread exit time.
2876  *
2877  * Implementation: user-space maintains a per-thread list of locks it
2878  * is holding. Upon do_exit(), the kernel carefully walks this list,
2879  * and marks all locks that are owned by this thread with the
2880  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2881  * always manipulated with the lock held, so the list is private and
2882  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2883  * field, to allow the kernel to clean up if the thread dies after
2884  * acquiring the lock, but just before it could have added itself to
2885  * the list. There can only be one such pending lock.
2886  */
2887
2888 /**
2889  * sys_set_robust_list() - Set the robust-futex list head of a task
2890  * @head:       pointer to the list-head
2891  * @len:        length of the list-head, as userspace expects
2892  */
2893 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2894                 size_t, len)
2895 {
2896         if (!futex_cmpxchg_enabled)
2897                 return -ENOSYS;
2898         /*
2899          * The kernel knows only one size for now:
2900          */
2901         if (unlikely(len != sizeof(*head)))
2902                 return -EINVAL;
2903
2904         current->robust_list = head;
2905
2906         return 0;
2907 }
2908
2909 /**
2910  * sys_get_robust_list() - Get the robust-futex list head of a task
2911  * @pid:        pid of the process [zero for current task]
2912  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2913  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2914  */
2915 SYSCALL_DEFINE3(get_robust_list, int, pid,
2916                 struct robust_list_head __user * __user *, head_ptr,
2917                 size_t __user *, len_ptr)
2918 {
2919         struct robust_list_head __user *head;
2920         unsigned long ret;
2921         struct task_struct *p;
2922
2923         if (!futex_cmpxchg_enabled)
2924                 return -ENOSYS;
2925
2926         rcu_read_lock();
2927
2928         ret = -ESRCH;
2929         if (!pid)
2930                 p = current;
2931         else {
2932                 p = find_task_by_vpid(pid);
2933                 if (!p)
2934                         goto err_unlock;
2935         }
2936
2937         ret = -EPERM;
2938         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2939                 goto err_unlock;
2940
2941         head = p->robust_list;
2942         rcu_read_unlock();
2943
2944         if (put_user(sizeof(*head), len_ptr))
2945                 return -EFAULT;
2946         return put_user(head, head_ptr);
2947
2948 err_unlock:
2949         rcu_read_unlock();
2950
2951         return ret;
2952 }
2953
2954 /*
2955  * Process a futex-list entry, check whether it's owned by the
2956  * dying task, and do notification if so:
2957  */
2958 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2959 {
2960         u32 uval, uninitialized_var(nval), mval;
2961
2962 retry:
2963         if (get_user(uval, uaddr))
2964                 return -1;
2965
2966         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2967                 /*
2968                  * Ok, this dying thread is truly holding a futex
2969                  * of interest. Set the OWNER_DIED bit atomically
2970                  * via cmpxchg, and if the value had FUTEX_WAITERS
2971                  * set, wake up a waiter (if any). (We have to do a
2972                  * futex_wake() even if OWNER_DIED is already set -
2973                  * to handle the rare but possible case of recursive
2974                  * thread-death.) The rest of the cleanup is done in
2975                  * userspace.
2976                  */
2977                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2978                 /*
2979                  * We are not holding a lock here, but we want to have
2980                  * the pagefault_disable/enable() protection because
2981                  * we want to handle the fault gracefully. If the
2982                  * access fails we try to fault in the futex with R/W
2983                  * verification via get_user_pages. get_user() above
2984                  * does not guarantee R/W access. If that fails we
2985                  * give up and leave the futex locked.
2986                  */
2987                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2988                         if (fault_in_user_writeable(uaddr))
2989                                 return -1;
2990                         goto retry;
2991                 }
2992                 if (nval != uval)
2993                         goto retry;
2994
2995                 /*
2996                  * Wake robust non-PI futexes here. The wakeup of
2997                  * PI futexes happens in exit_pi_state():
2998                  */
2999                 if (!pi && (uval & FUTEX_WAITERS))
3000                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3001         }
3002         return 0;
3003 }
3004
3005 /*
3006  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3007  */
3008 static inline int fetch_robust_entry(struct robust_list __user **entry,
3009                                      struct robust_list __user * __user *head,
3010                                      unsigned int *pi)
3011 {
3012         unsigned long uentry;
3013
3014         if (get_user(uentry, (unsigned long __user *)head))
3015                 return -EFAULT;
3016
3017         *entry = (void __user *)(uentry & ~1UL);
3018         *pi = uentry & 1;
3019
3020         return 0;
3021 }
3022
3023 /*
3024  * Walk curr->robust_list (very carefully, it's a userspace list!)
3025  * and mark any locks found there dead, and notify any waiters.
3026  *
3027  * We silently return on any sign of list-walking problem.
3028  */
3029 void exit_robust_list(struct task_struct *curr)
3030 {
3031         struct robust_list_head __user *head = curr->robust_list;
3032         struct robust_list __user *entry, *next_entry, *pending;
3033         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3034         unsigned int uninitialized_var(next_pi);
3035         unsigned long futex_offset;
3036         int rc;
3037
3038         if (!futex_cmpxchg_enabled)
3039                 return;
3040
3041         /*
3042          * Fetch the list head (which was registered earlier, via
3043          * sys_set_robust_list()):
3044          */
3045         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3046                 return;
3047         /*
3048          * Fetch the relative futex offset:
3049          */
3050         if (get_user(futex_offset, &head->futex_offset))
3051                 return;
3052         /*
3053          * Fetch any possibly pending lock-add first, and handle it
3054          * if it exists:
3055          */
3056         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3057                 return;
3058
3059         next_entry = NULL;      /* avoid warning with gcc */
3060         while (entry != &head->list) {
3061                 /*
3062                  * Fetch the next entry in the list before calling
3063                  * handle_futex_death:
3064                  */
3065                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3066                 /*
3067                  * A pending lock might already be on the list, so
3068                  * don't process it twice:
3069                  */
3070                 if (entry != pending)
3071                         if (handle_futex_death((void __user *)entry + futex_offset,
3072                                                 curr, pi))
3073                                 return;
3074                 if (rc)
3075                         return;
3076                 entry = next_entry;
3077                 pi = next_pi;
3078                 /*
3079                  * Avoid excessively long or circular lists:
3080                  */
3081                 if (!--limit)
3082                         break;
3083
3084                 cond_resched();
3085         }
3086
3087         if (pending)
3088                 handle_futex_death((void __user *)pending + futex_offset,
3089                                    curr, pip);
3090 }
3091
3092 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3093                 u32 __user *uaddr2, u32 val2, u32 val3)
3094 {
3095         int cmd = op & FUTEX_CMD_MASK;
3096         unsigned int flags = 0;
3097
3098         if (!(op & FUTEX_PRIVATE_FLAG))
3099                 flags |= FLAGS_SHARED;
3100
3101         if (op & FUTEX_CLOCK_REALTIME) {
3102                 flags |= FLAGS_CLOCKRT;
3103                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3104                         return -ENOSYS;
3105         }
3106
3107         switch (cmd) {
3108         case FUTEX_LOCK_PI:
3109         case FUTEX_UNLOCK_PI:
3110         case FUTEX_TRYLOCK_PI:
3111         case FUTEX_WAIT_REQUEUE_PI:
3112         case FUTEX_CMP_REQUEUE_PI:
3113                 if (!futex_cmpxchg_enabled)
3114                         return -ENOSYS;
3115         }
3116
3117         switch (cmd) {
3118         case FUTEX_WAIT:
3119                 val3 = FUTEX_BITSET_MATCH_ANY;
3120         case FUTEX_WAIT_BITSET:
3121                 return futex_wait(uaddr, flags, val, timeout, val3);
3122         case FUTEX_WAKE:
3123                 val3 = FUTEX_BITSET_MATCH_ANY;
3124         case FUTEX_WAKE_BITSET:
3125                 return futex_wake(uaddr, flags, val, val3);
3126         case FUTEX_REQUEUE:
3127                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3128         case FUTEX_CMP_REQUEUE:
3129                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3130         case FUTEX_WAKE_OP:
3131                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3132         case FUTEX_LOCK_PI:
3133                 return futex_lock_pi(uaddr, flags, timeout, 0);
3134         case FUTEX_UNLOCK_PI:
3135                 return futex_unlock_pi(uaddr, flags);
3136         case FUTEX_TRYLOCK_PI:
3137                 return futex_lock_pi(uaddr, flags, NULL, 1);
3138         case FUTEX_WAIT_REQUEUE_PI:
3139                 val3 = FUTEX_BITSET_MATCH_ANY;
3140                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3141                                              uaddr2);
3142         case FUTEX_CMP_REQUEUE_PI:
3143                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3144         }
3145         return -ENOSYS;
3146 }
3147
3148
3149 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3150                 struct timespec __user *, utime, u32 __user *, uaddr2,
3151                 u32, val3)
3152 {
3153         struct timespec ts;
3154         ktime_t t, *tp = NULL;
3155         u32 val2 = 0;
3156         int cmd = op & FUTEX_CMD_MASK;
3157
3158         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3159                       cmd == FUTEX_WAIT_BITSET ||
3160                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3161                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3162                         return -EFAULT;
3163                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3164                         return -EFAULT;
3165                 if (!timespec_valid(&ts))
3166                         return -EINVAL;
3167
3168                 t = timespec_to_ktime(ts);
3169                 if (cmd == FUTEX_WAIT)
3170                         t = ktime_add_safe(ktime_get(), t);
3171                 tp = &t;
3172         }
3173         /*
3174          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3175          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3176          */
3177         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3178             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3179                 val2 = (u32) (unsigned long) utime;
3180
3181         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3182 }
3183
3184 static void __init futex_detect_cmpxchg(void)
3185 {
3186 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3187         u32 curval;
3188
3189         /*
3190          * This will fail and we want it. Some arch implementations do
3191          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3192          * functionality. We want to know that before we call in any
3193          * of the complex code paths. Also we want to prevent
3194          * registration of robust lists in that case. NULL is
3195          * guaranteed to fault and we get -EFAULT on functional
3196          * implementation, the non-functional ones will return
3197          * -ENOSYS.
3198          */
3199         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3200                 futex_cmpxchg_enabled = 1;
3201 #endif
3202 }
3203
3204 static int __init futex_init(void)
3205 {
3206         unsigned int futex_shift;
3207         unsigned long i;
3208
3209 #if CONFIG_BASE_SMALL
3210         futex_hashsize = 16;
3211 #else
3212         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3213 #endif
3214
3215         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3216                                                futex_hashsize, 0,
3217                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3218                                                &futex_shift, NULL,
3219                                                futex_hashsize, futex_hashsize);
3220         futex_hashsize = 1UL << futex_shift;
3221
3222         futex_detect_cmpxchg();
3223
3224         for (i = 0; i < futex_hashsize; i++) {
3225                 atomic_set(&futex_queues[i].waiters, 0);
3226                 plist_head_init(&futex_queues[i].chain);
3227                 spin_lock_init(&futex_queues[i].lock);
3228         }
3229
3230         return 0;
3231 }
3232 __initcall(futex_init);