Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / include / linux / crypto.h
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9  * and Nettle, by Niels Möller.
10  * 
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option) 
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27
28 /*
29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30  * arbitrary modules to be loaded. Loading from userspace may still need the
31  * unprefixed names, so retains those aliases as well.
32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34  * expands twice on the same line. Instead, use a separate base name for the
35  * alias.
36  */
37 #define MODULE_ALIAS_CRYPTO(name)       \
38                 __MODULE_INFO(alias, alias_userspace, name);    \
39                 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41 /*
42  * Algorithm masks and types.
43  */
44 #define CRYPTO_ALG_TYPE_MASK            0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER          0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS        0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD            0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER       0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER      0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER       0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST          0x00000008
52 #define CRYPTO_ALG_TYPE_HASH            0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH           0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH           0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG             0x0000000c
56 #define CRYPTO_ALG_TYPE_PCOMPRESS       0x0000000f
57
58 #define CRYPTO_ALG_TYPE_HASH_MASK       0x0000000e
59 #define CRYPTO_ALG_TYPE_AHASH_MASK      0x0000000c
60 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK  0x0000000c
61
62 #define CRYPTO_ALG_LARVAL               0x00000010
63 #define CRYPTO_ALG_DEAD                 0x00000020
64 #define CRYPTO_ALG_DYING                0x00000040
65 #define CRYPTO_ALG_ASYNC                0x00000080
66
67 /*
68  * Set this bit if and only if the algorithm requires another algorithm of
69  * the same type to handle corner cases.
70  */
71 #define CRYPTO_ALG_NEED_FALLBACK        0x00000100
72
73 /*
74  * This bit is set for symmetric key ciphers that have already been wrapped
75  * with a generic IV generator to prevent them from being wrapped again.
76  */
77 #define CRYPTO_ALG_GENIV                0x00000200
78
79 /*
80  * Set if the algorithm has passed automated run-time testing.  Note that
81  * if there is no run-time testing for a given algorithm it is considered
82  * to have passed.
83  */
84
85 #define CRYPTO_ALG_TESTED               0x00000400
86
87 /*
88  * Set if the algorithm is an instance that is build from templates.
89  */
90 #define CRYPTO_ALG_INSTANCE             0x00000800
91
92 /* Set this bit if the algorithm provided is hardware accelerated but
93  * not available to userspace via instruction set or so.
94  */
95 #define CRYPTO_ALG_KERN_DRIVER_ONLY     0x00001000
96
97 /*
98  * Mark a cipher as a service implementation only usable by another
99  * cipher and never by a normal user of the kernel crypto API
100  */
101 #define CRYPTO_ALG_INTERNAL             0x00002000
102
103 /*
104  * Transform masks and values (for crt_flags).
105  */
106 #define CRYPTO_TFM_REQ_MASK             0x000fff00
107 #define CRYPTO_TFM_RES_MASK             0xfff00000
108
109 #define CRYPTO_TFM_REQ_WEAK_KEY         0x00000100
110 #define CRYPTO_TFM_REQ_MAY_SLEEP        0x00000200
111 #define CRYPTO_TFM_REQ_MAY_BACKLOG      0x00000400
112 #define CRYPTO_TFM_RES_WEAK_KEY         0x00100000
113 #define CRYPTO_TFM_RES_BAD_KEY_LEN      0x00200000
114 #define CRYPTO_TFM_RES_BAD_KEY_SCHED    0x00400000
115 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN    0x00800000
116 #define CRYPTO_TFM_RES_BAD_FLAGS        0x01000000
117
118 /*
119  * Miscellaneous stuff.
120  */
121 #define CRYPTO_MAX_ALG_NAME             64
122
123 /*
124  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
125  * declaration) is used to ensure that the crypto_tfm context structure is
126  * aligned correctly for the given architecture so that there are no alignment
127  * faults for C data types.  In particular, this is required on platforms such
128  * as arm where pointers are 32-bit aligned but there are data types such as
129  * u64 which require 64-bit alignment.
130  */
131 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
132
133 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
134
135 struct scatterlist;
136 struct crypto_ablkcipher;
137 struct crypto_async_request;
138 struct crypto_aead;
139 struct crypto_blkcipher;
140 struct crypto_hash;
141 struct crypto_rng;
142 struct crypto_tfm;
143 struct crypto_type;
144 struct aead_givcrypt_request;
145 struct skcipher_givcrypt_request;
146
147 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
148
149 /**
150  * DOC: Block Cipher Context Data Structures
151  *
152  * These data structures define the operating context for each block cipher
153  * type.
154  */
155
156 struct crypto_async_request {
157         struct list_head list;
158         crypto_completion_t complete;
159         void *data;
160         struct crypto_tfm *tfm;
161
162         u32 flags;
163 };
164
165 struct ablkcipher_request {
166         struct crypto_async_request base;
167
168         unsigned int nbytes;
169
170         void *info;
171
172         struct scatterlist *src;
173         struct scatterlist *dst;
174
175         void *__ctx[] CRYPTO_MINALIGN_ATTR;
176 };
177
178 /**
179  *      struct aead_request - AEAD request
180  *      @base: Common attributes for async crypto requests
181  *      @assoclen: Length in bytes of associated data for authentication
182  *      @cryptlen: Length of data to be encrypted or decrypted
183  *      @iv: Initialisation vector
184  *      @assoc: Associated data
185  *      @src: Source data
186  *      @dst: Destination data
187  *      @__ctx: Start of private context data
188  */
189 struct aead_request {
190         struct crypto_async_request base;
191
192         unsigned int assoclen;
193         unsigned int cryptlen;
194
195         u8 *iv;
196
197         struct scatterlist *assoc;
198         struct scatterlist *src;
199         struct scatterlist *dst;
200
201         void *__ctx[] CRYPTO_MINALIGN_ATTR;
202 };
203
204 struct blkcipher_desc {
205         struct crypto_blkcipher *tfm;
206         void *info;
207         u32 flags;
208 };
209
210 struct cipher_desc {
211         struct crypto_tfm *tfm;
212         void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
213         unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
214                              const u8 *src, unsigned int nbytes);
215         void *info;
216 };
217
218 struct hash_desc {
219         struct crypto_hash *tfm;
220         u32 flags;
221 };
222
223 /**
224  * DOC: Block Cipher Algorithm Definitions
225  *
226  * These data structures define modular crypto algorithm implementations,
227  * managed via crypto_register_alg() and crypto_unregister_alg().
228  */
229
230 /**
231  * struct ablkcipher_alg - asynchronous block cipher definition
232  * @min_keysize: Minimum key size supported by the transformation. This is the
233  *               smallest key length supported by this transformation algorithm.
234  *               This must be set to one of the pre-defined values as this is
235  *               not hardware specific. Possible values for this field can be
236  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
237  * @max_keysize: Maximum key size supported by the transformation. This is the
238  *               largest key length supported by this transformation algorithm.
239  *               This must be set to one of the pre-defined values as this is
240  *               not hardware specific. Possible values for this field can be
241  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
242  * @setkey: Set key for the transformation. This function is used to either
243  *          program a supplied key into the hardware or store the key in the
244  *          transformation context for programming it later. Note that this
245  *          function does modify the transformation context. This function can
246  *          be called multiple times during the existence of the transformation
247  *          object, so one must make sure the key is properly reprogrammed into
248  *          the hardware. This function is also responsible for checking the key
249  *          length for validity. In case a software fallback was put in place in
250  *          the @cra_init call, this function might need to use the fallback if
251  *          the algorithm doesn't support all of the key sizes.
252  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
253  *           the supplied scatterlist containing the blocks of data. The crypto
254  *           API consumer is responsible for aligning the entries of the
255  *           scatterlist properly and making sure the chunks are correctly
256  *           sized. In case a software fallback was put in place in the
257  *           @cra_init call, this function might need to use the fallback if
258  *           the algorithm doesn't support all of the key sizes. In case the
259  *           key was stored in transformation context, the key might need to be
260  *           re-programmed into the hardware in this function. This function
261  *           shall not modify the transformation context, as this function may
262  *           be called in parallel with the same transformation object.
263  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
264  *           and the conditions are exactly the same.
265  * @givencrypt: Update the IV for encryption. With this function, a cipher
266  *              implementation may provide the function on how to update the IV
267  *              for encryption.
268  * @givdecrypt: Update the IV for decryption. This is the reverse of
269  *              @givencrypt .
270  * @geniv: The transformation implementation may use an "IV generator" provided
271  *         by the kernel crypto API. Several use cases have a predefined
272  *         approach how IVs are to be updated. For such use cases, the kernel
273  *         crypto API provides ready-to-use implementations that can be
274  *         referenced with this variable.
275  * @ivsize: IV size applicable for transformation. The consumer must provide an
276  *          IV of exactly that size to perform the encrypt or decrypt operation.
277  *
278  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
279  * mandatory and must be filled.
280  */
281 struct ablkcipher_alg {
282         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
283                       unsigned int keylen);
284         int (*encrypt)(struct ablkcipher_request *req);
285         int (*decrypt)(struct ablkcipher_request *req);
286         int (*givencrypt)(struct skcipher_givcrypt_request *req);
287         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
288
289         const char *geniv;
290
291         unsigned int min_keysize;
292         unsigned int max_keysize;
293         unsigned int ivsize;
294 };
295
296 /**
297  * struct aead_alg - AEAD cipher definition
298  * @maxauthsize: Set the maximum authentication tag size supported by the
299  *               transformation. A transformation may support smaller tag sizes.
300  *               As the authentication tag is a message digest to ensure the
301  *               integrity of the encrypted data, a consumer typically wants the
302  *               largest authentication tag possible as defined by this
303  *               variable.
304  * @setauthsize: Set authentication size for the AEAD transformation. This
305  *               function is used to specify the consumer requested size of the
306  *               authentication tag to be either generated by the transformation
307  *               during encryption or the size of the authentication tag to be
308  *               supplied during the decryption operation. This function is also
309  *               responsible for checking the authentication tag size for
310  *               validity.
311  * @setkey: see struct ablkcipher_alg
312  * @encrypt: see struct ablkcipher_alg
313  * @decrypt: see struct ablkcipher_alg
314  * @givencrypt: see struct ablkcipher_alg
315  * @givdecrypt: see struct ablkcipher_alg
316  * @geniv: see struct ablkcipher_alg
317  * @ivsize: see struct ablkcipher_alg
318  *
319  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
320  * mandatory and must be filled.
321  */
322 struct aead_alg {
323         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
324                       unsigned int keylen);
325         int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
326         int (*encrypt)(struct aead_request *req);
327         int (*decrypt)(struct aead_request *req);
328         int (*givencrypt)(struct aead_givcrypt_request *req);
329         int (*givdecrypt)(struct aead_givcrypt_request *req);
330
331         const char *geniv;
332
333         unsigned int ivsize;
334         unsigned int maxauthsize;
335 };
336
337 /**
338  * struct blkcipher_alg - synchronous block cipher definition
339  * @min_keysize: see struct ablkcipher_alg
340  * @max_keysize: see struct ablkcipher_alg
341  * @setkey: see struct ablkcipher_alg
342  * @encrypt: see struct ablkcipher_alg
343  * @decrypt: see struct ablkcipher_alg
344  * @geniv: see struct ablkcipher_alg
345  * @ivsize: see struct ablkcipher_alg
346  *
347  * All fields except @geniv and @ivsize are mandatory and must be filled.
348  */
349 struct blkcipher_alg {
350         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
351                       unsigned int keylen);
352         int (*encrypt)(struct blkcipher_desc *desc,
353                        struct scatterlist *dst, struct scatterlist *src,
354                        unsigned int nbytes);
355         int (*decrypt)(struct blkcipher_desc *desc,
356                        struct scatterlist *dst, struct scatterlist *src,
357                        unsigned int nbytes);
358
359         const char *geniv;
360
361         unsigned int min_keysize;
362         unsigned int max_keysize;
363         unsigned int ivsize;
364 };
365
366 /**
367  * struct cipher_alg - single-block symmetric ciphers definition
368  * @cia_min_keysize: Minimum key size supported by the transformation. This is
369  *                   the smallest key length supported by this transformation
370  *                   algorithm. This must be set to one of the pre-defined
371  *                   values as this is not hardware specific. Possible values
372  *                   for this field can be found via git grep "_MIN_KEY_SIZE"
373  *                   include/crypto/
374  * @cia_max_keysize: Maximum key size supported by the transformation. This is
375  *                  the largest key length supported by this transformation
376  *                  algorithm. This must be set to one of the pre-defined values
377  *                  as this is not hardware specific. Possible values for this
378  *                  field can be found via git grep "_MAX_KEY_SIZE"
379  *                  include/crypto/
380  * @cia_setkey: Set key for the transformation. This function is used to either
381  *              program a supplied key into the hardware or store the key in the
382  *              transformation context for programming it later. Note that this
383  *              function does modify the transformation context. This function
384  *              can be called multiple times during the existence of the
385  *              transformation object, so one must make sure the key is properly
386  *              reprogrammed into the hardware. This function is also
387  *              responsible for checking the key length for validity.
388  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
389  *               single block of data, which must be @cra_blocksize big. This
390  *               always operates on a full @cra_blocksize and it is not possible
391  *               to encrypt a block of smaller size. The supplied buffers must
392  *               therefore also be at least of @cra_blocksize size. Both the
393  *               input and output buffers are always aligned to @cra_alignmask.
394  *               In case either of the input or output buffer supplied by user
395  *               of the crypto API is not aligned to @cra_alignmask, the crypto
396  *               API will re-align the buffers. The re-alignment means that a
397  *               new buffer will be allocated, the data will be copied into the
398  *               new buffer, then the processing will happen on the new buffer,
399  *               then the data will be copied back into the original buffer and
400  *               finally the new buffer will be freed. In case a software
401  *               fallback was put in place in the @cra_init call, this function
402  *               might need to use the fallback if the algorithm doesn't support
403  *               all of the key sizes. In case the key was stored in
404  *               transformation context, the key might need to be re-programmed
405  *               into the hardware in this function. This function shall not
406  *               modify the transformation context, as this function may be
407  *               called in parallel with the same transformation object.
408  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
409  *               @cia_encrypt, and the conditions are exactly the same.
410  *
411  * All fields are mandatory and must be filled.
412  */
413 struct cipher_alg {
414         unsigned int cia_min_keysize;
415         unsigned int cia_max_keysize;
416         int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
417                           unsigned int keylen);
418         void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
419         void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
420 };
421
422 struct compress_alg {
423         int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
424                             unsigned int slen, u8 *dst, unsigned int *dlen);
425         int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
426                               unsigned int slen, u8 *dst, unsigned int *dlen);
427 };
428
429 /**
430  * struct rng_alg - random number generator definition
431  * @rng_make_random: The function defined by this variable obtains a random
432  *                   number. The random number generator transform must generate
433  *                   the random number out of the context provided with this
434  *                   call.
435  * @rng_reset: Reset of the random number generator by clearing the entire state.
436  *             With the invocation of this function call, the random number
437  *             generator shall completely reinitialize its state. If the random
438  *             number generator requires a seed for setting up a new state,
439  *             the seed must be provided by the consumer while invoking this
440  *             function. The required size of the seed is defined with
441  *             @seedsize .
442  * @seedsize: The seed size required for a random number generator
443  *            initialization defined with this variable. Some random number
444  *            generators like the SP800-90A DRBG does not require a seed as the
445  *            seeding is implemented internally without the need of support by
446  *            the consumer. In this case, the seed size is set to zero.
447  */
448 struct rng_alg {
449         int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata,
450                                unsigned int dlen);
451         int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
452
453         unsigned int seedsize;
454 };
455
456
457 #define cra_ablkcipher  cra_u.ablkcipher
458 #define cra_aead        cra_u.aead
459 #define cra_blkcipher   cra_u.blkcipher
460 #define cra_cipher      cra_u.cipher
461 #define cra_compress    cra_u.compress
462 #define cra_rng         cra_u.rng
463
464 /**
465  * struct crypto_alg - definition of a cryptograpic cipher algorithm
466  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
467  *             CRYPTO_ALG_* flags for the flags which go in here. Those are
468  *             used for fine-tuning the description of the transformation
469  *             algorithm.
470  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
471  *                 of the smallest possible unit which can be transformed with
472  *                 this algorithm. The users must respect this value.
473  *                 In case of HASH transformation, it is possible for a smaller
474  *                 block than @cra_blocksize to be passed to the crypto API for
475  *                 transformation, in case of any other transformation type, an
476  *                 error will be returned upon any attempt to transform smaller
477  *                 than @cra_blocksize chunks.
478  * @cra_ctxsize: Size of the operational context of the transformation. This
479  *               value informs the kernel crypto API about the memory size
480  *               needed to be allocated for the transformation context.
481  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
482  *                 buffer containing the input data for the algorithm must be
483  *                 aligned to this alignment mask. The data buffer for the
484  *                 output data must be aligned to this alignment mask. Note that
485  *                 the Crypto API will do the re-alignment in software, but
486  *                 only under special conditions and there is a performance hit.
487  *                 The re-alignment happens at these occasions for different
488  *                 @cra_u types: cipher -- For both input data and output data
489  *                 buffer; ahash -- For output hash destination buf; shash --
490  *                 For output hash destination buf.
491  *                 This is needed on hardware which is flawed by design and
492  *                 cannot pick data from arbitrary addresses.
493  * @cra_priority: Priority of this transformation implementation. In case
494  *                multiple transformations with same @cra_name are available to
495  *                the Crypto API, the kernel will use the one with highest
496  *                @cra_priority.
497  * @cra_name: Generic name (usable by multiple implementations) of the
498  *            transformation algorithm. This is the name of the transformation
499  *            itself. This field is used by the kernel when looking up the
500  *            providers of particular transformation.
501  * @cra_driver_name: Unique name of the transformation provider. This is the
502  *                   name of the provider of the transformation. This can be any
503  *                   arbitrary value, but in the usual case, this contains the
504  *                   name of the chip or provider and the name of the
505  *                   transformation algorithm.
506  * @cra_type: Type of the cryptographic transformation. This is a pointer to
507  *            struct crypto_type, which implements callbacks common for all
508  *            trasnformation types. There are multiple options:
509  *            &crypto_blkcipher_type, &crypto_ablkcipher_type,
510  *            &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
511  *            This field might be empty. In that case, there are no common
512  *            callbacks. This is the case for: cipher, compress, shash.
513  * @cra_u: Callbacks implementing the transformation. This is a union of
514  *         multiple structures. Depending on the type of transformation selected
515  *         by @cra_type and @cra_flags above, the associated structure must be
516  *         filled with callbacks. This field might be empty. This is the case
517  *         for ahash, shash.
518  * @cra_init: Initialize the cryptographic transformation object. This function
519  *            is used to initialize the cryptographic transformation object.
520  *            This function is called only once at the instantiation time, right
521  *            after the transformation context was allocated. In case the
522  *            cryptographic hardware has some special requirements which need to
523  *            be handled by software, this function shall check for the precise
524  *            requirement of the transformation and put any software fallbacks
525  *            in place.
526  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
527  *            counterpart to @cra_init, used to remove various changes set in
528  *            @cra_init.
529  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
530  * @cra_list: internally used
531  * @cra_users: internally used
532  * @cra_refcnt: internally used
533  * @cra_destroy: internally used
534  *
535  * The struct crypto_alg describes a generic Crypto API algorithm and is common
536  * for all of the transformations. Any variable not documented here shall not
537  * be used by a cipher implementation as it is internal to the Crypto API.
538  */
539 struct crypto_alg {
540         struct list_head cra_list;
541         struct list_head cra_users;
542
543         u32 cra_flags;
544         unsigned int cra_blocksize;
545         unsigned int cra_ctxsize;
546         unsigned int cra_alignmask;
547
548         int cra_priority;
549         atomic_t cra_refcnt;
550
551         char cra_name[CRYPTO_MAX_ALG_NAME];
552         char cra_driver_name[CRYPTO_MAX_ALG_NAME];
553
554         const struct crypto_type *cra_type;
555
556         union {
557                 struct ablkcipher_alg ablkcipher;
558                 struct aead_alg aead;
559                 struct blkcipher_alg blkcipher;
560                 struct cipher_alg cipher;
561                 struct compress_alg compress;
562                 struct rng_alg rng;
563         } cra_u;
564
565         int (*cra_init)(struct crypto_tfm *tfm);
566         void (*cra_exit)(struct crypto_tfm *tfm);
567         void (*cra_destroy)(struct crypto_alg *alg);
568         
569         struct module *cra_module;
570 };
571
572 /*
573  * Algorithm registration interface.
574  */
575 int crypto_register_alg(struct crypto_alg *alg);
576 int crypto_unregister_alg(struct crypto_alg *alg);
577 int crypto_register_algs(struct crypto_alg *algs, int count);
578 int crypto_unregister_algs(struct crypto_alg *algs, int count);
579
580 /*
581  * Algorithm query interface.
582  */
583 int crypto_has_alg(const char *name, u32 type, u32 mask);
584
585 /*
586  * Transforms: user-instantiated objects which encapsulate algorithms
587  * and core processing logic.  Managed via crypto_alloc_*() and
588  * crypto_free_*(), as well as the various helpers below.
589  */
590
591 struct ablkcipher_tfm {
592         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
593                       unsigned int keylen);
594         int (*encrypt)(struct ablkcipher_request *req);
595         int (*decrypt)(struct ablkcipher_request *req);
596         int (*givencrypt)(struct skcipher_givcrypt_request *req);
597         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
598
599         struct crypto_ablkcipher *base;
600
601         unsigned int ivsize;
602         unsigned int reqsize;
603 };
604
605 struct aead_tfm {
606         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
607                       unsigned int keylen);
608         int (*encrypt)(struct aead_request *req);
609         int (*decrypt)(struct aead_request *req);
610         int (*givencrypt)(struct aead_givcrypt_request *req);
611         int (*givdecrypt)(struct aead_givcrypt_request *req);
612
613         struct crypto_aead *base;
614
615         unsigned int ivsize;
616         unsigned int authsize;
617         unsigned int reqsize;
618 };
619
620 struct blkcipher_tfm {
621         void *iv;
622         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
623                       unsigned int keylen);
624         int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
625                        struct scatterlist *src, unsigned int nbytes);
626         int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
627                        struct scatterlist *src, unsigned int nbytes);
628 };
629
630 struct cipher_tfm {
631         int (*cit_setkey)(struct crypto_tfm *tfm,
632                           const u8 *key, unsigned int keylen);
633         void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
634         void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
635 };
636
637 struct hash_tfm {
638         int (*init)(struct hash_desc *desc);
639         int (*update)(struct hash_desc *desc,
640                       struct scatterlist *sg, unsigned int nsg);
641         int (*final)(struct hash_desc *desc, u8 *out);
642         int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
643                       unsigned int nsg, u8 *out);
644         int (*setkey)(struct crypto_hash *tfm, const u8 *key,
645                       unsigned int keylen);
646         unsigned int digestsize;
647 };
648
649 struct compress_tfm {
650         int (*cot_compress)(struct crypto_tfm *tfm,
651                             const u8 *src, unsigned int slen,
652                             u8 *dst, unsigned int *dlen);
653         int (*cot_decompress)(struct crypto_tfm *tfm,
654                               const u8 *src, unsigned int slen,
655                               u8 *dst, unsigned int *dlen);
656 };
657
658 struct rng_tfm {
659         int (*rng_gen_random)(struct crypto_rng *tfm, u8 *rdata,
660                               unsigned int dlen);
661         int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
662 };
663
664 #define crt_ablkcipher  crt_u.ablkcipher
665 #define crt_aead        crt_u.aead
666 #define crt_blkcipher   crt_u.blkcipher
667 #define crt_cipher      crt_u.cipher
668 #define crt_hash        crt_u.hash
669 #define crt_compress    crt_u.compress
670 #define crt_rng         crt_u.rng
671
672 struct crypto_tfm {
673
674         u32 crt_flags;
675         
676         union {
677                 struct ablkcipher_tfm ablkcipher;
678                 struct aead_tfm aead;
679                 struct blkcipher_tfm blkcipher;
680                 struct cipher_tfm cipher;
681                 struct hash_tfm hash;
682                 struct compress_tfm compress;
683                 struct rng_tfm rng;
684         } crt_u;
685
686         void (*exit)(struct crypto_tfm *tfm);
687         
688         struct crypto_alg *__crt_alg;
689
690         void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
691 };
692
693 struct crypto_ablkcipher {
694         struct crypto_tfm base;
695 };
696
697 struct crypto_aead {
698         struct crypto_tfm base;
699 };
700
701 struct crypto_blkcipher {
702         struct crypto_tfm base;
703 };
704
705 struct crypto_cipher {
706         struct crypto_tfm base;
707 };
708
709 struct crypto_comp {
710         struct crypto_tfm base;
711 };
712
713 struct crypto_hash {
714         struct crypto_tfm base;
715 };
716
717 struct crypto_rng {
718         struct crypto_tfm base;
719 };
720
721 enum {
722         CRYPTOA_UNSPEC,
723         CRYPTOA_ALG,
724         CRYPTOA_TYPE,
725         CRYPTOA_U32,
726         __CRYPTOA_MAX,
727 };
728
729 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
730
731 /* Maximum number of (rtattr) parameters for each template. */
732 #define CRYPTO_MAX_ATTRS 32
733
734 struct crypto_attr_alg {
735         char name[CRYPTO_MAX_ALG_NAME];
736 };
737
738 struct crypto_attr_type {
739         u32 type;
740         u32 mask;
741 };
742
743 struct crypto_attr_u32 {
744         u32 num;
745 };
746
747 /* 
748  * Transform user interface.
749  */
750  
751 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
752 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
753
754 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
755 {
756         return crypto_destroy_tfm(tfm, tfm);
757 }
758
759 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
760
761 /*
762  * Transform helpers which query the underlying algorithm.
763  */
764 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
765 {
766         return tfm->__crt_alg->cra_name;
767 }
768
769 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
770 {
771         return tfm->__crt_alg->cra_driver_name;
772 }
773
774 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
775 {
776         return tfm->__crt_alg->cra_priority;
777 }
778
779 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
780 {
781         return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
782 }
783
784 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
785 {
786         return tfm->__crt_alg->cra_blocksize;
787 }
788
789 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
790 {
791         return tfm->__crt_alg->cra_alignmask;
792 }
793
794 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
795 {
796         return tfm->crt_flags;
797 }
798
799 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
800 {
801         tfm->crt_flags |= flags;
802 }
803
804 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
805 {
806         tfm->crt_flags &= ~flags;
807 }
808
809 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
810 {
811         return tfm->__crt_ctx;
812 }
813
814 static inline unsigned int crypto_tfm_ctx_alignment(void)
815 {
816         struct crypto_tfm *tfm;
817         return __alignof__(tfm->__crt_ctx);
818 }
819
820 /*
821  * API wrappers.
822  */
823 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
824         struct crypto_tfm *tfm)
825 {
826         return (struct crypto_ablkcipher *)tfm;
827 }
828
829 static inline u32 crypto_skcipher_type(u32 type)
830 {
831         type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
832         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
833         return type;
834 }
835
836 static inline u32 crypto_skcipher_mask(u32 mask)
837 {
838         mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
839         mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
840         return mask;
841 }
842
843 /**
844  * DOC: Asynchronous Block Cipher API
845  *
846  * Asynchronous block cipher API is used with the ciphers of type
847  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
848  *
849  * Asynchronous cipher operations imply that the function invocation for a
850  * cipher request returns immediately before the completion of the operation.
851  * The cipher request is scheduled as a separate kernel thread and therefore
852  * load-balanced on the different CPUs via the process scheduler. To allow
853  * the kernel crypto API to inform the caller about the completion of a cipher
854  * request, the caller must provide a callback function. That function is
855  * invoked with the cipher handle when the request completes.
856  *
857  * To support the asynchronous operation, additional information than just the
858  * cipher handle must be supplied to the kernel crypto API. That additional
859  * information is given by filling in the ablkcipher_request data structure.
860  *
861  * For the asynchronous block cipher API, the state is maintained with the tfm
862  * cipher handle. A single tfm can be used across multiple calls and in
863  * parallel. For asynchronous block cipher calls, context data supplied and
864  * only used by the caller can be referenced the request data structure in
865  * addition to the IV used for the cipher request. The maintenance of such
866  * state information would be important for a crypto driver implementer to
867  * have, because when calling the callback function upon completion of the
868  * cipher operation, that callback function may need some information about
869  * which operation just finished if it invoked multiple in parallel. This
870  * state information is unused by the kernel crypto API.
871  */
872
873 /**
874  * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
875  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
876  *            ablkcipher cipher
877  * @type: specifies the type of the cipher
878  * @mask: specifies the mask for the cipher
879  *
880  * Allocate a cipher handle for an ablkcipher. The returned struct
881  * crypto_ablkcipher is the cipher handle that is required for any subsequent
882  * API invocation for that ablkcipher.
883  *
884  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
885  *         of an error, PTR_ERR() returns the error code.
886  */
887 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
888                                                   u32 type, u32 mask);
889
890 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
891         struct crypto_ablkcipher *tfm)
892 {
893         return &tfm->base;
894 }
895
896 /**
897  * crypto_free_ablkcipher() - zeroize and free cipher handle
898  * @tfm: cipher handle to be freed
899  */
900 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
901 {
902         crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
903 }
904
905 /**
906  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
907  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
908  *            ablkcipher
909  * @type: specifies the type of the cipher
910  * @mask: specifies the mask for the cipher
911  *
912  * Return: true when the ablkcipher is known to the kernel crypto API; false
913  *         otherwise
914  */
915 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
916                                         u32 mask)
917 {
918         return crypto_has_alg(alg_name, crypto_skcipher_type(type),
919                               crypto_skcipher_mask(mask));
920 }
921
922 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
923         struct crypto_ablkcipher *tfm)
924 {
925         return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
926 }
927
928 /**
929  * crypto_ablkcipher_ivsize() - obtain IV size
930  * @tfm: cipher handle
931  *
932  * The size of the IV for the ablkcipher referenced by the cipher handle is
933  * returned. This IV size may be zero if the cipher does not need an IV.
934  *
935  * Return: IV size in bytes
936  */
937 static inline unsigned int crypto_ablkcipher_ivsize(
938         struct crypto_ablkcipher *tfm)
939 {
940         return crypto_ablkcipher_crt(tfm)->ivsize;
941 }
942
943 /**
944  * crypto_ablkcipher_blocksize() - obtain block size of cipher
945  * @tfm: cipher handle
946  *
947  * The block size for the ablkcipher referenced with the cipher handle is
948  * returned. The caller may use that information to allocate appropriate
949  * memory for the data returned by the encryption or decryption operation
950  *
951  * Return: block size of cipher
952  */
953 static inline unsigned int crypto_ablkcipher_blocksize(
954         struct crypto_ablkcipher *tfm)
955 {
956         return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
957 }
958
959 static inline unsigned int crypto_ablkcipher_alignmask(
960         struct crypto_ablkcipher *tfm)
961 {
962         return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
963 }
964
965 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
966 {
967         return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
968 }
969
970 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
971                                                u32 flags)
972 {
973         crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
974 }
975
976 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
977                                                  u32 flags)
978 {
979         crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
980 }
981
982 /**
983  * crypto_ablkcipher_setkey() - set key for cipher
984  * @tfm: cipher handle
985  * @key: buffer holding the key
986  * @keylen: length of the key in bytes
987  *
988  * The caller provided key is set for the ablkcipher referenced by the cipher
989  * handle.
990  *
991  * Note, the key length determines the cipher type. Many block ciphers implement
992  * different cipher modes depending on the key size, such as AES-128 vs AES-192
993  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
994  * is performed.
995  *
996  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
997  */
998 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
999                                            const u8 *key, unsigned int keylen)
1000 {
1001         struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1002
1003         return crt->setkey(crt->base, key, keylen);
1004 }
1005
1006 /**
1007  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1008  * @req: ablkcipher_request out of which the cipher handle is to be obtained
1009  *
1010  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1011  * data structure.
1012  *
1013  * Return: crypto_ablkcipher handle
1014  */
1015 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1016         struct ablkcipher_request *req)
1017 {
1018         return __crypto_ablkcipher_cast(req->base.tfm);
1019 }
1020
1021 /**
1022  * crypto_ablkcipher_encrypt() - encrypt plaintext
1023  * @req: reference to the ablkcipher_request handle that holds all information
1024  *       needed to perform the cipher operation
1025  *
1026  * Encrypt plaintext data using the ablkcipher_request handle. That data
1027  * structure and how it is filled with data is discussed with the
1028  * ablkcipher_request_* functions.
1029  *
1030  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1031  */
1032 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1033 {
1034         struct ablkcipher_tfm *crt =
1035                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1036         return crt->encrypt(req);
1037 }
1038
1039 /**
1040  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1041  * @req: reference to the ablkcipher_request handle that holds all information
1042  *       needed to perform the cipher operation
1043  *
1044  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1045  * structure and how it is filled with data is discussed with the
1046  * ablkcipher_request_* functions.
1047  *
1048  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1049  */
1050 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1051 {
1052         struct ablkcipher_tfm *crt =
1053                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1054         return crt->decrypt(req);
1055 }
1056
1057 /**
1058  * DOC: Asynchronous Cipher Request Handle
1059  *
1060  * The ablkcipher_request data structure contains all pointers to data
1061  * required for the asynchronous cipher operation. This includes the cipher
1062  * handle (which can be used by multiple ablkcipher_request instances), pointer
1063  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1064  * as a handle to the ablkcipher_request_* API calls in a similar way as
1065  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1066  */
1067
1068 /**
1069  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1070  * @tfm: cipher handle
1071  *
1072  * Return: number of bytes
1073  */
1074 static inline unsigned int crypto_ablkcipher_reqsize(
1075         struct crypto_ablkcipher *tfm)
1076 {
1077         return crypto_ablkcipher_crt(tfm)->reqsize;
1078 }
1079
1080 /**
1081  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1082  * @req: request handle to be modified
1083  * @tfm: cipher handle that shall be added to the request handle
1084  *
1085  * Allow the caller to replace the existing ablkcipher handle in the request
1086  * data structure with a different one.
1087  */
1088 static inline void ablkcipher_request_set_tfm(
1089         struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1090 {
1091         req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1092 }
1093
1094 static inline struct ablkcipher_request *ablkcipher_request_cast(
1095         struct crypto_async_request *req)
1096 {
1097         return container_of(req, struct ablkcipher_request, base);
1098 }
1099
1100 /**
1101  * ablkcipher_request_alloc() - allocate request data structure
1102  * @tfm: cipher handle to be registered with the request
1103  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1104  *
1105  * Allocate the request data structure that must be used with the ablkcipher
1106  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1107  * handle is registered in the request data structure.
1108  *
1109  * Return: allocated request handle in case of success; IS_ERR() is true in case
1110  *         of an error, PTR_ERR() returns the error code.
1111  */
1112 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1113         struct crypto_ablkcipher *tfm, gfp_t gfp)
1114 {
1115         struct ablkcipher_request *req;
1116
1117         req = kmalloc(sizeof(struct ablkcipher_request) +
1118                       crypto_ablkcipher_reqsize(tfm), gfp);
1119
1120         if (likely(req))
1121                 ablkcipher_request_set_tfm(req, tfm);
1122
1123         return req;
1124 }
1125
1126 /**
1127  * ablkcipher_request_free() - zeroize and free request data structure
1128  * @req: request data structure cipher handle to be freed
1129  */
1130 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1131 {
1132         kzfree(req);
1133 }
1134
1135 /**
1136  * ablkcipher_request_set_callback() - set asynchronous callback function
1137  * @req: request handle
1138  * @flags: specify zero or an ORing of the flags
1139  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1140  *         increase the wait queue beyond the initial maximum size;
1141  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1142  * @compl: callback function pointer to be registered with the request handle
1143  * @data: The data pointer refers to memory that is not used by the kernel
1144  *        crypto API, but provided to the callback function for it to use. Here,
1145  *        the caller can provide a reference to memory the callback function can
1146  *        operate on. As the callback function is invoked asynchronously to the
1147  *        related functionality, it may need to access data structures of the
1148  *        related functionality which can be referenced using this pointer. The
1149  *        callback function can access the memory via the "data" field in the
1150  *        crypto_async_request data structure provided to the callback function.
1151  *
1152  * This function allows setting the callback function that is triggered once the
1153  * cipher operation completes.
1154  *
1155  * The callback function is registered with the ablkcipher_request handle and
1156  * must comply with the following template
1157  *
1158  *      void callback_function(struct crypto_async_request *req, int error)
1159  */
1160 static inline void ablkcipher_request_set_callback(
1161         struct ablkcipher_request *req,
1162         u32 flags, crypto_completion_t compl, void *data)
1163 {
1164         req->base.complete = compl;
1165         req->base.data = data;
1166         req->base.flags = flags;
1167 }
1168
1169 /**
1170  * ablkcipher_request_set_crypt() - set data buffers
1171  * @req: request handle
1172  * @src: source scatter / gather list
1173  * @dst: destination scatter / gather list
1174  * @nbytes: number of bytes to process from @src
1175  * @iv: IV for the cipher operation which must comply with the IV size defined
1176  *      by crypto_ablkcipher_ivsize
1177  *
1178  * This function allows setting of the source data and destination data
1179  * scatter / gather lists.
1180  *
1181  * For encryption, the source is treated as the plaintext and the
1182  * destination is the ciphertext. For a decryption operation, the use is
1183  * reversed - the source is the ciphertext and the destination is the plaintext.
1184  */
1185 static inline void ablkcipher_request_set_crypt(
1186         struct ablkcipher_request *req,
1187         struct scatterlist *src, struct scatterlist *dst,
1188         unsigned int nbytes, void *iv)
1189 {
1190         req->src = src;
1191         req->dst = dst;
1192         req->nbytes = nbytes;
1193         req->info = iv;
1194 }
1195
1196 /**
1197  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
1198  *
1199  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
1200  * (listed as type "aead" in /proc/crypto)
1201  *
1202  * The most prominent examples for this type of encryption is GCM and CCM.
1203  * However, the kernel supports other types of AEAD ciphers which are defined
1204  * with the following cipher string:
1205  *
1206  *      authenc(keyed message digest, block cipher)
1207  *
1208  * For example: authenc(hmac(sha256), cbc(aes))
1209  *
1210  * The example code provided for the asynchronous block cipher operation
1211  * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
1212  * the *aead* pendants discussed in the following. In addtion, for the AEAD
1213  * operation, the aead_request_set_assoc function must be used to set the
1214  * pointer to the associated data memory location before performing the
1215  * encryption or decryption operation. In case of an encryption, the associated
1216  * data memory is filled during the encryption operation. For decryption, the
1217  * associated data memory must contain data that is used to verify the integrity
1218  * of the decrypted data. Another deviation from the asynchronous block cipher
1219  * operation is that the caller should explicitly check for -EBADMSG of the
1220  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
1221  * a breach in the integrity of the message. In essence, that -EBADMSG error
1222  * code is the key bonus an AEAD cipher has over "standard" block chaining
1223  * modes.
1224  */
1225
1226 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
1227 {
1228         return (struct crypto_aead *)tfm;
1229 }
1230
1231 /**
1232  * crypto_alloc_aead() - allocate AEAD cipher handle
1233  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1234  *           AEAD cipher
1235  * @type: specifies the type of the cipher
1236  * @mask: specifies the mask for the cipher
1237  *
1238  * Allocate a cipher handle for an AEAD. The returned struct
1239  * crypto_aead is the cipher handle that is required for any subsequent
1240  * API invocation for that AEAD.
1241  *
1242  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1243  *         of an error, PTR_ERR() returns the error code.
1244  */
1245 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
1246
1247 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
1248 {
1249         return &tfm->base;
1250 }
1251
1252 /**
1253  * crypto_free_aead() - zeroize and free aead handle
1254  * @tfm: cipher handle to be freed
1255  */
1256 static inline void crypto_free_aead(struct crypto_aead *tfm)
1257 {
1258         crypto_free_tfm(crypto_aead_tfm(tfm));
1259 }
1260
1261 static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
1262 {
1263         return &crypto_aead_tfm(tfm)->crt_aead;
1264 }
1265
1266 /**
1267  * crypto_aead_ivsize() - obtain IV size
1268  * @tfm: cipher handle
1269  *
1270  * The size of the IV for the aead referenced by the cipher handle is
1271  * returned. This IV size may be zero if the cipher does not need an IV.
1272  *
1273  * Return: IV size in bytes
1274  */
1275 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
1276 {
1277         return crypto_aead_crt(tfm)->ivsize;
1278 }
1279
1280 /**
1281  * crypto_aead_authsize() - obtain maximum authentication data size
1282  * @tfm: cipher handle
1283  *
1284  * The maximum size of the authentication data for the AEAD cipher referenced
1285  * by the AEAD cipher handle is returned. The authentication data size may be
1286  * zero if the cipher implements a hard-coded maximum.
1287  *
1288  * The authentication data may also be known as "tag value".
1289  *
1290  * Return: authentication data size / tag size in bytes
1291  */
1292 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
1293 {
1294         return crypto_aead_crt(tfm)->authsize;
1295 }
1296
1297 /**
1298  * crypto_aead_blocksize() - obtain block size of cipher
1299  * @tfm: cipher handle
1300  *
1301  * The block size for the AEAD referenced with the cipher handle is returned.
1302  * The caller may use that information to allocate appropriate memory for the
1303  * data returned by the encryption or decryption operation
1304  *
1305  * Return: block size of cipher
1306  */
1307 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
1308 {
1309         return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
1310 }
1311
1312 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
1313 {
1314         return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
1315 }
1316
1317 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
1318 {
1319         return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
1320 }
1321
1322 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
1323 {
1324         crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
1325 }
1326
1327 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
1328 {
1329         crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
1330 }
1331
1332 /**
1333  * crypto_aead_setkey() - set key for cipher
1334  * @tfm: cipher handle
1335  * @key: buffer holding the key
1336  * @keylen: length of the key in bytes
1337  *
1338  * The caller provided key is set for the AEAD referenced by the cipher
1339  * handle.
1340  *
1341  * Note, the key length determines the cipher type. Many block ciphers implement
1342  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1343  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1344  * is performed.
1345  *
1346  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1347  */
1348 static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1349                                      unsigned int keylen)
1350 {
1351         struct aead_tfm *crt = crypto_aead_crt(tfm);
1352
1353         return crt->setkey(crt->base, key, keylen);
1354 }
1355
1356 /**
1357  * crypto_aead_setauthsize() - set authentication data size
1358  * @tfm: cipher handle
1359  * @authsize: size of the authentication data / tag in bytes
1360  *
1361  * Set the authentication data size / tag size. AEAD requires an authentication
1362  * tag (or MAC) in addition to the associated data.
1363  *
1364  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1365  */
1366 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
1367
1368 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
1369 {
1370         return __crypto_aead_cast(req->base.tfm);
1371 }
1372
1373 /**
1374  * crypto_aead_encrypt() - encrypt plaintext
1375  * @req: reference to the aead_request handle that holds all information
1376  *       needed to perform the cipher operation
1377  *
1378  * Encrypt plaintext data using the aead_request handle. That data structure
1379  * and how it is filled with data is discussed with the aead_request_*
1380  * functions.
1381  *
1382  * IMPORTANT NOTE The encryption operation creates the authentication data /
1383  *                tag. That data is concatenated with the created ciphertext.
1384  *                The ciphertext memory size is therefore the given number of
1385  *                block cipher blocks + the size defined by the
1386  *                crypto_aead_setauthsize invocation. The caller must ensure
1387  *                that sufficient memory is available for the ciphertext and
1388  *                the authentication tag.
1389  *
1390  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1391  */
1392 static inline int crypto_aead_encrypt(struct aead_request *req)
1393 {
1394         return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
1395 }
1396
1397 /**
1398  * crypto_aead_decrypt() - decrypt ciphertext
1399  * @req: reference to the ablkcipher_request handle that holds all information
1400  *       needed to perform the cipher operation
1401  *
1402  * Decrypt ciphertext data using the aead_request handle. That data structure
1403  * and how it is filled with data is discussed with the aead_request_*
1404  * functions.
1405  *
1406  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
1407  *                authentication data / tag. That authentication data / tag
1408  *                must have the size defined by the crypto_aead_setauthsize
1409  *                invocation.
1410  *
1411  *
1412  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
1413  *         cipher operation performs the authentication of the data during the
1414  *         decryption operation. Therefore, the function returns this error if
1415  *         the authentication of the ciphertext was unsuccessful (i.e. the
1416  *         integrity of the ciphertext or the associated data was violated);
1417  *         < 0 if an error occurred.
1418  */
1419 static inline int crypto_aead_decrypt(struct aead_request *req)
1420 {
1421         if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
1422                 return -EINVAL;
1423
1424         return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
1425 }
1426
1427 /**
1428  * DOC: Asynchronous AEAD Request Handle
1429  *
1430  * The aead_request data structure contains all pointers to data required for
1431  * the AEAD cipher operation. This includes the cipher handle (which can be
1432  * used by multiple aead_request instances), pointer to plaintext and
1433  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
1434  * aead_request_* API calls in a similar way as AEAD handle to the
1435  * crypto_aead_* API calls.
1436  */
1437
1438 /**
1439  * crypto_aead_reqsize() - obtain size of the request data structure
1440  * @tfm: cipher handle
1441  *
1442  * Return: number of bytes
1443  */
1444 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
1445 {
1446         return crypto_aead_crt(tfm)->reqsize;
1447 }
1448
1449 /**
1450  * aead_request_set_tfm() - update cipher handle reference in request
1451  * @req: request handle to be modified
1452  * @tfm: cipher handle that shall be added to the request handle
1453  *
1454  * Allow the caller to replace the existing aead handle in the request
1455  * data structure with a different one.
1456  */
1457 static inline void aead_request_set_tfm(struct aead_request *req,
1458                                         struct crypto_aead *tfm)
1459 {
1460         req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
1461 }
1462
1463 /**
1464  * aead_request_alloc() - allocate request data structure
1465  * @tfm: cipher handle to be registered with the request
1466  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1467  *
1468  * Allocate the request data structure that must be used with the AEAD
1469  * encrypt and decrypt API calls. During the allocation, the provided aead
1470  * handle is registered in the request data structure.
1471  *
1472  * Return: allocated request handle in case of success; IS_ERR() is true in case
1473  *         of an error, PTR_ERR() returns the error code.
1474  */
1475 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
1476                                                       gfp_t gfp)
1477 {
1478         struct aead_request *req;
1479
1480         req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
1481
1482         if (likely(req))
1483                 aead_request_set_tfm(req, tfm);
1484
1485         return req;
1486 }
1487
1488 /**
1489  * aead_request_free() - zeroize and free request data structure
1490  * @req: request data structure cipher handle to be freed
1491  */
1492 static inline void aead_request_free(struct aead_request *req)
1493 {
1494         kzfree(req);
1495 }
1496
1497 /**
1498  * aead_request_set_callback() - set asynchronous callback function
1499  * @req: request handle
1500  * @flags: specify zero or an ORing of the flags
1501  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1502  *         increase the wait queue beyond the initial maximum size;
1503  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1504  * @compl: callback function pointer to be registered with the request handle
1505  * @data: The data pointer refers to memory that is not used by the kernel
1506  *        crypto API, but provided to the callback function for it to use. Here,
1507  *        the caller can provide a reference to memory the callback function can
1508  *        operate on. As the callback function is invoked asynchronously to the
1509  *        related functionality, it may need to access data structures of the
1510  *        related functionality which can be referenced using this pointer. The
1511  *        callback function can access the memory via the "data" field in the
1512  *        crypto_async_request data structure provided to the callback function.
1513  *
1514  * Setting the callback function that is triggered once the cipher operation
1515  * completes
1516  *
1517  * The callback function is registered with the aead_request handle and
1518  * must comply with the following template
1519  *
1520  *      void callback_function(struct crypto_async_request *req, int error)
1521  */
1522 static inline void aead_request_set_callback(struct aead_request *req,
1523                                              u32 flags,
1524                                              crypto_completion_t compl,
1525                                              void *data)
1526 {
1527         req->base.complete = compl;
1528         req->base.data = data;
1529         req->base.flags = flags;
1530 }
1531
1532 /**
1533  * aead_request_set_crypt - set data buffers
1534  * @req: request handle
1535  * @src: source scatter / gather list
1536  * @dst: destination scatter / gather list
1537  * @cryptlen: number of bytes to process from @src
1538  * @iv: IV for the cipher operation which must comply with the IV size defined
1539  *      by crypto_aead_ivsize()
1540  *
1541  * Setting the source data and destination data scatter / gather lists.
1542  *
1543  * For encryption, the source is treated as the plaintext and the
1544  * destination is the ciphertext. For a decryption operation, the use is
1545  * reversed - the source is the ciphertext and the destination is the plaintext.
1546  *
1547  * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
1548  *                the caller must concatenate the ciphertext followed by the
1549  *                authentication tag and provide the entire data stream to the
1550  *                decryption operation (i.e. the data length used for the
1551  *                initialization of the scatterlist and the data length for the
1552  *                decryption operation is identical). For encryption, however,
1553  *                the authentication tag is created while encrypting the data.
1554  *                The destination buffer must hold sufficient space for the
1555  *                ciphertext and the authentication tag while the encryption
1556  *                invocation must only point to the plaintext data size. The
1557  *                following code snippet illustrates the memory usage
1558  *                buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
1559  *                sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
1560  *                aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
1561  */
1562 static inline void aead_request_set_crypt(struct aead_request *req,
1563                                           struct scatterlist *src,
1564                                           struct scatterlist *dst,
1565                                           unsigned int cryptlen, u8 *iv)
1566 {
1567         req->src = src;
1568         req->dst = dst;
1569         req->cryptlen = cryptlen;
1570         req->iv = iv;
1571 }
1572
1573 /**
1574  * aead_request_set_assoc() - set the associated data scatter / gather list
1575  * @req: request handle
1576  * @assoc: associated data scatter / gather list
1577  * @assoclen: number of bytes to process from @assoc
1578  *
1579  * For encryption, the memory is filled with the associated data. For
1580  * decryption, the memory must point to the associated data.
1581  */
1582 static inline void aead_request_set_assoc(struct aead_request *req,
1583                                           struct scatterlist *assoc,
1584                                           unsigned int assoclen)
1585 {
1586         req->assoc = assoc;
1587         req->assoclen = assoclen;
1588 }
1589
1590 /**
1591  * DOC: Synchronous Block Cipher API
1592  *
1593  * The synchronous block cipher API is used with the ciphers of type
1594  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1595  *
1596  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1597  * used in multiple calls and in parallel, this info should not be changeable
1598  * (unless a lock is used). This applies, for example, to the symmetric key.
1599  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1600  * structure for synchronous blkcipher api. So, its the only state info that can
1601  * be kept for synchronous calls without using a big lock across a tfm.
1602  *
1603  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1604  * consisting of a template (a block chaining mode) and a single block cipher
1605  * primitive (e.g. AES).
1606  *
1607  * The plaintext data buffer and the ciphertext data buffer are pointed to
1608  * by using scatter/gather lists. The cipher operation is performed
1609  * on all segments of the provided scatter/gather lists.
1610  *
1611  * The kernel crypto API supports a cipher operation "in-place" which means that
1612  * the caller may provide the same scatter/gather list for the plaintext and
1613  * cipher text. After the completion of the cipher operation, the plaintext
1614  * data is replaced with the ciphertext data in case of an encryption and vice
1615  * versa for a decryption. The caller must ensure that the scatter/gather lists
1616  * for the output data point to sufficiently large buffers, i.e. multiples of
1617  * the block size of the cipher.
1618  */
1619
1620 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1621         struct crypto_tfm *tfm)
1622 {
1623         return (struct crypto_blkcipher *)tfm;
1624 }
1625
1626 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1627         struct crypto_tfm *tfm)
1628 {
1629         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1630         return __crypto_blkcipher_cast(tfm);
1631 }
1632
1633 /**
1634  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1635  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1636  *            blkcipher cipher
1637  * @type: specifies the type of the cipher
1638  * @mask: specifies the mask for the cipher
1639  *
1640  * Allocate a cipher handle for a block cipher. The returned struct
1641  * crypto_blkcipher is the cipher handle that is required for any subsequent
1642  * API invocation for that block cipher.
1643  *
1644  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1645  *         of an error, PTR_ERR() returns the error code.
1646  */
1647 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1648         const char *alg_name, u32 type, u32 mask)
1649 {
1650         type &= ~CRYPTO_ALG_TYPE_MASK;
1651         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1652         mask |= CRYPTO_ALG_TYPE_MASK;
1653
1654         return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1655 }
1656
1657 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1658         struct crypto_blkcipher *tfm)
1659 {
1660         return &tfm->base;
1661 }
1662
1663 /**
1664  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1665  * @tfm: cipher handle to be freed
1666  */
1667 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1668 {
1669         crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1670 }
1671
1672 /**
1673  * crypto_has_blkcipher() - Search for the availability of a block cipher
1674  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1675  *            block cipher
1676  * @type: specifies the type of the cipher
1677  * @mask: specifies the mask for the cipher
1678  *
1679  * Return: true when the block cipher is known to the kernel crypto API; false
1680  *         otherwise
1681  */
1682 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1683 {
1684         type &= ~CRYPTO_ALG_TYPE_MASK;
1685         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1686         mask |= CRYPTO_ALG_TYPE_MASK;
1687
1688         return crypto_has_alg(alg_name, type, mask);
1689 }
1690
1691 /**
1692  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1693  * @tfm: cipher handle
1694  *
1695  * Return: The character string holding the name of the cipher
1696  */
1697 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1698 {
1699         return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1700 }
1701
1702 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1703         struct crypto_blkcipher *tfm)
1704 {
1705         return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1706 }
1707
1708 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1709         struct crypto_blkcipher *tfm)
1710 {
1711         return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1712 }
1713
1714 /**
1715  * crypto_blkcipher_ivsize() - obtain IV size
1716  * @tfm: cipher handle
1717  *
1718  * The size of the IV for the block cipher referenced by the cipher handle is
1719  * returned. This IV size may be zero if the cipher does not need an IV.
1720  *
1721  * Return: IV size in bytes
1722  */
1723 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1724 {
1725         return crypto_blkcipher_alg(tfm)->ivsize;
1726 }
1727
1728 /**
1729  * crypto_blkcipher_blocksize() - obtain block size of cipher
1730  * @tfm: cipher handle
1731  *
1732  * The block size for the block cipher referenced with the cipher handle is
1733  * returned. The caller may use that information to allocate appropriate
1734  * memory for the data returned by the encryption or decryption operation.
1735  *
1736  * Return: block size of cipher
1737  */
1738 static inline unsigned int crypto_blkcipher_blocksize(
1739         struct crypto_blkcipher *tfm)
1740 {
1741         return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1742 }
1743
1744 static inline unsigned int crypto_blkcipher_alignmask(
1745         struct crypto_blkcipher *tfm)
1746 {
1747         return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1748 }
1749
1750 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1751 {
1752         return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1753 }
1754
1755 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1756                                               u32 flags)
1757 {
1758         crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1759 }
1760
1761 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1762                                                 u32 flags)
1763 {
1764         crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1765 }
1766
1767 /**
1768  * crypto_blkcipher_setkey() - set key for cipher
1769  * @tfm: cipher handle
1770  * @key: buffer holding the key
1771  * @keylen: length of the key in bytes
1772  *
1773  * The caller provided key is set for the block cipher referenced by the cipher
1774  * handle.
1775  *
1776  * Note, the key length determines the cipher type. Many block ciphers implement
1777  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1778  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1779  * is performed.
1780  *
1781  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1782  */
1783 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1784                                           const u8 *key, unsigned int keylen)
1785 {
1786         return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1787                                                  key, keylen);
1788 }
1789
1790 /**
1791  * crypto_blkcipher_encrypt() - encrypt plaintext
1792  * @desc: reference to the block cipher handle with meta data
1793  * @dst: scatter/gather list that is filled by the cipher operation with the
1794  *      ciphertext
1795  * @src: scatter/gather list that holds the plaintext
1796  * @nbytes: number of bytes of the plaintext to encrypt.
1797  *
1798  * Encrypt plaintext data using the IV set by the caller with a preceding
1799  * call of crypto_blkcipher_set_iv.
1800  *
1801  * The blkcipher_desc data structure must be filled by the caller and can
1802  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1803  * with the block cipher handle; desc.flags is filled with either
1804  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1805  *
1806  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1807  */
1808 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1809                                            struct scatterlist *dst,
1810                                            struct scatterlist *src,
1811                                            unsigned int nbytes)
1812 {
1813         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1814         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1815 }
1816
1817 /**
1818  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1819  * @desc: reference to the block cipher handle with meta data
1820  * @dst: scatter/gather list that is filled by the cipher operation with the
1821  *      ciphertext
1822  * @src: scatter/gather list that holds the plaintext
1823  * @nbytes: number of bytes of the plaintext to encrypt.
1824  *
1825  * Encrypt plaintext data with the use of an IV that is solely used for this
1826  * cipher operation. Any previously set IV is not used.
1827  *
1828  * The blkcipher_desc data structure must be filled by the caller and can
1829  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1830  * with the block cipher handle; desc.info is filled with the IV to be used for
1831  * the current operation; desc.flags is filled with either
1832  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1833  *
1834  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1835  */
1836 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1837                                               struct scatterlist *dst,
1838                                               struct scatterlist *src,
1839                                               unsigned int nbytes)
1840 {
1841         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1842 }
1843
1844 /**
1845  * crypto_blkcipher_decrypt() - decrypt ciphertext
1846  * @desc: reference to the block cipher handle with meta data
1847  * @dst: scatter/gather list that is filled by the cipher operation with the
1848  *      plaintext
1849  * @src: scatter/gather list that holds the ciphertext
1850  * @nbytes: number of bytes of the ciphertext to decrypt.
1851  *
1852  * Decrypt ciphertext data using the IV set by the caller with a preceding
1853  * call of crypto_blkcipher_set_iv.
1854  *
1855  * The blkcipher_desc data structure must be filled by the caller as documented
1856  * for the crypto_blkcipher_encrypt call above.
1857  *
1858  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1859  *
1860  */
1861 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1862                                            struct scatterlist *dst,
1863                                            struct scatterlist *src,
1864                                            unsigned int nbytes)
1865 {
1866         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1867         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1868 }
1869
1870 /**
1871  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1872  * @desc: reference to the block cipher handle with meta data
1873  * @dst: scatter/gather list that is filled by the cipher operation with the
1874  *      plaintext
1875  * @src: scatter/gather list that holds the ciphertext
1876  * @nbytes: number of bytes of the ciphertext to decrypt.
1877  *
1878  * Decrypt ciphertext data with the use of an IV that is solely used for this
1879  * cipher operation. Any previously set IV is not used.
1880  *
1881  * The blkcipher_desc data structure must be filled by the caller as documented
1882  * for the crypto_blkcipher_encrypt_iv call above.
1883  *
1884  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1885  */
1886 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1887                                               struct scatterlist *dst,
1888                                               struct scatterlist *src,
1889                                               unsigned int nbytes)
1890 {
1891         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1892 }
1893
1894 /**
1895  * crypto_blkcipher_set_iv() - set IV for cipher
1896  * @tfm: cipher handle
1897  * @src: buffer holding the IV
1898  * @len: length of the IV in bytes
1899  *
1900  * The caller provided IV is set for the block cipher referenced by the cipher
1901  * handle.
1902  */
1903 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1904                                            const u8 *src, unsigned int len)
1905 {
1906         memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1907 }
1908
1909 /**
1910  * crypto_blkcipher_get_iv() - obtain IV from cipher
1911  * @tfm: cipher handle
1912  * @dst: buffer filled with the IV
1913  * @len: length of the buffer dst
1914  *
1915  * The caller can obtain the IV set for the block cipher referenced by the
1916  * cipher handle and store it into the user-provided buffer. If the buffer
1917  * has an insufficient space, the IV is truncated to fit the buffer.
1918  */
1919 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1920                                            u8 *dst, unsigned int len)
1921 {
1922         memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1923 }
1924
1925 /**
1926  * DOC: Single Block Cipher API
1927  *
1928  * The single block cipher API is used with the ciphers of type
1929  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1930  *
1931  * Using the single block cipher API calls, operations with the basic cipher
1932  * primitive can be implemented. These cipher primitives exclude any block
1933  * chaining operations including IV handling.
1934  *
1935  * The purpose of this single block cipher API is to support the implementation
1936  * of templates or other concepts that only need to perform the cipher operation
1937  * on one block at a time. Templates invoke the underlying cipher primitive
1938  * block-wise and process either the input or the output data of these cipher
1939  * operations.
1940  */
1941
1942 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1943 {
1944         return (struct crypto_cipher *)tfm;
1945 }
1946
1947 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1948 {
1949         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1950         return __crypto_cipher_cast(tfm);
1951 }
1952
1953 /**
1954  * crypto_alloc_cipher() - allocate single block cipher handle
1955  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1956  *           single block cipher
1957  * @type: specifies the type of the cipher
1958  * @mask: specifies the mask for the cipher
1959  *
1960  * Allocate a cipher handle for a single block cipher. The returned struct
1961  * crypto_cipher is the cipher handle that is required for any subsequent API
1962  * invocation for that single block cipher.
1963  *
1964  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1965  *         of an error, PTR_ERR() returns the error code.
1966  */
1967 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1968                                                         u32 type, u32 mask)
1969 {
1970         type &= ~CRYPTO_ALG_TYPE_MASK;
1971         type |= CRYPTO_ALG_TYPE_CIPHER;
1972         mask |= CRYPTO_ALG_TYPE_MASK;
1973
1974         return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1975 }
1976
1977 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1978 {
1979         return &tfm->base;
1980 }
1981
1982 /**
1983  * crypto_free_cipher() - zeroize and free the single block cipher handle
1984  * @tfm: cipher handle to be freed
1985  */
1986 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1987 {
1988         crypto_free_tfm(crypto_cipher_tfm(tfm));
1989 }
1990
1991 /**
1992  * crypto_has_cipher() - Search for the availability of a single block cipher
1993  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1994  *           single block cipher
1995  * @type: specifies the type of the cipher
1996  * @mask: specifies the mask for the cipher
1997  *
1998  * Return: true when the single block cipher is known to the kernel crypto API;
1999  *         false otherwise
2000  */
2001 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
2002 {
2003         type &= ~CRYPTO_ALG_TYPE_MASK;
2004         type |= CRYPTO_ALG_TYPE_CIPHER;
2005         mask |= CRYPTO_ALG_TYPE_MASK;
2006
2007         return crypto_has_alg(alg_name, type, mask);
2008 }
2009
2010 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
2011 {
2012         return &crypto_cipher_tfm(tfm)->crt_cipher;
2013 }
2014
2015 /**
2016  * crypto_cipher_blocksize() - obtain block size for cipher
2017  * @tfm: cipher handle
2018  *
2019  * The block size for the single block cipher referenced with the cipher handle
2020  * tfm is returned. The caller may use that information to allocate appropriate
2021  * memory for the data returned by the encryption or decryption operation
2022  *
2023  * Return: block size of cipher
2024  */
2025 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
2026 {
2027         return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
2028 }
2029
2030 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
2031 {
2032         return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
2033 }
2034
2035 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
2036 {
2037         return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
2038 }
2039
2040 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
2041                                            u32 flags)
2042 {
2043         crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
2044 }
2045
2046 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
2047                                              u32 flags)
2048 {
2049         crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
2050 }
2051
2052 /**
2053  * crypto_cipher_setkey() - set key for cipher
2054  * @tfm: cipher handle
2055  * @key: buffer holding the key
2056  * @keylen: length of the key in bytes
2057  *
2058  * The caller provided key is set for the single block cipher referenced by the
2059  * cipher handle.
2060  *
2061  * Note, the key length determines the cipher type. Many block ciphers implement
2062  * different cipher modes depending on the key size, such as AES-128 vs AES-192
2063  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
2064  * is performed.
2065  *
2066  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2067  */
2068 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
2069                                        const u8 *key, unsigned int keylen)
2070 {
2071         return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
2072                                                   key, keylen);
2073 }
2074
2075 /**
2076  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
2077  * @tfm: cipher handle
2078  * @dst: points to the buffer that will be filled with the ciphertext
2079  * @src: buffer holding the plaintext to be encrypted
2080  *
2081  * Invoke the encryption operation of one block. The caller must ensure that
2082  * the plaintext and ciphertext buffers are at least one block in size.
2083  */
2084 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
2085                                              u8 *dst, const u8 *src)
2086 {
2087         crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
2088                                                 dst, src);
2089 }
2090
2091 /**
2092  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
2093  * @tfm: cipher handle
2094  * @dst: points to the buffer that will be filled with the plaintext
2095  * @src: buffer holding the ciphertext to be decrypted
2096  *
2097  * Invoke the decryption operation of one block. The caller must ensure that
2098  * the plaintext and ciphertext buffers are at least one block in size.
2099  */
2100 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
2101                                              u8 *dst, const u8 *src)
2102 {
2103         crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
2104                                                 dst, src);
2105 }
2106
2107 /**
2108  * DOC: Synchronous Message Digest API
2109  *
2110  * The synchronous message digest API is used with the ciphers of type
2111  * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
2112  */
2113
2114 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
2115 {
2116         return (struct crypto_hash *)tfm;
2117 }
2118
2119 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
2120 {
2121         BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
2122                CRYPTO_ALG_TYPE_HASH_MASK);
2123         return __crypto_hash_cast(tfm);
2124 }
2125
2126 /**
2127  * crypto_alloc_hash() - allocate synchronous message digest handle
2128  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2129  *            message digest cipher
2130  * @type: specifies the type of the cipher
2131  * @mask: specifies the mask for the cipher
2132  *
2133  * Allocate a cipher handle for a message digest. The returned struct
2134  * crypto_hash is the cipher handle that is required for any subsequent
2135  * API invocation for that message digest.
2136  *
2137  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
2138  * of an error, PTR_ERR() returns the error code.
2139  */
2140 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
2141                                                     u32 type, u32 mask)
2142 {
2143         type &= ~CRYPTO_ALG_TYPE_MASK;
2144         mask &= ~CRYPTO_ALG_TYPE_MASK;
2145         type |= CRYPTO_ALG_TYPE_HASH;
2146         mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2147
2148         return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
2149 }
2150
2151 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
2152 {
2153         return &tfm->base;
2154 }
2155
2156 /**
2157  * crypto_free_hash() - zeroize and free message digest handle
2158  * @tfm: cipher handle to be freed
2159  */
2160 static inline void crypto_free_hash(struct crypto_hash *tfm)
2161 {
2162         crypto_free_tfm(crypto_hash_tfm(tfm));
2163 }
2164
2165 /**
2166  * crypto_has_hash() - Search for the availability of a message digest
2167  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2168  *            message digest cipher
2169  * @type: specifies the type of the cipher
2170  * @mask: specifies the mask for the cipher
2171  *
2172  * Return: true when the message digest cipher is known to the kernel crypto
2173  *         API; false otherwise
2174  */
2175 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
2176 {
2177         type &= ~CRYPTO_ALG_TYPE_MASK;
2178         mask &= ~CRYPTO_ALG_TYPE_MASK;
2179         type |= CRYPTO_ALG_TYPE_HASH;
2180         mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2181
2182         return crypto_has_alg(alg_name, type, mask);
2183 }
2184
2185 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
2186 {
2187         return &crypto_hash_tfm(tfm)->crt_hash;
2188 }
2189
2190 /**
2191  * crypto_hash_blocksize() - obtain block size for message digest
2192  * @tfm: cipher handle
2193  *
2194  * The block size for the message digest cipher referenced with the cipher
2195  * handle is returned.
2196  *
2197  * Return: block size of cipher
2198  */
2199 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
2200 {
2201         return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
2202 }
2203
2204 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
2205 {
2206         return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
2207 }
2208
2209 /**
2210  * crypto_hash_digestsize() - obtain message digest size
2211  * @tfm: cipher handle
2212  *
2213  * The size for the message digest created by the message digest cipher
2214  * referenced with the cipher handle is returned.
2215  *
2216  * Return: message digest size
2217  */
2218 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
2219 {
2220         return crypto_hash_crt(tfm)->digestsize;
2221 }
2222
2223 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
2224 {
2225         return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
2226 }
2227
2228 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
2229 {
2230         crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
2231 }
2232
2233 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
2234 {
2235         crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
2236 }
2237
2238 /**
2239  * crypto_hash_init() - (re)initialize message digest handle
2240  * @desc: cipher request handle that to be filled by caller --
2241  *        desc.tfm is filled with the hash cipher handle;
2242  *        desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
2243  *
2244  * The call (re-)initializes the message digest referenced by the hash cipher
2245  * request handle. Any potentially existing state created by previous
2246  * operations is discarded.
2247  *
2248  * Return: 0 if the message digest initialization was successful; < 0 if an
2249  *         error occurred
2250  */
2251 static inline int crypto_hash_init(struct hash_desc *desc)
2252 {
2253         return crypto_hash_crt(desc->tfm)->init(desc);
2254 }
2255
2256 /**
2257  * crypto_hash_update() - add data to message digest for processing
2258  * @desc: cipher request handle
2259  * @sg: scatter / gather list pointing to the data to be added to the message
2260  *      digest
2261  * @nbytes: number of bytes to be processed from @sg
2262  *
2263  * Updates the message digest state of the cipher handle pointed to by the
2264  * hash cipher request handle with the input data pointed to by the
2265  * scatter/gather list.
2266  *
2267  * Return: 0 if the message digest update was successful; < 0 if an error
2268  *         occurred
2269  */
2270 static inline int crypto_hash_update(struct hash_desc *desc,
2271                                      struct scatterlist *sg,
2272                                      unsigned int nbytes)
2273 {
2274         return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
2275 }
2276
2277 /**
2278  * crypto_hash_final() - calculate message digest
2279  * @desc: cipher request handle
2280  * @out: message digest output buffer -- The caller must ensure that the out
2281  *       buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
2282  *       function).
2283  *
2284  * Finalize the message digest operation and create the message digest
2285  * based on all data added to the cipher handle. The message digest is placed
2286  * into the output buffer.
2287  *
2288  * Return: 0 if the message digest creation was successful; < 0 if an error
2289  *         occurred
2290  */
2291 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
2292 {
2293         return crypto_hash_crt(desc->tfm)->final(desc, out);
2294 }
2295
2296 /**
2297  * crypto_hash_digest() - calculate message digest for a buffer
2298  * @desc: see crypto_hash_final()
2299  * @sg: see crypto_hash_update()
2300  * @nbytes:  see crypto_hash_update()
2301  * @out: see crypto_hash_final()
2302  *
2303  * This function is a "short-hand" for the function calls of crypto_hash_init,
2304  * crypto_hash_update and crypto_hash_final. The parameters have the same
2305  * meaning as discussed for those separate three functions.
2306  *
2307  * Return: 0 if the message digest creation was successful; < 0 if an error
2308  *         occurred
2309  */
2310 static inline int crypto_hash_digest(struct hash_desc *desc,
2311                                      struct scatterlist *sg,
2312                                      unsigned int nbytes, u8 *out)
2313 {
2314         return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
2315 }
2316
2317 /**
2318  * crypto_hash_setkey() - set key for message digest
2319  * @hash: cipher handle
2320  * @key: buffer holding the key
2321  * @keylen: length of the key in bytes
2322  *
2323  * The caller provided key is set for the message digest cipher. The cipher
2324  * handle must point to a keyed hash in order for this function to succeed.
2325  *
2326  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2327  */
2328 static inline int crypto_hash_setkey(struct crypto_hash *hash,
2329                                      const u8 *key, unsigned int keylen)
2330 {
2331         return crypto_hash_crt(hash)->setkey(hash, key, keylen);
2332 }
2333
2334 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
2335 {
2336         return (struct crypto_comp *)tfm;
2337 }
2338
2339 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
2340 {
2341         BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
2342                CRYPTO_ALG_TYPE_MASK);
2343         return __crypto_comp_cast(tfm);
2344 }
2345
2346 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
2347                                                     u32 type, u32 mask)
2348 {
2349         type &= ~CRYPTO_ALG_TYPE_MASK;
2350         type |= CRYPTO_ALG_TYPE_COMPRESS;
2351         mask |= CRYPTO_ALG_TYPE_MASK;
2352
2353         return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
2354 }
2355
2356 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
2357 {
2358         return &tfm->base;
2359 }
2360
2361 static inline void crypto_free_comp(struct crypto_comp *tfm)
2362 {
2363         crypto_free_tfm(crypto_comp_tfm(tfm));
2364 }
2365
2366 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
2367 {
2368         type &= ~CRYPTO_ALG_TYPE_MASK;
2369         type |= CRYPTO_ALG_TYPE_COMPRESS;
2370         mask |= CRYPTO_ALG_TYPE_MASK;
2371
2372         return crypto_has_alg(alg_name, type, mask);
2373 }
2374
2375 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
2376 {
2377         return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
2378 }
2379
2380 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
2381 {
2382         return &crypto_comp_tfm(tfm)->crt_compress;
2383 }
2384
2385 static inline int crypto_comp_compress(struct crypto_comp *tfm,
2386                                        const u8 *src, unsigned int slen,
2387                                        u8 *dst, unsigned int *dlen)
2388 {
2389         return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
2390                                                   src, slen, dst, dlen);
2391 }
2392
2393 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
2394                                          const u8 *src, unsigned int slen,
2395                                          u8 *dst, unsigned int *dlen)
2396 {
2397         return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
2398                                                     src, slen, dst, dlen);
2399 }
2400
2401 #endif  /* _LINUX_CRYPTO_H */
2402