These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / include / crypto / skcipher.h
1 /*
2  * Symmetric key ciphers.
3  * 
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option) 
9  * any later version.
10  *
11  */
12
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19
20 /**
21  *      struct skcipher_request - Symmetric key cipher request
22  *      @cryptlen: Number of bytes to encrypt or decrypt
23  *      @iv: Initialisation Vector
24  *      @src: Source SG list
25  *      @dst: Destination SG list
26  *      @base: Underlying async request request
27  *      @__ctx: Start of private context data
28  */
29 struct skcipher_request {
30         unsigned int cryptlen;
31
32         u8 *iv;
33
34         struct scatterlist *src;
35         struct scatterlist *dst;
36
37         struct crypto_async_request base;
38
39         void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41
42 /**
43  *      struct skcipher_givcrypt_request - Crypto request with IV generation
44  *      @seq: Sequence number for IV generation
45  *      @giv: Space for generated IV
46  *      @creq: The crypto request itself
47  */
48 struct skcipher_givcrypt_request {
49         u64 seq;
50         u8 *giv;
51
52         struct ablkcipher_request creq;
53 };
54
55 struct crypto_skcipher {
56         int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57                       unsigned int keylen);
58         int (*encrypt)(struct skcipher_request *req);
59         int (*decrypt)(struct skcipher_request *req);
60
61         unsigned int ivsize;
62         unsigned int reqsize;
63
64         bool has_setkey;
65
66         struct crypto_tfm base;
67 };
68
69 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
70         char __##name##_desc[sizeof(struct skcipher_request) + \
71                 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
72         struct skcipher_request *name = (void *)__##name##_desc
73
74 static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm(
75         struct skcipher_givcrypt_request *req)
76 {
77         return crypto_ablkcipher_reqtfm(&req->creq);
78 }
79
80 static inline int crypto_skcipher_givencrypt(
81         struct skcipher_givcrypt_request *req)
82 {
83         struct ablkcipher_tfm *crt =
84                 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
85         return crt->givencrypt(req);
86 };
87
88 static inline int crypto_skcipher_givdecrypt(
89         struct skcipher_givcrypt_request *req)
90 {
91         struct ablkcipher_tfm *crt =
92                 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
93         return crt->givdecrypt(req);
94 };
95
96 static inline void skcipher_givcrypt_set_tfm(
97         struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm)
98 {
99         req->creq.base.tfm = crypto_ablkcipher_tfm(tfm);
100 }
101
102 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast(
103         struct crypto_async_request *req)
104 {
105         return container_of(ablkcipher_request_cast(req),
106                             struct skcipher_givcrypt_request, creq);
107 }
108
109 static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc(
110         struct crypto_ablkcipher *tfm, gfp_t gfp)
111 {
112         struct skcipher_givcrypt_request *req;
113
114         req = kmalloc(sizeof(struct skcipher_givcrypt_request) +
115                       crypto_ablkcipher_reqsize(tfm), gfp);
116
117         if (likely(req))
118                 skcipher_givcrypt_set_tfm(req, tfm);
119
120         return req;
121 }
122
123 static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req)
124 {
125         kfree(req);
126 }
127
128 static inline void skcipher_givcrypt_set_callback(
129         struct skcipher_givcrypt_request *req, u32 flags,
130         crypto_completion_t compl, void *data)
131 {
132         ablkcipher_request_set_callback(&req->creq, flags, compl, data);
133 }
134
135 static inline void skcipher_givcrypt_set_crypt(
136         struct skcipher_givcrypt_request *req,
137         struct scatterlist *src, struct scatterlist *dst,
138         unsigned int nbytes, void *iv)
139 {
140         ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv);
141 }
142
143 static inline void skcipher_givcrypt_set_giv(
144         struct skcipher_givcrypt_request *req, u8 *giv, u64 seq)
145 {
146         req->giv = giv;
147         req->seq = seq;
148 }
149
150 /**
151  * DOC: Symmetric Key Cipher API
152  *
153  * Symmetric key cipher API is used with the ciphers of type
154  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
155  *
156  * Asynchronous cipher operations imply that the function invocation for a
157  * cipher request returns immediately before the completion of the operation.
158  * The cipher request is scheduled as a separate kernel thread and therefore
159  * load-balanced on the different CPUs via the process scheduler. To allow
160  * the kernel crypto API to inform the caller about the completion of a cipher
161  * request, the caller must provide a callback function. That function is
162  * invoked with the cipher handle when the request completes.
163  *
164  * To support the asynchronous operation, additional information than just the
165  * cipher handle must be supplied to the kernel crypto API. That additional
166  * information is given by filling in the skcipher_request data structure.
167  *
168  * For the symmetric key cipher API, the state is maintained with the tfm
169  * cipher handle. A single tfm can be used across multiple calls and in
170  * parallel. For asynchronous block cipher calls, context data supplied and
171  * only used by the caller can be referenced the request data structure in
172  * addition to the IV used for the cipher request. The maintenance of such
173  * state information would be important for a crypto driver implementer to
174  * have, because when calling the callback function upon completion of the
175  * cipher operation, that callback function may need some information about
176  * which operation just finished if it invoked multiple in parallel. This
177  * state information is unused by the kernel crypto API.
178  */
179
180 static inline struct crypto_skcipher *__crypto_skcipher_cast(
181         struct crypto_tfm *tfm)
182 {
183         return container_of(tfm, struct crypto_skcipher, base);
184 }
185
186 /**
187  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
188  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
189  *            skcipher cipher
190  * @type: specifies the type of the cipher
191  * @mask: specifies the mask for the cipher
192  *
193  * Allocate a cipher handle for an skcipher. The returned struct
194  * crypto_skcipher is the cipher handle that is required for any subsequent
195  * API invocation for that skcipher.
196  *
197  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
198  *         of an error, PTR_ERR() returns the error code.
199  */
200 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
201                                               u32 type, u32 mask);
202
203 static inline struct crypto_tfm *crypto_skcipher_tfm(
204         struct crypto_skcipher *tfm)
205 {
206         return &tfm->base;
207 }
208
209 /**
210  * crypto_free_skcipher() - zeroize and free cipher handle
211  * @tfm: cipher handle to be freed
212  */
213 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
214 {
215         crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
216 }
217
218 /**
219  * crypto_has_skcipher() - Search for the availability of an skcipher.
220  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
221  *            skcipher
222  * @type: specifies the type of the cipher
223  * @mask: specifies the mask for the cipher
224  *
225  * Return: true when the skcipher is known to the kernel crypto API; false
226  *         otherwise
227  */
228 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
229                                         u32 mask)
230 {
231         return crypto_has_alg(alg_name, crypto_skcipher_type(type),
232                               crypto_skcipher_mask(mask));
233 }
234
235 /**
236  * crypto_skcipher_ivsize() - obtain IV size
237  * @tfm: cipher handle
238  *
239  * The size of the IV for the skcipher referenced by the cipher handle is
240  * returned. This IV size may be zero if the cipher does not need an IV.
241  *
242  * Return: IV size in bytes
243  */
244 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
245 {
246         return tfm->ivsize;
247 }
248
249 /**
250  * crypto_skcipher_blocksize() - obtain block size of cipher
251  * @tfm: cipher handle
252  *
253  * The block size for the skcipher referenced with the cipher handle is
254  * returned. The caller may use that information to allocate appropriate
255  * memory for the data returned by the encryption or decryption operation
256  *
257  * Return: block size of cipher
258  */
259 static inline unsigned int crypto_skcipher_blocksize(
260         struct crypto_skcipher *tfm)
261 {
262         return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
263 }
264
265 static inline unsigned int crypto_skcipher_alignmask(
266         struct crypto_skcipher *tfm)
267 {
268         return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
269 }
270
271 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
272 {
273         return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
274 }
275
276 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
277                                                u32 flags)
278 {
279         crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
280 }
281
282 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
283                                                  u32 flags)
284 {
285         crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
286 }
287
288 /**
289  * crypto_skcipher_setkey() - set key for cipher
290  * @tfm: cipher handle
291  * @key: buffer holding the key
292  * @keylen: length of the key in bytes
293  *
294  * The caller provided key is set for the skcipher referenced by the cipher
295  * handle.
296  *
297  * Note, the key length determines the cipher type. Many block ciphers implement
298  * different cipher modes depending on the key size, such as AES-128 vs AES-192
299  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
300  * is performed.
301  *
302  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
303  */
304 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
305                                          const u8 *key, unsigned int keylen)
306 {
307         return tfm->setkey(tfm, key, keylen);
308 }
309
310 static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
311 {
312         return tfm->has_setkey;
313 }
314
315 /**
316  * crypto_skcipher_reqtfm() - obtain cipher handle from request
317  * @req: skcipher_request out of which the cipher handle is to be obtained
318  *
319  * Return the crypto_skcipher handle when furnishing an skcipher_request
320  * data structure.
321  *
322  * Return: crypto_skcipher handle
323  */
324 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
325         struct skcipher_request *req)
326 {
327         return __crypto_skcipher_cast(req->base.tfm);
328 }
329
330 /**
331  * crypto_skcipher_encrypt() - encrypt plaintext
332  * @req: reference to the skcipher_request handle that holds all information
333  *       needed to perform the cipher operation
334  *
335  * Encrypt plaintext data using the skcipher_request handle. That data
336  * structure and how it is filled with data is discussed with the
337  * skcipher_request_* functions.
338  *
339  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
340  */
341 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
342 {
343         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
344
345         return tfm->encrypt(req);
346 }
347
348 /**
349  * crypto_skcipher_decrypt() - decrypt ciphertext
350  * @req: reference to the skcipher_request handle that holds all information
351  *       needed to perform the cipher operation
352  *
353  * Decrypt ciphertext data using the skcipher_request handle. That data
354  * structure and how it is filled with data is discussed with the
355  * skcipher_request_* functions.
356  *
357  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
358  */
359 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
360 {
361         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
362
363         return tfm->decrypt(req);
364 }
365
366 /**
367  * DOC: Symmetric Key Cipher Request Handle
368  *
369  * The skcipher_request data structure contains all pointers to data
370  * required for the symmetric key cipher operation. This includes the cipher
371  * handle (which can be used by multiple skcipher_request instances), pointer
372  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
373  * as a handle to the skcipher_request_* API calls in a similar way as
374  * skcipher handle to the crypto_skcipher_* API calls.
375  */
376
377 /**
378  * crypto_skcipher_reqsize() - obtain size of the request data structure
379  * @tfm: cipher handle
380  *
381  * Return: number of bytes
382  */
383 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
384 {
385         return tfm->reqsize;
386 }
387
388 /**
389  * skcipher_request_set_tfm() - update cipher handle reference in request
390  * @req: request handle to be modified
391  * @tfm: cipher handle that shall be added to the request handle
392  *
393  * Allow the caller to replace the existing skcipher handle in the request
394  * data structure with a different one.
395  */
396 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
397                                             struct crypto_skcipher *tfm)
398 {
399         req->base.tfm = crypto_skcipher_tfm(tfm);
400 }
401
402 static inline struct skcipher_request *skcipher_request_cast(
403         struct crypto_async_request *req)
404 {
405         return container_of(req, struct skcipher_request, base);
406 }
407
408 /**
409  * skcipher_request_alloc() - allocate request data structure
410  * @tfm: cipher handle to be registered with the request
411  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
412  *
413  * Allocate the request data structure that must be used with the skcipher
414  * encrypt and decrypt API calls. During the allocation, the provided skcipher
415  * handle is registered in the request data structure.
416  *
417  * Return: allocated request handle in case of success; IS_ERR() is true in case
418  *         of an error, PTR_ERR() returns the error code.
419  */
420 static inline struct skcipher_request *skcipher_request_alloc(
421         struct crypto_skcipher *tfm, gfp_t gfp)
422 {
423         struct skcipher_request *req;
424
425         req = kmalloc(sizeof(struct skcipher_request) +
426                       crypto_skcipher_reqsize(tfm), gfp);
427
428         if (likely(req))
429                 skcipher_request_set_tfm(req, tfm);
430
431         return req;
432 }
433
434 /**
435  * skcipher_request_free() - zeroize and free request data structure
436  * @req: request data structure cipher handle to be freed
437  */
438 static inline void skcipher_request_free(struct skcipher_request *req)
439 {
440         kzfree(req);
441 }
442
443 /**
444  * skcipher_request_set_callback() - set asynchronous callback function
445  * @req: request handle
446  * @flags: specify zero or an ORing of the flags
447  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
448  *         increase the wait queue beyond the initial maximum size;
449  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
450  * @compl: callback function pointer to be registered with the request handle
451  * @data: The data pointer refers to memory that is not used by the kernel
452  *        crypto API, but provided to the callback function for it to use. Here,
453  *        the caller can provide a reference to memory the callback function can
454  *        operate on. As the callback function is invoked asynchronously to the
455  *        related functionality, it may need to access data structures of the
456  *        related functionality which can be referenced using this pointer. The
457  *        callback function can access the memory via the "data" field in the
458  *        crypto_async_request data structure provided to the callback function.
459  *
460  * This function allows setting the callback function that is triggered once the
461  * cipher operation completes.
462  *
463  * The callback function is registered with the skcipher_request handle and
464  * must comply with the following template
465  *
466  *      void callback_function(struct crypto_async_request *req, int error)
467  */
468 static inline void skcipher_request_set_callback(struct skcipher_request *req,
469                                                  u32 flags,
470                                                  crypto_completion_t compl,
471                                                  void *data)
472 {
473         req->base.complete = compl;
474         req->base.data = data;
475         req->base.flags = flags;
476 }
477
478 /**
479  * skcipher_request_set_crypt() - set data buffers
480  * @req: request handle
481  * @src: source scatter / gather list
482  * @dst: destination scatter / gather list
483  * @cryptlen: number of bytes to process from @src
484  * @iv: IV for the cipher operation which must comply with the IV size defined
485  *      by crypto_skcipher_ivsize
486  *
487  * This function allows setting of the source data and destination data
488  * scatter / gather lists.
489  *
490  * For encryption, the source is treated as the plaintext and the
491  * destination is the ciphertext. For a decryption operation, the use is
492  * reversed - the source is the ciphertext and the destination is the plaintext.
493  */
494 static inline void skcipher_request_set_crypt(
495         struct skcipher_request *req,
496         struct scatterlist *src, struct scatterlist *dst,
497         unsigned int cryptlen, void *iv)
498 {
499         req->src = src;
500         req->dst = dst;
501         req->cryptlen = cryptlen;
502         req->iv = iv;
503 }
504
505 #endif  /* _CRYPTO_SKCIPHER_H */
506