Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9 #include <linux/errno.h>
10
11 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12         CONFIG_PGTABLE_LEVELS
13 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14 #endif
15
16 /*
17  * On almost all architectures and configurations, 0 can be used as the
18  * upper ceiling to free_pgtables(): on many architectures it has the same
19  * effect as using TASK_SIZE.  However, there is one configuration which
20  * must impose a more careful limit, to avoid freeing kernel pgtables.
21  */
22 #ifndef USER_PGTABLES_CEILING
23 #define USER_PGTABLES_CEILING   0UL
24 #endif
25
26 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 extern int ptep_set_access_flags(struct vm_area_struct *vma,
28                                  unsigned long address, pte_t *ptep,
29                                  pte_t entry, int dirty);
30 #endif
31
32 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
34                                  unsigned long address, pmd_t *pmdp,
35                                  pmd_t entry, int dirty);
36 #endif
37
38 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
39 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
40                                             unsigned long address,
41                                             pte_t *ptep)
42 {
43         pte_t pte = *ptep;
44         int r = 1;
45         if (!pte_young(pte))
46                 r = 0;
47         else
48                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
49         return r;
50 }
51 #endif
52
53 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
55 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56                                             unsigned long address,
57                                             pmd_t *pmdp)
58 {
59         pmd_t pmd = *pmdp;
60         int r = 1;
61         if (!pmd_young(pmd))
62                 r = 0;
63         else
64                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
65         return r;
66 }
67 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
68 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
69                                             unsigned long address,
70                                             pmd_t *pmdp)
71 {
72         BUG();
73         return 0;
74 }
75 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
76 #endif
77
78 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
79 int ptep_clear_flush_young(struct vm_area_struct *vma,
80                            unsigned long address, pte_t *ptep);
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84 int pmdp_clear_flush_young(struct vm_area_struct *vma,
85                            unsigned long address, pmd_t *pmdp);
86 #endif
87
88 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
89 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
90                                        unsigned long address,
91                                        pte_t *ptep)
92 {
93         pte_t pte = *ptep;
94         pte_clear(mm, address, ptep);
95         return pte;
96 }
97 #endif
98
99 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
101 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
102                                        unsigned long address,
103                                        pmd_t *pmdp)
104 {
105         pmd_t pmd = *pmdp;
106         pmd_clear(pmdp);
107         return pmd;
108 }
109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
110 #endif
111
112 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
114 static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
115                                             unsigned long address, pmd_t *pmdp,
116                                             int full)
117 {
118         return pmdp_get_and_clear(mm, address, pmdp);
119 }
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121 #endif
122
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
124 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
125                                             unsigned long address, pte_t *ptep,
126                                             int full)
127 {
128         pte_t pte;
129         pte = ptep_get_and_clear(mm, address, ptep);
130         return pte;
131 }
132 #endif
133
134 /*
135  * Some architectures may be able to avoid expensive synchronization
136  * primitives when modifications are made to PTE's which are already
137  * not present, or in the process of an address space destruction.
138  */
139 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
140 static inline void pte_clear_not_present_full(struct mm_struct *mm,
141                                               unsigned long address,
142                                               pte_t *ptep,
143                                               int full)
144 {
145         pte_clear(mm, address, ptep);
146 }
147 #endif
148
149 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
150 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
151                               unsigned long address,
152                               pte_t *ptep);
153 #endif
154
155 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
156 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
157                               unsigned long address,
158                               pmd_t *pmdp);
159 #endif
160
161 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
162 struct mm_struct;
163 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
164 {
165         pte_t old_pte = *ptep;
166         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
167 }
168 #endif
169
170 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
172 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
173                                       unsigned long address, pmd_t *pmdp)
174 {
175         pmd_t old_pmd = *pmdp;
176         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
177 }
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
179 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
180                                       unsigned long address, pmd_t *pmdp)
181 {
182         BUG();
183 }
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185 #endif
186
187 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
188 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
189                                  unsigned long address, pmd_t *pmdp);
190 #endif
191
192 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
193 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
194                                        pgtable_t pgtable);
195 #endif
196
197 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
198 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
199 #endif
200
201 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
202 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
203                             pmd_t *pmdp);
204 #endif
205
206 #ifndef __HAVE_ARCH_PTE_SAME
207 static inline int pte_same(pte_t pte_a, pte_t pte_b)
208 {
209         return pte_val(pte_a) == pte_val(pte_b);
210 }
211 #endif
212
213 #ifndef __HAVE_ARCH_PTE_UNUSED
214 /*
215  * Some architectures provide facilities to virtualization guests
216  * so that they can flag allocated pages as unused. This allows the
217  * host to transparently reclaim unused pages. This function returns
218  * whether the pte's page is unused.
219  */
220 static inline int pte_unused(pte_t pte)
221 {
222         return 0;
223 }
224 #endif
225
226 #ifndef __HAVE_ARCH_PMD_SAME
227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
228 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
229 {
230         return pmd_val(pmd_a) == pmd_val(pmd_b);
231 }
232 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
233 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
234 {
235         BUG();
236         return 0;
237 }
238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
239 #endif
240
241 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
242 #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
243 #endif
244
245 #ifndef __HAVE_ARCH_MOVE_PTE
246 #define move_pte(pte, prot, old_addr, new_addr) (pte)
247 #endif
248
249 #ifndef pte_accessible
250 # define pte_accessible(mm, pte)        ((void)(pte), 1)
251 #endif
252
253 #ifndef flush_tlb_fix_spurious_fault
254 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
255 #endif
256
257 #ifndef pgprot_noncached
258 #define pgprot_noncached(prot)  (prot)
259 #endif
260
261 #ifndef pgprot_writecombine
262 #define pgprot_writecombine pgprot_noncached
263 #endif
264
265 #ifndef pgprot_device
266 #define pgprot_device pgprot_noncached
267 #endif
268
269 #ifndef pgprot_modify
270 #define pgprot_modify pgprot_modify
271 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
272 {
273         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
274                 newprot = pgprot_noncached(newprot);
275         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
276                 newprot = pgprot_writecombine(newprot);
277         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
278                 newprot = pgprot_device(newprot);
279         return newprot;
280 }
281 #endif
282
283 /*
284  * When walking page tables, get the address of the next boundary,
285  * or the end address of the range if that comes earlier.  Although no
286  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
287  */
288
289 #define pgd_addr_end(addr, end)                                         \
290 ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
291         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
292 })
293
294 #ifndef pud_addr_end
295 #define pud_addr_end(addr, end)                                         \
296 ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
297         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
298 })
299 #endif
300
301 #ifndef pmd_addr_end
302 #define pmd_addr_end(addr, end)                                         \
303 ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
304         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
305 })
306 #endif
307
308 /*
309  * When walking page tables, we usually want to skip any p?d_none entries;
310  * and any p?d_bad entries - reporting the error before resetting to none.
311  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
312  */
313 void pgd_clear_bad(pgd_t *);
314 void pud_clear_bad(pud_t *);
315 void pmd_clear_bad(pmd_t *);
316
317 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
318 {
319         if (pgd_none(*pgd))
320                 return 1;
321         if (unlikely(pgd_bad(*pgd))) {
322                 pgd_clear_bad(pgd);
323                 return 1;
324         }
325         return 0;
326 }
327
328 static inline int pud_none_or_clear_bad(pud_t *pud)
329 {
330         if (pud_none(*pud))
331                 return 1;
332         if (unlikely(pud_bad(*pud))) {
333                 pud_clear_bad(pud);
334                 return 1;
335         }
336         return 0;
337 }
338
339 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
340 {
341         if (pmd_none(*pmd))
342                 return 1;
343         if (unlikely(pmd_bad(*pmd))) {
344                 pmd_clear_bad(pmd);
345                 return 1;
346         }
347         return 0;
348 }
349
350 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
351                                              unsigned long addr,
352                                              pte_t *ptep)
353 {
354         /*
355          * Get the current pte state, but zero it out to make it
356          * non-present, preventing the hardware from asynchronously
357          * updating it.
358          */
359         return ptep_get_and_clear(mm, addr, ptep);
360 }
361
362 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
363                                              unsigned long addr,
364                                              pte_t *ptep, pte_t pte)
365 {
366         /*
367          * The pte is non-present, so there's no hardware state to
368          * preserve.
369          */
370         set_pte_at(mm, addr, ptep, pte);
371 }
372
373 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
374 /*
375  * Start a pte protection read-modify-write transaction, which
376  * protects against asynchronous hardware modifications to the pte.
377  * The intention is not to prevent the hardware from making pte
378  * updates, but to prevent any updates it may make from being lost.
379  *
380  * This does not protect against other software modifications of the
381  * pte; the appropriate pte lock must be held over the transation.
382  *
383  * Note that this interface is intended to be batchable, meaning that
384  * ptep_modify_prot_commit may not actually update the pte, but merely
385  * queue the update to be done at some later time.  The update must be
386  * actually committed before the pte lock is released, however.
387  */
388 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
389                                            unsigned long addr,
390                                            pte_t *ptep)
391 {
392         return __ptep_modify_prot_start(mm, addr, ptep);
393 }
394
395 /*
396  * Commit an update to a pte, leaving any hardware-controlled bits in
397  * the PTE unmodified.
398  */
399 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
400                                            unsigned long addr,
401                                            pte_t *ptep, pte_t pte)
402 {
403         __ptep_modify_prot_commit(mm, addr, ptep, pte);
404 }
405 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
406 #endif /* CONFIG_MMU */
407
408 /*
409  * A facility to provide lazy MMU batching.  This allows PTE updates and
410  * page invalidations to be delayed until a call to leave lazy MMU mode
411  * is issued.  Some architectures may benefit from doing this, and it is
412  * beneficial for both shadow and direct mode hypervisors, which may batch
413  * the PTE updates which happen during this window.  Note that using this
414  * interface requires that read hazards be removed from the code.  A read
415  * hazard could result in the direct mode hypervisor case, since the actual
416  * write to the page tables may not yet have taken place, so reads though
417  * a raw PTE pointer after it has been modified are not guaranteed to be
418  * up to date.  This mode can only be entered and left under the protection of
419  * the page table locks for all page tables which may be modified.  In the UP
420  * case, this is required so that preemption is disabled, and in the SMP case,
421  * it must synchronize the delayed page table writes properly on other CPUs.
422  */
423 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
424 #define arch_enter_lazy_mmu_mode()      do {} while (0)
425 #define arch_leave_lazy_mmu_mode()      do {} while (0)
426 #define arch_flush_lazy_mmu_mode()      do {} while (0)
427 #endif
428
429 /*
430  * A facility to provide batching of the reload of page tables and
431  * other process state with the actual context switch code for
432  * paravirtualized guests.  By convention, only one of the batched
433  * update (lazy) modes (CPU, MMU) should be active at any given time,
434  * entry should never be nested, and entry and exits should always be
435  * paired.  This is for sanity of maintaining and reasoning about the
436  * kernel code.  In this case, the exit (end of the context switch) is
437  * in architecture-specific code, and so doesn't need a generic
438  * definition.
439  */
440 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
441 #define arch_start_context_switch(prev) do {} while (0)
442 #endif
443
444 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
445 static inline int pte_soft_dirty(pte_t pte)
446 {
447         return 0;
448 }
449
450 static inline int pmd_soft_dirty(pmd_t pmd)
451 {
452         return 0;
453 }
454
455 static inline pte_t pte_mksoft_dirty(pte_t pte)
456 {
457         return pte;
458 }
459
460 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
461 {
462         return pmd;
463 }
464
465 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
466 {
467         return pte;
468 }
469
470 static inline int pte_swp_soft_dirty(pte_t pte)
471 {
472         return 0;
473 }
474
475 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
476 {
477         return pte;
478 }
479 #endif
480
481 #ifndef __HAVE_PFNMAP_TRACKING
482 /*
483  * Interfaces that can be used by architecture code to keep track of
484  * memory type of pfn mappings specified by the remap_pfn_range,
485  * vm_insert_pfn.
486  */
487
488 /*
489  * track_pfn_remap is called when a _new_ pfn mapping is being established
490  * by remap_pfn_range() for physical range indicated by pfn and size.
491  */
492 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
493                                   unsigned long pfn, unsigned long addr,
494                                   unsigned long size)
495 {
496         return 0;
497 }
498
499 /*
500  * track_pfn_insert is called when a _new_ single pfn is established
501  * by vm_insert_pfn().
502  */
503 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
504                                    unsigned long pfn)
505 {
506         return 0;
507 }
508
509 /*
510  * track_pfn_copy is called when vma that is covering the pfnmap gets
511  * copied through copy_page_range().
512  */
513 static inline int track_pfn_copy(struct vm_area_struct *vma)
514 {
515         return 0;
516 }
517
518 /*
519  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
520  * untrack can be called for a specific region indicated by pfn and size or
521  * can be for the entire vma (in which case pfn, size are zero).
522  */
523 static inline void untrack_pfn(struct vm_area_struct *vma,
524                                unsigned long pfn, unsigned long size)
525 {
526 }
527 #else
528 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
529                            unsigned long pfn, unsigned long addr,
530                            unsigned long size);
531 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
532                             unsigned long pfn);
533 extern int track_pfn_copy(struct vm_area_struct *vma);
534 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
535                         unsigned long size);
536 #endif
537
538 #ifdef __HAVE_COLOR_ZERO_PAGE
539 static inline int is_zero_pfn(unsigned long pfn)
540 {
541         extern unsigned long zero_pfn;
542         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
543         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
544 }
545
546 #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
547
548 #else
549 static inline int is_zero_pfn(unsigned long pfn)
550 {
551         extern unsigned long zero_pfn;
552         return pfn == zero_pfn;
553 }
554
555 static inline unsigned long my_zero_pfn(unsigned long addr)
556 {
557         extern unsigned long zero_pfn;
558         return zero_pfn;
559 }
560 #endif
561
562 #ifdef CONFIG_MMU
563
564 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
565 static inline int pmd_trans_huge(pmd_t pmd)
566 {
567         return 0;
568 }
569 static inline int pmd_trans_splitting(pmd_t pmd)
570 {
571         return 0;
572 }
573 #ifndef __HAVE_ARCH_PMD_WRITE
574 static inline int pmd_write(pmd_t pmd)
575 {
576         BUG();
577         return 0;
578 }
579 #endif /* __HAVE_ARCH_PMD_WRITE */
580 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
581
582 #ifndef pmd_read_atomic
583 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
584 {
585         /*
586          * Depend on compiler for an atomic pmd read. NOTE: this is
587          * only going to work, if the pmdval_t isn't larger than
588          * an unsigned long.
589          */
590         return *pmdp;
591 }
592 #endif
593
594 #ifndef pmd_move_must_withdraw
595 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
596                                          spinlock_t *old_pmd_ptl)
597 {
598         /*
599          * With split pmd lock we also need to move preallocated
600          * PTE page table if new_pmd is on different PMD page table.
601          */
602         return new_pmd_ptl != old_pmd_ptl;
603 }
604 #endif
605
606 /*
607  * This function is meant to be used by sites walking pagetables with
608  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
609  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
610  * into a null pmd and the transhuge page fault can convert a null pmd
611  * into an hugepmd or into a regular pmd (if the hugepage allocation
612  * fails). While holding the mmap_sem in read mode the pmd becomes
613  * stable and stops changing under us only if it's not null and not a
614  * transhuge pmd. When those races occurs and this function makes a
615  * difference vs the standard pmd_none_or_clear_bad, the result is
616  * undefined so behaving like if the pmd was none is safe (because it
617  * can return none anyway). The compiler level barrier() is critically
618  * important to compute the two checks atomically on the same pmdval.
619  *
620  * For 32bit kernels with a 64bit large pmd_t this automatically takes
621  * care of reading the pmd atomically to avoid SMP race conditions
622  * against pmd_populate() when the mmap_sem is hold for reading by the
623  * caller (a special atomic read not done by "gcc" as in the generic
624  * version above, is also needed when THP is disabled because the page
625  * fault can populate the pmd from under us).
626  */
627 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
628 {
629         pmd_t pmdval = pmd_read_atomic(pmd);
630         /*
631          * The barrier will stabilize the pmdval in a register or on
632          * the stack so that it will stop changing under the code.
633          *
634          * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
635          * pmd_read_atomic is allowed to return a not atomic pmdval
636          * (for example pointing to an hugepage that has never been
637          * mapped in the pmd). The below checks will only care about
638          * the low part of the pmd with 32bit PAE x86 anyway, with the
639          * exception of pmd_none(). So the important thing is that if
640          * the low part of the pmd is found null, the high part will
641          * be also null or the pmd_none() check below would be
642          * confused.
643          */
644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
645         barrier();
646 #endif
647         if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
648                 return 1;
649         if (unlikely(pmd_bad(pmdval))) {
650                 pmd_clear_bad(pmd);
651                 return 1;
652         }
653         return 0;
654 }
655
656 /*
657  * This is a noop if Transparent Hugepage Support is not built into
658  * the kernel. Otherwise it is equivalent to
659  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
660  * places that already verified the pmd is not none and they want to
661  * walk ptes while holding the mmap sem in read mode (write mode don't
662  * need this). If THP is not enabled, the pmd can't go away under the
663  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
664  * run a pmd_trans_unstable before walking the ptes after
665  * split_huge_page_pmd returns (because it may have run when the pmd
666  * become null, but then a page fault can map in a THP and not a
667  * regular page).
668  */
669 static inline int pmd_trans_unstable(pmd_t *pmd)
670 {
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672         return pmd_none_or_trans_huge_or_clear_bad(pmd);
673 #else
674         return 0;
675 #endif
676 }
677
678 #ifndef CONFIG_NUMA_BALANCING
679 /*
680  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
681  * the only case the kernel cares is for NUMA balancing and is only ever set
682  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
683  * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
684  * is the responsibility of the caller to distinguish between PROT_NONE
685  * protections and NUMA hinting fault protections.
686  */
687 static inline int pte_protnone(pte_t pte)
688 {
689         return 0;
690 }
691
692 static inline int pmd_protnone(pmd_t pmd)
693 {
694         return 0;
695 }
696 #endif /* CONFIG_NUMA_BALANCING */
697
698 #endif /* CONFIG_MMU */
699
700 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
701 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
702 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
703 int pud_clear_huge(pud_t *pud);
704 int pmd_clear_huge(pmd_t *pmd);
705 #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
706 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
707 {
708         return 0;
709 }
710 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
711 {
712         return 0;
713 }
714 static inline int pud_clear_huge(pud_t *pud)
715 {
716         return 0;
717 }
718 static inline int pmd_clear_huge(pmd_t *pmd)
719 {
720         return 0;
721 }
722 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
723
724 #endif /* !__ASSEMBLY__ */
725
726 #ifndef io_remap_pfn_range
727 #define io_remap_pfn_range remap_pfn_range
728 #endif
729
730 #endif /* _ASM_GENERIC_PGTABLE_H */