Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         char                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent,
439         uint                    t_type)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return -EIO;
450
451         XFS_STATS_INC(xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return -ENOMEM;
458
459         tic->t_trans_type = t_type;
460         *ticp = tic;
461
462         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463                                             : tic->t_unit_res);
464
465         trace_xfs_log_reserve(log, tic);
466
467         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468                                       &need_bytes);
469         if (error)
470                 goto out_error;
471
472         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474         trace_xfs_log_reserve_exit(log, tic);
475         xlog_verify_grant_tail(log);
476         return 0;
477
478 out_error:
479         /*
480          * If we are failing, make sure the ticket doesn't have any current
481          * reservations.  We don't want to add this back when the ticket/
482          * transaction gets cancelled.
483          */
484         tic->t_curr_res = 0;
485         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486         return error;
487 }
488
489
490 /*
491  * NOTES:
492  *
493  *      1. currblock field gets updated at startup and after in-core logs
494  *              marked as with WANT_SYNC.
495  */
496
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513         struct xfs_mount        *mp,
514         struct xlog_ticket      *ticket,
515         struct xlog_in_core     **iclog,
516         uint                    flags)
517 {
518         struct xlog             *log = mp->m_log;
519         xfs_lsn_t               lsn = 0;
520
521         if (XLOG_FORCED_SHUTDOWN(log) ||
522             /*
523              * If nothing was ever written, don't write out commit record.
524              * If we get an error, just continue and give back the log ticket.
525              */
526             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528                 lsn = (xfs_lsn_t) -1;
529                 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530                         flags |= XFS_LOG_REL_PERM_RESERV;
531                 }
532         }
533
534
535         if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536             (flags & XFS_LOG_REL_PERM_RESERV)) {
537                 trace_xfs_log_done_nonperm(log, ticket);
538
539                 /*
540                  * Release ticket if not permanent reservation or a specific
541                  * request has been made to release a permanent reservation.
542                  */
543                 xlog_ungrant_log_space(log, ticket);
544                 xfs_log_ticket_put(ticket);
545         } else {
546                 trace_xfs_log_done_perm(log, ticket);
547
548                 xlog_regrant_reserve_log_space(log, ticket);
549                 /* If this ticket was a permanent reservation and we aren't
550                  * trying to release it, reset the inited flags; so next time
551                  * we write, a start record will be written out.
552                  */
553                 ticket->t_flags |= XLOG_TIC_INITED;
554         }
555
556         return lsn;
557 }
558
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567         struct xfs_mount        *mp,
568         struct xlog_in_core     *iclog,
569         xfs_log_callback_t      *cb)
570 {
571         int     abortflg;
572
573         spin_lock(&iclog->ic_callback_lock);
574         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575         if (!abortflg) {
576                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578                 cb->cb_next = NULL;
579                 *(iclog->ic_callback_tail) = cb;
580                 iclog->ic_callback_tail = &(cb->cb_next);
581         }
582         spin_unlock(&iclog->ic_callback_lock);
583         return abortflg;
584 }
585
586 int
587 xfs_log_release_iclog(
588         struct xfs_mount        *mp,
589         struct xlog_in_core     *iclog)
590 {
591         if (xlog_state_release_iclog(mp->m_log, iclog)) {
592                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593                 return -EIO;
594         }
595
596         return 0;
597 }
598
599 /*
600  * Mount a log filesystem
601  *
602  * mp           - ubiquitous xfs mount point structure
603  * log_target   - buftarg of on-disk log device
604  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks  - Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611         xfs_mount_t     *mp,
612         xfs_buftarg_t   *log_target,
613         xfs_daddr_t     blk_offset,
614         int             num_bblks)
615 {
616         int             error = 0;
617         int             min_logfsbs;
618
619         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620                 xfs_notice(mp, "Mounting V%d Filesystem",
621                            XFS_SB_VERSION_NUM(&mp->m_sb));
622         } else {
623                 xfs_notice(mp,
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625                            XFS_SB_VERSION_NUM(&mp->m_sb));
626                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627         }
628
629         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630         if (IS_ERR(mp->m_log)) {
631                 error = PTR_ERR(mp->m_log);
632                 goto out;
633         }
634
635         /*
636          * Validate the given log space and drop a critical message via syslog
637          * if the log size is too small that would lead to some unexpected
638          * situations in transaction log space reservation stage.
639          *
640          * Note: we can't just reject the mount if the validation fails.  This
641          * would mean that people would have to downgrade their kernel just to
642          * remedy the situation as there is no way to grow the log (short of
643          * black magic surgery with xfs_db).
644          *
645          * We can, however, reject mounts for CRC format filesystems, as the
646          * mkfs binary being used to make the filesystem should never create a
647          * filesystem with a log that is too small.
648          */
649         min_logfsbs = xfs_log_calc_minimum_size(mp);
650
651         if (mp->m_sb.sb_logblocks < min_logfsbs) {
652                 xfs_warn(mp,
653                 "Log size %d blocks too small, minimum size is %d blocks",
654                          mp->m_sb.sb_logblocks, min_logfsbs);
655                 error = -EINVAL;
656         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657                 xfs_warn(mp,
658                 "Log size %d blocks too large, maximum size is %lld blocks",
659                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660                 error = -EINVAL;
661         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662                 xfs_warn(mp,
663                 "log size %lld bytes too large, maximum size is %lld bytes",
664                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665                          XFS_MAX_LOG_BYTES);
666                 error = -EINVAL;
667         }
668         if (error) {
669                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
670                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671                         ASSERT(0);
672                         goto out_free_log;
673                 }
674                 xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677         }
678
679         /*
680          * Initialize the AIL now we have a log.
681          */
682         error = xfs_trans_ail_init(mp);
683         if (error) {
684                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
685                 goto out_free_log;
686         }
687         mp->m_log->l_ailp = mp->m_ail;
688
689         /*
690          * skip log recovery on a norecovery mount.  pretend it all
691          * just worked.
692          */
693         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695
696                 if (readonly)
697                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
698
699                 error = xlog_recover(mp->m_log);
700
701                 if (readonly)
702                         mp->m_flags |= XFS_MOUNT_RDONLY;
703                 if (error) {
704                         xfs_warn(mp, "log mount/recovery failed: error %d",
705                                 error);
706                         goto out_destroy_ail;
707                 }
708         }
709
710         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
711                                "log");
712         if (error)
713                 goto out_destroy_ail;
714
715         /* Normal transactions can now occur */
716         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
717
718         /*
719          * Now the log has been fully initialised and we know were our
720          * space grant counters are, we can initialise the permanent ticket
721          * needed for delayed logging to work.
722          */
723         xlog_cil_init_post_recovery(mp->m_log);
724
725         return 0;
726
727 out_destroy_ail:
728         xfs_trans_ail_destroy(mp);
729 out_free_log:
730         xlog_dealloc_log(mp->m_log);
731 out:
732         return error;
733 }
734
735 /*
736  * Finish the recovery of the file system.  This is separate from the
737  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
738  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
739  * here.
740  *
741  * If we finish recovery successfully, start the background log work. If we are
742  * not doing recovery, then we have a RO filesystem and we don't need to start
743  * it.
744  */
745 int
746 xfs_log_mount_finish(xfs_mount_t *mp)
747 {
748         int     error = 0;
749
750         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
751                 error = xlog_recover_finish(mp->m_log);
752                 if (!error)
753                         xfs_log_work_queue(mp);
754         } else {
755                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
756         }
757
758
759         return error;
760 }
761
762 /*
763  * Final log writes as part of unmount.
764  *
765  * Mark the filesystem clean as unmount happens.  Note that during relocation
766  * this routine needs to be executed as part of source-bag while the
767  * deallocation must not be done until source-end.
768  */
769
770 /*
771  * Unmount record used to have a string "Unmount filesystem--" in the
772  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
773  * We just write the magic number now since that particular field isn't
774  * currently architecture converted and "Unmount" is a bit foo.
775  * As far as I know, there weren't any dependencies on the old behaviour.
776  */
777
778 int
779 xfs_log_unmount_write(xfs_mount_t *mp)
780 {
781         struct xlog      *log = mp->m_log;
782         xlog_in_core_t   *iclog;
783 #ifdef DEBUG
784         xlog_in_core_t   *first_iclog;
785 #endif
786         xlog_ticket_t   *tic = NULL;
787         xfs_lsn_t        lsn;
788         int              error;
789
790         /*
791          * Don't write out unmount record on read-only mounts.
792          * Or, if we are doing a forced umount (typically because of IO errors).
793          */
794         if (mp->m_flags & XFS_MOUNT_RDONLY)
795                 return 0;
796
797         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
798         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
799
800 #ifdef DEBUG
801         first_iclog = iclog = log->l_iclog;
802         do {
803                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
804                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
805                         ASSERT(iclog->ic_offset == 0);
806                 }
807                 iclog = iclog->ic_next;
808         } while (iclog != first_iclog);
809 #endif
810         if (! (XLOG_FORCED_SHUTDOWN(log))) {
811                 error = xfs_log_reserve(mp, 600, 1, &tic,
812                                         XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
813                 if (!error) {
814                         /* the data section must be 32 bit size aligned */
815                         struct {
816                             __uint16_t magic;
817                             __uint16_t pad1;
818                             __uint32_t pad2; /* may as well make it 64 bits */
819                         } magic = {
820                                 .magic = XLOG_UNMOUNT_TYPE,
821                         };
822                         struct xfs_log_iovec reg = {
823                                 .i_addr = &magic,
824                                 .i_len = sizeof(magic),
825                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
826                         };
827                         struct xfs_log_vec vec = {
828                                 .lv_niovecs = 1,
829                                 .lv_iovecp = &reg,
830                         };
831
832                         /* remove inited flag, and account for space used */
833                         tic->t_flags = 0;
834                         tic->t_curr_res -= sizeof(magic);
835                         error = xlog_write(log, &vec, tic, &lsn,
836                                            NULL, XLOG_UNMOUNT_TRANS);
837                         /*
838                          * At this point, we're umounting anyway,
839                          * so there's no point in transitioning log state
840                          * to IOERROR. Just continue...
841                          */
842                 }
843
844                 if (error)
845                         xfs_alert(mp, "%s: unmount record failed", __func__);
846
847
848                 spin_lock(&log->l_icloglock);
849                 iclog = log->l_iclog;
850                 atomic_inc(&iclog->ic_refcnt);
851                 xlog_state_want_sync(log, iclog);
852                 spin_unlock(&log->l_icloglock);
853                 error = xlog_state_release_iclog(log, iclog);
854
855                 spin_lock(&log->l_icloglock);
856                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
857                       iclog->ic_state == XLOG_STATE_DIRTY)) {
858                         if (!XLOG_FORCED_SHUTDOWN(log)) {
859                                 xlog_wait(&iclog->ic_force_wait,
860                                                         &log->l_icloglock);
861                         } else {
862                                 spin_unlock(&log->l_icloglock);
863                         }
864                 } else {
865                         spin_unlock(&log->l_icloglock);
866                 }
867                 if (tic) {
868                         trace_xfs_log_umount_write(log, tic);
869                         xlog_ungrant_log_space(log, tic);
870                         xfs_log_ticket_put(tic);
871                 }
872         } else {
873                 /*
874                  * We're already in forced_shutdown mode, couldn't
875                  * even attempt to write out the unmount transaction.
876                  *
877                  * Go through the motions of sync'ing and releasing
878                  * the iclog, even though no I/O will actually happen,
879                  * we need to wait for other log I/Os that may already
880                  * be in progress.  Do this as a separate section of
881                  * code so we'll know if we ever get stuck here that
882                  * we're in this odd situation of trying to unmount
883                  * a file system that went into forced_shutdown as
884                  * the result of an unmount..
885                  */
886                 spin_lock(&log->l_icloglock);
887                 iclog = log->l_iclog;
888                 atomic_inc(&iclog->ic_refcnt);
889
890                 xlog_state_want_sync(log, iclog);
891                 spin_unlock(&log->l_icloglock);
892                 error =  xlog_state_release_iclog(log, iclog);
893
894                 spin_lock(&log->l_icloglock);
895
896                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
897                         || iclog->ic_state == XLOG_STATE_DIRTY
898                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
899
900                                 xlog_wait(&iclog->ic_force_wait,
901                                                         &log->l_icloglock);
902                 } else {
903                         spin_unlock(&log->l_icloglock);
904                 }
905         }
906
907         return error;
908 }       /* xfs_log_unmount_write */
909
910 /*
911  * Empty the log for unmount/freeze.
912  *
913  * To do this, we first need to shut down the background log work so it is not
914  * trying to cover the log as we clean up. We then need to unpin all objects in
915  * the log so we can then flush them out. Once they have completed their IO and
916  * run the callbacks removing themselves from the AIL, we can write the unmount
917  * record.
918  */
919 void
920 xfs_log_quiesce(
921         struct xfs_mount        *mp)
922 {
923         cancel_delayed_work_sync(&mp->m_log->l_work);
924         xfs_log_force(mp, XFS_LOG_SYNC);
925
926         /*
927          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
928          * will push it, xfs_wait_buftarg() will not wait for it. Further,
929          * xfs_buf_iowait() cannot be used because it was pushed with the
930          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
931          * the IO to complete.
932          */
933         xfs_ail_push_all_sync(mp->m_ail);
934         xfs_wait_buftarg(mp->m_ddev_targp);
935         xfs_buf_lock(mp->m_sb_bp);
936         xfs_buf_unlock(mp->m_sb_bp);
937
938         xfs_log_unmount_write(mp);
939 }
940
941 /*
942  * Shut down and release the AIL and Log.
943  *
944  * During unmount, we need to ensure we flush all the dirty metadata objects
945  * from the AIL so that the log is empty before we write the unmount record to
946  * the log. Once this is done, we can tear down the AIL and the log.
947  */
948 void
949 xfs_log_unmount(
950         struct xfs_mount        *mp)
951 {
952         xfs_log_quiesce(mp);
953
954         xfs_trans_ail_destroy(mp);
955
956         xfs_sysfs_del(&mp->m_log->l_kobj);
957
958         xlog_dealloc_log(mp->m_log);
959 }
960
961 void
962 xfs_log_item_init(
963         struct xfs_mount        *mp,
964         struct xfs_log_item     *item,
965         int                     type,
966         const struct xfs_item_ops *ops)
967 {
968         item->li_mountp = mp;
969         item->li_ailp = mp->m_ail;
970         item->li_type = type;
971         item->li_ops = ops;
972         item->li_lv = NULL;
973
974         INIT_LIST_HEAD(&item->li_ail);
975         INIT_LIST_HEAD(&item->li_cil);
976 }
977
978 /*
979  * Wake up processes waiting for log space after we have moved the log tail.
980  */
981 void
982 xfs_log_space_wake(
983         struct xfs_mount        *mp)
984 {
985         struct xlog             *log = mp->m_log;
986         int                     free_bytes;
987
988         if (XLOG_FORCED_SHUTDOWN(log))
989                 return;
990
991         if (!list_empty_careful(&log->l_write_head.waiters)) {
992                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993
994                 spin_lock(&log->l_write_head.lock);
995                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
996                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
997                 spin_unlock(&log->l_write_head.lock);
998         }
999
1000         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1001                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1002
1003                 spin_lock(&log->l_reserve_head.lock);
1004                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1005                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1006                 spin_unlock(&log->l_reserve_head.lock);
1007         }
1008 }
1009
1010 /*
1011  * Determine if we have a transaction that has gone to disk that needs to be
1012  * covered. To begin the transition to the idle state firstly the log needs to
1013  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1014  * we start attempting to cover the log.
1015  *
1016  * Only if we are then in a state where covering is needed, the caller is
1017  * informed that dummy transactions are required to move the log into the idle
1018  * state.
1019  *
1020  * If there are any items in the AIl or CIL, then we do not want to attempt to
1021  * cover the log as we may be in a situation where there isn't log space
1022  * available to run a dummy transaction and this can lead to deadlocks when the
1023  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1024  * there's no point in running a dummy transaction at this point because we
1025  * can't start trying to idle the log until both the CIL and AIL are empty.
1026  */
1027 int
1028 xfs_log_need_covered(xfs_mount_t *mp)
1029 {
1030         struct xlog     *log = mp->m_log;
1031         int             needed = 0;
1032
1033         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1034                 return 0;
1035
1036         if (!xlog_cil_empty(log))
1037                 return 0;
1038
1039         spin_lock(&log->l_icloglock);
1040         switch (log->l_covered_state) {
1041         case XLOG_STATE_COVER_DONE:
1042         case XLOG_STATE_COVER_DONE2:
1043         case XLOG_STATE_COVER_IDLE:
1044                 break;
1045         case XLOG_STATE_COVER_NEED:
1046         case XLOG_STATE_COVER_NEED2:
1047                 if (xfs_ail_min_lsn(log->l_ailp))
1048                         break;
1049                 if (!xlog_iclogs_empty(log))
1050                         break;
1051
1052                 needed = 1;
1053                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1054                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1055                 else
1056                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1057                 break;
1058         default:
1059                 needed = 1;
1060                 break;
1061         }
1062         spin_unlock(&log->l_icloglock);
1063         return needed;
1064 }
1065
1066 /*
1067  * We may be holding the log iclog lock upon entering this routine.
1068  */
1069 xfs_lsn_t
1070 xlog_assign_tail_lsn_locked(
1071         struct xfs_mount        *mp)
1072 {
1073         struct xlog             *log = mp->m_log;
1074         struct xfs_log_item     *lip;
1075         xfs_lsn_t               tail_lsn;
1076
1077         assert_spin_locked(&mp->m_ail->xa_lock);
1078
1079         /*
1080          * To make sure we always have a valid LSN for the log tail we keep
1081          * track of the last LSN which was committed in log->l_last_sync_lsn,
1082          * and use that when the AIL was empty.
1083          */
1084         lip = xfs_ail_min(mp->m_ail);
1085         if (lip)
1086                 tail_lsn = lip->li_lsn;
1087         else
1088                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1089         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1090         atomic64_set(&log->l_tail_lsn, tail_lsn);
1091         return tail_lsn;
1092 }
1093
1094 xfs_lsn_t
1095 xlog_assign_tail_lsn(
1096         struct xfs_mount        *mp)
1097 {
1098         xfs_lsn_t               tail_lsn;
1099
1100         spin_lock(&mp->m_ail->xa_lock);
1101         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1102         spin_unlock(&mp->m_ail->xa_lock);
1103
1104         return tail_lsn;
1105 }
1106
1107 /*
1108  * Return the space in the log between the tail and the head.  The head
1109  * is passed in the cycle/bytes formal parms.  In the special case where
1110  * the reserve head has wrapped passed the tail, this calculation is no
1111  * longer valid.  In this case, just return 0 which means there is no space
1112  * in the log.  This works for all places where this function is called
1113  * with the reserve head.  Of course, if the write head were to ever
1114  * wrap the tail, we should blow up.  Rather than catch this case here,
1115  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1116  *
1117  * This code also handles the case where the reservation head is behind
1118  * the tail.  The details of this case are described below, but the end
1119  * result is that we return the size of the log as the amount of space left.
1120  */
1121 STATIC int
1122 xlog_space_left(
1123         struct xlog     *log,
1124         atomic64_t      *head)
1125 {
1126         int             free_bytes;
1127         int             tail_bytes;
1128         int             tail_cycle;
1129         int             head_cycle;
1130         int             head_bytes;
1131
1132         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1133         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1134         tail_bytes = BBTOB(tail_bytes);
1135         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1136                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1137         else if (tail_cycle + 1 < head_cycle)
1138                 return 0;
1139         else if (tail_cycle < head_cycle) {
1140                 ASSERT(tail_cycle == (head_cycle - 1));
1141                 free_bytes = tail_bytes - head_bytes;
1142         } else {
1143                 /*
1144                  * The reservation head is behind the tail.
1145                  * In this case we just want to return the size of the
1146                  * log as the amount of space left.
1147                  */
1148                 xfs_alert(log->l_mp,
1149                         "xlog_space_left: head behind tail\n"
1150                         "  tail_cycle = %d, tail_bytes = %d\n"
1151                         "  GH   cycle = %d, GH   bytes = %d",
1152                         tail_cycle, tail_bytes, head_cycle, head_bytes);
1153                 ASSERT(0);
1154                 free_bytes = log->l_logsize;
1155         }
1156         return free_bytes;
1157 }
1158
1159
1160 /*
1161  * Log function which is called when an io completes.
1162  *
1163  * The log manager needs its own routine, in order to control what
1164  * happens with the buffer after the write completes.
1165  */
1166 void
1167 xlog_iodone(xfs_buf_t *bp)
1168 {
1169         struct xlog_in_core     *iclog = bp->b_fspriv;
1170         struct xlog             *l = iclog->ic_log;
1171         int                     aborted = 0;
1172
1173         /*
1174          * Race to shutdown the filesystem if we see an error.
1175          */
1176         if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1177                         XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1178                 xfs_buf_ioerror_alert(bp, __func__);
1179                 xfs_buf_stale(bp);
1180                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1181                 /*
1182                  * This flag will be propagated to the trans-committed
1183                  * callback routines to let them know that the log-commit
1184                  * didn't succeed.
1185                  */
1186                 aborted = XFS_LI_ABORTED;
1187         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1188                 aborted = XFS_LI_ABORTED;
1189         }
1190
1191         /* log I/O is always issued ASYNC */
1192         ASSERT(XFS_BUF_ISASYNC(bp));
1193         xlog_state_done_syncing(iclog, aborted);
1194
1195         /*
1196          * drop the buffer lock now that we are done. Nothing references
1197          * the buffer after this, so an unmount waiting on this lock can now
1198          * tear it down safely. As such, it is unsafe to reference the buffer
1199          * (bp) after the unlock as we could race with it being freed.
1200          */
1201         xfs_buf_unlock(bp);
1202 }
1203
1204 /*
1205  * Return size of each in-core log record buffer.
1206  *
1207  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1208  *
1209  * If the filesystem blocksize is too large, we may need to choose a
1210  * larger size since the directory code currently logs entire blocks.
1211  */
1212
1213 STATIC void
1214 xlog_get_iclog_buffer_size(
1215         struct xfs_mount        *mp,
1216         struct xlog             *log)
1217 {
1218         int size;
1219         int xhdrs;
1220
1221         if (mp->m_logbufs <= 0)
1222                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1223         else
1224                 log->l_iclog_bufs = mp->m_logbufs;
1225
1226         /*
1227          * Buffer size passed in from mount system call.
1228          */
1229         if (mp->m_logbsize > 0) {
1230                 size = log->l_iclog_size = mp->m_logbsize;
1231                 log->l_iclog_size_log = 0;
1232                 while (size != 1) {
1233                         log->l_iclog_size_log++;
1234                         size >>= 1;
1235                 }
1236
1237                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1238                         /* # headers = size / 32k
1239                          * one header holds cycles from 32k of data
1240                          */
1241
1242                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1243                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1244                                 xhdrs++;
1245                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1246                         log->l_iclog_heads = xhdrs;
1247                 } else {
1248                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1249                         log->l_iclog_hsize = BBSIZE;
1250                         log->l_iclog_heads = 1;
1251                 }
1252                 goto done;
1253         }
1254
1255         /* All machines use 32kB buffers by default. */
1256         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1257         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1258
1259         /* the default log size is 16k or 32k which is one header sector */
1260         log->l_iclog_hsize = BBSIZE;
1261         log->l_iclog_heads = 1;
1262
1263 done:
1264         /* are we being asked to make the sizes selected above visible? */
1265         if (mp->m_logbufs == 0)
1266                 mp->m_logbufs = log->l_iclog_bufs;
1267         if (mp->m_logbsize == 0)
1268                 mp->m_logbsize = log->l_iclog_size;
1269 }       /* xlog_get_iclog_buffer_size */
1270
1271
1272 void
1273 xfs_log_work_queue(
1274         struct xfs_mount        *mp)
1275 {
1276         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1277                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1278 }
1279
1280 /*
1281  * Every sync period we need to unpin all items in the AIL and push them to
1282  * disk. If there is nothing dirty, then we might need to cover the log to
1283  * indicate that the filesystem is idle.
1284  */
1285 void
1286 xfs_log_worker(
1287         struct work_struct      *work)
1288 {
1289         struct xlog             *log = container_of(to_delayed_work(work),
1290                                                 struct xlog, l_work);
1291         struct xfs_mount        *mp = log->l_mp;
1292
1293         /* dgc: errors ignored - not fatal and nowhere to report them */
1294         if (xfs_log_need_covered(mp)) {
1295                 /*
1296                  * Dump a transaction into the log that contains no real change.
1297                  * This is needed to stamp the current tail LSN into the log
1298                  * during the covering operation.
1299                  *
1300                  * We cannot use an inode here for this - that will push dirty
1301                  * state back up into the VFS and then periodic inode flushing
1302                  * will prevent log covering from making progress. Hence we
1303                  * synchronously log the superblock instead to ensure the
1304                  * superblock is immediately unpinned and can be written back.
1305                  */
1306                 xfs_sync_sb(mp, true);
1307         } else
1308                 xfs_log_force(mp, 0);
1309
1310         /* start pushing all the metadata that is currently dirty */
1311         xfs_ail_push_all(mp->m_ail);
1312
1313         /* queue us up again */
1314         xfs_log_work_queue(mp);
1315 }
1316
1317 /*
1318  * This routine initializes some of the log structure for a given mount point.
1319  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1320  * some other stuff may be filled in too.
1321  */
1322 STATIC struct xlog *
1323 xlog_alloc_log(
1324         struct xfs_mount        *mp,
1325         struct xfs_buftarg      *log_target,
1326         xfs_daddr_t             blk_offset,
1327         int                     num_bblks)
1328 {
1329         struct xlog             *log;
1330         xlog_rec_header_t       *head;
1331         xlog_in_core_t          **iclogp;
1332         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1333         xfs_buf_t               *bp;
1334         int                     i;
1335         int                     error = -ENOMEM;
1336         uint                    log2_size = 0;
1337
1338         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1339         if (!log) {
1340                 xfs_warn(mp, "Log allocation failed: No memory!");
1341                 goto out;
1342         }
1343
1344         log->l_mp          = mp;
1345         log->l_targ        = log_target;
1346         log->l_logsize     = BBTOB(num_bblks);
1347         log->l_logBBstart  = blk_offset;
1348         log->l_logBBsize   = num_bblks;
1349         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1350         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1351         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1352
1353         log->l_prev_block  = -1;
1354         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1356         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1357         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1358
1359         xlog_grant_head_init(&log->l_reserve_head);
1360         xlog_grant_head_init(&log->l_write_head);
1361
1362         error = -EFSCORRUPTED;
1363         if (xfs_sb_version_hassector(&mp->m_sb)) {
1364                 log2_size = mp->m_sb.sb_logsectlog;
1365                 if (log2_size < BBSHIFT) {
1366                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1367                                 log2_size, BBSHIFT);
1368                         goto out_free_log;
1369                 }
1370
1371                 log2_size -= BBSHIFT;
1372                 if (log2_size > mp->m_sectbb_log) {
1373                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1374                                 log2_size, mp->m_sectbb_log);
1375                         goto out_free_log;
1376                 }
1377
1378                 /* for larger sector sizes, must have v2 or external log */
1379                 if (log2_size && log->l_logBBstart > 0 &&
1380                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1381                         xfs_warn(mp,
1382                 "log sector size (0x%x) invalid for configuration.",
1383                                 log2_size);
1384                         goto out_free_log;
1385                 }
1386         }
1387         log->l_sectBBsize = 1 << log2_size;
1388
1389         xlog_get_iclog_buffer_size(mp, log);
1390
1391         /*
1392          * Use a NULL block for the extra log buffer used during splits so that
1393          * it will trigger errors if we ever try to do IO on it without first
1394          * having set it up properly.
1395          */
1396         error = -ENOMEM;
1397         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1398                            BTOBB(log->l_iclog_size), 0);
1399         if (!bp)
1400                 goto out_free_log;
1401
1402         /*
1403          * The iclogbuf buffer locks are held over IO but we are not going to do
1404          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1405          * when appropriately.
1406          */
1407         ASSERT(xfs_buf_islocked(bp));
1408         xfs_buf_unlock(bp);
1409
1410         /* use high priority wq for log I/O completion */
1411         bp->b_ioend_wq = mp->m_log_workqueue;
1412         bp->b_iodone = xlog_iodone;
1413         log->l_xbuf = bp;
1414
1415         spin_lock_init(&log->l_icloglock);
1416         init_waitqueue_head(&log->l_flush_wait);
1417
1418         iclogp = &log->l_iclog;
1419         /*
1420          * The amount of memory to allocate for the iclog structure is
1421          * rather funky due to the way the structure is defined.  It is
1422          * done this way so that we can use different sizes for machines
1423          * with different amounts of memory.  See the definition of
1424          * xlog_in_core_t in xfs_log_priv.h for details.
1425          */
1426         ASSERT(log->l_iclog_size >= 4096);
1427         for (i=0; i < log->l_iclog_bufs; i++) {
1428                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1429                 if (!*iclogp)
1430                         goto out_free_iclog;
1431
1432                 iclog = *iclogp;
1433                 iclog->ic_prev = prev_iclog;
1434                 prev_iclog = iclog;
1435
1436                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1437                                                 BTOBB(log->l_iclog_size), 0);
1438                 if (!bp)
1439                         goto out_free_iclog;
1440
1441                 ASSERT(xfs_buf_islocked(bp));
1442                 xfs_buf_unlock(bp);
1443
1444                 /* use high priority wq for log I/O completion */
1445                 bp->b_ioend_wq = mp->m_log_workqueue;
1446                 bp->b_iodone = xlog_iodone;
1447                 iclog->ic_bp = bp;
1448                 iclog->ic_data = bp->b_addr;
1449 #ifdef DEBUG
1450                 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1451 #endif
1452                 head = &iclog->ic_header;
1453                 memset(head, 0, sizeof(xlog_rec_header_t));
1454                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455                 head->h_version = cpu_to_be32(
1456                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457                 head->h_size = cpu_to_be32(log->l_iclog_size);
1458                 /* new fields */
1459                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1460                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
1462                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1463                 iclog->ic_state = XLOG_STATE_ACTIVE;
1464                 iclog->ic_log = log;
1465                 atomic_set(&iclog->ic_refcnt, 0);
1466                 spin_lock_init(&iclog->ic_callback_lock);
1467                 iclog->ic_callback_tail = &(iclog->ic_callback);
1468                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469
1470                 init_waitqueue_head(&iclog->ic_force_wait);
1471                 init_waitqueue_head(&iclog->ic_write_wait);
1472
1473                 iclogp = &iclog->ic_next;
1474         }
1475         *iclogp = log->l_iclog;                 /* complete ring */
1476         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1477
1478         error = xlog_cil_init(log);
1479         if (error)
1480                 goto out_free_iclog;
1481         return log;
1482
1483 out_free_iclog:
1484         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1485                 prev_iclog = iclog->ic_next;
1486                 if (iclog->ic_bp)
1487                         xfs_buf_free(iclog->ic_bp);
1488                 kmem_free(iclog);
1489         }
1490         spinlock_destroy(&log->l_icloglock);
1491         xfs_buf_free(log->l_xbuf);
1492 out_free_log:
1493         kmem_free(log);
1494 out:
1495         return ERR_PTR(error);
1496 }       /* xlog_alloc_log */
1497
1498
1499 /*
1500  * Write out the commit record of a transaction associated with the given
1501  * ticket.  Return the lsn of the commit record.
1502  */
1503 STATIC int
1504 xlog_commit_record(
1505         struct xlog             *log,
1506         struct xlog_ticket      *ticket,
1507         struct xlog_in_core     **iclog,
1508         xfs_lsn_t               *commitlsnp)
1509 {
1510         struct xfs_mount *mp = log->l_mp;
1511         int     error;
1512         struct xfs_log_iovec reg = {
1513                 .i_addr = NULL,
1514                 .i_len = 0,
1515                 .i_type = XLOG_REG_TYPE_COMMIT,
1516         };
1517         struct xfs_log_vec vec = {
1518                 .lv_niovecs = 1,
1519                 .lv_iovecp = &reg,
1520         };
1521
1522         ASSERT_ALWAYS(iclog);
1523         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1524                                         XLOG_COMMIT_TRANS);
1525         if (error)
1526                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1527         return error;
1528 }
1529
1530 /*
1531  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1532  * log space.  This code pushes on the lsn which would supposedly free up
1533  * the 25% which we want to leave free.  We may need to adopt a policy which
1534  * pushes on an lsn which is further along in the log once we reach the high
1535  * water mark.  In this manner, we would be creating a low water mark.
1536  */
1537 STATIC void
1538 xlog_grant_push_ail(
1539         struct xlog     *log,
1540         int             need_bytes)
1541 {
1542         xfs_lsn_t       threshold_lsn = 0;
1543         xfs_lsn_t       last_sync_lsn;
1544         int             free_blocks;
1545         int             free_bytes;
1546         int             threshold_block;
1547         int             threshold_cycle;
1548         int             free_threshold;
1549
1550         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1551
1552         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1553         free_blocks = BTOBBT(free_bytes);
1554
1555         /*
1556          * Set the threshold for the minimum number of free blocks in the
1557          * log to the maximum of what the caller needs, one quarter of the
1558          * log, and 256 blocks.
1559          */
1560         free_threshold = BTOBB(need_bytes);
1561         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1562         free_threshold = MAX(free_threshold, 256);
1563         if (free_blocks >= free_threshold)
1564                 return;
1565
1566         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1567                                                 &threshold_block);
1568         threshold_block += free_threshold;
1569         if (threshold_block >= log->l_logBBsize) {
1570                 threshold_block -= log->l_logBBsize;
1571                 threshold_cycle += 1;
1572         }
1573         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1574                                         threshold_block);
1575         /*
1576          * Don't pass in an lsn greater than the lsn of the last
1577          * log record known to be on disk. Use a snapshot of the last sync lsn
1578          * so that it doesn't change between the compare and the set.
1579          */
1580         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1581         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1582                 threshold_lsn = last_sync_lsn;
1583
1584         /*
1585          * Get the transaction layer to kick the dirty buffers out to
1586          * disk asynchronously. No point in trying to do this if
1587          * the filesystem is shutting down.
1588          */
1589         if (!XLOG_FORCED_SHUTDOWN(log))
1590                 xfs_ail_push(log->l_ailp, threshold_lsn);
1591 }
1592
1593 /*
1594  * Stamp cycle number in every block
1595  */
1596 STATIC void
1597 xlog_pack_data(
1598         struct xlog             *log,
1599         struct xlog_in_core     *iclog,
1600         int                     roundoff)
1601 {
1602         int                     i, j, k;
1603         int                     size = iclog->ic_offset + roundoff;
1604         __be32                  cycle_lsn;
1605         xfs_caddr_t             dp;
1606
1607         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1608
1609         dp = iclog->ic_datap;
1610         for (i = 0; i < BTOBB(size); i++) {
1611                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1612                         break;
1613                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1614                 *(__be32 *)dp = cycle_lsn;
1615                 dp += BBSIZE;
1616         }
1617
1618         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1619                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1620
1621                 for ( ; i < BTOBB(size); i++) {
1622                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1623                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1624                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1625                         *(__be32 *)dp = cycle_lsn;
1626                         dp += BBSIZE;
1627                 }
1628
1629                 for (i = 1; i < log->l_iclog_heads; i++)
1630                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1631         }
1632 }
1633
1634 /*
1635  * Calculate the checksum for a log buffer.
1636  *
1637  * This is a little more complicated than it should be because the various
1638  * headers and the actual data are non-contiguous.
1639  */
1640 __le32
1641 xlog_cksum(
1642         struct xlog             *log,
1643         struct xlog_rec_header  *rhead,
1644         char                    *dp,
1645         int                     size)
1646 {
1647         __uint32_t              crc;
1648
1649         /* first generate the crc for the record header ... */
1650         crc = xfs_start_cksum((char *)rhead,
1651                               sizeof(struct xlog_rec_header),
1652                               offsetof(struct xlog_rec_header, h_crc));
1653
1654         /* ... then for additional cycle data for v2 logs ... */
1655         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1656                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1657                 int             i;
1658
1659                 for (i = 1; i < log->l_iclog_heads; i++) {
1660                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1661                                      sizeof(struct xlog_rec_ext_header));
1662                 }
1663         }
1664
1665         /* ... and finally for the payload */
1666         crc = crc32c(crc, dp, size);
1667
1668         return xfs_end_cksum(crc);
1669 }
1670
1671 /*
1672  * The bdstrat callback function for log bufs. This gives us a central
1673  * place to trap bufs in case we get hit by a log I/O error and need to
1674  * shutdown. Actually, in practice, even when we didn't get a log error,
1675  * we transition the iclogs to IOERROR state *after* flushing all existing
1676  * iclogs to disk. This is because we don't want anymore new transactions to be
1677  * started or completed afterwards.
1678  *
1679  * We lock the iclogbufs here so that we can serialise against IO completion
1680  * during unmount. We might be processing a shutdown triggered during unmount,
1681  * and that can occur asynchronously to the unmount thread, and hence we need to
1682  * ensure that completes before tearing down the iclogbufs. Hence we need to
1683  * hold the buffer lock across the log IO to acheive that.
1684  */
1685 STATIC int
1686 xlog_bdstrat(
1687         struct xfs_buf          *bp)
1688 {
1689         struct xlog_in_core     *iclog = bp->b_fspriv;
1690
1691         xfs_buf_lock(bp);
1692         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1693                 xfs_buf_ioerror(bp, -EIO);
1694                 xfs_buf_stale(bp);
1695                 xfs_buf_ioend(bp);
1696                 /*
1697                  * It would seem logical to return EIO here, but we rely on
1698                  * the log state machine to propagate I/O errors instead of
1699                  * doing it here. Similarly, IO completion will unlock the
1700                  * buffer, so we don't do it here.
1701                  */
1702                 return 0;
1703         }
1704
1705         xfs_buf_submit(bp);
1706         return 0;
1707 }
1708
1709 /*
1710  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1711  * fashion.  Previously, we should have moved the current iclog
1712  * ptr in the log to point to the next available iclog.  This allows further
1713  * write to continue while this code syncs out an iclog ready to go.
1714  * Before an in-core log can be written out, the data section must be scanned
1715  * to save away the 1st word of each BBSIZE block into the header.  We replace
1716  * it with the current cycle count.  Each BBSIZE block is tagged with the
1717  * cycle count because there in an implicit assumption that drives will
1718  * guarantee that entire 512 byte blocks get written at once.  In other words,
1719  * we can't have part of a 512 byte block written and part not written.  By
1720  * tagging each block, we will know which blocks are valid when recovering
1721  * after an unclean shutdown.
1722  *
1723  * This routine is single threaded on the iclog.  No other thread can be in
1724  * this routine with the same iclog.  Changing contents of iclog can there-
1725  * fore be done without grabbing the state machine lock.  Updating the global
1726  * log will require grabbing the lock though.
1727  *
1728  * The entire log manager uses a logical block numbering scheme.  Only
1729  * log_sync (and then only bwrite()) know about the fact that the log may
1730  * not start with block zero on a given device.  The log block start offset
1731  * is added immediately before calling bwrite().
1732  */
1733
1734 STATIC int
1735 xlog_sync(
1736         struct xlog             *log,
1737         struct xlog_in_core     *iclog)
1738 {
1739         xfs_buf_t       *bp;
1740         int             i;
1741         uint            count;          /* byte count of bwrite */
1742         uint            count_init;     /* initial count before roundup */
1743         int             roundoff;       /* roundoff to BB or stripe */
1744         int             split = 0;      /* split write into two regions */
1745         int             error;
1746         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1747         int             size;
1748
1749         XFS_STATS_INC(xs_log_writes);
1750         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1751
1752         /* Add for LR header */
1753         count_init = log->l_iclog_hsize + iclog->ic_offset;
1754
1755         /* Round out the log write size */
1756         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1757                 /* we have a v2 stripe unit to use */
1758                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1759         } else {
1760                 count = BBTOB(BTOBB(count_init));
1761         }
1762         roundoff = count - count_init;
1763         ASSERT(roundoff >= 0);
1764         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1765                 roundoff < log->l_mp->m_sb.sb_logsunit)
1766                 || 
1767                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1768                  roundoff < BBTOB(1)));
1769
1770         /* move grant heads by roundoff in sync */
1771         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1772         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1773
1774         /* put cycle number in every block */
1775         xlog_pack_data(log, iclog, roundoff); 
1776
1777         /* real byte length */
1778         size = iclog->ic_offset;
1779         if (v2)
1780                 size += roundoff;
1781         iclog->ic_header.h_len = cpu_to_be32(size);
1782
1783         bp = iclog->ic_bp;
1784         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1785
1786         XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1787
1788         /* Do we need to split this write into 2 parts? */
1789         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1790                 char            *dptr;
1791
1792                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1793                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1794                 iclog->ic_bwritecnt = 2;
1795
1796                 /*
1797                  * Bump the cycle numbers at the start of each block in the
1798                  * part of the iclog that ends up in the buffer that gets
1799                  * written to the start of the log.
1800                  *
1801                  * Watch out for the header magic number case, though.
1802                  */
1803                 dptr = (char *)&iclog->ic_header + count;
1804                 for (i = 0; i < split; i += BBSIZE) {
1805                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1806                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1807                                 cycle++;
1808                         *(__be32 *)dptr = cpu_to_be32(cycle);
1809
1810                         dptr += BBSIZE;
1811                 }
1812         } else {
1813                 iclog->ic_bwritecnt = 1;
1814         }
1815
1816         /* calculcate the checksum */
1817         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1818                                             iclog->ic_datap, size);
1819
1820         bp->b_io_length = BTOBB(count);
1821         bp->b_fspriv = iclog;
1822         XFS_BUF_ZEROFLAGS(bp);
1823         XFS_BUF_ASYNC(bp);
1824         bp->b_flags |= XBF_SYNCIO;
1825
1826         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1827                 bp->b_flags |= XBF_FUA;
1828
1829                 /*
1830                  * Flush the data device before flushing the log to make
1831                  * sure all meta data written back from the AIL actually made
1832                  * it to disk before stamping the new log tail LSN into the
1833                  * log buffer.  For an external log we need to issue the
1834                  * flush explicitly, and unfortunately synchronously here;
1835                  * for an internal log we can simply use the block layer
1836                  * state machine for preflushes.
1837                  */
1838                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1839                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1840                 else
1841                         bp->b_flags |= XBF_FLUSH;
1842         }
1843
1844         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1845         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1846
1847         xlog_verify_iclog(log, iclog, count, true);
1848
1849         /* account for log which doesn't start at block #0 */
1850         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1851         /*
1852          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1853          * is shutting down.
1854          */
1855         XFS_BUF_WRITE(bp);
1856
1857         error = xlog_bdstrat(bp);
1858         if (error) {
1859                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1860                 return error;
1861         }
1862         if (split) {
1863                 bp = iclog->ic_log->l_xbuf;
1864                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1865                 xfs_buf_associate_memory(bp,
1866                                 (char *)&iclog->ic_header + count, split);
1867                 bp->b_fspriv = iclog;
1868                 XFS_BUF_ZEROFLAGS(bp);
1869                 XFS_BUF_ASYNC(bp);
1870                 bp->b_flags |= XBF_SYNCIO;
1871                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1872                         bp->b_flags |= XBF_FUA;
1873
1874                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1875                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1876
1877                 /* account for internal log which doesn't start at block #0 */
1878                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1879                 XFS_BUF_WRITE(bp);
1880                 error = xlog_bdstrat(bp);
1881                 if (error) {
1882                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1883                         return error;
1884                 }
1885         }
1886         return 0;
1887 }       /* xlog_sync */
1888
1889 /*
1890  * Deallocate a log structure
1891  */
1892 STATIC void
1893 xlog_dealloc_log(
1894         struct xlog     *log)
1895 {
1896         xlog_in_core_t  *iclog, *next_iclog;
1897         int             i;
1898
1899         xlog_cil_destroy(log);
1900
1901         /*
1902          * Cycle all the iclogbuf locks to make sure all log IO completion
1903          * is done before we tear down these buffers.
1904          */
1905         iclog = log->l_iclog;
1906         for (i = 0; i < log->l_iclog_bufs; i++) {
1907                 xfs_buf_lock(iclog->ic_bp);
1908                 xfs_buf_unlock(iclog->ic_bp);
1909                 iclog = iclog->ic_next;
1910         }
1911
1912         /*
1913          * Always need to ensure that the extra buffer does not point to memory
1914          * owned by another log buffer before we free it. Also, cycle the lock
1915          * first to ensure we've completed IO on it.
1916          */
1917         xfs_buf_lock(log->l_xbuf);
1918         xfs_buf_unlock(log->l_xbuf);
1919         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1920         xfs_buf_free(log->l_xbuf);
1921
1922         iclog = log->l_iclog;
1923         for (i = 0; i < log->l_iclog_bufs; i++) {
1924                 xfs_buf_free(iclog->ic_bp);
1925                 next_iclog = iclog->ic_next;
1926                 kmem_free(iclog);
1927                 iclog = next_iclog;
1928         }
1929         spinlock_destroy(&log->l_icloglock);
1930
1931         log->l_mp->m_log = NULL;
1932         kmem_free(log);
1933 }       /* xlog_dealloc_log */
1934
1935 /*
1936  * Update counters atomically now that memcpy is done.
1937  */
1938 /* ARGSUSED */
1939 static inline void
1940 xlog_state_finish_copy(
1941         struct xlog             *log,
1942         struct xlog_in_core     *iclog,
1943         int                     record_cnt,
1944         int                     copy_bytes)
1945 {
1946         spin_lock(&log->l_icloglock);
1947
1948         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1949         iclog->ic_offset += copy_bytes;
1950
1951         spin_unlock(&log->l_icloglock);
1952 }       /* xlog_state_finish_copy */
1953
1954
1955
1956
1957 /*
1958  * print out info relating to regions written which consume
1959  * the reservation
1960  */
1961 void
1962 xlog_print_tic_res(
1963         struct xfs_mount        *mp,
1964         struct xlog_ticket      *ticket)
1965 {
1966         uint i;
1967         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1968
1969         /* match with XLOG_REG_TYPE_* in xfs_log.h */
1970         static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1971             "bformat",
1972             "bchunk",
1973             "efi_format",
1974             "efd_format",
1975             "iformat",
1976             "icore",
1977             "iext",
1978             "ibroot",
1979             "ilocal",
1980             "iattr_ext",
1981             "iattr_broot",
1982             "iattr_local",
1983             "qformat",
1984             "dquot",
1985             "quotaoff",
1986             "LR header",
1987             "unmount",
1988             "commit",
1989             "trans header"
1990         };
1991         static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1992             "SETATTR_NOT_SIZE",
1993             "SETATTR_SIZE",
1994             "INACTIVE",
1995             "CREATE",
1996             "CREATE_TRUNC",
1997             "TRUNCATE_FILE",
1998             "REMOVE",
1999             "LINK",
2000             "RENAME",
2001             "MKDIR",
2002             "RMDIR",
2003             "SYMLINK",
2004             "SET_DMATTRS",
2005             "GROWFS",
2006             "STRAT_WRITE",
2007             "DIOSTRAT",
2008             "WRITE_SYNC",
2009             "WRITEID",
2010             "ADDAFORK",
2011             "ATTRINVAL",
2012             "ATRUNCATE",
2013             "ATTR_SET",
2014             "ATTR_RM",
2015             "ATTR_FLAG",
2016             "CLEAR_AGI_BUCKET",
2017             "QM_SBCHANGE",
2018             "DUMMY1",
2019             "DUMMY2",
2020             "QM_QUOTAOFF",
2021             "QM_DQALLOC",
2022             "QM_SETQLIM",
2023             "QM_DQCLUSTER",
2024             "QM_QINOCREATE",
2025             "QM_QUOTAOFF_END",
2026             "SB_UNIT",
2027             "FSYNC_TS",
2028             "GROWFSRT_ALLOC",
2029             "GROWFSRT_ZERO",
2030             "GROWFSRT_FREE",
2031             "SWAPEXT"
2032         };
2033
2034         xfs_warn(mp,
2035                 "xlog_write: reservation summary:\n"
2036                 "  trans type  = %s (%u)\n"
2037                 "  unit res    = %d bytes\n"
2038                 "  current res = %d bytes\n"
2039                 "  total reg   = %u bytes (o/flow = %u bytes)\n"
2040                 "  ophdrs      = %u (ophdr space = %u bytes)\n"
2041                 "  ophdr + reg = %u bytes\n"
2042                 "  num regions = %u",
2043                 ((ticket->t_trans_type <= 0 ||
2044                   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2045                   "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2046                 ticket->t_trans_type,
2047                 ticket->t_unit_res,
2048                 ticket->t_curr_res,
2049                 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2050                 ticket->t_res_num_ophdrs, ophdr_spc,
2051                 ticket->t_res_arr_sum +
2052                 ticket->t_res_o_flow + ophdr_spc,
2053                 ticket->t_res_num);
2054
2055         for (i = 0; i < ticket->t_res_num; i++) {
2056                 uint r_type = ticket->t_res_arr[i].r_type;
2057                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2058                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2059                             "bad-rtype" : res_type_str[r_type-1]),
2060                             ticket->t_res_arr[i].r_len);
2061         }
2062
2063         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2064                 "xlog_write: reservation ran out. Need to up reservation");
2065         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2066 }
2067
2068 /*
2069  * Calculate the potential space needed by the log vector.  Each region gets
2070  * its own xlog_op_header_t and may need to be double word aligned.
2071  */
2072 static int
2073 xlog_write_calc_vec_length(
2074         struct xlog_ticket      *ticket,
2075         struct xfs_log_vec      *log_vector)
2076 {
2077         struct xfs_log_vec      *lv;
2078         int                     headers = 0;
2079         int                     len = 0;
2080         int                     i;
2081
2082         /* acct for start rec of xact */
2083         if (ticket->t_flags & XLOG_TIC_INITED)
2084                 headers++;
2085
2086         for (lv = log_vector; lv; lv = lv->lv_next) {
2087                 /* we don't write ordered log vectors */
2088                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2089                         continue;
2090
2091                 headers += lv->lv_niovecs;
2092
2093                 for (i = 0; i < lv->lv_niovecs; i++) {
2094                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2095
2096                         len += vecp->i_len;
2097                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2098                 }
2099         }
2100
2101         ticket->t_res_num_ophdrs += headers;
2102         len += headers * sizeof(struct xlog_op_header);
2103
2104         return len;
2105 }
2106
2107 /*
2108  * If first write for transaction, insert start record  We can't be trying to
2109  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2110  */
2111 static int
2112 xlog_write_start_rec(
2113         struct xlog_op_header   *ophdr,
2114         struct xlog_ticket      *ticket)
2115 {
2116         if (!(ticket->t_flags & XLOG_TIC_INITED))
2117                 return 0;
2118
2119         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2120         ophdr->oh_clientid = ticket->t_clientid;
2121         ophdr->oh_len = 0;
2122         ophdr->oh_flags = XLOG_START_TRANS;
2123         ophdr->oh_res2 = 0;
2124
2125         ticket->t_flags &= ~XLOG_TIC_INITED;
2126
2127         return sizeof(struct xlog_op_header);
2128 }
2129
2130 static xlog_op_header_t *
2131 xlog_write_setup_ophdr(
2132         struct xlog             *log,
2133         struct xlog_op_header   *ophdr,
2134         struct xlog_ticket      *ticket,
2135         uint                    flags)
2136 {
2137         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2138         ophdr->oh_clientid = ticket->t_clientid;
2139         ophdr->oh_res2 = 0;
2140
2141         /* are we copying a commit or unmount record? */
2142         ophdr->oh_flags = flags;
2143
2144         /*
2145          * We've seen logs corrupted with bad transaction client ids.  This
2146          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2147          * and shut down the filesystem.
2148          */
2149         switch (ophdr->oh_clientid)  {
2150         case XFS_TRANSACTION:
2151         case XFS_VOLUME:
2152         case XFS_LOG:
2153                 break;
2154         default:
2155                 xfs_warn(log->l_mp,
2156                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2157                         ophdr->oh_clientid, ticket);
2158                 return NULL;
2159         }
2160
2161         return ophdr;
2162 }
2163
2164 /*
2165  * Set up the parameters of the region copy into the log. This has
2166  * to handle region write split across multiple log buffers - this
2167  * state is kept external to this function so that this code can
2168  * be written in an obvious, self documenting manner.
2169  */
2170 static int
2171 xlog_write_setup_copy(
2172         struct xlog_ticket      *ticket,
2173         struct xlog_op_header   *ophdr,
2174         int                     space_available,
2175         int                     space_required,
2176         int                     *copy_off,
2177         int                     *copy_len,
2178         int                     *last_was_partial_copy,
2179         int                     *bytes_consumed)
2180 {
2181         int                     still_to_copy;
2182
2183         still_to_copy = space_required - *bytes_consumed;
2184         *copy_off = *bytes_consumed;
2185
2186         if (still_to_copy <= space_available) {
2187                 /* write of region completes here */
2188                 *copy_len = still_to_copy;
2189                 ophdr->oh_len = cpu_to_be32(*copy_len);
2190                 if (*last_was_partial_copy)
2191                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2192                 *last_was_partial_copy = 0;
2193                 *bytes_consumed = 0;
2194                 return 0;
2195         }
2196
2197         /* partial write of region, needs extra log op header reservation */
2198         *copy_len = space_available;
2199         ophdr->oh_len = cpu_to_be32(*copy_len);
2200         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2201         if (*last_was_partial_copy)
2202                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2203         *bytes_consumed += *copy_len;
2204         (*last_was_partial_copy)++;
2205
2206         /* account for new log op header */
2207         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2208         ticket->t_res_num_ophdrs++;
2209
2210         return sizeof(struct xlog_op_header);
2211 }
2212
2213 static int
2214 xlog_write_copy_finish(
2215         struct xlog             *log,
2216         struct xlog_in_core     *iclog,
2217         uint                    flags,
2218         int                     *record_cnt,
2219         int                     *data_cnt,
2220         int                     *partial_copy,
2221         int                     *partial_copy_len,
2222         int                     log_offset,
2223         struct xlog_in_core     **commit_iclog)
2224 {
2225         if (*partial_copy) {
2226                 /*
2227                  * This iclog has already been marked WANT_SYNC by
2228                  * xlog_state_get_iclog_space.
2229                  */
2230                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2231                 *record_cnt = 0;
2232                 *data_cnt = 0;
2233                 return xlog_state_release_iclog(log, iclog);
2234         }
2235
2236         *partial_copy = 0;
2237         *partial_copy_len = 0;
2238
2239         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2240                 /* no more space in this iclog - push it. */
2241                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2242                 *record_cnt = 0;
2243                 *data_cnt = 0;
2244
2245                 spin_lock(&log->l_icloglock);
2246                 xlog_state_want_sync(log, iclog);
2247                 spin_unlock(&log->l_icloglock);
2248
2249                 if (!commit_iclog)
2250                         return xlog_state_release_iclog(log, iclog);
2251                 ASSERT(flags & XLOG_COMMIT_TRANS);
2252                 *commit_iclog = iclog;
2253         }
2254
2255         return 0;
2256 }
2257
2258 /*
2259  * Write some region out to in-core log
2260  *
2261  * This will be called when writing externally provided regions or when
2262  * writing out a commit record for a given transaction.
2263  *
2264  * General algorithm:
2265  *      1. Find total length of this write.  This may include adding to the
2266  *              lengths passed in.
2267  *      2. Check whether we violate the tickets reservation.
2268  *      3. While writing to this iclog
2269  *          A. Reserve as much space in this iclog as can get
2270  *          B. If this is first write, save away start lsn
2271  *          C. While writing this region:
2272  *              1. If first write of transaction, write start record
2273  *              2. Write log operation header (header per region)
2274  *              3. Find out if we can fit entire region into this iclog
2275  *              4. Potentially, verify destination memcpy ptr
2276  *              5. Memcpy (partial) region
2277  *              6. If partial copy, release iclog; otherwise, continue
2278  *                      copying more regions into current iclog
2279  *      4. Mark want sync bit (in simulation mode)
2280  *      5. Release iclog for potential flush to on-disk log.
2281  *
2282  * ERRORS:
2283  * 1.   Panic if reservation is overrun.  This should never happen since
2284  *      reservation amounts are generated internal to the filesystem.
2285  * NOTES:
2286  * 1. Tickets are single threaded data structures.
2287  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2288  *      syncing routine.  When a single log_write region needs to span
2289  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2290  *      on all log operation writes which don't contain the end of the
2291  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2292  *      operation which contains the end of the continued log_write region.
2293  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2294  *      we don't really know exactly how much space will be used.  As a result,
2295  *      we don't update ic_offset until the end when we know exactly how many
2296  *      bytes have been written out.
2297  */
2298 int
2299 xlog_write(
2300         struct xlog             *log,
2301         struct xfs_log_vec      *log_vector,
2302         struct xlog_ticket      *ticket,
2303         xfs_lsn_t               *start_lsn,
2304         struct xlog_in_core     **commit_iclog,
2305         uint                    flags)
2306 {
2307         struct xlog_in_core     *iclog = NULL;
2308         struct xfs_log_iovec    *vecp;
2309         struct xfs_log_vec      *lv;
2310         int                     len;
2311         int                     index;
2312         int                     partial_copy = 0;
2313         int                     partial_copy_len = 0;
2314         int                     contwr = 0;
2315         int                     record_cnt = 0;
2316         int                     data_cnt = 0;
2317         int                     error;
2318
2319         *start_lsn = 0;
2320
2321         len = xlog_write_calc_vec_length(ticket, log_vector);
2322
2323         /*
2324          * Region headers and bytes are already accounted for.
2325          * We only need to take into account start records and
2326          * split regions in this function.
2327          */
2328         if (ticket->t_flags & XLOG_TIC_INITED)
2329                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330
2331         /*
2332          * Commit record headers need to be accounted for. These
2333          * come in as separate writes so are easy to detect.
2334          */
2335         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2336                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2337
2338         if (ticket->t_curr_res < 0)
2339                 xlog_print_tic_res(log->l_mp, ticket);
2340
2341         index = 0;
2342         lv = log_vector;
2343         vecp = lv->lv_iovecp;
2344         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2345                 void            *ptr;
2346                 int             log_offset;
2347
2348                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2349                                                    &contwr, &log_offset);
2350                 if (error)
2351                         return error;
2352
2353                 ASSERT(log_offset <= iclog->ic_size - 1);
2354                 ptr = iclog->ic_datap + log_offset;
2355
2356                 /* start_lsn is the first lsn written to. That's all we need. */
2357                 if (!*start_lsn)
2358                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2359
2360                 /*
2361                  * This loop writes out as many regions as can fit in the amount
2362                  * of space which was allocated by xlog_state_get_iclog_space().
2363                  */
2364                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365                         struct xfs_log_iovec    *reg;
2366                         struct xlog_op_header   *ophdr;
2367                         int                     start_rec_copy;
2368                         int                     copy_len;
2369                         int                     copy_off;
2370                         bool                    ordered = false;
2371
2372                         /* ordered log vectors have no regions to write */
2373                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2374                                 ASSERT(lv->lv_niovecs == 0);
2375                                 ordered = true;
2376                                 goto next_lv;
2377                         }
2378
2379                         reg = &vecp[index];
2380                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2381                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2382
2383                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2384                         if (start_rec_copy) {
2385                                 record_cnt++;
2386                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2387                                                    start_rec_copy);
2388                         }
2389
2390                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2391                         if (!ophdr)
2392                                 return -EIO;
2393
2394                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2395                                            sizeof(struct xlog_op_header));
2396
2397                         len += xlog_write_setup_copy(ticket, ophdr,
2398                                                      iclog->ic_size-log_offset,
2399                                                      reg->i_len,
2400                                                      &copy_off, &copy_len,
2401                                                      &partial_copy,
2402                                                      &partial_copy_len);
2403                         xlog_verify_dest_ptr(log, ptr);
2404
2405                         /* copy region */
2406                         ASSERT(copy_len >= 0);
2407                         memcpy(ptr, reg->i_addr + copy_off, copy_len);
2408                         xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2409
2410                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2411                         record_cnt++;
2412                         data_cnt += contwr ? copy_len : 0;
2413
2414                         error = xlog_write_copy_finish(log, iclog, flags,
2415                                                        &record_cnt, &data_cnt,
2416                                                        &partial_copy,
2417                                                        &partial_copy_len,
2418                                                        log_offset,
2419                                                        commit_iclog);
2420                         if (error)
2421                                 return error;
2422
2423                         /*
2424                          * if we had a partial copy, we need to get more iclog
2425                          * space but we don't want to increment the region
2426                          * index because there is still more is this region to
2427                          * write.
2428                          *
2429                          * If we completed writing this region, and we flushed
2430                          * the iclog (indicated by resetting of the record
2431                          * count), then we also need to get more log space. If
2432                          * this was the last record, though, we are done and
2433                          * can just return.
2434                          */
2435                         if (partial_copy)
2436                                 break;
2437
2438                         if (++index == lv->lv_niovecs) {
2439 next_lv:
2440                                 lv = lv->lv_next;
2441                                 index = 0;
2442                                 if (lv)
2443                                         vecp = lv->lv_iovecp;
2444                         }
2445                         if (record_cnt == 0 && ordered == false) {
2446                                 if (!lv)
2447                                         return 0;
2448                                 break;
2449                         }
2450                 }
2451         }
2452
2453         ASSERT(len == 0);
2454
2455         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2456         if (!commit_iclog)
2457                 return xlog_state_release_iclog(log, iclog);
2458
2459         ASSERT(flags & XLOG_COMMIT_TRANS);
2460         *commit_iclog = iclog;
2461         return 0;
2462 }
2463
2464
2465 /*****************************************************************************
2466  *
2467  *              State Machine functions
2468  *
2469  *****************************************************************************
2470  */
2471
2472 /* Clean iclogs starting from the head.  This ordering must be
2473  * maintained, so an iclog doesn't become ACTIVE beyond one that
2474  * is SYNCING.  This is also required to maintain the notion that we use
2475  * a ordered wait queue to hold off would be writers to the log when every
2476  * iclog is trying to sync to disk.
2477  *
2478  * State Change: DIRTY -> ACTIVE
2479  */
2480 STATIC void
2481 xlog_state_clean_log(
2482         struct xlog *log)
2483 {
2484         xlog_in_core_t  *iclog;
2485         int changed = 0;
2486
2487         iclog = log->l_iclog;
2488         do {
2489                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2490                         iclog->ic_state = XLOG_STATE_ACTIVE;
2491                         iclog->ic_offset       = 0;
2492                         ASSERT(iclog->ic_callback == NULL);
2493                         /*
2494                          * If the number of ops in this iclog indicate it just
2495                          * contains the dummy transaction, we can
2496                          * change state into IDLE (the second time around).
2497                          * Otherwise we should change the state into
2498                          * NEED a dummy.
2499                          * We don't need to cover the dummy.
2500                          */
2501                         if (!changed &&
2502                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2503                                         XLOG_COVER_OPS)) {
2504                                 changed = 1;
2505                         } else {
2506                                 /*
2507                                  * We have two dirty iclogs so start over
2508                                  * This could also be num of ops indicates
2509                                  * this is not the dummy going out.
2510                                  */
2511                                 changed = 2;
2512                         }
2513                         iclog->ic_header.h_num_logops = 0;
2514                         memset(iclog->ic_header.h_cycle_data, 0,
2515                               sizeof(iclog->ic_header.h_cycle_data));
2516                         iclog->ic_header.h_lsn = 0;
2517                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2518                         /* do nothing */;
2519                 else
2520                         break;  /* stop cleaning */
2521                 iclog = iclog->ic_next;
2522         } while (iclog != log->l_iclog);
2523
2524         /* log is locked when we are called */
2525         /*
2526          * Change state for the dummy log recording.
2527          * We usually go to NEED. But we go to NEED2 if the changed indicates
2528          * we are done writing the dummy record.
2529          * If we are done with the second dummy recored (DONE2), then
2530          * we go to IDLE.
2531          */
2532         if (changed) {
2533                 switch (log->l_covered_state) {
2534                 case XLOG_STATE_COVER_IDLE:
2535                 case XLOG_STATE_COVER_NEED:
2536                 case XLOG_STATE_COVER_NEED2:
2537                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2538                         break;
2539
2540                 case XLOG_STATE_COVER_DONE:
2541                         if (changed == 1)
2542                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2543                         else
2544                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2545                         break;
2546
2547                 case XLOG_STATE_COVER_DONE2:
2548                         if (changed == 1)
2549                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2550                         else
2551                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2552                         break;
2553
2554                 default:
2555                         ASSERT(0);
2556                 }
2557         }
2558 }       /* xlog_state_clean_log */
2559
2560 STATIC xfs_lsn_t
2561 xlog_get_lowest_lsn(
2562         struct xlog     *log)
2563 {
2564         xlog_in_core_t  *lsn_log;
2565         xfs_lsn_t       lowest_lsn, lsn;
2566
2567         lsn_log = log->l_iclog;
2568         lowest_lsn = 0;
2569         do {
2570             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2571                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2572                 if ((lsn && !lowest_lsn) ||
2573                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2574                         lowest_lsn = lsn;
2575                 }
2576             }
2577             lsn_log = lsn_log->ic_next;
2578         } while (lsn_log != log->l_iclog);
2579         return lowest_lsn;
2580 }
2581
2582
2583 STATIC void
2584 xlog_state_do_callback(
2585         struct xlog             *log,
2586         int                     aborted,
2587         struct xlog_in_core     *ciclog)
2588 {
2589         xlog_in_core_t     *iclog;
2590         xlog_in_core_t     *first_iclog;        /* used to know when we've
2591                                                  * processed all iclogs once */
2592         xfs_log_callback_t *cb, *cb_next;
2593         int                flushcnt = 0;
2594         xfs_lsn_t          lowest_lsn;
2595         int                ioerrors;    /* counter: iclogs with errors */
2596         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2597         int                funcdidcallbacks; /* flag: function did callbacks */
2598         int                repeats;     /* for issuing console warnings if
2599                                          * looping too many times */
2600         int                wake = 0;
2601
2602         spin_lock(&log->l_icloglock);
2603         first_iclog = iclog = log->l_iclog;
2604         ioerrors = 0;
2605         funcdidcallbacks = 0;
2606         repeats = 0;
2607
2608         do {
2609                 /*
2610                  * Scan all iclogs starting with the one pointed to by the
2611                  * log.  Reset this starting point each time the log is
2612                  * unlocked (during callbacks).
2613                  *
2614                  * Keep looping through iclogs until one full pass is made
2615                  * without running any callbacks.
2616                  */
2617                 first_iclog = log->l_iclog;
2618                 iclog = log->l_iclog;
2619                 loopdidcallbacks = 0;
2620                 repeats++;
2621
2622                 do {
2623
2624                         /* skip all iclogs in the ACTIVE & DIRTY states */
2625                         if (iclog->ic_state &
2626                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2627                                 iclog = iclog->ic_next;
2628                                 continue;
2629                         }
2630
2631                         /*
2632                          * Between marking a filesystem SHUTDOWN and stopping
2633                          * the log, we do flush all iclogs to disk (if there
2634                          * wasn't a log I/O error). So, we do want things to
2635                          * go smoothly in case of just a SHUTDOWN  w/o a
2636                          * LOG_IO_ERROR.
2637                          */
2638                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2639                                 /*
2640                                  * Can only perform callbacks in order.  Since
2641                                  * this iclog is not in the DONE_SYNC/
2642                                  * DO_CALLBACK state, we skip the rest and
2643                                  * just try to clean up.  If we set our iclog
2644                                  * to DO_CALLBACK, we will not process it when
2645                                  * we retry since a previous iclog is in the
2646                                  * CALLBACK and the state cannot change since
2647                                  * we are holding the l_icloglock.
2648                                  */
2649                                 if (!(iclog->ic_state &
2650                                         (XLOG_STATE_DONE_SYNC |
2651                                                  XLOG_STATE_DO_CALLBACK))) {
2652                                         if (ciclog && (ciclog->ic_state ==
2653                                                         XLOG_STATE_DONE_SYNC)) {
2654                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2655                                         }
2656                                         break;
2657                                 }
2658                                 /*
2659                                  * We now have an iclog that is in either the
2660                                  * DO_CALLBACK or DONE_SYNC states. The other
2661                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2662                                  * caught by the above if and are going to
2663                                  * clean (i.e. we aren't doing their callbacks)
2664                                  * see the above if.
2665                                  */
2666
2667                                 /*
2668                                  * We will do one more check here to see if we
2669                                  * have chased our tail around.
2670                                  */
2671
2672                                 lowest_lsn = xlog_get_lowest_lsn(log);
2673                                 if (lowest_lsn &&
2674                                     XFS_LSN_CMP(lowest_lsn,
2675                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2676                                         iclog = iclog->ic_next;
2677                                         continue; /* Leave this iclog for
2678                                                    * another thread */
2679                                 }
2680
2681                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2682
2683
2684                                 /*
2685                                  * Completion of a iclog IO does not imply that
2686                                  * a transaction has completed, as transactions
2687                                  * can be large enough to span many iclogs. We
2688                                  * cannot change the tail of the log half way
2689                                  * through a transaction as this may be the only
2690                                  * transaction in the log and moving th etail to
2691                                  * point to the middle of it will prevent
2692                                  * recovery from finding the start of the
2693                                  * transaction. Hence we should only update the
2694                                  * last_sync_lsn if this iclog contains
2695                                  * transaction completion callbacks on it.
2696                                  *
2697                                  * We have to do this before we drop the
2698                                  * icloglock to ensure we are the only one that
2699                                  * can update it.
2700                                  */
2701                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2702                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2703                                 if (iclog->ic_callback)
2704                                         atomic64_set(&log->l_last_sync_lsn,
2705                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2706
2707                         } else
2708                                 ioerrors++;
2709
2710                         spin_unlock(&log->l_icloglock);
2711
2712                         /*
2713                          * Keep processing entries in the callback list until
2714                          * we come around and it is empty.  We need to
2715                          * atomically see that the list is empty and change the
2716                          * state to DIRTY so that we don't miss any more
2717                          * callbacks being added.
2718                          */
2719                         spin_lock(&iclog->ic_callback_lock);
2720                         cb = iclog->ic_callback;
2721                         while (cb) {
2722                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2723                                 iclog->ic_callback = NULL;
2724                                 spin_unlock(&iclog->ic_callback_lock);
2725
2726                                 /* perform callbacks in the order given */
2727                                 for (; cb; cb = cb_next) {
2728                                         cb_next = cb->cb_next;
2729                                         cb->cb_func(cb->cb_arg, aborted);
2730                                 }
2731                                 spin_lock(&iclog->ic_callback_lock);
2732                                 cb = iclog->ic_callback;
2733                         }
2734
2735                         loopdidcallbacks++;
2736                         funcdidcallbacks++;
2737
2738                         spin_lock(&log->l_icloglock);
2739                         ASSERT(iclog->ic_callback == NULL);
2740                         spin_unlock(&iclog->ic_callback_lock);
2741                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2742                                 iclog->ic_state = XLOG_STATE_DIRTY;
2743
2744                         /*
2745                          * Transition from DIRTY to ACTIVE if applicable.
2746                          * NOP if STATE_IOERROR.
2747                          */
2748                         xlog_state_clean_log(log);
2749
2750                         /* wake up threads waiting in xfs_log_force() */
2751                         wake_up_all(&iclog->ic_force_wait);
2752
2753                         iclog = iclog->ic_next;
2754                 } while (first_iclog != iclog);
2755
2756                 if (repeats > 5000) {
2757                         flushcnt += repeats;
2758                         repeats = 0;
2759                         xfs_warn(log->l_mp,
2760                                 "%s: possible infinite loop (%d iterations)",
2761                                 __func__, flushcnt);
2762                 }
2763         } while (!ioerrors && loopdidcallbacks);
2764
2765         /*
2766          * make one last gasp attempt to see if iclogs are being left in
2767          * limbo..
2768          */
2769 #ifdef DEBUG
2770         if (funcdidcallbacks) {
2771                 first_iclog = iclog = log->l_iclog;
2772                 do {
2773                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2774                         /*
2775                          * Terminate the loop if iclogs are found in states
2776                          * which will cause other threads to clean up iclogs.
2777                          *
2778                          * SYNCING - i/o completion will go through logs
2779                          * DONE_SYNC - interrupt thread should be waiting for
2780                          *              l_icloglock
2781                          * IOERROR - give up hope all ye who enter here
2782                          */
2783                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2784                             iclog->ic_state == XLOG_STATE_SYNCING ||
2785                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2786                             iclog->ic_state == XLOG_STATE_IOERROR )
2787                                 break;
2788                         iclog = iclog->ic_next;
2789                 } while (first_iclog != iclog);
2790         }
2791 #endif
2792
2793         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2794                 wake = 1;
2795         spin_unlock(&log->l_icloglock);
2796
2797         if (wake)
2798                 wake_up_all(&log->l_flush_wait);
2799 }
2800
2801
2802 /*
2803  * Finish transitioning this iclog to the dirty state.
2804  *
2805  * Make sure that we completely execute this routine only when this is
2806  * the last call to the iclog.  There is a good chance that iclog flushes,
2807  * when we reach the end of the physical log, get turned into 2 separate
2808  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2809  * routine.  By using the reference count bwritecnt, we guarantee that only
2810  * the second completion goes through.
2811  *
2812  * Callbacks could take time, so they are done outside the scope of the
2813  * global state machine log lock.
2814  */
2815 STATIC void
2816 xlog_state_done_syncing(
2817         xlog_in_core_t  *iclog,
2818         int             aborted)
2819 {
2820         struct xlog        *log = iclog->ic_log;
2821
2822         spin_lock(&log->l_icloglock);
2823
2824         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2825                iclog->ic_state == XLOG_STATE_IOERROR);
2826         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2827         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2828
2829
2830         /*
2831          * If we got an error, either on the first buffer, or in the case of
2832          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2833          * and none should ever be attempted to be written to disk
2834          * again.
2835          */
2836         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2837                 if (--iclog->ic_bwritecnt == 1) {
2838                         spin_unlock(&log->l_icloglock);
2839                         return;
2840                 }
2841                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2842         }
2843
2844         /*
2845          * Someone could be sleeping prior to writing out the next
2846          * iclog buffer, we wake them all, one will get to do the
2847          * I/O, the others get to wait for the result.
2848          */
2849         wake_up_all(&iclog->ic_write_wait);
2850         spin_unlock(&log->l_icloglock);
2851         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2852 }       /* xlog_state_done_syncing */
2853
2854
2855 /*
2856  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2857  * sleep.  We wait on the flush queue on the head iclog as that should be
2858  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2859  * we will wait here and all new writes will sleep until a sync completes.
2860  *
2861  * The in-core logs are used in a circular fashion. They are not used
2862  * out-of-order even when an iclog past the head is free.
2863  *
2864  * return:
2865  *      * log_offset where xlog_write() can start writing into the in-core
2866  *              log's data space.
2867  *      * in-core log pointer to which xlog_write() should write.
2868  *      * boolean indicating this is a continued write to an in-core log.
2869  *              If this is the last write, then the in-core log's offset field
2870  *              needs to be incremented, depending on the amount of data which
2871  *              is copied.
2872  */
2873 STATIC int
2874 xlog_state_get_iclog_space(
2875         struct xlog             *log,
2876         int                     len,
2877         struct xlog_in_core     **iclogp,
2878         struct xlog_ticket      *ticket,
2879         int                     *continued_write,
2880         int                     *logoffsetp)
2881 {
2882         int               log_offset;
2883         xlog_rec_header_t *head;
2884         xlog_in_core_t    *iclog;
2885         int               error;
2886
2887 restart:
2888         spin_lock(&log->l_icloglock);
2889         if (XLOG_FORCED_SHUTDOWN(log)) {
2890                 spin_unlock(&log->l_icloglock);
2891                 return -EIO;
2892         }
2893
2894         iclog = log->l_iclog;
2895         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2896                 XFS_STATS_INC(xs_log_noiclogs);
2897
2898                 /* Wait for log writes to have flushed */
2899                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2900                 goto restart;
2901         }
2902
2903         head = &iclog->ic_header;
2904
2905         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2906         log_offset = iclog->ic_offset;
2907
2908         /* On the 1st write to an iclog, figure out lsn.  This works
2909          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2910          * committing to.  If the offset is set, that's how many blocks
2911          * must be written.
2912          */
2913         if (log_offset == 0) {
2914                 ticket->t_curr_res -= log->l_iclog_hsize;
2915                 xlog_tic_add_region(ticket,
2916                                     log->l_iclog_hsize,
2917                                     XLOG_REG_TYPE_LRHEADER);
2918                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2919                 head->h_lsn = cpu_to_be64(
2920                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2921                 ASSERT(log->l_curr_block >= 0);
2922         }
2923
2924         /* If there is enough room to write everything, then do it.  Otherwise,
2925          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2926          * bit is on, so this will get flushed out.  Don't update ic_offset
2927          * until you know exactly how many bytes get copied.  Therefore, wait
2928          * until later to update ic_offset.
2929          *
2930          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2931          * can fit into remaining data section.
2932          */
2933         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2934                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2935
2936                 /*
2937                  * If I'm the only one writing to this iclog, sync it to disk.
2938                  * We need to do an atomic compare and decrement here to avoid
2939                  * racing with concurrent atomic_dec_and_lock() calls in
2940                  * xlog_state_release_iclog() when there is more than one
2941                  * reference to the iclog.
2942                  */
2943                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2944                         /* we are the only one */
2945                         spin_unlock(&log->l_icloglock);
2946                         error = xlog_state_release_iclog(log, iclog);
2947                         if (error)
2948                                 return error;
2949                 } else {
2950                         spin_unlock(&log->l_icloglock);
2951                 }
2952                 goto restart;
2953         }
2954
2955         /* Do we have enough room to write the full amount in the remainder
2956          * of this iclog?  Or must we continue a write on the next iclog and
2957          * mark this iclog as completely taken?  In the case where we switch
2958          * iclogs (to mark it taken), this particular iclog will release/sync
2959          * to disk in xlog_write().
2960          */
2961         if (len <= iclog->ic_size - iclog->ic_offset) {
2962                 *continued_write = 0;
2963                 iclog->ic_offset += len;
2964         } else {
2965                 *continued_write = 1;
2966                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967         }
2968         *iclogp = iclog;
2969
2970         ASSERT(iclog->ic_offset <= iclog->ic_size);
2971         spin_unlock(&log->l_icloglock);
2972
2973         *logoffsetp = log_offset;
2974         return 0;
2975 }       /* xlog_state_get_iclog_space */
2976
2977 /* The first cnt-1 times through here we don't need to
2978  * move the grant write head because the permanent
2979  * reservation has reserved cnt times the unit amount.
2980  * Release part of current permanent unit reservation and
2981  * reset current reservation to be one units worth.  Also
2982  * move grant reservation head forward.
2983  */
2984 STATIC void
2985 xlog_regrant_reserve_log_space(
2986         struct xlog             *log,
2987         struct xlog_ticket      *ticket)
2988 {
2989         trace_xfs_log_regrant_reserve_enter(log, ticket);
2990
2991         if (ticket->t_cnt > 0)
2992                 ticket->t_cnt--;
2993
2994         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995                                         ticket->t_curr_res);
2996         xlog_grant_sub_space(log, &log->l_write_head.grant,
2997                                         ticket->t_curr_res);
2998         ticket->t_curr_res = ticket->t_unit_res;
2999         xlog_tic_reset_res(ticket);
3000
3001         trace_xfs_log_regrant_reserve_sub(log, ticket);
3002
3003         /* just return if we still have some of the pre-reserved space */
3004         if (ticket->t_cnt > 0)
3005                 return;
3006
3007         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3008                                         ticket->t_unit_res);
3009
3010         trace_xfs_log_regrant_reserve_exit(log, ticket);
3011
3012         ticket->t_curr_res = ticket->t_unit_res;
3013         xlog_tic_reset_res(ticket);
3014 }       /* xlog_regrant_reserve_log_space */
3015
3016
3017 /*
3018  * Give back the space left from a reservation.
3019  *
3020  * All the information we need to make a correct determination of space left
3021  * is present.  For non-permanent reservations, things are quite easy.  The
3022  * count should have been decremented to zero.  We only need to deal with the
3023  * space remaining in the current reservation part of the ticket.  If the
3024  * ticket contains a permanent reservation, there may be left over space which
3025  * needs to be released.  A count of N means that N-1 refills of the current
3026  * reservation can be done before we need to ask for more space.  The first
3027  * one goes to fill up the first current reservation.  Once we run out of
3028  * space, the count will stay at zero and the only space remaining will be
3029  * in the current reservation field.
3030  */
3031 STATIC void
3032 xlog_ungrant_log_space(
3033         struct xlog             *log,
3034         struct xlog_ticket      *ticket)
3035 {
3036         int     bytes;
3037
3038         if (ticket->t_cnt > 0)
3039                 ticket->t_cnt--;
3040
3041         trace_xfs_log_ungrant_enter(log, ticket);
3042         trace_xfs_log_ungrant_sub(log, ticket);
3043
3044         /*
3045          * If this is a permanent reservation ticket, we may be able to free
3046          * up more space based on the remaining count.
3047          */
3048         bytes = ticket->t_curr_res;
3049         if (ticket->t_cnt > 0) {
3050                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051                 bytes += ticket->t_unit_res*ticket->t_cnt;
3052         }
3053
3054         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056
3057         trace_xfs_log_ungrant_exit(log, ticket);
3058
3059         xfs_log_space_wake(log->l_mp);
3060 }
3061
3062 /*
3063  * Flush iclog to disk if this is the last reference to the given iclog and
3064  * the WANT_SYNC bit is set.
3065  *
3066  * When this function is entered, the iclog is not necessarily in the
3067  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3068  *
3069  *
3070  */
3071 STATIC int
3072 xlog_state_release_iclog(
3073         struct xlog             *log,
3074         struct xlog_in_core     *iclog)
3075 {
3076         int             sync = 0;       /* do we sync? */
3077
3078         if (iclog->ic_state & XLOG_STATE_IOERROR)
3079                 return -EIO;
3080
3081         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3082         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3083                 return 0;
3084
3085         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3086                 spin_unlock(&log->l_icloglock);
3087                 return -EIO;
3088         }
3089         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3090                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3091
3092         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3093                 /* update tail before writing to iclog */
3094                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3095                 sync++;
3096                 iclog->ic_state = XLOG_STATE_SYNCING;
3097                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3098                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3099                 /* cycle incremented when incrementing curr_block */
3100         }
3101         spin_unlock(&log->l_icloglock);
3102
3103         /*
3104          * We let the log lock go, so it's possible that we hit a log I/O
3105          * error or some other SHUTDOWN condition that marks the iclog
3106          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3107          * this iclog has consistent data, so we ignore IOERROR
3108          * flags after this point.
3109          */
3110         if (sync)
3111                 return xlog_sync(log, iclog);
3112         return 0;
3113 }       /* xlog_state_release_iclog */
3114
3115
3116 /*
3117  * This routine will mark the current iclog in the ring as WANT_SYNC
3118  * and move the current iclog pointer to the next iclog in the ring.
3119  * When this routine is called from xlog_state_get_iclog_space(), the
3120  * exact size of the iclog has not yet been determined.  All we know is
3121  * that every data block.  We have run out of space in this log record.
3122  */
3123 STATIC void
3124 xlog_state_switch_iclogs(
3125         struct xlog             *log,
3126         struct xlog_in_core     *iclog,
3127         int                     eventual_size)
3128 {
3129         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3130         if (!eventual_size)
3131                 eventual_size = iclog->ic_offset;
3132         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3133         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3134         log->l_prev_block = log->l_curr_block;
3135         log->l_prev_cycle = log->l_curr_cycle;
3136
3137         /* roll log?: ic_offset changed later */
3138         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3139
3140         /* Round up to next log-sunit */
3141         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3142             log->l_mp->m_sb.sb_logsunit > 1) {
3143                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3144                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3145         }
3146
3147         if (log->l_curr_block >= log->l_logBBsize) {
3148                 log->l_curr_cycle++;
3149                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150                         log->l_curr_cycle++;
3151                 log->l_curr_block -= log->l_logBBsize;
3152                 ASSERT(log->l_curr_block >= 0);
3153         }
3154         ASSERT(iclog == log->l_iclog);
3155         log->l_iclog = iclog->ic_next;
3156 }       /* xlog_state_switch_iclogs */
3157
3158 /*
3159  * Write out all data in the in-core log as of this exact moment in time.
3160  *
3161  * Data may be written to the in-core log during this call.  However,
3162  * we don't guarantee this data will be written out.  A change from past
3163  * implementation means this routine will *not* write out zero length LRs.
3164  *
3165  * Basically, we try and perform an intelligent scan of the in-core logs.
3166  * If we determine there is no flushable data, we just return.  There is no
3167  * flushable data if:
3168  *
3169  *      1. the current iclog is active and has no data; the previous iclog
3170  *              is in the active or dirty state.
3171  *      2. the current iclog is drity, and the previous iclog is in the
3172  *              active or dirty state.
3173  *
3174  * We may sleep if:
3175  *
3176  *      1. the current iclog is not in the active nor dirty state.
3177  *      2. the current iclog dirty, and the previous iclog is not in the
3178  *              active nor dirty state.
3179  *      3. the current iclog is active, and there is another thread writing
3180  *              to this particular iclog.
3181  *      4. a) the current iclog is active and has no other writers
3182  *         b) when we return from flushing out this iclog, it is still
3183  *              not in the active nor dirty state.
3184  */
3185 int
3186 _xfs_log_force(
3187         struct xfs_mount        *mp,
3188         uint                    flags,
3189         int                     *log_flushed)
3190 {
3191         struct xlog             *log = mp->m_log;
3192         struct xlog_in_core     *iclog;
3193         xfs_lsn_t               lsn;
3194
3195         XFS_STATS_INC(xs_log_force);
3196
3197         xlog_cil_force(log);
3198
3199         spin_lock(&log->l_icloglock);
3200
3201         iclog = log->l_iclog;
3202         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3203                 spin_unlock(&log->l_icloglock);
3204                 return -EIO;
3205         }
3206
3207         /* If the head iclog is not active nor dirty, we just attach
3208          * ourselves to the head and go to sleep.
3209          */
3210         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3211             iclog->ic_state == XLOG_STATE_DIRTY) {
3212                 /*
3213                  * If the head is dirty or (active and empty), then
3214                  * we need to look at the previous iclog.  If the previous
3215                  * iclog is active or dirty we are done.  There is nothing
3216                  * to sync out.  Otherwise, we attach ourselves to the
3217                  * previous iclog and go to sleep.
3218                  */
3219                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3220                     (atomic_read(&iclog->ic_refcnt) == 0
3221                      && iclog->ic_offset == 0)) {
3222                         iclog = iclog->ic_prev;
3223                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3224                             iclog->ic_state == XLOG_STATE_DIRTY)
3225                                 goto no_sleep;
3226                         else
3227                                 goto maybe_sleep;
3228                 } else {
3229                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3230                                 /* We are the only one with access to this
3231                                  * iclog.  Flush it out now.  There should
3232                                  * be a roundoff of zero to show that someone
3233                                  * has already taken care of the roundoff from
3234                                  * the previous sync.
3235                                  */
3236                                 atomic_inc(&iclog->ic_refcnt);
3237                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3238                                 xlog_state_switch_iclogs(log, iclog, 0);
3239                                 spin_unlock(&log->l_icloglock);
3240
3241                                 if (xlog_state_release_iclog(log, iclog))
3242                                         return -EIO;
3243
3244                                 if (log_flushed)
3245                                         *log_flushed = 1;
3246                                 spin_lock(&log->l_icloglock);
3247                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3248                                     iclog->ic_state != XLOG_STATE_DIRTY)
3249                                         goto maybe_sleep;
3250                                 else
3251                                         goto no_sleep;
3252                         } else {
3253                                 /* Someone else is writing to this iclog.
3254                                  * Use its call to flush out the data.  However,
3255                                  * the other thread may not force out this LR,
3256                                  * so we mark it WANT_SYNC.
3257                                  */
3258                                 xlog_state_switch_iclogs(log, iclog, 0);
3259                                 goto maybe_sleep;
3260                         }
3261                 }
3262         }
3263
3264         /* By the time we come around again, the iclog could've been filled
3265          * which would give it another lsn.  If we have a new lsn, just
3266          * return because the relevant data has been flushed.
3267          */
3268 maybe_sleep:
3269         if (flags & XFS_LOG_SYNC) {
3270                 /*
3271                  * We must check if we're shutting down here, before
3272                  * we wait, while we're holding the l_icloglock.
3273                  * Then we check again after waking up, in case our
3274                  * sleep was disturbed by a bad news.
3275                  */
3276                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3277                         spin_unlock(&log->l_icloglock);
3278                         return -EIO;
3279                 }
3280                 XFS_STATS_INC(xs_log_force_sleep);
3281                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3282                 /*
3283                  * No need to grab the log lock here since we're
3284                  * only deciding whether or not to return EIO
3285                  * and the memory read should be atomic.
3286                  */
3287                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3288                         return -EIO;
3289                 if (log_flushed)
3290                         *log_flushed = 1;
3291         } else {
3292
3293 no_sleep:
3294                 spin_unlock(&log->l_icloglock);
3295         }
3296         return 0;
3297 }
3298
3299 /*
3300  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3301  * about errors or whether the log was flushed or not. This is the normal
3302  * interface to use when trying to unpin items or move the log forward.
3303  */
3304 void
3305 xfs_log_force(
3306         xfs_mount_t     *mp,
3307         uint            flags)
3308 {
3309         int     error;
3310
3311         trace_xfs_log_force(mp, 0);
3312         error = _xfs_log_force(mp, flags, NULL);
3313         if (error)
3314                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3315 }
3316
3317 /*
3318  * Force the in-core log to disk for a specific LSN.
3319  *
3320  * Find in-core log with lsn.
3321  *      If it is in the DIRTY state, just return.
3322  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3323  *              state and go to sleep or return.
3324  *      If it is in any other state, go to sleep or return.
3325  *
3326  * Synchronous forces are implemented with a signal variable. All callers
3327  * to force a given lsn to disk will wait on a the sv attached to the
3328  * specific in-core log.  When given in-core log finally completes its
3329  * write to disk, that thread will wake up all threads waiting on the
3330  * sv.
3331  */
3332 int
3333 _xfs_log_force_lsn(
3334         struct xfs_mount        *mp,
3335         xfs_lsn_t               lsn,
3336         uint                    flags,
3337         int                     *log_flushed)
3338 {
3339         struct xlog             *log = mp->m_log;
3340         struct xlog_in_core     *iclog;
3341         int                     already_slept = 0;
3342
3343         ASSERT(lsn != 0);
3344
3345         XFS_STATS_INC(xs_log_force);
3346
3347         lsn = xlog_cil_force_lsn(log, lsn);
3348         if (lsn == NULLCOMMITLSN)
3349                 return 0;
3350
3351 try_again:
3352         spin_lock(&log->l_icloglock);
3353         iclog = log->l_iclog;
3354         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355                 spin_unlock(&log->l_icloglock);
3356                 return -EIO;
3357         }
3358
3359         do {
3360                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3361                         iclog = iclog->ic_next;
3362                         continue;
3363                 }
3364
3365                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3366                         spin_unlock(&log->l_icloglock);
3367                         return 0;
3368                 }
3369
3370                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3371                         /*
3372                          * We sleep here if we haven't already slept (e.g.
3373                          * this is the first time we've looked at the correct
3374                          * iclog buf) and the buffer before us is going to
3375                          * be sync'ed. The reason for this is that if we
3376                          * are doing sync transactions here, by waiting for
3377                          * the previous I/O to complete, we can allow a few
3378                          * more transactions into this iclog before we close
3379                          * it down.
3380                          *
3381                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3382                          * up the refcnt so we can release the log (which
3383                          * drops the ref count).  The state switch keeps new
3384                          * transaction commits from using this buffer.  When
3385                          * the current commits finish writing into the buffer,
3386                          * the refcount will drop to zero and the buffer will
3387                          * go out then.
3388                          */
3389                         if (!already_slept &&
3390                             (iclog->ic_prev->ic_state &
3391                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3392                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3393
3394                                 XFS_STATS_INC(xs_log_force_sleep);
3395
3396                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3397                                                         &log->l_icloglock);
3398                                 if (log_flushed)
3399                                         *log_flushed = 1;
3400                                 already_slept = 1;
3401                                 goto try_again;
3402                         }
3403                         atomic_inc(&iclog->ic_refcnt);
3404                         xlog_state_switch_iclogs(log, iclog, 0);
3405                         spin_unlock(&log->l_icloglock);
3406                         if (xlog_state_release_iclog(log, iclog))
3407                                 return -EIO;
3408                         if (log_flushed)
3409                                 *log_flushed = 1;
3410                         spin_lock(&log->l_icloglock);
3411                 }
3412
3413                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3414                     !(iclog->ic_state &
3415                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3416                         /*
3417                          * Don't wait on completion if we know that we've
3418                          * gotten a log write error.
3419                          */
3420                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3421                                 spin_unlock(&log->l_icloglock);
3422                                 return -EIO;
3423                         }
3424                         XFS_STATS_INC(xs_log_force_sleep);
3425                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3426                         /*
3427                          * No need to grab the log lock here since we're
3428                          * only deciding whether or not to return EIO
3429                          * and the memory read should be atomic.
3430                          */
3431                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3432                                 return -EIO;
3433
3434                         if (log_flushed)
3435                                 *log_flushed = 1;
3436                 } else {                /* just return */
3437                         spin_unlock(&log->l_icloglock);
3438                 }
3439
3440                 return 0;
3441         } while (iclog != log->l_iclog);
3442
3443         spin_unlock(&log->l_icloglock);
3444         return 0;
3445 }
3446
3447 /*
3448  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3449  * about errors or whether the log was flushed or not. This is the normal
3450  * interface to use when trying to unpin items or move the log forward.
3451  */
3452 void
3453 xfs_log_force_lsn(
3454         xfs_mount_t     *mp,
3455         xfs_lsn_t       lsn,
3456         uint            flags)
3457 {
3458         int     error;
3459
3460         trace_xfs_log_force(mp, lsn);
3461         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3462         if (error)
3463                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3464 }
3465
3466 /*
3467  * Called when we want to mark the current iclog as being ready to sync to
3468  * disk.
3469  */
3470 STATIC void
3471 xlog_state_want_sync(
3472         struct xlog             *log,
3473         struct xlog_in_core     *iclog)
3474 {
3475         assert_spin_locked(&log->l_icloglock);
3476
3477         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3478                 xlog_state_switch_iclogs(log, iclog, 0);
3479         } else {
3480                 ASSERT(iclog->ic_state &
3481                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3482         }
3483 }
3484
3485
3486 /*****************************************************************************
3487  *
3488  *              TICKET functions
3489  *
3490  *****************************************************************************
3491  */
3492
3493 /*
3494  * Free a used ticket when its refcount falls to zero.
3495  */
3496 void
3497 xfs_log_ticket_put(
3498         xlog_ticket_t   *ticket)
3499 {
3500         ASSERT(atomic_read(&ticket->t_ref) > 0);
3501         if (atomic_dec_and_test(&ticket->t_ref))
3502                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3503 }
3504
3505 xlog_ticket_t *
3506 xfs_log_ticket_get(
3507         xlog_ticket_t   *ticket)
3508 {
3509         ASSERT(atomic_read(&ticket->t_ref) > 0);
3510         atomic_inc(&ticket->t_ref);
3511         return ticket;
3512 }
3513
3514 /*
3515  * Figure out the total log space unit (in bytes) that would be
3516  * required for a log ticket.
3517  */
3518 int
3519 xfs_log_calc_unit_res(
3520         struct xfs_mount        *mp,
3521         int                     unit_bytes)
3522 {
3523         struct xlog             *log = mp->m_log;
3524         int                     iclog_space;
3525         uint                    num_headers;
3526
3527         /*
3528          * Permanent reservations have up to 'cnt'-1 active log operations
3529          * in the log.  A unit in this case is the amount of space for one
3530          * of these log operations.  Normal reservations have a cnt of 1
3531          * and their unit amount is the total amount of space required.
3532          *
3533          * The following lines of code account for non-transaction data
3534          * which occupy space in the on-disk log.
3535          *
3536          * Normal form of a transaction is:
3537          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3538          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3539          *
3540          * We need to account for all the leadup data and trailer data
3541          * around the transaction data.
3542          * And then we need to account for the worst case in terms of using
3543          * more space.
3544          * The worst case will happen if:
3545          * - the placement of the transaction happens to be such that the
3546          *   roundoff is at its maximum
3547          * - the transaction data is synced before the commit record is synced
3548          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3549          *   Therefore the commit record is in its own Log Record.
3550          *   This can happen as the commit record is called with its
3551          *   own region to xlog_write().
3552          *   This then means that in the worst case, roundoff can happen for
3553          *   the commit-rec as well.
3554          *   The commit-rec is smaller than padding in this scenario and so it is
3555          *   not added separately.
3556          */
3557
3558         /* for trans header */
3559         unit_bytes += sizeof(xlog_op_header_t);
3560         unit_bytes += sizeof(xfs_trans_header_t);
3561
3562         /* for start-rec */
3563         unit_bytes += sizeof(xlog_op_header_t);
3564
3565         /*
3566          * for LR headers - the space for data in an iclog is the size minus
3567          * the space used for the headers. If we use the iclog size, then we
3568          * undercalculate the number of headers required.
3569          *
3570          * Furthermore - the addition of op headers for split-recs might
3571          * increase the space required enough to require more log and op
3572          * headers, so take that into account too.
3573          *
3574          * IMPORTANT: This reservation makes the assumption that if this
3575          * transaction is the first in an iclog and hence has the LR headers
3576          * accounted to it, then the remaining space in the iclog is
3577          * exclusively for this transaction.  i.e. if the transaction is larger
3578          * than the iclog, it will be the only thing in that iclog.
3579          * Fundamentally, this means we must pass the entire log vector to
3580          * xlog_write to guarantee this.
3581          */
3582         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3583         num_headers = howmany(unit_bytes, iclog_space);
3584
3585         /* for split-recs - ophdrs added when data split over LRs */
3586         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3587
3588         /* add extra header reservations if we overrun */
3589         while (!num_headers ||
3590                howmany(unit_bytes, iclog_space) > num_headers) {
3591                 unit_bytes += sizeof(xlog_op_header_t);
3592                 num_headers++;
3593         }
3594         unit_bytes += log->l_iclog_hsize * num_headers;
3595
3596         /* for commit-rec LR header - note: padding will subsume the ophdr */
3597         unit_bytes += log->l_iclog_hsize;
3598
3599         /* for roundoff padding for transaction data and one for commit record */
3600         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3601                 /* log su roundoff */
3602                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3603         } else {
3604                 /* BB roundoff */
3605                 unit_bytes += 2 * BBSIZE;
3606         }
3607
3608         return unit_bytes;
3609 }
3610
3611 /*
3612  * Allocate and initialise a new log ticket.
3613  */
3614 struct xlog_ticket *
3615 xlog_ticket_alloc(
3616         struct xlog             *log,
3617         int                     unit_bytes,
3618         int                     cnt,
3619         char                    client,
3620         bool                    permanent,
3621         xfs_km_flags_t          alloc_flags)
3622 {
3623         struct xlog_ticket      *tic;
3624         int                     unit_res;
3625
3626         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3627         if (!tic)
3628                 return NULL;
3629
3630         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3631
3632         atomic_set(&tic->t_ref, 1);
3633         tic->t_task             = current;
3634         INIT_LIST_HEAD(&tic->t_queue);
3635         tic->t_unit_res         = unit_res;
3636         tic->t_curr_res         = unit_res;
3637         tic->t_cnt              = cnt;
3638         tic->t_ocnt             = cnt;
3639         tic->t_tid              = prandom_u32();
3640         tic->t_clientid         = client;
3641         tic->t_flags            = XLOG_TIC_INITED;
3642         tic->t_trans_type       = 0;
3643         if (permanent)
3644                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3645
3646         xlog_tic_reset_res(tic);
3647
3648         return tic;
3649 }
3650
3651
3652 /******************************************************************************
3653  *
3654  *              Log debug routines
3655  *
3656  ******************************************************************************
3657  */
3658 #if defined(DEBUG)
3659 /*
3660  * Make sure that the destination ptr is within the valid data region of
3661  * one of the iclogs.  This uses backup pointers stored in a different
3662  * part of the log in case we trash the log structure.
3663  */
3664 void
3665 xlog_verify_dest_ptr(
3666         struct xlog     *log,
3667         char            *ptr)
3668 {
3669         int i;
3670         int good_ptr = 0;
3671
3672         for (i = 0; i < log->l_iclog_bufs; i++) {
3673                 if (ptr >= log->l_iclog_bak[i] &&
3674                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3675                         good_ptr++;
3676         }
3677
3678         if (!good_ptr)
3679                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3680 }
3681
3682 /*
3683  * Check to make sure the grant write head didn't just over lap the tail.  If
3684  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3685  * the cycles differ by exactly one and check the byte count.
3686  *
3687  * This check is run unlocked, so can give false positives. Rather than assert
3688  * on failures, use a warn-once flag and a panic tag to allow the admin to
3689  * determine if they want to panic the machine when such an error occurs. For
3690  * debug kernels this will have the same effect as using an assert but, unlinke
3691  * an assert, it can be turned off at runtime.
3692  */
3693 STATIC void
3694 xlog_verify_grant_tail(
3695         struct xlog     *log)
3696 {
3697         int             tail_cycle, tail_blocks;
3698         int             cycle, space;
3699
3700         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3701         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3702         if (tail_cycle != cycle) {
3703                 if (cycle - 1 != tail_cycle &&
3704                     !(log->l_flags & XLOG_TAIL_WARN)) {
3705                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3706                                 "%s: cycle - 1 != tail_cycle", __func__);
3707                         log->l_flags |= XLOG_TAIL_WARN;
3708                 }
3709
3710                 if (space > BBTOB(tail_blocks) &&
3711                     !(log->l_flags & XLOG_TAIL_WARN)) {
3712                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3713                                 "%s: space > BBTOB(tail_blocks)", __func__);
3714                         log->l_flags |= XLOG_TAIL_WARN;
3715                 }
3716         }
3717 }
3718
3719 /* check if it will fit */
3720 STATIC void
3721 xlog_verify_tail_lsn(
3722         struct xlog             *log,
3723         struct xlog_in_core     *iclog,
3724         xfs_lsn_t               tail_lsn)
3725 {
3726     int blocks;
3727
3728     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3729         blocks =
3730             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3731         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3732                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3733     } else {
3734         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3735
3736         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3737                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3738
3739         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3740         if (blocks < BTOBB(iclog->ic_offset) + 1)
3741                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3742     }
3743 }       /* xlog_verify_tail_lsn */
3744
3745 /*
3746  * Perform a number of checks on the iclog before writing to disk.
3747  *
3748  * 1. Make sure the iclogs are still circular
3749  * 2. Make sure we have a good magic number
3750  * 3. Make sure we don't have magic numbers in the data
3751  * 4. Check fields of each log operation header for:
3752  *      A. Valid client identifier
3753  *      B. tid ptr value falls in valid ptr space (user space code)
3754  *      C. Length in log record header is correct according to the
3755  *              individual operation headers within record.
3756  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3757  *      log, check the preceding blocks of the physical log to make sure all
3758  *      the cycle numbers agree with the current cycle number.
3759  */
3760 STATIC void
3761 xlog_verify_iclog(
3762         struct xlog             *log,
3763         struct xlog_in_core     *iclog,
3764         int                     count,
3765         bool                    syncing)
3766 {
3767         xlog_op_header_t        *ophead;
3768         xlog_in_core_t          *icptr;
3769         xlog_in_core_2_t        *xhdr;
3770         xfs_caddr_t             ptr;
3771         xfs_caddr_t             base_ptr;
3772         __psint_t               field_offset;
3773         __uint8_t               clientid;
3774         int                     len, i, j, k, op_len;
3775         int                     idx;
3776
3777         /* check validity of iclog pointers */
3778         spin_lock(&log->l_icloglock);
3779         icptr = log->l_iclog;
3780         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3781                 ASSERT(icptr);
3782
3783         if (icptr != log->l_iclog)
3784                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3785         spin_unlock(&log->l_icloglock);
3786
3787         /* check log magic numbers */
3788         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3789                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3790
3791         ptr = (xfs_caddr_t) &iclog->ic_header;
3792         for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3793              ptr += BBSIZE) {
3794                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3795                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3796                                 __func__);
3797         }
3798
3799         /* check fields */
3800         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3801         ptr = iclog->ic_datap;
3802         base_ptr = ptr;
3803         ophead = (xlog_op_header_t *)ptr;
3804         xhdr = iclog->ic_data;
3805         for (i = 0; i < len; i++) {
3806                 ophead = (xlog_op_header_t *)ptr;
3807
3808                 /* clientid is only 1 byte */
3809                 field_offset = (__psint_t)
3810                                ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3811                 if (!syncing || (field_offset & 0x1ff)) {
3812                         clientid = ophead->oh_clientid;
3813                 } else {
3814                         idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3815                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818                                 clientid = xlog_get_client_id(
3819                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3820                         } else {
3821                                 clientid = xlog_get_client_id(
3822                                         iclog->ic_header.h_cycle_data[idx]);
3823                         }
3824                 }
3825                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826                         xfs_warn(log->l_mp,
3827                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3828                                 __func__, clientid, ophead,
3829                                 (unsigned long)field_offset);
3830
3831                 /* check length */
3832                 field_offset = (__psint_t)
3833                                ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3834                 if (!syncing || (field_offset & 0x1ff)) {
3835                         op_len = be32_to_cpu(ophead->oh_len);
3836                 } else {
3837                         idx = BTOBBT((__psint_t)&ophead->oh_len -
3838                                     (__psint_t)iclog->ic_datap);
3839                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843                         } else {
3844                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3845                         }
3846                 }
3847                 ptr += sizeof(xlog_op_header_t) + op_len;
3848         }
3849 }       /* xlog_verify_iclog */
3850 #endif
3851
3852 /*
3853  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3854  */
3855 STATIC int
3856 xlog_state_ioerror(
3857         struct xlog     *log)
3858 {
3859         xlog_in_core_t  *iclog, *ic;
3860
3861         iclog = log->l_iclog;
3862         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3863                 /*
3864                  * Mark all the incore logs IOERROR.
3865                  * From now on, no log flushes will result.
3866                  */
3867                 ic = iclog;
3868                 do {
3869                         ic->ic_state = XLOG_STATE_IOERROR;
3870                         ic = ic->ic_next;
3871                 } while (ic != iclog);
3872                 return 0;
3873         }
3874         /*
3875          * Return non-zero, if state transition has already happened.
3876          */
3877         return 1;
3878 }
3879
3880 /*
3881  * This is called from xfs_force_shutdown, when we're forcibly
3882  * shutting down the filesystem, typically because of an IO error.
3883  * Our main objectives here are to make sure that:
3884  *      a. if !logerror, flush the logs to disk. Anything modified
3885  *         after this is ignored.
3886  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3887  *         parties to find out, 'atomically'.
3888  *      c. those who're sleeping on log reservations, pinned objects and
3889  *          other resources get woken up, and be told the bad news.
3890  *      d. nothing new gets queued up after (b) and (c) are done.
3891  *
3892  * Note: for the !logerror case we need to flush the regions held in memory out
3893  * to disk first. This needs to be done before the log is marked as shutdown,
3894  * otherwise the iclog writes will fail.
3895  */
3896 int
3897 xfs_log_force_umount(
3898         struct xfs_mount        *mp,
3899         int                     logerror)
3900 {
3901         struct xlog     *log;
3902         int             retval;
3903
3904         log = mp->m_log;
3905
3906         /*
3907          * If this happens during log recovery, don't worry about
3908          * locking; the log isn't open for business yet.
3909          */
3910         if (!log ||
3911             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913                 if (mp->m_sb_bp)
3914                         XFS_BUF_DONE(mp->m_sb_bp);
3915                 return 0;
3916         }
3917
3918         /*
3919          * Somebody could've already done the hard work for us.
3920          * No need to get locks for this.
3921          */
3922         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924                 return 1;
3925         }
3926
3927         /*
3928          * Flush all the completed transactions to disk before marking the log
3929          * being shut down. We need to do it in this order to ensure that
3930          * completed operations are safely on disk before we shut down, and that
3931          * we don't have to issue any buffer IO after the shutdown flags are set
3932          * to guarantee this.
3933          */
3934         if (!logerror)
3935                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3936
3937         /*
3938          * mark the filesystem and the as in a shutdown state and wake
3939          * everybody up to tell them the bad news.
3940          */
3941         spin_lock(&log->l_icloglock);
3942         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943         if (mp->m_sb_bp)
3944                 XFS_BUF_DONE(mp->m_sb_bp);
3945
3946         /*
3947          * Mark the log and the iclogs with IO error flags to prevent any
3948          * further log IO from being issued or completed.
3949          */
3950         log->l_flags |= XLOG_IO_ERROR;
3951         retval = xlog_state_ioerror(log);
3952         spin_unlock(&log->l_icloglock);
3953
3954         /*
3955          * We don't want anybody waiting for log reservations after this. That
3956          * means we have to wake up everybody queued up on reserveq as well as
3957          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3958          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959          * action is protected by the grant locks.
3960          */
3961         xlog_grant_head_wake_all(&log->l_reserve_head);
3962         xlog_grant_head_wake_all(&log->l_write_head);
3963
3964         /*
3965          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966          * as if the log writes were completed. The abort handling in the log
3967          * item committed callback functions will do this again under lock to
3968          * avoid races.
3969          */
3970         wake_up_all(&log->l_cilp->xc_commit_wait);
3971         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3972
3973 #ifdef XFSERRORDEBUG
3974         {
3975                 xlog_in_core_t  *iclog;
3976
3977                 spin_lock(&log->l_icloglock);
3978                 iclog = log->l_iclog;
3979                 do {
3980                         ASSERT(iclog->ic_callback == 0);
3981                         iclog = iclog->ic_next;
3982                 } while (iclog != log->l_iclog);
3983                 spin_unlock(&log->l_icloglock);
3984         }
3985 #endif
3986         /* return non-zero if log IOERROR transition had already happened */
3987         return retval;
3988 }
3989
3990 STATIC int
3991 xlog_iclogs_empty(
3992         struct xlog     *log)
3993 {
3994         xlog_in_core_t  *iclog;
3995
3996         iclog = log->l_iclog;
3997         do {
3998                 /* endianness does not matter here, zero is zero in
3999                  * any language.
4000                  */
4001                 if (iclog->ic_header.h_num_logops)
4002                         return 0;
4003                 iclog = iclog->ic_next;
4004         } while (iclog != log->l_iclog);
4005         return 1;
4006 }
4007