These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90                             struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92                              struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101         struct logicalVolIntegrityDesc *lvid;
102         unsigned int partnum;
103         unsigned int offset;
104
105         if (!UDF_SB(sb)->s_lvid_bh)
106                 return NULL;
107         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108         partnum = le32_to_cpu(lvid->numOfPartitions);
109         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110              offsetof(struct logicalVolIntegrityDesc, impUse)) /
111              (2 * sizeof(uint32_t)) < partnum) {
112                 udf_err(sb, "Logical volume integrity descriptor corrupted "
113                         "(numOfPartitions = %u)!\n", partnum);
114                 return NULL;
115         }
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD),
183                                              init_once);
184         if (!udf_inode_cachep)
185                 return -ENOMEM;
186         return 0;
187 }
188
189 static void destroy_inodecache(void)
190 {
191         /*
192          * Make sure all delayed rcu free inodes are flushed before we
193          * destroy cache.
194          */
195         rcu_barrier();
196         kmem_cache_destroy(udf_inode_cachep);
197 }
198
199 /* Superblock operations */
200 static const struct super_operations udf_sb_ops = {
201         .alloc_inode    = udf_alloc_inode,
202         .destroy_inode  = udf_destroy_inode,
203         .write_inode    = udf_write_inode,
204         .evict_inode    = udf_evict_inode,
205         .put_super      = udf_put_super,
206         .sync_fs        = udf_sync_fs,
207         .statfs         = udf_statfs,
208         .remount_fs     = udf_remount_fs,
209         .show_options   = udf_show_options,
210 };
211
212 struct udf_options {
213         unsigned char novrs;
214         unsigned int blocksize;
215         unsigned int session;
216         unsigned int lastblock;
217         unsigned int anchor;
218         unsigned int volume;
219         unsigned short partition;
220         unsigned int fileset;
221         unsigned int rootdir;
222         unsigned int flags;
223         umode_t umask;
224         kgid_t gid;
225         kuid_t uid;
226         umode_t fmode;
227         umode_t dmode;
228         struct nls_table *nls_map;
229 };
230
231 static int __init init_udf_fs(void)
232 {
233         int err;
234
235         err = init_inodecache();
236         if (err)
237                 goto out1;
238         err = register_filesystem(&udf_fstype);
239         if (err)
240                 goto out;
241
242         return 0;
243
244 out:
245         destroy_inodecache();
246
247 out1:
248         return err;
249 }
250
251 static void __exit exit_udf_fs(void)
252 {
253         unregister_filesystem(&udf_fstype);
254         destroy_inodecache();
255 }
256
257 module_init(init_udf_fs)
258 module_exit(exit_udf_fs)
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
265                                   GFP_KERNEL);
266         if (!sbi->s_partmaps) {
267                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
268                         count);
269                 sbi->s_partitions = 0;
270                 return -ENOMEM;
271         }
272
273         sbi->s_partitions = count;
274         return 0;
275 }
276
277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
278 {
279         int i;
280         int nr_groups = bitmap->s_nr_groups;
281         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
282                                                 nr_groups);
283
284         for (i = 0; i < nr_groups; i++)
285                 if (bitmap->s_block_bitmap[i])
286                         brelse(bitmap->s_block_bitmap[i]);
287
288         if (size <= PAGE_SIZE)
289                 kfree(bitmap);
290         else
291                 vfree(bitmap);
292 }
293
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296         int i;
297         struct udf_meta_data *mdata;
298
299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300                 iput(map->s_uspace.s_table);
301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302                 iput(map->s_fspace.s_table);
303         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307         if (map->s_partition_type == UDF_SPARABLE_MAP15)
308                 for (i = 0; i < 4; i++)
309                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310         else if (map->s_partition_type == UDF_METADATA_MAP25) {
311                 mdata = &map->s_type_specific.s_metadata;
312                 iput(mdata->s_metadata_fe);
313                 mdata->s_metadata_fe = NULL;
314
315                 iput(mdata->s_mirror_fe);
316                 mdata->s_mirror_fe = NULL;
317
318                 iput(mdata->s_bitmap_fe);
319                 mdata->s_bitmap_fe = NULL;
320         }
321 }
322
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325         struct udf_sb_info *sbi = UDF_SB(sb);
326         int i;
327         if (sbi->s_partmaps == NULL)
328                 return;
329         for (i = 0; i < sbi->s_partitions; i++)
330                 udf_free_partition(&sbi->s_partmaps[i]);
331         kfree(sbi->s_partmaps);
332         sbi->s_partmaps = NULL;
333 }
334
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337         struct super_block *sb = root->d_sb;
338         struct udf_sb_info *sbi = UDF_SB(sb);
339
340         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341                 seq_puts(seq, ",nostrict");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345                 seq_puts(seq, ",unhide");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347                 seq_puts(seq, ",undelete");
348         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349                 seq_puts(seq, ",noadinicb");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351                 seq_puts(seq, ",shortad");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353                 seq_puts(seq, ",uid=forget");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355                 seq_puts(seq, ",uid=ignore");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357                 seq_puts(seq, ",gid=forget");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359                 seq_puts(seq, ",gid=ignore");
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364         if (sbi->s_umask != 0)
365                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366         if (sbi->s_fmode != UDF_INVALID_MODE)
367                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368         if (sbi->s_dmode != UDF_INVALID_MODE)
369                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371                 seq_printf(seq, ",session=%u", sbi->s_session);
372         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374         if (sbi->s_anchor != 0)
375                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376         /*
377          * volume, partition, fileset and rootdir seem to be ignored
378          * currently
379          */
380         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381                 seq_puts(seq, ",utf8");
382         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384
385         return 0;
386 }
387
388 /*
389  * udf_parse_options
390  *
391  * PURPOSE
392  *      Parse mount options.
393  *
394  * DESCRIPTION
395  *      The following mount options are supported:
396  *
397  *      gid=            Set the default group.
398  *      umask=          Set the default umask.
399  *      mode=           Set the default file permissions.
400  *      dmode=          Set the default directory permissions.
401  *      uid=            Set the default user.
402  *      bs=             Set the block size.
403  *      unhide          Show otherwise hidden files.
404  *      undelete        Show deleted files in lists.
405  *      adinicb         Embed data in the inode (default)
406  *      noadinicb       Don't embed data in the inode
407  *      shortad         Use short ad's
408  *      longad          Use long ad's (default)
409  *      nostrict        Unset strict conformance
410  *      iocharset=      Set the NLS character set
411  *
412  *      The remaining are for debugging and disaster recovery:
413  *
414  *      novrs           Skip volume sequence recognition
415  *
416  *      The following expect a offset from 0.
417  *
418  *      session=        Set the CDROM session (default= last session)
419  *      anchor=         Override standard anchor location. (default= 256)
420  *      volume=         Override the VolumeDesc location. (unused)
421  *      partition=      Override the PartitionDesc location. (unused)
422  *      lastblock=      Set the last block of the filesystem/
423  *
424  *      The following expect a offset from the partition root.
425  *
426  *      fileset=        Override the fileset block location. (unused)
427  *      rootdir=        Override the root directory location. (unused)
428  *              WARNING: overriding the rootdir to a non-directory may
429  *              yield highly unpredictable results.
430  *
431  * PRE-CONDITIONS
432  *      options         Pointer to mount options string.
433  *      uopts           Pointer to mount options variable.
434  *
435  * POST-CONDITIONS
436  *      <return>        1       Mount options parsed okay.
437  *      <return>        0       Error parsing mount options.
438  *
439  * HISTORY
440  *      July 1, 1997 - Andrew E. Mileski
441  *      Written, tested, and released.
442  */
443
444 enum {
445         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449         Opt_rootdir, Opt_utf8, Opt_iocharset,
450         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451         Opt_fmode, Opt_dmode
452 };
453
454 static const match_table_t tokens = {
455         {Opt_novrs,     "novrs"},
456         {Opt_nostrict,  "nostrict"},
457         {Opt_bs,        "bs=%u"},
458         {Opt_unhide,    "unhide"},
459         {Opt_undelete,  "undelete"},
460         {Opt_noadinicb, "noadinicb"},
461         {Opt_adinicb,   "adinicb"},
462         {Opt_shortad,   "shortad"},
463         {Opt_longad,    "longad"},
464         {Opt_uforget,   "uid=forget"},
465         {Opt_uignore,   "uid=ignore"},
466         {Opt_gforget,   "gid=forget"},
467         {Opt_gignore,   "gid=ignore"},
468         {Opt_gid,       "gid=%u"},
469         {Opt_uid,       "uid=%u"},
470         {Opt_umask,     "umask=%o"},
471         {Opt_session,   "session=%u"},
472         {Opt_lastblock, "lastblock=%u"},
473         {Opt_anchor,    "anchor=%u"},
474         {Opt_volume,    "volume=%u"},
475         {Opt_partition, "partition=%u"},
476         {Opt_fileset,   "fileset=%u"},
477         {Opt_rootdir,   "rootdir=%u"},
478         {Opt_utf8,      "utf8"},
479         {Opt_iocharset, "iocharset=%s"},
480         {Opt_fmode,     "mode=%o"},
481         {Opt_dmode,     "dmode=%o"},
482         {Opt_err,       NULL}
483 };
484
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486                              bool remount)
487 {
488         char *p;
489         int option;
490
491         uopt->novrs = 0;
492         uopt->partition = 0xFFFF;
493         uopt->session = 0xFFFFFFFF;
494         uopt->lastblock = 0;
495         uopt->anchor = 0;
496         uopt->volume = 0xFFFFFFFF;
497         uopt->rootdir = 0xFFFFFFFF;
498         uopt->fileset = 0xFFFFFFFF;
499         uopt->nls_map = NULL;
500
501         if (!options)
502                 return 1;
503
504         while ((p = strsep(&options, ",")) != NULL) {
505                 substring_t args[MAX_OPT_ARGS];
506                 int token;
507                 unsigned n;
508                 if (!*p)
509                         continue;
510
511                 token = match_token(p, tokens, args);
512                 switch (token) {
513                 case Opt_novrs:
514                         uopt->novrs = 1;
515                         break;
516                 case Opt_bs:
517                         if (match_int(&args[0], &option))
518                                 return 0;
519                         n = option;
520                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521                                 return 0;
522                         uopt->blocksize = n;
523                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524                         break;
525                 case Opt_unhide:
526                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527                         break;
528                 case Opt_undelete:
529                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530                         break;
531                 case Opt_noadinicb:
532                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533                         break;
534                 case Opt_adinicb:
535                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536                         break;
537                 case Opt_shortad:
538                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539                         break;
540                 case Opt_longad:
541                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542                         break;
543                 case Opt_gid:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->gid = make_kgid(current_user_ns(), option);
547                         if (!gid_valid(uopt->gid))
548                                 return 0;
549                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
550                         break;
551                 case Opt_uid:
552                         if (match_int(args, &option))
553                                 return 0;
554                         uopt->uid = make_kuid(current_user_ns(), option);
555                         if (!uid_valid(uopt->uid))
556                                 return 0;
557                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
558                         break;
559                 case Opt_umask:
560                         if (match_octal(args, &option))
561                                 return 0;
562                         uopt->umask = option;
563                         break;
564                 case Opt_nostrict:
565                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566                         break;
567                 case Opt_session:
568                         if (match_int(args, &option))
569                                 return 0;
570                         uopt->session = option;
571                         if (!remount)
572                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573                         break;
574                 case Opt_lastblock:
575                         if (match_int(args, &option))
576                                 return 0;
577                         uopt->lastblock = option;
578                         if (!remount)
579                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580                         break;
581                 case Opt_anchor:
582                         if (match_int(args, &option))
583                                 return 0;
584                         uopt->anchor = option;
585                         break;
586                 case Opt_volume:
587                         if (match_int(args, &option))
588                                 return 0;
589                         uopt->volume = option;
590                         break;
591                 case Opt_partition:
592                         if (match_int(args, &option))
593                                 return 0;
594                         uopt->partition = option;
595                         break;
596                 case Opt_fileset:
597                         if (match_int(args, &option))
598                                 return 0;
599                         uopt->fileset = option;
600                         break;
601                 case Opt_rootdir:
602                         if (match_int(args, &option))
603                                 return 0;
604                         uopt->rootdir = option;
605                         break;
606                 case Opt_utf8:
607                         uopt->flags |= (1 << UDF_FLAG_UTF8);
608                         break;
609 #ifdef CONFIG_UDF_NLS
610                 case Opt_iocharset:
611                         uopt->nls_map = load_nls(args[0].from);
612                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613                         break;
614 #endif
615                 case Opt_uignore:
616                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617                         break;
618                 case Opt_uforget:
619                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620                         break;
621                 case Opt_gignore:
622                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623                         break;
624                 case Opt_gforget:
625                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626                         break;
627                 case Opt_fmode:
628                         if (match_octal(args, &option))
629                                 return 0;
630                         uopt->fmode = option & 0777;
631                         break;
632                 case Opt_dmode:
633                         if (match_octal(args, &option))
634                                 return 0;
635                         uopt->dmode = option & 0777;
636                         break;
637                 default:
638                         pr_err("bad mount option \"%s\" or missing value\n", p);
639                         return 0;
640                 }
641         }
642         return 1;
643 }
644
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647         struct udf_options uopt;
648         struct udf_sb_info *sbi = UDF_SB(sb);
649         int error = 0;
650         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651
652         sync_filesystem(sb);
653         if (lvidiu) {
654                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656                         return -EACCES;
657         }
658
659         uopt.flags = sbi->s_flags;
660         uopt.uid   = sbi->s_uid;
661         uopt.gid   = sbi->s_gid;
662         uopt.umask = sbi->s_umask;
663         uopt.fmode = sbi->s_fmode;
664         uopt.dmode = sbi->s_dmode;
665
666         if (!udf_parse_options(options, &uopt, true))
667                 return -EINVAL;
668
669         write_lock(&sbi->s_cred_lock);
670         sbi->s_flags = uopt.flags;
671         sbi->s_uid   = uopt.uid;
672         sbi->s_gid   = uopt.gid;
673         sbi->s_umask = uopt.umask;
674         sbi->s_fmode = uopt.fmode;
675         sbi->s_dmode = uopt.dmode;
676         write_unlock(&sbi->s_cred_lock);
677
678         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679                 goto out_unlock;
680
681         if (*flags & MS_RDONLY)
682                 udf_close_lvid(sb);
683         else
684                 udf_open_lvid(sb);
685
686 out_unlock:
687         return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694         struct volStructDesc *vsd = NULL;
695         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696         int sectorsize;
697         struct buffer_head *bh = NULL;
698         int nsr02 = 0;
699         int nsr03 = 0;
700         struct udf_sb_info *sbi;
701
702         sbi = UDF_SB(sb);
703         if (sb->s_blocksize < sizeof(struct volStructDesc))
704                 sectorsize = sizeof(struct volStructDesc);
705         else
706                 sectorsize = sb->s_blocksize;
707
708         sector += (sbi->s_session << sb->s_blocksize_bits);
709
710         udf_debug("Starting at sector %u (%ld byte sectors)\n",
711                   (unsigned int)(sector >> sb->s_blocksize_bits),
712                   sb->s_blocksize);
713         /* Process the sequence (if applicable). The hard limit on the sector
714          * offset is arbitrary, hopefully large enough so that all valid UDF
715          * filesystems will be recognised. There is no mention of an upper
716          * bound to the size of the volume recognition area in the standard.
717          *  The limit will prevent the code to read all the sectors of a
718          * specially crafted image (like a bluray disc full of CD001 sectors),
719          * potentially causing minutes or even hours of uninterruptible I/O
720          * activity. This actually happened with uninitialised SSD partitions
721          * (all 0xFF) before the check for the limit and all valid IDs were
722          * added */
723         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724              sector += sectorsize) {
725                 /* Read a block */
726                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727                 if (!bh)
728                         break;
729
730                 /* Look for ISO  descriptors */
731                 vsd = (struct volStructDesc *)(bh->b_data +
732                                               (sector & (sb->s_blocksize - 1)));
733
734                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735                                     VSD_STD_ID_LEN)) {
736                         switch (vsd->structType) {
737                         case 0:
738                                 udf_debug("ISO9660 Boot Record found\n");
739                                 break;
740                         case 1:
741                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742                                 break;
743                         case 2:
744                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745                                 break;
746                         case 3:
747                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748                                 break;
749                         case 255:
750                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751                                 break;
752                         default:
753                                 udf_debug("ISO9660 VRS (%u) found\n",
754                                           vsd->structType);
755                                 break;
756                         }
757                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758                                     VSD_STD_ID_LEN))
759                         ; /* nothing */
760                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761                                     VSD_STD_ID_LEN)) {
762                         brelse(bh);
763                         break;
764                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765                                     VSD_STD_ID_LEN))
766                         nsr02 = sector;
767                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768                                     VSD_STD_ID_LEN))
769                         nsr03 = sector;
770                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771                                     VSD_STD_ID_LEN))
772                         ; /* nothing */
773                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774                                     VSD_STD_ID_LEN))
775                         ; /* nothing */
776                 else {
777                         /* invalid id : end of volume recognition area */
778                         brelse(bh);
779                         break;
780                 }
781                 brelse(bh);
782         }
783
784         if (nsr03)
785                 return nsr03;
786         else if (nsr02)
787                 return nsr02;
788         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789                         VSD_FIRST_SECTOR_OFFSET)
790                 return -1;
791         else
792                 return 0;
793 }
794
795 static int udf_find_fileset(struct super_block *sb,
796                             struct kernel_lb_addr *fileset,
797                             struct kernel_lb_addr *root)
798 {
799         struct buffer_head *bh = NULL;
800         long lastblock;
801         uint16_t ident;
802         struct udf_sb_info *sbi;
803
804         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805             fileset->partitionReferenceNum != 0xFFFF) {
806                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808                 if (!bh) {
809                         return 1;
810                 } else if (ident != TAG_IDENT_FSD) {
811                         brelse(bh);
812                         return 1;
813                 }
814
815         }
816
817         sbi = UDF_SB(sb);
818         if (!bh) {
819                 /* Search backwards through the partitions */
820                 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823                 return 1;
824
825                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826                      (newfileset.partitionReferenceNum != 0xFFFF &&
827                       fileset->logicalBlockNum == 0xFFFFFFFF &&
828                       fileset->partitionReferenceNum == 0xFFFF);
829                      newfileset.partitionReferenceNum--) {
830                         lastblock = sbi->s_partmaps
831                                         [newfileset.partitionReferenceNum]
832                                                 .s_partition_len;
833                         newfileset.logicalBlockNum = 0;
834
835                         do {
836                                 bh = udf_read_ptagged(sb, &newfileset, 0,
837                                                       &ident);
838                                 if (!bh) {
839                                         newfileset.logicalBlockNum++;
840                                         continue;
841                                 }
842
843                                 switch (ident) {
844                                 case TAG_IDENT_SBD:
845                                 {
846                                         struct spaceBitmapDesc *sp;
847                                         sp = (struct spaceBitmapDesc *)
848                                                                 bh->b_data;
849                                         newfileset.logicalBlockNum += 1 +
850                                                 ((le32_to_cpu(sp->numOfBytes) +
851                                                   sizeof(struct spaceBitmapDesc)
852                                                   - 1) >> sb->s_blocksize_bits);
853                                         brelse(bh);
854                                         break;
855                                 }
856                                 case TAG_IDENT_FSD:
857                                         *fileset = newfileset;
858                                         break;
859                                 default:
860                                         newfileset.logicalBlockNum++;
861                                         brelse(bh);
862                                         bh = NULL;
863                                         break;
864                                 }
865                         } while (newfileset.logicalBlockNum < lastblock &&
866                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
867                                  fileset->partitionReferenceNum == 0xFFFF);
868                 }
869         }
870
871         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872              fileset->partitionReferenceNum != 0xFFFF) && bh) {
873                 udf_debug("Fileset at block=%d, partition=%d\n",
874                           fileset->logicalBlockNum,
875                           fileset->partitionReferenceNum);
876
877                 sbi->s_partition = fileset->partitionReferenceNum;
878                 udf_load_fileset(sb, bh, root);
879                 brelse(bh);
880                 return 0;
881         }
882         return 1;
883 }
884
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893         struct primaryVolDesc *pvoldesc;
894         struct ustr *instr, *outstr;
895         struct buffer_head *bh;
896         uint16_t ident;
897         int ret = -ENOMEM;
898
899         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900         if (!instr)
901                 return -ENOMEM;
902
903         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904         if (!outstr)
905                 goto out1;
906
907         bh = udf_read_tagged(sb, block, block, &ident);
908         if (!bh) {
909                 ret = -EAGAIN;
910                 goto out2;
911         }
912
913         if (ident != TAG_IDENT_PVD) {
914                 ret = -EIO;
915                 goto out_bh;
916         }
917
918         pvoldesc = (struct primaryVolDesc *)bh->b_data;
919
920         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921                               pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928         }
929
930         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
931                 ret = udf_CS0toUTF8(outstr, instr);
932                 if (ret < 0)
933                         goto out_bh;
934
935                 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
936                         outstr->u_len > 31 ? 31 : outstr->u_len);
937                 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
938         }
939
940         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
941                 ret = udf_CS0toUTF8(outstr, instr);
942                 if (ret < 0)
943                         goto out_bh;
944
945                 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
946         }
947
948         ret = 0;
949 out_bh:
950         brelse(bh);
951 out2:
952         kfree(outstr);
953 out1:
954         kfree(instr);
955         return ret;
956 }
957
958 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
959                                         u32 meta_file_loc, u32 partition_num)
960 {
961         struct kernel_lb_addr addr;
962         struct inode *metadata_fe;
963
964         addr.logicalBlockNum = meta_file_loc;
965         addr.partitionReferenceNum = partition_num;
966
967         metadata_fe = udf_iget_special(sb, &addr);
968
969         if (IS_ERR(metadata_fe)) {
970                 udf_warn(sb, "metadata inode efe not found\n");
971                 return metadata_fe;
972         }
973         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
974                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
975                 iput(metadata_fe);
976                 return ERR_PTR(-EIO);
977         }
978
979         return metadata_fe;
980 }
981
982 static int udf_load_metadata_files(struct super_block *sb, int partition)
983 {
984         struct udf_sb_info *sbi = UDF_SB(sb);
985         struct udf_part_map *map;
986         struct udf_meta_data *mdata;
987         struct kernel_lb_addr addr;
988         struct inode *fe;
989
990         map = &sbi->s_partmaps[partition];
991         mdata = &map->s_type_specific.s_metadata;
992
993         /* metadata address */
994         udf_debug("Metadata file location: block = %d part = %d\n",
995                   mdata->s_meta_file_loc, map->s_partition_num);
996
997         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
998                                          map->s_partition_num);
999         if (IS_ERR(fe)) {
1000                 /* mirror file entry */
1001                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1002                           mdata->s_mirror_file_loc, map->s_partition_num);
1003
1004                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1005                                                  map->s_partition_num);
1006
1007                 if (IS_ERR(fe)) {
1008                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1009                         return PTR_ERR(fe);
1010                 }
1011                 mdata->s_mirror_fe = fe;
1012         } else
1013                 mdata->s_metadata_fe = fe;
1014
1015
1016         /*
1017          * bitmap file entry
1018          * Note:
1019          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1020         */
1021         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1022                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1023                 addr.partitionReferenceNum = map->s_partition_num;
1024
1025                 udf_debug("Bitmap file location: block = %d part = %d\n",
1026                           addr.logicalBlockNum, addr.partitionReferenceNum);
1027
1028                 fe = udf_iget_special(sb, &addr);
1029                 if (IS_ERR(fe)) {
1030                         if (sb->s_flags & MS_RDONLY)
1031                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1032                         else {
1033                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1034                                 return PTR_ERR(fe);
1035                         }
1036                 } else
1037                         mdata->s_bitmap_fe = fe;
1038         }
1039
1040         udf_debug("udf_load_metadata_files Ok\n");
1041         return 0;
1042 }
1043
1044 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1045                              struct kernel_lb_addr *root)
1046 {
1047         struct fileSetDesc *fset;
1048
1049         fset = (struct fileSetDesc *)bh->b_data;
1050
1051         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1052
1053         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1054
1055         udf_debug("Rootdir at block=%d, partition=%d\n",
1056                   root->logicalBlockNum, root->partitionReferenceNum);
1057 }
1058
1059 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1060 {
1061         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1062         return DIV_ROUND_UP(map->s_partition_len +
1063                             (sizeof(struct spaceBitmapDesc) << 3),
1064                             sb->s_blocksize * 8);
1065 }
1066
1067 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1068 {
1069         struct udf_bitmap *bitmap;
1070         int nr_groups;
1071         int size;
1072
1073         nr_groups = udf_compute_nr_groups(sb, index);
1074         size = sizeof(struct udf_bitmap) +
1075                 (sizeof(struct buffer_head *) * nr_groups);
1076
1077         if (size <= PAGE_SIZE)
1078                 bitmap = kzalloc(size, GFP_KERNEL);
1079         else
1080                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1081
1082         if (bitmap == NULL)
1083                 return NULL;
1084
1085         bitmap->s_nr_groups = nr_groups;
1086         return bitmap;
1087 }
1088
1089 static int udf_fill_partdesc_info(struct super_block *sb,
1090                 struct partitionDesc *p, int p_index)
1091 {
1092         struct udf_part_map *map;
1093         struct udf_sb_info *sbi = UDF_SB(sb);
1094         struct partitionHeaderDesc *phd;
1095
1096         map = &sbi->s_partmaps[p_index];
1097
1098         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1099         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1100
1101         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1102                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1103         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1104                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1105         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1106                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1107         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1108                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1109
1110         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1111                   p_index, map->s_partition_type,
1112                   map->s_partition_root, map->s_partition_len);
1113
1114         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1115             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1116                 return 0;
1117
1118         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119         if (phd->unallocSpaceTable.extLength) {
1120                 struct kernel_lb_addr loc = {
1121                         .logicalBlockNum = le32_to_cpu(
1122                                 phd->unallocSpaceTable.extPosition),
1123                         .partitionReferenceNum = p_index,
1124                 };
1125                 struct inode *inode;
1126
1127                 inode = udf_iget_special(sb, &loc);
1128                 if (IS_ERR(inode)) {
1129                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130                                   p_index);
1131                         return PTR_ERR(inode);
1132                 }
1133                 map->s_uspace.s_table = inode;
1134                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1136                           p_index, map->s_uspace.s_table->i_ino);
1137         }
1138
1139         if (phd->unallocSpaceBitmap.extLength) {
1140                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141                 if (!bitmap)
1142                         return -ENOMEM;
1143                 map->s_uspace.s_bitmap = bitmap;
1144                 bitmap->s_extPosition = le32_to_cpu(
1145                                 phd->unallocSpaceBitmap.extPosition);
1146                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1148                           p_index, bitmap->s_extPosition);
1149         }
1150
1151         if (phd->partitionIntegrityTable.extLength)
1152                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1153
1154         if (phd->freedSpaceTable.extLength) {
1155                 struct kernel_lb_addr loc = {
1156                         .logicalBlockNum = le32_to_cpu(
1157                                 phd->freedSpaceTable.extPosition),
1158                         .partitionReferenceNum = p_index,
1159                 };
1160                 struct inode *inode;
1161
1162                 inode = udf_iget_special(sb, &loc);
1163                 if (IS_ERR(inode)) {
1164                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1165                                   p_index);
1166                         return PTR_ERR(inode);
1167                 }
1168                 map->s_fspace.s_table = inode;
1169                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1170                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1171                           p_index, map->s_fspace.s_table->i_ino);
1172         }
1173
1174         if (phd->freedSpaceBitmap.extLength) {
1175                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176                 if (!bitmap)
1177                         return -ENOMEM;
1178                 map->s_fspace.s_bitmap = bitmap;
1179                 bitmap->s_extPosition = le32_to_cpu(
1180                                 phd->freedSpaceBitmap.extPosition);
1181                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1182                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1183                           p_index, bitmap->s_extPosition);
1184         }
1185         return 0;
1186 }
1187
1188 static void udf_find_vat_block(struct super_block *sb, int p_index,
1189                                int type1_index, sector_t start_block)
1190 {
1191         struct udf_sb_info *sbi = UDF_SB(sb);
1192         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1193         sector_t vat_block;
1194         struct kernel_lb_addr ino;
1195         struct inode *inode;
1196
1197         /*
1198          * VAT file entry is in the last recorded block. Some broken disks have
1199          * it a few blocks before so try a bit harder...
1200          */
1201         ino.partitionReferenceNum = type1_index;
1202         for (vat_block = start_block;
1203              vat_block >= map->s_partition_root &&
1204              vat_block >= start_block - 3; vat_block--) {
1205                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1206                 inode = udf_iget_special(sb, &ino);
1207                 if (!IS_ERR(inode)) {
1208                         sbi->s_vat_inode = inode;
1209                         break;
1210                 }
1211         }
1212 }
1213
1214 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1215 {
1216         struct udf_sb_info *sbi = UDF_SB(sb);
1217         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1218         struct buffer_head *bh = NULL;
1219         struct udf_inode_info *vati;
1220         uint32_t pos;
1221         struct virtualAllocationTable20 *vat20;
1222         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1223
1224         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1225         if (!sbi->s_vat_inode &&
1226             sbi->s_last_block != blocks - 1) {
1227                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1228                           (unsigned long)sbi->s_last_block,
1229                           (unsigned long)blocks - 1);
1230                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1231         }
1232         if (!sbi->s_vat_inode)
1233                 return -EIO;
1234
1235         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1236                 map->s_type_specific.s_virtual.s_start_offset = 0;
1237                 map->s_type_specific.s_virtual.s_num_entries =
1238                         (sbi->s_vat_inode->i_size - 36) >> 2;
1239         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1240                 vati = UDF_I(sbi->s_vat_inode);
1241                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1242                         pos = udf_block_map(sbi->s_vat_inode, 0);
1243                         bh = sb_bread(sb, pos);
1244                         if (!bh)
1245                                 return -EIO;
1246                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1247                 } else {
1248                         vat20 = (struct virtualAllocationTable20 *)
1249                                                         vati->i_ext.i_data;
1250                 }
1251
1252                 map->s_type_specific.s_virtual.s_start_offset =
1253                         le16_to_cpu(vat20->lengthHeader);
1254                 map->s_type_specific.s_virtual.s_num_entries =
1255                         (sbi->s_vat_inode->i_size -
1256                                 map->s_type_specific.s_virtual.
1257                                         s_start_offset) >> 2;
1258                 brelse(bh);
1259         }
1260         return 0;
1261 }
1262
1263 /*
1264  * Load partition descriptor block
1265  *
1266  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1267  * sequence.
1268  */
1269 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1270 {
1271         struct buffer_head *bh;
1272         struct partitionDesc *p;
1273         struct udf_part_map *map;
1274         struct udf_sb_info *sbi = UDF_SB(sb);
1275         int i, type1_idx;
1276         uint16_t partitionNumber;
1277         uint16_t ident;
1278         int ret;
1279
1280         bh = udf_read_tagged(sb, block, block, &ident);
1281         if (!bh)
1282                 return -EAGAIN;
1283         if (ident != TAG_IDENT_PD) {
1284                 ret = 0;
1285                 goto out_bh;
1286         }
1287
1288         p = (struct partitionDesc *)bh->b_data;
1289         partitionNumber = le16_to_cpu(p->partitionNumber);
1290
1291         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1292         for (i = 0; i < sbi->s_partitions; i++) {
1293                 map = &sbi->s_partmaps[i];
1294                 udf_debug("Searching map: (%d == %d)\n",
1295                           map->s_partition_num, partitionNumber);
1296                 if (map->s_partition_num == partitionNumber &&
1297                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1298                      map->s_partition_type == UDF_SPARABLE_MAP15))
1299                         break;
1300         }
1301
1302         if (i >= sbi->s_partitions) {
1303                 udf_debug("Partition (%d) not found in partition map\n",
1304                           partitionNumber);
1305                 ret = 0;
1306                 goto out_bh;
1307         }
1308
1309         ret = udf_fill_partdesc_info(sb, p, i);
1310         if (ret < 0)
1311                 goto out_bh;
1312
1313         /*
1314          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1315          * PHYSICAL partitions are already set up
1316          */
1317         type1_idx = i;
1318 #ifdef UDFFS_DEBUG
1319         map = NULL; /* supress 'maybe used uninitialized' warning */
1320 #endif
1321         for (i = 0; i < sbi->s_partitions; i++) {
1322                 map = &sbi->s_partmaps[i];
1323
1324                 if (map->s_partition_num == partitionNumber &&
1325                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1326                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1327                      map->s_partition_type == UDF_METADATA_MAP25))
1328                         break;
1329         }
1330
1331         if (i >= sbi->s_partitions) {
1332                 ret = 0;
1333                 goto out_bh;
1334         }
1335
1336         ret = udf_fill_partdesc_info(sb, p, i);
1337         if (ret < 0)
1338                 goto out_bh;
1339
1340         if (map->s_partition_type == UDF_METADATA_MAP25) {
1341                 ret = udf_load_metadata_files(sb, i);
1342                 if (ret < 0) {
1343                         udf_err(sb, "error loading MetaData partition map %d\n",
1344                                 i);
1345                         goto out_bh;
1346                 }
1347         } else {
1348                 /*
1349                  * If we have a partition with virtual map, we don't handle
1350                  * writing to it (we overwrite blocks instead of relocating
1351                  * them).
1352                  */
1353                 if (!(sb->s_flags & MS_RDONLY)) {
1354                         ret = -EACCES;
1355                         goto out_bh;
1356                 }
1357                 ret = udf_load_vat(sb, i, type1_idx);
1358                 if (ret < 0)
1359                         goto out_bh;
1360         }
1361         ret = 0;
1362 out_bh:
1363         /* In case loading failed, we handle cleanup in udf_fill_super */
1364         brelse(bh);
1365         return ret;
1366 }
1367
1368 static int udf_load_sparable_map(struct super_block *sb,
1369                                  struct udf_part_map *map,
1370                                  struct sparablePartitionMap *spm)
1371 {
1372         uint32_t loc;
1373         uint16_t ident;
1374         struct sparingTable *st;
1375         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1376         int i;
1377         struct buffer_head *bh;
1378
1379         map->s_partition_type = UDF_SPARABLE_MAP15;
1380         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1381         if (!is_power_of_2(sdata->s_packet_len)) {
1382                 udf_err(sb, "error loading logical volume descriptor: "
1383                         "Invalid packet length %u\n",
1384                         (unsigned)sdata->s_packet_len);
1385                 return -EIO;
1386         }
1387         if (spm->numSparingTables > 4) {
1388                 udf_err(sb, "error loading logical volume descriptor: "
1389                         "Too many sparing tables (%d)\n",
1390                         (int)spm->numSparingTables);
1391                 return -EIO;
1392         }
1393
1394         for (i = 0; i < spm->numSparingTables; i++) {
1395                 loc = le32_to_cpu(spm->locSparingTable[i]);
1396                 bh = udf_read_tagged(sb, loc, loc, &ident);
1397                 if (!bh)
1398                         continue;
1399
1400                 st = (struct sparingTable *)bh->b_data;
1401                 if (ident != 0 ||
1402                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1403                             strlen(UDF_ID_SPARING)) ||
1404                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1405                                                         sb->s_blocksize) {
1406                         brelse(bh);
1407                         continue;
1408                 }
1409
1410                 sdata->s_spar_map[i] = bh;
1411         }
1412         map->s_partition_func = udf_get_pblock_spar15;
1413         return 0;
1414 }
1415
1416 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1417                                struct kernel_lb_addr *fileset)
1418 {
1419         struct logicalVolDesc *lvd;
1420         int i, offset;
1421         uint8_t type;
1422         struct udf_sb_info *sbi = UDF_SB(sb);
1423         struct genericPartitionMap *gpm;
1424         uint16_t ident;
1425         struct buffer_head *bh;
1426         unsigned int table_len;
1427         int ret;
1428
1429         bh = udf_read_tagged(sb, block, block, &ident);
1430         if (!bh)
1431                 return -EAGAIN;
1432         BUG_ON(ident != TAG_IDENT_LVD);
1433         lvd = (struct logicalVolDesc *)bh->b_data;
1434         table_len = le32_to_cpu(lvd->mapTableLength);
1435         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1436                 udf_err(sb, "error loading logical volume descriptor: "
1437                         "Partition table too long (%u > %lu)\n", table_len,
1438                         sb->s_blocksize - sizeof(*lvd));
1439                 ret = -EIO;
1440                 goto out_bh;
1441         }
1442
1443         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1444         if (ret)
1445                 goto out_bh;
1446
1447         for (i = 0, offset = 0;
1448              i < sbi->s_partitions && offset < table_len;
1449              i++, offset += gpm->partitionMapLength) {
1450                 struct udf_part_map *map = &sbi->s_partmaps[i];
1451                 gpm = (struct genericPartitionMap *)
1452                                 &(lvd->partitionMaps[offset]);
1453                 type = gpm->partitionMapType;
1454                 if (type == 1) {
1455                         struct genericPartitionMap1 *gpm1 =
1456                                 (struct genericPartitionMap1 *)gpm;
1457                         map->s_partition_type = UDF_TYPE1_MAP15;
1458                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1459                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1460                         map->s_partition_func = NULL;
1461                 } else if (type == 2) {
1462                         struct udfPartitionMap2 *upm2 =
1463                                                 (struct udfPartitionMap2 *)gpm;
1464                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1465                                                 strlen(UDF_ID_VIRTUAL))) {
1466                                 u16 suf =
1467                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1468                                                         identSuffix)[0]);
1469                                 if (suf < 0x0200) {
1470                                         map->s_partition_type =
1471                                                         UDF_VIRTUAL_MAP15;
1472                                         map->s_partition_func =
1473                                                         udf_get_pblock_virt15;
1474                                 } else {
1475                                         map->s_partition_type =
1476                                                         UDF_VIRTUAL_MAP20;
1477                                         map->s_partition_func =
1478                                                         udf_get_pblock_virt20;
1479                                 }
1480                         } else if (!strncmp(upm2->partIdent.ident,
1481                                                 UDF_ID_SPARABLE,
1482                                                 strlen(UDF_ID_SPARABLE))) {
1483                                 ret = udf_load_sparable_map(sb, map,
1484                                         (struct sparablePartitionMap *)gpm);
1485                                 if (ret < 0)
1486                                         goto out_bh;
1487                         } else if (!strncmp(upm2->partIdent.ident,
1488                                                 UDF_ID_METADATA,
1489                                                 strlen(UDF_ID_METADATA))) {
1490                                 struct udf_meta_data *mdata =
1491                                         &map->s_type_specific.s_metadata;
1492                                 struct metadataPartitionMap *mdm =
1493                                                 (struct metadataPartitionMap *)
1494                                                 &(lvd->partitionMaps[offset]);
1495                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1496                                           i, type, UDF_ID_METADATA);
1497
1498                                 map->s_partition_type = UDF_METADATA_MAP25;
1499                                 map->s_partition_func = udf_get_pblock_meta25;
1500
1501                                 mdata->s_meta_file_loc   =
1502                                         le32_to_cpu(mdm->metadataFileLoc);
1503                                 mdata->s_mirror_file_loc =
1504                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1505                                 mdata->s_bitmap_file_loc =
1506                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1507                                 mdata->s_alloc_unit_size =
1508                                         le32_to_cpu(mdm->allocUnitSize);
1509                                 mdata->s_align_unit_size =
1510                                         le16_to_cpu(mdm->alignUnitSize);
1511                                 if (mdm->flags & 0x01)
1512                                         mdata->s_flags |= MF_DUPLICATE_MD;
1513
1514                                 udf_debug("Metadata Ident suffix=0x%x\n",
1515                                           le16_to_cpu(*(__le16 *)
1516                                                       mdm->partIdent.identSuffix));
1517                                 udf_debug("Metadata part num=%d\n",
1518                                           le16_to_cpu(mdm->partitionNum));
1519                                 udf_debug("Metadata part alloc unit size=%d\n",
1520                                           le32_to_cpu(mdm->allocUnitSize));
1521                                 udf_debug("Metadata file loc=%d\n",
1522                                           le32_to_cpu(mdm->metadataFileLoc));
1523                                 udf_debug("Mirror file loc=%d\n",
1524                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1525                                 udf_debug("Bitmap file loc=%d\n",
1526                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1527                                 udf_debug("Flags: %d %d\n",
1528                                           mdata->s_flags, mdm->flags);
1529                         } else {
1530                                 udf_debug("Unknown ident: %s\n",
1531                                           upm2->partIdent.ident);
1532                                 continue;
1533                         }
1534                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1535                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1536                 }
1537                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1538                           i, map->s_partition_num, type, map->s_volumeseqnum);
1539         }
1540
1541         if (fileset) {
1542                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1543
1544                 *fileset = lelb_to_cpu(la->extLocation);
1545                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1546                           fileset->logicalBlockNum,
1547                           fileset->partitionReferenceNum);
1548         }
1549         if (lvd->integritySeqExt.extLength)
1550                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1551         ret = 0;
1552 out_bh:
1553         brelse(bh);
1554         return ret;
1555 }
1556
1557 /*
1558  * udf_load_logicalvolint
1559  *
1560  */
1561 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1562 {
1563         struct buffer_head *bh = NULL;
1564         uint16_t ident;
1565         struct udf_sb_info *sbi = UDF_SB(sb);
1566         struct logicalVolIntegrityDesc *lvid;
1567
1568         while (loc.extLength > 0 &&
1569                (bh = udf_read_tagged(sb, loc.extLocation,
1570                                      loc.extLocation, &ident)) &&
1571                ident == TAG_IDENT_LVID) {
1572                 sbi->s_lvid_bh = bh;
1573                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1574
1575                 if (lvid->nextIntegrityExt.extLength)
1576                         udf_load_logicalvolint(sb,
1577                                 leea_to_cpu(lvid->nextIntegrityExt));
1578
1579                 if (sbi->s_lvid_bh != bh)
1580                         brelse(bh);
1581                 loc.extLength -= sb->s_blocksize;
1582                 loc.extLocation++;
1583         }
1584         if (sbi->s_lvid_bh != bh)
1585                 brelse(bh);
1586 }
1587
1588 /*
1589  * Process a main/reserve volume descriptor sequence.
1590  *   @block             First block of first extent of the sequence.
1591  *   @lastblock         Lastblock of first extent of the sequence.
1592  *   @fileset           There we store extent containing root fileset
1593  *
1594  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1595  * sequence
1596  */
1597 static noinline int udf_process_sequence(
1598                 struct super_block *sb,
1599                 sector_t block, sector_t lastblock,
1600                 struct kernel_lb_addr *fileset)
1601 {
1602         struct buffer_head *bh = NULL;
1603         struct udf_vds_record vds[VDS_POS_LENGTH];
1604         struct udf_vds_record *curr;
1605         struct generic_desc *gd;
1606         struct volDescPtr *vdp;
1607         bool done = false;
1608         uint32_t vdsn;
1609         uint16_t ident;
1610         long next_s = 0, next_e = 0;
1611         int ret;
1612
1613         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1614
1615         /*
1616          * Read the main descriptor sequence and find which descriptors
1617          * are in it.
1618          */
1619         for (; (!done && block <= lastblock); block++) {
1620
1621                 bh = udf_read_tagged(sb, block, block, &ident);
1622                 if (!bh) {
1623                         udf_err(sb,
1624                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1625                                 (unsigned long long)block);
1626                         return -EAGAIN;
1627                 }
1628
1629                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1630                 gd = (struct generic_desc *)bh->b_data;
1631                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1632                 switch (ident) {
1633                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1635                         if (vdsn >= curr->volDescSeqNum) {
1636                                 curr->volDescSeqNum = vdsn;
1637                                 curr->block = block;
1638                         }
1639                         break;
1640                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1641                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1642                         if (vdsn >= curr->volDescSeqNum) {
1643                                 curr->volDescSeqNum = vdsn;
1644                                 curr->block = block;
1645
1646                                 vdp = (struct volDescPtr *)bh->b_data;
1647                                 next_s = le32_to_cpu(
1648                                         vdp->nextVolDescSeqExt.extLocation);
1649                                 next_e = le32_to_cpu(
1650                                         vdp->nextVolDescSeqExt.extLength);
1651                                 next_e = next_e >> sb->s_blocksize_bits;
1652                                 next_e += next_s;
1653                         }
1654                         break;
1655                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1657                         if (vdsn >= curr->volDescSeqNum) {
1658                                 curr->volDescSeqNum = vdsn;
1659                                 curr->block = block;
1660                         }
1661                         break;
1662                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1663                         curr = &vds[VDS_POS_PARTITION_DESC];
1664                         if (!curr->block)
1665                                 curr->block = block;
1666                         break;
1667                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1668                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1669                         if (vdsn >= curr->volDescSeqNum) {
1670                                 curr->volDescSeqNum = vdsn;
1671                                 curr->block = block;
1672                         }
1673                         break;
1674                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1675                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1676                         if (vdsn >= curr->volDescSeqNum) {
1677                                 curr->volDescSeqNum = vdsn;
1678                                 curr->block = block;
1679                         }
1680                         break;
1681                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1682                         vds[VDS_POS_TERMINATING_DESC].block = block;
1683                         if (next_e) {
1684                                 block = next_s;
1685                                 lastblock = next_e;
1686                                 next_s = next_e = 0;
1687                         } else
1688                                 done = true;
1689                         break;
1690                 }
1691                 brelse(bh);
1692         }
1693         /*
1694          * Now read interesting descriptors again and process them
1695          * in a suitable order
1696          */
1697         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1698                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1699                 return -EAGAIN;
1700         }
1701         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1702         if (ret < 0)
1703                 return ret;
1704
1705         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1706                 ret = udf_load_logicalvol(sb,
1707                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1708                                           fileset);
1709                 if (ret < 0)
1710                         return ret;
1711         }
1712
1713         if (vds[VDS_POS_PARTITION_DESC].block) {
1714                 /*
1715                  * We rescan the whole descriptor sequence to find
1716                  * partition descriptor blocks and process them.
1717                  */
1718                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1719                      block < vds[VDS_POS_TERMINATING_DESC].block;
1720                      block++) {
1721                         ret = udf_load_partdesc(sb, block);
1722                         if (ret < 0)
1723                                 return ret;
1724                 }
1725         }
1726
1727         return 0;
1728 }
1729
1730 /*
1731  * Load Volume Descriptor Sequence described by anchor in bh
1732  *
1733  * Returns <0 on error, 0 on success
1734  */
1735 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1736                              struct kernel_lb_addr *fileset)
1737 {
1738         struct anchorVolDescPtr *anchor;
1739         sector_t main_s, main_e, reserve_s, reserve_e;
1740         int ret;
1741
1742         anchor = (struct anchorVolDescPtr *)bh->b_data;
1743
1744         /* Locate the main sequence */
1745         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1746         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1747         main_e = main_e >> sb->s_blocksize_bits;
1748         main_e += main_s;
1749
1750         /* Locate the reserve sequence */
1751         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1752         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1753         reserve_e = reserve_e >> sb->s_blocksize_bits;
1754         reserve_e += reserve_s;
1755
1756         /* Process the main & reserve sequences */
1757         /* responsible for finding the PartitionDesc(s) */
1758         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1759         if (ret != -EAGAIN)
1760                 return ret;
1761         udf_sb_free_partitions(sb);
1762         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1763         if (ret < 0) {
1764                 udf_sb_free_partitions(sb);
1765                 /* No sequence was OK, return -EIO */
1766                 if (ret == -EAGAIN)
1767                         ret = -EIO;
1768         }
1769         return ret;
1770 }
1771
1772 /*
1773  * Check whether there is an anchor block in the given block and
1774  * load Volume Descriptor Sequence if so.
1775  *
1776  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1777  * block
1778  */
1779 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1780                                   struct kernel_lb_addr *fileset)
1781 {
1782         struct buffer_head *bh;
1783         uint16_t ident;
1784         int ret;
1785
1786         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1787             udf_fixed_to_variable(block) >=
1788             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1789                 return -EAGAIN;
1790
1791         bh = udf_read_tagged(sb, block, block, &ident);
1792         if (!bh)
1793                 return -EAGAIN;
1794         if (ident != TAG_IDENT_AVDP) {
1795                 brelse(bh);
1796                 return -EAGAIN;
1797         }
1798         ret = udf_load_sequence(sb, bh, fileset);
1799         brelse(bh);
1800         return ret;
1801 }
1802
1803 /*
1804  * Search for an anchor volume descriptor pointer.
1805  *
1806  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1807  * of anchors.
1808  */
1809 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1810                             struct kernel_lb_addr *fileset)
1811 {
1812         sector_t last[6];
1813         int i;
1814         struct udf_sb_info *sbi = UDF_SB(sb);
1815         int last_count = 0;
1816         int ret;
1817
1818         /* First try user provided anchor */
1819         if (sbi->s_anchor) {
1820                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1821                 if (ret != -EAGAIN)
1822                         return ret;
1823         }
1824         /*
1825          * according to spec, anchor is in either:
1826          *     block 256
1827          *     lastblock-256
1828          *     lastblock
1829          *  however, if the disc isn't closed, it could be 512.
1830          */
1831         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1832         if (ret != -EAGAIN)
1833                 return ret;
1834         /*
1835          * The trouble is which block is the last one. Drives often misreport
1836          * this so we try various possibilities.
1837          */
1838         last[last_count++] = *lastblock;
1839         if (*lastblock >= 1)
1840                 last[last_count++] = *lastblock - 1;
1841         last[last_count++] = *lastblock + 1;
1842         if (*lastblock >= 2)
1843                 last[last_count++] = *lastblock - 2;
1844         if (*lastblock >= 150)
1845                 last[last_count++] = *lastblock - 150;
1846         if (*lastblock >= 152)
1847                 last[last_count++] = *lastblock - 152;
1848
1849         for (i = 0; i < last_count; i++) {
1850                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1851                                 sb->s_blocksize_bits)
1852                         continue;
1853                 ret = udf_check_anchor_block(sb, last[i], fileset);
1854                 if (ret != -EAGAIN) {
1855                         if (!ret)
1856                                 *lastblock = last[i];
1857                         return ret;
1858                 }
1859                 if (last[i] < 256)
1860                         continue;
1861                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1862                 if (ret != -EAGAIN) {
1863                         if (!ret)
1864                                 *lastblock = last[i];
1865                         return ret;
1866                 }
1867         }
1868
1869         /* Finally try block 512 in case media is open */
1870         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1871 }
1872
1873 /*
1874  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1875  * area specified by it. The function expects sbi->s_lastblock to be the last
1876  * block on the media.
1877  *
1878  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1879  * was not found.
1880  */
1881 static int udf_find_anchor(struct super_block *sb,
1882                            struct kernel_lb_addr *fileset)
1883 {
1884         struct udf_sb_info *sbi = UDF_SB(sb);
1885         sector_t lastblock = sbi->s_last_block;
1886         int ret;
1887
1888         ret = udf_scan_anchors(sb, &lastblock, fileset);
1889         if (ret != -EAGAIN)
1890                 goto out;
1891
1892         /* No anchor found? Try VARCONV conversion of block numbers */
1893         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1894         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1895         /* Firstly, we try to not convert number of the last block */
1896         ret = udf_scan_anchors(sb, &lastblock, fileset);
1897         if (ret != -EAGAIN)
1898                 goto out;
1899
1900         lastblock = sbi->s_last_block;
1901         /* Secondly, we try with converted number of the last block */
1902         ret = udf_scan_anchors(sb, &lastblock, fileset);
1903         if (ret < 0) {
1904                 /* VARCONV didn't help. Clear it. */
1905                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1906         }
1907 out:
1908         if (ret == 0)
1909                 sbi->s_last_block = lastblock;
1910         return ret;
1911 }
1912
1913 /*
1914  * Check Volume Structure Descriptor, find Anchor block and load Volume
1915  * Descriptor Sequence.
1916  *
1917  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1918  * block was not found.
1919  */
1920 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1921                         int silent, struct kernel_lb_addr *fileset)
1922 {
1923         struct udf_sb_info *sbi = UDF_SB(sb);
1924         loff_t nsr_off;
1925         int ret;
1926
1927         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1928                 if (!silent)
1929                         udf_warn(sb, "Bad block size\n");
1930                 return -EINVAL;
1931         }
1932         sbi->s_last_block = uopt->lastblock;
1933         if (!uopt->novrs) {
1934                 /* Check that it is NSR02 compliant */
1935                 nsr_off = udf_check_vsd(sb);
1936                 if (!nsr_off) {
1937                         if (!silent)
1938                                 udf_warn(sb, "No VRS found\n");
1939                         return 0;
1940                 }
1941                 if (nsr_off == -1)
1942                         udf_debug("Failed to read sector at offset %d. "
1943                                   "Assuming open disc. Skipping validity "
1944                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1945                 if (!sbi->s_last_block)
1946                         sbi->s_last_block = udf_get_last_block(sb);
1947         } else {
1948                 udf_debug("Validity check skipped because of novrs option\n");
1949         }
1950
1951         /* Look for anchor block and load Volume Descriptor Sequence */
1952         sbi->s_anchor = uopt->anchor;
1953         ret = udf_find_anchor(sb, fileset);
1954         if (ret < 0) {
1955                 if (!silent && ret == -EAGAIN)
1956                         udf_warn(sb, "No anchor found\n");
1957                 return ret;
1958         }
1959         return 0;
1960 }
1961
1962 static void udf_open_lvid(struct super_block *sb)
1963 {
1964         struct udf_sb_info *sbi = UDF_SB(sb);
1965         struct buffer_head *bh = sbi->s_lvid_bh;
1966         struct logicalVolIntegrityDesc *lvid;
1967         struct logicalVolIntegrityDescImpUse *lvidiu;
1968
1969         if (!bh)
1970                 return;
1971         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972         lvidiu = udf_sb_lvidiu(sb);
1973         if (!lvidiu)
1974                 return;
1975
1976         mutex_lock(&sbi->s_alloc_mutex);
1977         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1980                                 CURRENT_TIME);
1981         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1982
1983         lvid->descTag.descCRC = cpu_to_le16(
1984                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1985                         le16_to_cpu(lvid->descTag.descCRCLength)));
1986
1987         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988         mark_buffer_dirty(bh);
1989         sbi->s_lvid_dirty = 0;
1990         mutex_unlock(&sbi->s_alloc_mutex);
1991         /* Make opening of filesystem visible on the media immediately */
1992         sync_dirty_buffer(bh);
1993 }
1994
1995 static void udf_close_lvid(struct super_block *sb)
1996 {
1997         struct udf_sb_info *sbi = UDF_SB(sb);
1998         struct buffer_head *bh = sbi->s_lvid_bh;
1999         struct logicalVolIntegrityDesc *lvid;
2000         struct logicalVolIntegrityDescImpUse *lvidiu;
2001
2002         if (!bh)
2003                 return;
2004         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2005         lvidiu = udf_sb_lvidiu(sb);
2006         if (!lvidiu)
2007                 return;
2008
2009         mutex_lock(&sbi->s_alloc_mutex);
2010         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2011         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2012         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2013         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2014                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2015         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2016                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2017         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2018                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2019         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2020
2021         lvid->descTag.descCRC = cpu_to_le16(
2022                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2024
2025         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026         /*
2027          * We set buffer uptodate unconditionally here to avoid spurious
2028          * warnings from mark_buffer_dirty() when previous EIO has marked
2029          * the buffer as !uptodate
2030          */
2031         set_buffer_uptodate(bh);
2032         mark_buffer_dirty(bh);
2033         sbi->s_lvid_dirty = 0;
2034         mutex_unlock(&sbi->s_alloc_mutex);
2035         /* Make closing of filesystem visible on the media immediately */
2036         sync_dirty_buffer(bh);
2037 }
2038
2039 u64 lvid_get_unique_id(struct super_block *sb)
2040 {
2041         struct buffer_head *bh;
2042         struct udf_sb_info *sbi = UDF_SB(sb);
2043         struct logicalVolIntegrityDesc *lvid;
2044         struct logicalVolHeaderDesc *lvhd;
2045         u64 uniqueID;
2046         u64 ret;
2047
2048         bh = sbi->s_lvid_bh;
2049         if (!bh)
2050                 return 0;
2051
2052         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054
2055         mutex_lock(&sbi->s_alloc_mutex);
2056         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057         if (!(++uniqueID & 0xFFFFFFFF))
2058                 uniqueID += 16;
2059         lvhd->uniqueID = cpu_to_le64(uniqueID);
2060         mutex_unlock(&sbi->s_alloc_mutex);
2061         mark_buffer_dirty(bh);
2062
2063         return ret;
2064 }
2065
2066 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067 {
2068         int ret = -EINVAL;
2069         struct inode *inode = NULL;
2070         struct udf_options uopt;
2071         struct kernel_lb_addr rootdir, fileset;
2072         struct udf_sb_info *sbi;
2073         bool lvid_open = false;
2074
2075         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076         uopt.uid = INVALID_UID;
2077         uopt.gid = INVALID_GID;
2078         uopt.umask = 0;
2079         uopt.fmode = UDF_INVALID_MODE;
2080         uopt.dmode = UDF_INVALID_MODE;
2081
2082         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2083         if (!sbi)
2084                 return -ENOMEM;
2085
2086         sb->s_fs_info = sbi;
2087
2088         mutex_init(&sbi->s_alloc_mutex);
2089
2090         if (!udf_parse_options((char *)options, &uopt, false))
2091                 goto parse_options_failure;
2092
2093         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2094             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2095                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2096                 goto parse_options_failure;
2097         }
2098 #ifdef CONFIG_UDF_NLS
2099         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100                 uopt.nls_map = load_nls_default();
2101                 if (!uopt.nls_map)
2102                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103                 else
2104                         udf_debug("Using default NLS map\n");
2105         }
2106 #endif
2107         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2109
2110         fileset.logicalBlockNum = 0xFFFFFFFF;
2111         fileset.partitionReferenceNum = 0xFFFF;
2112
2113         sbi->s_flags = uopt.flags;
2114         sbi->s_uid = uopt.uid;
2115         sbi->s_gid = uopt.gid;
2116         sbi->s_umask = uopt.umask;
2117         sbi->s_fmode = uopt.fmode;
2118         sbi->s_dmode = uopt.dmode;
2119         sbi->s_nls_map = uopt.nls_map;
2120         rwlock_init(&sbi->s_cred_lock);
2121
2122         if (uopt.session == 0xFFFFFFFF)
2123                 sbi->s_session = udf_get_last_session(sb);
2124         else
2125                 sbi->s_session = uopt.session;
2126
2127         udf_debug("Multi-session=%d\n", sbi->s_session);
2128
2129         /* Fill in the rest of the superblock */
2130         sb->s_op = &udf_sb_ops;
2131         sb->s_export_op = &udf_export_ops;
2132
2133         sb->s_magic = UDF_SUPER_MAGIC;
2134         sb->s_time_gran = 1000;
2135
2136         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138         } else {
2139                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2142                         if (!silent)
2143                                 pr_notice("Rescanning with blocksize %d\n",
2144                                           UDF_DEFAULT_BLOCKSIZE);
2145                         brelse(sbi->s_lvid_bh);
2146                         sbi->s_lvid_bh = NULL;
2147                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2148                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2149                 }
2150         }
2151         if (ret < 0) {
2152                 if (ret == -EAGAIN) {
2153                         udf_warn(sb, "No partition found (1)\n");
2154                         ret = -EINVAL;
2155                 }
2156                 goto error_out;
2157         }
2158
2159         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2160
2161         if (sbi->s_lvid_bh) {
2162                 struct logicalVolIntegrityDescImpUse *lvidiu =
2163                                                         udf_sb_lvidiu(sb);
2164                 uint16_t minUDFReadRev;
2165                 uint16_t minUDFWriteRev;
2166
2167                 if (!lvidiu) {
2168                         ret = -EINVAL;
2169                         goto error_out;
2170                 }
2171                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2172                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2173                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2174                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2175                                 minUDFReadRev,
2176                                 UDF_MAX_READ_VERSION);
2177                         ret = -EINVAL;
2178                         goto error_out;
2179                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2180                            !(sb->s_flags & MS_RDONLY)) {
2181                         ret = -EACCES;
2182                         goto error_out;
2183                 }
2184
2185                 sbi->s_udfrev = minUDFWriteRev;
2186
2187                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2188                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2189                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2190                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2191         }
2192
2193         if (!sbi->s_partitions) {
2194                 udf_warn(sb, "No partition found (2)\n");
2195                 ret = -EINVAL;
2196                 goto error_out;
2197         }
2198
2199         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2200                         UDF_PART_FLAG_READ_ONLY &&
2201             !(sb->s_flags & MS_RDONLY)) {
2202                 ret = -EACCES;
2203                 goto error_out;
2204         }
2205
2206         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2207                 udf_warn(sb, "No fileset found\n");
2208                 ret = -EINVAL;
2209                 goto error_out;
2210         }
2211
2212         if (!silent) {
2213                 struct timestamp ts;
2214                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2215                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2216                          sbi->s_volume_ident,
2217                          le16_to_cpu(ts.year), ts.month, ts.day,
2218                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2219         }
2220         if (!(sb->s_flags & MS_RDONLY)) {
2221                 udf_open_lvid(sb);
2222                 lvid_open = true;
2223         }
2224
2225         /* Assign the root inode */
2226         /* assign inodes by physical block number */
2227         /* perhaps it's not extensible enough, but for now ... */
2228         inode = udf_iget(sb, &rootdir);
2229         if (IS_ERR(inode)) {
2230                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2231                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2232                 ret = PTR_ERR(inode);
2233                 goto error_out;
2234         }
2235
2236         /* Allocate a dentry for the root inode */
2237         sb->s_root = d_make_root(inode);
2238         if (!sb->s_root) {
2239                 udf_err(sb, "Couldn't allocate root dentry\n");
2240                 ret = -ENOMEM;
2241                 goto error_out;
2242         }
2243         sb->s_maxbytes = MAX_LFS_FILESIZE;
2244         sb->s_max_links = UDF_MAX_LINKS;
2245         return 0;
2246
2247 error_out:
2248         iput(sbi->s_vat_inode);
2249 parse_options_failure:
2250 #ifdef CONFIG_UDF_NLS
2251         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2252                 unload_nls(sbi->s_nls_map);
2253 #endif
2254         if (lvid_open)
2255                 udf_close_lvid(sb);
2256         brelse(sbi->s_lvid_bh);
2257         udf_sb_free_partitions(sb);
2258         kfree(sbi);
2259         sb->s_fs_info = NULL;
2260
2261         return ret;
2262 }
2263
2264 void _udf_err(struct super_block *sb, const char *function,
2265               const char *fmt, ...)
2266 {
2267         struct va_format vaf;
2268         va_list args;
2269
2270         va_start(args, fmt);
2271
2272         vaf.fmt = fmt;
2273         vaf.va = &args;
2274
2275         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2276
2277         va_end(args);
2278 }
2279
2280 void _udf_warn(struct super_block *sb, const char *function,
2281                const char *fmt, ...)
2282 {
2283         struct va_format vaf;
2284         va_list args;
2285
2286         va_start(args, fmt);
2287
2288         vaf.fmt = fmt;
2289         vaf.va = &args;
2290
2291         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2292
2293         va_end(args);
2294 }
2295
2296 static void udf_put_super(struct super_block *sb)
2297 {
2298         struct udf_sb_info *sbi;
2299
2300         sbi = UDF_SB(sb);
2301
2302         iput(sbi->s_vat_inode);
2303 #ifdef CONFIG_UDF_NLS
2304         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2305                 unload_nls(sbi->s_nls_map);
2306 #endif
2307         if (!(sb->s_flags & MS_RDONLY))
2308                 udf_close_lvid(sb);
2309         brelse(sbi->s_lvid_bh);
2310         udf_sb_free_partitions(sb);
2311         mutex_destroy(&sbi->s_alloc_mutex);
2312         kfree(sb->s_fs_info);
2313         sb->s_fs_info = NULL;
2314 }
2315
2316 static int udf_sync_fs(struct super_block *sb, int wait)
2317 {
2318         struct udf_sb_info *sbi = UDF_SB(sb);
2319
2320         mutex_lock(&sbi->s_alloc_mutex);
2321         if (sbi->s_lvid_dirty) {
2322                 /*
2323                  * Blockdevice will be synced later so we don't have to submit
2324                  * the buffer for IO
2325                  */
2326                 mark_buffer_dirty(sbi->s_lvid_bh);
2327                 sbi->s_lvid_dirty = 0;
2328         }
2329         mutex_unlock(&sbi->s_alloc_mutex);
2330
2331         return 0;
2332 }
2333
2334 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2335 {
2336         struct super_block *sb = dentry->d_sb;
2337         struct udf_sb_info *sbi = UDF_SB(sb);
2338         struct logicalVolIntegrityDescImpUse *lvidiu;
2339         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2340
2341         lvidiu = udf_sb_lvidiu(sb);
2342         buf->f_type = UDF_SUPER_MAGIC;
2343         buf->f_bsize = sb->s_blocksize;
2344         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2345         buf->f_bfree = udf_count_free(sb);
2346         buf->f_bavail = buf->f_bfree;
2347         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2348                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2349                         + buf->f_bfree;
2350         buf->f_ffree = buf->f_bfree;
2351         buf->f_namelen = UDF_NAME_LEN - 2;
2352         buf->f_fsid.val[0] = (u32)id;
2353         buf->f_fsid.val[1] = (u32)(id >> 32);
2354
2355         return 0;
2356 }
2357
2358 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2359                                           struct udf_bitmap *bitmap)
2360 {
2361         struct buffer_head *bh = NULL;
2362         unsigned int accum = 0;
2363         int index;
2364         int block = 0, newblock;
2365         struct kernel_lb_addr loc;
2366         uint32_t bytes;
2367         uint8_t *ptr;
2368         uint16_t ident;
2369         struct spaceBitmapDesc *bm;
2370
2371         loc.logicalBlockNum = bitmap->s_extPosition;
2372         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2373         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2374
2375         if (!bh) {
2376                 udf_err(sb, "udf_count_free failed\n");
2377                 goto out;
2378         } else if (ident != TAG_IDENT_SBD) {
2379                 brelse(bh);
2380                 udf_err(sb, "udf_count_free failed\n");
2381                 goto out;
2382         }
2383
2384         bm = (struct spaceBitmapDesc *)bh->b_data;
2385         bytes = le32_to_cpu(bm->numOfBytes);
2386         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2387         ptr = (uint8_t *)bh->b_data;
2388
2389         while (bytes > 0) {
2390                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2391                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2392                                         cur_bytes * 8);
2393                 bytes -= cur_bytes;
2394                 if (bytes) {
2395                         brelse(bh);
2396                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2397                         bh = udf_tread(sb, newblock);
2398                         if (!bh) {
2399                                 udf_debug("read failed\n");
2400                                 goto out;
2401                         }
2402                         index = 0;
2403                         ptr = (uint8_t *)bh->b_data;
2404                 }
2405         }
2406         brelse(bh);
2407 out:
2408         return accum;
2409 }
2410
2411 static unsigned int udf_count_free_table(struct super_block *sb,
2412                                          struct inode *table)
2413 {
2414         unsigned int accum = 0;
2415         uint32_t elen;
2416         struct kernel_lb_addr eloc;
2417         int8_t etype;
2418         struct extent_position epos;
2419
2420         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2421         epos.block = UDF_I(table)->i_location;
2422         epos.offset = sizeof(struct unallocSpaceEntry);
2423         epos.bh = NULL;
2424
2425         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2426                 accum += (elen >> table->i_sb->s_blocksize_bits);
2427
2428         brelse(epos.bh);
2429         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2430
2431         return accum;
2432 }
2433
2434 static unsigned int udf_count_free(struct super_block *sb)
2435 {
2436         unsigned int accum = 0;
2437         struct udf_sb_info *sbi;
2438         struct udf_part_map *map;
2439
2440         sbi = UDF_SB(sb);
2441         if (sbi->s_lvid_bh) {
2442                 struct logicalVolIntegrityDesc *lvid =
2443                         (struct logicalVolIntegrityDesc *)
2444                         sbi->s_lvid_bh->b_data;
2445                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2446                         accum = le32_to_cpu(
2447                                         lvid->freeSpaceTable[sbi->s_partition]);
2448                         if (accum == 0xFFFFFFFF)
2449                                 accum = 0;
2450                 }
2451         }
2452
2453         if (accum)
2454                 return accum;
2455
2456         map = &sbi->s_partmaps[sbi->s_partition];
2457         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2458                 accum += udf_count_free_bitmap(sb,
2459                                                map->s_uspace.s_bitmap);
2460         }
2461         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2462                 accum += udf_count_free_bitmap(sb,
2463                                                map->s_fspace.s_bitmap);
2464         }
2465         if (accum)
2466                 return accum;
2467
2468         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2469                 accum += udf_count_free_table(sb,
2470                                               map->s_uspace.s_table);
2471         }
2472         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2473                 accum += udf_count_free_table(sb,
2474                                               map->s_fspace.s_table);
2475         }
2476
2477         return accum;
2478 }