Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void vma_stop(struct proc_maps_private *priv)
120 {
121         struct mm_struct *mm = priv->mm;
122
123         release_task_mempolicy(priv);
124         up_read(&mm->mmap_sem);
125         mmput(mm);
126 }
127
128 static struct vm_area_struct *
129 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
130 {
131         if (vma == priv->tail_vma)
132                 return NULL;
133         return vma->vm_next ?: priv->tail_vma;
134 }
135
136 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
137 {
138         if (m->count < m->size) /* vma is copied successfully */
139                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144         struct proc_maps_private *priv = m->private;
145         unsigned long last_addr = m->version;
146         struct mm_struct *mm;
147         struct vm_area_struct *vma;
148         unsigned int pos = *ppos;
149
150         /* See m_cache_vma(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
160                 return NULL;
161
162         down_read(&mm->mmap_sem);
163         hold_task_mempolicy(priv);
164         priv->tail_vma = get_gate_vma(mm);
165
166         if (last_addr) {
167                 vma = find_vma(mm, last_addr);
168                 if (vma && (vma = m_next_vma(priv, vma)))
169                         return vma;
170         }
171
172         m->version = 0;
173         if (pos < mm->map_count) {
174                 for (vma = mm->mmap; pos; pos--) {
175                         m->version = vma->vm_start;
176                         vma = vma->vm_next;
177                 }
178                 return vma;
179         }
180
181         /* we do not bother to update m->version in this case */
182         if (pos == mm->map_count && priv->tail_vma)
183                 return priv->tail_vma;
184
185         vma_stop(priv);
186         return NULL;
187 }
188
189 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct vm_area_struct *next;
193
194         (*pos)++;
195         next = m_next_vma(priv, v);
196         if (!next)
197                 vma_stop(priv);
198         return next;
199 }
200
201 static void m_stop(struct seq_file *m, void *v)
202 {
203         struct proc_maps_private *priv = m->private;
204
205         if (!IS_ERR_OR_NULL(v))
206                 vma_stop(priv);
207         if (priv->task) {
208                 put_task_struct(priv->task);
209                 priv->task = NULL;
210         }
211 }
212
213 static int proc_maps_open(struct inode *inode, struct file *file,
214                         const struct seq_operations *ops, int psize)
215 {
216         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
217
218         if (!priv)
219                 return -ENOMEM;
220
221         priv->inode = inode;
222         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
223         if (IS_ERR(priv->mm)) {
224                 int err = PTR_ERR(priv->mm);
225
226                 seq_release_private(inode, file);
227                 return err;
228         }
229
230         return 0;
231 }
232
233 static int proc_map_release(struct inode *inode, struct file *file)
234 {
235         struct seq_file *seq = file->private_data;
236         struct proc_maps_private *priv = seq->private;
237
238         if (priv->mm)
239                 mmdrop(priv->mm);
240
241         return seq_release_private(inode, file);
242 }
243
244 static int do_maps_open(struct inode *inode, struct file *file,
245                         const struct seq_operations *ops)
246 {
247         return proc_maps_open(inode, file, ops,
248                                 sizeof(struct proc_maps_private));
249 }
250
251 /*
252  * Indicate if the VMA is a stack for the given task; for
253  * /proc/PID/maps that is the stack of the main task.
254  */
255 static int is_stack(struct proc_maps_private *priv,
256                     struct vm_area_struct *vma, int is_pid)
257 {
258         int stack = 0;
259
260         if (is_pid) {
261                 stack = vma->vm_start <= vma->vm_mm->start_stack &&
262                         vma->vm_end >= vma->vm_mm->start_stack;
263         } else {
264                 struct inode *inode = priv->inode;
265                 struct task_struct *task;
266
267                 rcu_read_lock();
268                 task = pid_task(proc_pid(inode), PIDTYPE_PID);
269                 if (task)
270                         stack = vma_is_stack_for_task(vma, task);
271                 rcu_read_unlock();
272         }
273         return stack;
274 }
275
276 static void
277 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
278 {
279         struct mm_struct *mm = vma->vm_mm;
280         struct file *file = vma->vm_file;
281         struct proc_maps_private *priv = m->private;
282         vm_flags_t flags = vma->vm_flags;
283         unsigned long ino = 0;
284         unsigned long long pgoff = 0;
285         unsigned long start, end;
286         dev_t dev = 0;
287         const char *name = NULL;
288
289         if (file) {
290                 struct inode *inode = file_inode(vma->vm_file);
291                 dev = inode->i_sb->s_dev;
292                 ino = inode->i_ino;
293                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
294         }
295
296         /* We don't show the stack guard page in /proc/maps */
297         start = vma->vm_start;
298         if (stack_guard_page_start(vma, start))
299                 start += PAGE_SIZE;
300         end = vma->vm_end;
301         if (stack_guard_page_end(vma, end))
302                 end -= PAGE_SIZE;
303
304         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
305         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
306                         start,
307                         end,
308                         flags & VM_READ ? 'r' : '-',
309                         flags & VM_WRITE ? 'w' : '-',
310                         flags & VM_EXEC ? 'x' : '-',
311                         flags & VM_MAYSHARE ? 's' : 'p',
312                         pgoff,
313                         MAJOR(dev), MINOR(dev), ino);
314
315         /*
316          * Print the dentry name for named mappings, and a
317          * special [heap] marker for the heap:
318          */
319         if (file) {
320                 seq_pad(m, ' ');
321                 seq_file_path(m, file, "\n");
322                 goto done;
323         }
324
325         if (vma->vm_ops && vma->vm_ops->name) {
326                 name = vma->vm_ops->name(vma);
327                 if (name)
328                         goto done;
329         }
330
331         name = arch_vma_name(vma);
332         if (!name) {
333                 if (!mm) {
334                         name = "[vdso]";
335                         goto done;
336                 }
337
338                 if (vma->vm_start <= mm->brk &&
339                     vma->vm_end >= mm->start_brk) {
340                         name = "[heap]";
341                         goto done;
342                 }
343
344                 if (is_stack(priv, vma, is_pid))
345                         name = "[stack]";
346         }
347
348 done:
349         if (name) {
350                 seq_pad(m, ' ');
351                 seq_puts(m, name);
352         }
353         seq_putc(m, '\n');
354 }
355
356 static int show_map(struct seq_file *m, void *v, int is_pid)
357 {
358         show_map_vma(m, v, is_pid);
359         m_cache_vma(m, v);
360         return 0;
361 }
362
363 static int show_pid_map(struct seq_file *m, void *v)
364 {
365         return show_map(m, v, 1);
366 }
367
368 static int show_tid_map(struct seq_file *m, void *v)
369 {
370         return show_map(m, v, 0);
371 }
372
373 static const struct seq_operations proc_pid_maps_op = {
374         .start  = m_start,
375         .next   = m_next,
376         .stop   = m_stop,
377         .show   = show_pid_map
378 };
379
380 static const struct seq_operations proc_tid_maps_op = {
381         .start  = m_start,
382         .next   = m_next,
383         .stop   = m_stop,
384         .show   = show_tid_map
385 };
386
387 static int pid_maps_open(struct inode *inode, struct file *file)
388 {
389         return do_maps_open(inode, file, &proc_pid_maps_op);
390 }
391
392 static int tid_maps_open(struct inode *inode, struct file *file)
393 {
394         return do_maps_open(inode, file, &proc_tid_maps_op);
395 }
396
397 const struct file_operations proc_pid_maps_operations = {
398         .open           = pid_maps_open,
399         .read           = seq_read,
400         .llseek         = seq_lseek,
401         .release        = proc_map_release,
402 };
403
404 const struct file_operations proc_tid_maps_operations = {
405         .open           = tid_maps_open,
406         .read           = seq_read,
407         .llseek         = seq_lseek,
408         .release        = proc_map_release,
409 };
410
411 /*
412  * Proportional Set Size(PSS): my share of RSS.
413  *
414  * PSS of a process is the count of pages it has in memory, where each
415  * page is divided by the number of processes sharing it.  So if a
416  * process has 1000 pages all to itself, and 1000 shared with one other
417  * process, its PSS will be 1500.
418  *
419  * To keep (accumulated) division errors low, we adopt a 64bit
420  * fixed-point pss counter to minimize division errors. So (pss >>
421  * PSS_SHIFT) would be the real byte count.
422  *
423  * A shift of 12 before division means (assuming 4K page size):
424  *      - 1M 3-user-pages add up to 8KB errors;
425  *      - supports mapcount up to 2^24, or 16M;
426  *      - supports PSS up to 2^52 bytes, or 4PB.
427  */
428 #define PSS_SHIFT 12
429
430 #ifdef CONFIG_PROC_PAGE_MONITOR
431 struct mem_size_stats {
432         unsigned long resident;
433         unsigned long shared_clean;
434         unsigned long shared_dirty;
435         unsigned long private_clean;
436         unsigned long private_dirty;
437         unsigned long referenced;
438         unsigned long anonymous;
439         unsigned long anonymous_thp;
440         unsigned long swap;
441         unsigned long shared_hugetlb;
442         unsigned long private_hugetlb;
443         u64 pss;
444         u64 swap_pss;
445 };
446
447 static void smaps_account(struct mem_size_stats *mss, struct page *page,
448                 unsigned long size, bool young, bool dirty)
449 {
450         int mapcount;
451
452         if (PageAnon(page))
453                 mss->anonymous += size;
454
455         mss->resident += size;
456         /* Accumulate the size in pages that have been accessed. */
457         if (young || page_is_young(page) || PageReferenced(page))
458                 mss->referenced += size;
459         mapcount = page_mapcount(page);
460         if (mapcount >= 2) {
461                 u64 pss_delta;
462
463                 if (dirty || PageDirty(page))
464                         mss->shared_dirty += size;
465                 else
466                         mss->shared_clean += size;
467                 pss_delta = (u64)size << PSS_SHIFT;
468                 do_div(pss_delta, mapcount);
469                 mss->pss += pss_delta;
470         } else {
471                 if (dirty || PageDirty(page))
472                         mss->private_dirty += size;
473                 else
474                         mss->private_clean += size;
475                 mss->pss += (u64)size << PSS_SHIFT;
476         }
477 }
478
479 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
480                 struct mm_walk *walk)
481 {
482         struct mem_size_stats *mss = walk->private;
483         struct vm_area_struct *vma = walk->vma;
484         struct page *page = NULL;
485
486         if (pte_present(*pte)) {
487                 page = vm_normal_page(vma, addr, *pte);
488         } else if (is_swap_pte(*pte)) {
489                 swp_entry_t swpent = pte_to_swp_entry(*pte);
490
491                 if (!non_swap_entry(swpent)) {
492                         int mapcount;
493
494                         mss->swap += PAGE_SIZE;
495                         mapcount = swp_swapcount(swpent);
496                         if (mapcount >= 2) {
497                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
498
499                                 do_div(pss_delta, mapcount);
500                                 mss->swap_pss += pss_delta;
501                         } else {
502                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
503                         }
504                 } else if (is_migration_entry(swpent))
505                         page = migration_entry_to_page(swpent);
506         }
507
508         if (!page)
509                 return;
510         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
511 }
512
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
515                 struct mm_walk *walk)
516 {
517         struct mem_size_stats *mss = walk->private;
518         struct vm_area_struct *vma = walk->vma;
519         struct page *page;
520
521         /* FOLL_DUMP will return -EFAULT on huge zero page */
522         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
523         if (IS_ERR_OR_NULL(page))
524                 return;
525         mss->anonymous_thp += HPAGE_PMD_SIZE;
526         smaps_account(mss, page, HPAGE_PMD_SIZE,
527                         pmd_young(*pmd), pmd_dirty(*pmd));
528 }
529 #else
530 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
531                 struct mm_walk *walk)
532 {
533 }
534 #endif
535
536 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
537                            struct mm_walk *walk)
538 {
539         struct vm_area_struct *vma = walk->vma;
540         pte_t *pte;
541         spinlock_t *ptl;
542
543         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
544                 smaps_pmd_entry(pmd, addr, walk);
545                 spin_unlock(ptl);
546                 return 0;
547         }
548
549         if (pmd_trans_unstable(pmd))
550                 return 0;
551         /*
552          * The mmap_sem held all the way back in m_start() is what
553          * keeps khugepaged out of here and from collapsing things
554          * in here.
555          */
556         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
557         for (; addr != end; pte++, addr += PAGE_SIZE)
558                 smaps_pte_entry(pte, addr, walk);
559         pte_unmap_unlock(pte - 1, ptl);
560         cond_resched();
561         return 0;
562 }
563
564 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
565 {
566         /*
567          * Don't forget to update Documentation/ on changes.
568          */
569         static const char mnemonics[BITS_PER_LONG][2] = {
570                 /*
571                  * In case if we meet a flag we don't know about.
572                  */
573                 [0 ... (BITS_PER_LONG-1)] = "??",
574
575                 [ilog2(VM_READ)]        = "rd",
576                 [ilog2(VM_WRITE)]       = "wr",
577                 [ilog2(VM_EXEC)]        = "ex",
578                 [ilog2(VM_SHARED)]      = "sh",
579                 [ilog2(VM_MAYREAD)]     = "mr",
580                 [ilog2(VM_MAYWRITE)]    = "mw",
581                 [ilog2(VM_MAYEXEC)]     = "me",
582                 [ilog2(VM_MAYSHARE)]    = "ms",
583                 [ilog2(VM_GROWSDOWN)]   = "gd",
584                 [ilog2(VM_PFNMAP)]      = "pf",
585                 [ilog2(VM_DENYWRITE)]   = "dw",
586 #ifdef CONFIG_X86_INTEL_MPX
587                 [ilog2(VM_MPX)]         = "mp",
588 #endif
589                 [ilog2(VM_LOCKED)]      = "lo",
590                 [ilog2(VM_IO)]          = "io",
591                 [ilog2(VM_SEQ_READ)]    = "sr",
592                 [ilog2(VM_RAND_READ)]   = "rr",
593                 [ilog2(VM_DONTCOPY)]    = "dc",
594                 [ilog2(VM_DONTEXPAND)]  = "de",
595                 [ilog2(VM_ACCOUNT)]     = "ac",
596                 [ilog2(VM_NORESERVE)]   = "nr",
597                 [ilog2(VM_HUGETLB)]     = "ht",
598                 [ilog2(VM_ARCH_1)]      = "ar",
599                 [ilog2(VM_DONTDUMP)]    = "dd",
600 #ifdef CONFIG_MEM_SOFT_DIRTY
601                 [ilog2(VM_SOFTDIRTY)]   = "sd",
602 #endif
603                 [ilog2(VM_MIXEDMAP)]    = "mm",
604                 [ilog2(VM_HUGEPAGE)]    = "hg",
605                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
606                 [ilog2(VM_MERGEABLE)]   = "mg",
607                 [ilog2(VM_UFFD_MISSING)]= "um",
608                 [ilog2(VM_UFFD_WP)]     = "uw",
609         };
610         size_t i;
611
612         seq_puts(m, "VmFlags: ");
613         for (i = 0; i < BITS_PER_LONG; i++) {
614                 if (vma->vm_flags & (1UL << i)) {
615                         seq_printf(m, "%c%c ",
616                                    mnemonics[i][0], mnemonics[i][1]);
617                 }
618         }
619         seq_putc(m, '\n');
620 }
621
622 #ifdef CONFIG_HUGETLB_PAGE
623 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
624                                  unsigned long addr, unsigned long end,
625                                  struct mm_walk *walk)
626 {
627         struct mem_size_stats *mss = walk->private;
628         struct vm_area_struct *vma = walk->vma;
629         struct page *page = NULL;
630
631         if (pte_present(*pte)) {
632                 page = vm_normal_page(vma, addr, *pte);
633         } else if (is_swap_pte(*pte)) {
634                 swp_entry_t swpent = pte_to_swp_entry(*pte);
635
636                 if (is_migration_entry(swpent))
637                         page = migration_entry_to_page(swpent);
638         }
639         if (page) {
640                 int mapcount = page_mapcount(page);
641
642                 if (mapcount >= 2)
643                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
644                 else
645                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
646         }
647         return 0;
648 }
649 #endif /* HUGETLB_PAGE */
650
651 static int show_smap(struct seq_file *m, void *v, int is_pid)
652 {
653         struct vm_area_struct *vma = v;
654         struct mem_size_stats mss;
655         struct mm_walk smaps_walk = {
656                 .pmd_entry = smaps_pte_range,
657 #ifdef CONFIG_HUGETLB_PAGE
658                 .hugetlb_entry = smaps_hugetlb_range,
659 #endif
660                 .mm = vma->vm_mm,
661                 .private = &mss,
662         };
663
664         memset(&mss, 0, sizeof mss);
665         /* mmap_sem is held in m_start */
666         walk_page_vma(vma, &smaps_walk);
667
668         show_map_vma(m, vma, is_pid);
669
670         seq_printf(m,
671                    "Size:           %8lu kB\n"
672                    "Rss:            %8lu kB\n"
673                    "Pss:            %8lu kB\n"
674                    "Shared_Clean:   %8lu kB\n"
675                    "Shared_Dirty:   %8lu kB\n"
676                    "Private_Clean:  %8lu kB\n"
677                    "Private_Dirty:  %8lu kB\n"
678                    "Referenced:     %8lu kB\n"
679                    "Anonymous:      %8lu kB\n"
680                    "AnonHugePages:  %8lu kB\n"
681                    "Shared_Hugetlb: %8lu kB\n"
682                    "Private_Hugetlb: %7lu kB\n"
683                    "Swap:           %8lu kB\n"
684                    "SwapPss:        %8lu kB\n"
685                    "KernelPageSize: %8lu kB\n"
686                    "MMUPageSize:    %8lu kB\n"
687                    "Locked:         %8lu kB\n",
688                    (vma->vm_end - vma->vm_start) >> 10,
689                    mss.resident >> 10,
690                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
691                    mss.shared_clean  >> 10,
692                    mss.shared_dirty  >> 10,
693                    mss.private_clean >> 10,
694                    mss.private_dirty >> 10,
695                    mss.referenced >> 10,
696                    mss.anonymous >> 10,
697                    mss.anonymous_thp >> 10,
698                    mss.shared_hugetlb >> 10,
699                    mss.private_hugetlb >> 10,
700                    mss.swap >> 10,
701                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
702                    vma_kernel_pagesize(vma) >> 10,
703                    vma_mmu_pagesize(vma) >> 10,
704                    (vma->vm_flags & VM_LOCKED) ?
705                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
706
707         show_smap_vma_flags(m, vma);
708         m_cache_vma(m, vma);
709         return 0;
710 }
711
712 static int show_pid_smap(struct seq_file *m, void *v)
713 {
714         return show_smap(m, v, 1);
715 }
716
717 static int show_tid_smap(struct seq_file *m, void *v)
718 {
719         return show_smap(m, v, 0);
720 }
721
722 static const struct seq_operations proc_pid_smaps_op = {
723         .start  = m_start,
724         .next   = m_next,
725         .stop   = m_stop,
726         .show   = show_pid_smap
727 };
728
729 static const struct seq_operations proc_tid_smaps_op = {
730         .start  = m_start,
731         .next   = m_next,
732         .stop   = m_stop,
733         .show   = show_tid_smap
734 };
735
736 static int pid_smaps_open(struct inode *inode, struct file *file)
737 {
738         return do_maps_open(inode, file, &proc_pid_smaps_op);
739 }
740
741 static int tid_smaps_open(struct inode *inode, struct file *file)
742 {
743         return do_maps_open(inode, file, &proc_tid_smaps_op);
744 }
745
746 const struct file_operations proc_pid_smaps_operations = {
747         .open           = pid_smaps_open,
748         .read           = seq_read,
749         .llseek         = seq_lseek,
750         .release        = proc_map_release,
751 };
752
753 const struct file_operations proc_tid_smaps_operations = {
754         .open           = tid_smaps_open,
755         .read           = seq_read,
756         .llseek         = seq_lseek,
757         .release        = proc_map_release,
758 };
759
760 enum clear_refs_types {
761         CLEAR_REFS_ALL = 1,
762         CLEAR_REFS_ANON,
763         CLEAR_REFS_MAPPED,
764         CLEAR_REFS_SOFT_DIRTY,
765         CLEAR_REFS_MM_HIWATER_RSS,
766         CLEAR_REFS_LAST,
767 };
768
769 struct clear_refs_private {
770         enum clear_refs_types type;
771 };
772
773 #ifdef CONFIG_MEM_SOFT_DIRTY
774 static inline void clear_soft_dirty(struct vm_area_struct *vma,
775                 unsigned long addr, pte_t *pte)
776 {
777         /*
778          * The soft-dirty tracker uses #PF-s to catch writes
779          * to pages, so write-protect the pte as well. See the
780          * Documentation/vm/soft-dirty.txt for full description
781          * of how soft-dirty works.
782          */
783         pte_t ptent = *pte;
784
785         if (pte_present(ptent)) {
786                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
787                 ptent = pte_wrprotect(ptent);
788                 ptent = pte_clear_soft_dirty(ptent);
789                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
790         } else if (is_swap_pte(ptent)) {
791                 ptent = pte_swp_clear_soft_dirty(ptent);
792                 set_pte_at(vma->vm_mm, addr, pte, ptent);
793         }
794 }
795 #else
796 static inline void clear_soft_dirty(struct vm_area_struct *vma,
797                 unsigned long addr, pte_t *pte)
798 {
799 }
800 #endif
801
802 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
803 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
804                 unsigned long addr, pmd_t *pmdp)
805 {
806         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
807
808         pmd = pmd_wrprotect(pmd);
809         pmd = pmd_clear_soft_dirty(pmd);
810
811         if (vma->vm_flags & VM_SOFTDIRTY)
812                 vma->vm_flags &= ~VM_SOFTDIRTY;
813
814         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
815 }
816 #else
817 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
818                 unsigned long addr, pmd_t *pmdp)
819 {
820 }
821 #endif
822
823 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
824                                 unsigned long end, struct mm_walk *walk)
825 {
826         struct clear_refs_private *cp = walk->private;
827         struct vm_area_struct *vma = walk->vma;
828         pte_t *pte, ptent;
829         spinlock_t *ptl;
830         struct page *page;
831
832         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
833                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
834                         clear_soft_dirty_pmd(vma, addr, pmd);
835                         goto out;
836                 }
837
838                 page = pmd_page(*pmd);
839
840                 /* Clear accessed and referenced bits. */
841                 pmdp_test_and_clear_young(vma, addr, pmd);
842                 test_and_clear_page_young(page);
843                 ClearPageReferenced(page);
844 out:
845                 spin_unlock(ptl);
846                 return 0;
847         }
848
849         if (pmd_trans_unstable(pmd))
850                 return 0;
851
852         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
853         for (; addr != end; pte++, addr += PAGE_SIZE) {
854                 ptent = *pte;
855
856                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
857                         clear_soft_dirty(vma, addr, pte);
858                         continue;
859                 }
860
861                 if (!pte_present(ptent))
862                         continue;
863
864                 page = vm_normal_page(vma, addr, ptent);
865                 if (!page)
866                         continue;
867
868                 /* Clear accessed and referenced bits. */
869                 ptep_test_and_clear_young(vma, addr, pte);
870                 test_and_clear_page_young(page);
871                 ClearPageReferenced(page);
872         }
873         pte_unmap_unlock(pte - 1, ptl);
874         cond_resched();
875         return 0;
876 }
877
878 static int clear_refs_test_walk(unsigned long start, unsigned long end,
879                                 struct mm_walk *walk)
880 {
881         struct clear_refs_private *cp = walk->private;
882         struct vm_area_struct *vma = walk->vma;
883
884         if (vma->vm_flags & VM_PFNMAP)
885                 return 1;
886
887         /*
888          * Writing 1 to /proc/pid/clear_refs affects all pages.
889          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
890          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
891          * Writing 4 to /proc/pid/clear_refs affects all pages.
892          */
893         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
894                 return 1;
895         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
896                 return 1;
897         return 0;
898 }
899
900 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
901                                 size_t count, loff_t *ppos)
902 {
903         struct task_struct *task;
904         char buffer[PROC_NUMBUF];
905         struct mm_struct *mm;
906         struct vm_area_struct *vma;
907         enum clear_refs_types type;
908         int itype;
909         int rv;
910
911         memset(buffer, 0, sizeof(buffer));
912         if (count > sizeof(buffer) - 1)
913                 count = sizeof(buffer) - 1;
914         if (copy_from_user(buffer, buf, count))
915                 return -EFAULT;
916         rv = kstrtoint(strstrip(buffer), 10, &itype);
917         if (rv < 0)
918                 return rv;
919         type = (enum clear_refs_types)itype;
920         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
921                 return -EINVAL;
922
923         task = get_proc_task(file_inode(file));
924         if (!task)
925                 return -ESRCH;
926         mm = get_task_mm(task);
927         if (mm) {
928                 struct clear_refs_private cp = {
929                         .type = type,
930                 };
931                 struct mm_walk clear_refs_walk = {
932                         .pmd_entry = clear_refs_pte_range,
933                         .test_walk = clear_refs_test_walk,
934                         .mm = mm,
935                         .private = &cp,
936                 };
937
938                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
939                         /*
940                          * Writing 5 to /proc/pid/clear_refs resets the peak
941                          * resident set size to this mm's current rss value.
942                          */
943                         down_write(&mm->mmap_sem);
944                         reset_mm_hiwater_rss(mm);
945                         up_write(&mm->mmap_sem);
946                         goto out_mm;
947                 }
948
949                 down_read(&mm->mmap_sem);
950                 if (type == CLEAR_REFS_SOFT_DIRTY) {
951                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
952                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
953                                         continue;
954                                 up_read(&mm->mmap_sem);
955                                 down_write(&mm->mmap_sem);
956                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
957                                         vma->vm_flags &= ~VM_SOFTDIRTY;
958                                         vma_set_page_prot(vma);
959                                 }
960                                 downgrade_write(&mm->mmap_sem);
961                                 break;
962                         }
963                         mmu_notifier_invalidate_range_start(mm, 0, -1);
964                 }
965                 walk_page_range(0, ~0UL, &clear_refs_walk);
966                 if (type == CLEAR_REFS_SOFT_DIRTY)
967                         mmu_notifier_invalidate_range_end(mm, 0, -1);
968                 flush_tlb_mm(mm);
969                 up_read(&mm->mmap_sem);
970 out_mm:
971                 mmput(mm);
972         }
973         put_task_struct(task);
974
975         return count;
976 }
977
978 const struct file_operations proc_clear_refs_operations = {
979         .write          = clear_refs_write,
980         .llseek         = noop_llseek,
981 };
982
983 typedef struct {
984         u64 pme;
985 } pagemap_entry_t;
986
987 struct pagemapread {
988         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
989         pagemap_entry_t *buffer;
990         bool show_pfn;
991 };
992
993 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
994 #define PAGEMAP_WALK_MASK       (PMD_MASK)
995
996 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
997 #define PM_PFRAME_BITS          55
998 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
999 #define PM_SOFT_DIRTY           BIT_ULL(55)
1000 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1001 #define PM_FILE                 BIT_ULL(61)
1002 #define PM_SWAP                 BIT_ULL(62)
1003 #define PM_PRESENT              BIT_ULL(63)
1004
1005 #define PM_END_OF_BUFFER    1
1006
1007 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1008 {
1009         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1010 }
1011
1012 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1013                           struct pagemapread *pm)
1014 {
1015         pm->buffer[pm->pos++] = *pme;
1016         if (pm->pos >= pm->len)
1017                 return PM_END_OF_BUFFER;
1018         return 0;
1019 }
1020
1021 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1022                                 struct mm_walk *walk)
1023 {
1024         struct pagemapread *pm = walk->private;
1025         unsigned long addr = start;
1026         int err = 0;
1027
1028         while (addr < end) {
1029                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1030                 pagemap_entry_t pme = make_pme(0, 0);
1031                 /* End of address space hole, which we mark as non-present. */
1032                 unsigned long hole_end;
1033
1034                 if (vma)
1035                         hole_end = min(end, vma->vm_start);
1036                 else
1037                         hole_end = end;
1038
1039                 for (; addr < hole_end; addr += PAGE_SIZE) {
1040                         err = add_to_pagemap(addr, &pme, pm);
1041                         if (err)
1042                                 goto out;
1043                 }
1044
1045                 if (!vma)
1046                         break;
1047
1048                 /* Addresses in the VMA. */
1049                 if (vma->vm_flags & VM_SOFTDIRTY)
1050                         pme = make_pme(0, PM_SOFT_DIRTY);
1051                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1052                         err = add_to_pagemap(addr, &pme, pm);
1053                         if (err)
1054                                 goto out;
1055                 }
1056         }
1057 out:
1058         return err;
1059 }
1060
1061 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1062                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1063 {
1064         u64 frame = 0, flags = 0;
1065         struct page *page = NULL;
1066
1067         if (pte_present(pte)) {
1068                 if (pm->show_pfn)
1069                         frame = pte_pfn(pte);
1070                 flags |= PM_PRESENT;
1071                 page = vm_normal_page(vma, addr, pte);
1072                 if (pte_soft_dirty(pte))
1073                         flags |= PM_SOFT_DIRTY;
1074         } else if (is_swap_pte(pte)) {
1075                 swp_entry_t entry;
1076                 if (pte_swp_soft_dirty(pte))
1077                         flags |= PM_SOFT_DIRTY;
1078                 entry = pte_to_swp_entry(pte);
1079                 frame = swp_type(entry) |
1080                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1081                 flags |= PM_SWAP;
1082                 if (is_migration_entry(entry))
1083                         page = migration_entry_to_page(entry);
1084         }
1085
1086         if (page && !PageAnon(page))
1087                 flags |= PM_FILE;
1088         if (page && page_mapcount(page) == 1)
1089                 flags |= PM_MMAP_EXCLUSIVE;
1090         if (vma->vm_flags & VM_SOFTDIRTY)
1091                 flags |= PM_SOFT_DIRTY;
1092
1093         return make_pme(frame, flags);
1094 }
1095
1096 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1097                              struct mm_walk *walk)
1098 {
1099         struct vm_area_struct *vma = walk->vma;
1100         struct pagemapread *pm = walk->private;
1101         spinlock_t *ptl;
1102         pte_t *pte, *orig_pte;
1103         int err = 0;
1104
1105 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1106         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1107                 u64 flags = 0, frame = 0;
1108                 pmd_t pmd = *pmdp;
1109
1110                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1111                         flags |= PM_SOFT_DIRTY;
1112
1113                 /*
1114                  * Currently pmd for thp is always present because thp
1115                  * can not be swapped-out, migrated, or HWPOISONed
1116                  * (split in such cases instead.)
1117                  * This if-check is just to prepare for future implementation.
1118                  */
1119                 if (pmd_present(pmd)) {
1120                         struct page *page = pmd_page(pmd);
1121
1122                         if (page_mapcount(page) == 1)
1123                                 flags |= PM_MMAP_EXCLUSIVE;
1124
1125                         flags |= PM_PRESENT;
1126                         if (pm->show_pfn)
1127                                 frame = pmd_pfn(pmd) +
1128                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1129                 }
1130
1131                 for (; addr != end; addr += PAGE_SIZE) {
1132                         pagemap_entry_t pme = make_pme(frame, flags);
1133
1134                         err = add_to_pagemap(addr, &pme, pm);
1135                         if (err)
1136                                 break;
1137                         if (pm->show_pfn && (flags & PM_PRESENT))
1138                                 frame++;
1139                 }
1140                 spin_unlock(ptl);
1141                 return err;
1142         }
1143
1144         if (pmd_trans_unstable(pmdp))
1145                 return 0;
1146 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1147
1148         /*
1149          * We can assume that @vma always points to a valid one and @end never
1150          * goes beyond vma->vm_end.
1151          */
1152         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1153         for (; addr < end; pte++, addr += PAGE_SIZE) {
1154                 pagemap_entry_t pme;
1155
1156                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1157                 err = add_to_pagemap(addr, &pme, pm);
1158                 if (err)
1159                         break;
1160         }
1161         pte_unmap_unlock(orig_pte, ptl);
1162
1163         cond_resched();
1164
1165         return err;
1166 }
1167
1168 #ifdef CONFIG_HUGETLB_PAGE
1169 /* This function walks within one hugetlb entry in the single call */
1170 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1171                                  unsigned long addr, unsigned long end,
1172                                  struct mm_walk *walk)
1173 {
1174         struct pagemapread *pm = walk->private;
1175         struct vm_area_struct *vma = walk->vma;
1176         u64 flags = 0, frame = 0;
1177         int err = 0;
1178         pte_t pte;
1179
1180         if (vma->vm_flags & VM_SOFTDIRTY)
1181                 flags |= PM_SOFT_DIRTY;
1182
1183         pte = huge_ptep_get(ptep);
1184         if (pte_present(pte)) {
1185                 struct page *page = pte_page(pte);
1186
1187                 if (!PageAnon(page))
1188                         flags |= PM_FILE;
1189
1190                 if (page_mapcount(page) == 1)
1191                         flags |= PM_MMAP_EXCLUSIVE;
1192
1193                 flags |= PM_PRESENT;
1194                 if (pm->show_pfn)
1195                         frame = pte_pfn(pte) +
1196                                 ((addr & ~hmask) >> PAGE_SHIFT);
1197         }
1198
1199         for (; addr != end; addr += PAGE_SIZE) {
1200                 pagemap_entry_t pme = make_pme(frame, flags);
1201
1202                 err = add_to_pagemap(addr, &pme, pm);
1203                 if (err)
1204                         return err;
1205                 if (pm->show_pfn && (flags & PM_PRESENT))
1206                         frame++;
1207         }
1208
1209         cond_resched();
1210
1211         return err;
1212 }
1213 #endif /* HUGETLB_PAGE */
1214
1215 /*
1216  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1217  *
1218  * For each page in the address space, this file contains one 64-bit entry
1219  * consisting of the following:
1220  *
1221  * Bits 0-54  page frame number (PFN) if present
1222  * Bits 0-4   swap type if swapped
1223  * Bits 5-54  swap offset if swapped
1224  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1225  * Bit  56    page exclusively mapped
1226  * Bits 57-60 zero
1227  * Bit  61    page is file-page or shared-anon
1228  * Bit  62    page swapped
1229  * Bit  63    page present
1230  *
1231  * If the page is not present but in swap, then the PFN contains an
1232  * encoding of the swap file number and the page's offset into the
1233  * swap. Unmapped pages return a null PFN. This allows determining
1234  * precisely which pages are mapped (or in swap) and comparing mapped
1235  * pages between processes.
1236  *
1237  * Efficient users of this interface will use /proc/pid/maps to
1238  * determine which areas of memory are actually mapped and llseek to
1239  * skip over unmapped regions.
1240  */
1241 static ssize_t pagemap_read(struct file *file, char __user *buf,
1242                             size_t count, loff_t *ppos)
1243 {
1244         struct mm_struct *mm = file->private_data;
1245         struct pagemapread pm;
1246         struct mm_walk pagemap_walk = {};
1247         unsigned long src;
1248         unsigned long svpfn;
1249         unsigned long start_vaddr;
1250         unsigned long end_vaddr;
1251         int ret = 0, copied = 0;
1252
1253         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1254                 goto out;
1255
1256         ret = -EINVAL;
1257         /* file position must be aligned */
1258         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1259                 goto out_mm;
1260
1261         ret = 0;
1262         if (!count)
1263                 goto out_mm;
1264
1265         /* do not disclose physical addresses: attack vector */
1266         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1267
1268         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1269         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1270         ret = -ENOMEM;
1271         if (!pm.buffer)
1272                 goto out_mm;
1273
1274         pagemap_walk.pmd_entry = pagemap_pmd_range;
1275         pagemap_walk.pte_hole = pagemap_pte_hole;
1276 #ifdef CONFIG_HUGETLB_PAGE
1277         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1278 #endif
1279         pagemap_walk.mm = mm;
1280         pagemap_walk.private = &pm;
1281
1282         src = *ppos;
1283         svpfn = src / PM_ENTRY_BYTES;
1284         start_vaddr = svpfn << PAGE_SHIFT;
1285         end_vaddr = mm->task_size;
1286
1287         /* watch out for wraparound */
1288         if (svpfn > mm->task_size >> PAGE_SHIFT)
1289                 start_vaddr = end_vaddr;
1290
1291         /*
1292          * The odds are that this will stop walking way
1293          * before end_vaddr, because the length of the
1294          * user buffer is tracked in "pm", and the walk
1295          * will stop when we hit the end of the buffer.
1296          */
1297         ret = 0;
1298         while (count && (start_vaddr < end_vaddr)) {
1299                 int len;
1300                 unsigned long end;
1301
1302                 pm.pos = 0;
1303                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1304                 /* overflow ? */
1305                 if (end < start_vaddr || end > end_vaddr)
1306                         end = end_vaddr;
1307                 down_read(&mm->mmap_sem);
1308                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1309                 up_read(&mm->mmap_sem);
1310                 start_vaddr = end;
1311
1312                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1313                 if (copy_to_user(buf, pm.buffer, len)) {
1314                         ret = -EFAULT;
1315                         goto out_free;
1316                 }
1317                 copied += len;
1318                 buf += len;
1319                 count -= len;
1320         }
1321         *ppos += copied;
1322         if (!ret || ret == PM_END_OF_BUFFER)
1323                 ret = copied;
1324
1325 out_free:
1326         kfree(pm.buffer);
1327 out_mm:
1328         mmput(mm);
1329 out:
1330         return ret;
1331 }
1332
1333 static int pagemap_open(struct inode *inode, struct file *file)
1334 {
1335         struct mm_struct *mm;
1336
1337         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1338         if (IS_ERR(mm))
1339                 return PTR_ERR(mm);
1340         file->private_data = mm;
1341         return 0;
1342 }
1343
1344 static int pagemap_release(struct inode *inode, struct file *file)
1345 {
1346         struct mm_struct *mm = file->private_data;
1347
1348         if (mm)
1349                 mmdrop(mm);
1350         return 0;
1351 }
1352
1353 const struct file_operations proc_pagemap_operations = {
1354         .llseek         = mem_lseek, /* borrow this */
1355         .read           = pagemap_read,
1356         .open           = pagemap_open,
1357         .release        = pagemap_release,
1358 };
1359 #endif /* CONFIG_PROC_PAGE_MONITOR */
1360
1361 #ifdef CONFIG_NUMA
1362
1363 struct numa_maps {
1364         unsigned long pages;
1365         unsigned long anon;
1366         unsigned long active;
1367         unsigned long writeback;
1368         unsigned long mapcount_max;
1369         unsigned long dirty;
1370         unsigned long swapcache;
1371         unsigned long node[MAX_NUMNODES];
1372 };
1373
1374 struct numa_maps_private {
1375         struct proc_maps_private proc_maps;
1376         struct numa_maps md;
1377 };
1378
1379 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1380                         unsigned long nr_pages)
1381 {
1382         int count = page_mapcount(page);
1383
1384         md->pages += nr_pages;
1385         if (pte_dirty || PageDirty(page))
1386                 md->dirty += nr_pages;
1387
1388         if (PageSwapCache(page))
1389                 md->swapcache += nr_pages;
1390
1391         if (PageActive(page) || PageUnevictable(page))
1392                 md->active += nr_pages;
1393
1394         if (PageWriteback(page))
1395                 md->writeback += nr_pages;
1396
1397         if (PageAnon(page))
1398                 md->anon += nr_pages;
1399
1400         if (count > md->mapcount_max)
1401                 md->mapcount_max = count;
1402
1403         md->node[page_to_nid(page)] += nr_pages;
1404 }
1405
1406 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1407                 unsigned long addr)
1408 {
1409         struct page *page;
1410         int nid;
1411
1412         if (!pte_present(pte))
1413                 return NULL;
1414
1415         page = vm_normal_page(vma, addr, pte);
1416         if (!page)
1417                 return NULL;
1418
1419         if (PageReserved(page))
1420                 return NULL;
1421
1422         nid = page_to_nid(page);
1423         if (!node_isset(nid, node_states[N_MEMORY]))
1424                 return NULL;
1425
1426         return page;
1427 }
1428
1429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1430 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1431                                               struct vm_area_struct *vma,
1432                                               unsigned long addr)
1433 {
1434         struct page *page;
1435         int nid;
1436
1437         if (!pmd_present(pmd))
1438                 return NULL;
1439
1440         page = vm_normal_page_pmd(vma, addr, pmd);
1441         if (!page)
1442                 return NULL;
1443
1444         if (PageReserved(page))
1445                 return NULL;
1446
1447         nid = page_to_nid(page);
1448         if (!node_isset(nid, node_states[N_MEMORY]))
1449                 return NULL;
1450
1451         return page;
1452 }
1453 #endif
1454
1455 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1456                 unsigned long end, struct mm_walk *walk)
1457 {
1458         struct numa_maps *md = walk->private;
1459         struct vm_area_struct *vma = walk->vma;
1460         spinlock_t *ptl;
1461         pte_t *orig_pte;
1462         pte_t *pte;
1463
1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1466                 struct page *page;
1467
1468                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1469                 if (page)
1470                         gather_stats(page, md, pmd_dirty(*pmd),
1471                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1472                 spin_unlock(ptl);
1473                 return 0;
1474         }
1475
1476         if (pmd_trans_unstable(pmd))
1477                 return 0;
1478 #endif
1479         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1480         do {
1481                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1482                 if (!page)
1483                         continue;
1484                 gather_stats(page, md, pte_dirty(*pte), 1);
1485
1486         } while (pte++, addr += PAGE_SIZE, addr != end);
1487         pte_unmap_unlock(orig_pte, ptl);
1488         return 0;
1489 }
1490 #ifdef CONFIG_HUGETLB_PAGE
1491 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1492                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1493 {
1494         pte_t huge_pte = huge_ptep_get(pte);
1495         struct numa_maps *md;
1496         struct page *page;
1497
1498         if (!pte_present(huge_pte))
1499                 return 0;
1500
1501         page = pte_page(huge_pte);
1502         if (!page)
1503                 return 0;
1504
1505         md = walk->private;
1506         gather_stats(page, md, pte_dirty(huge_pte), 1);
1507         return 0;
1508 }
1509
1510 #else
1511 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1512                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1513 {
1514         return 0;
1515 }
1516 #endif
1517
1518 /*
1519  * Display pages allocated per node and memory policy via /proc.
1520  */
1521 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1522 {
1523         struct numa_maps_private *numa_priv = m->private;
1524         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1525         struct vm_area_struct *vma = v;
1526         struct numa_maps *md = &numa_priv->md;
1527         struct file *file = vma->vm_file;
1528         struct mm_struct *mm = vma->vm_mm;
1529         struct mm_walk walk = {
1530                 .hugetlb_entry = gather_hugetlb_stats,
1531                 .pmd_entry = gather_pte_stats,
1532                 .private = md,
1533                 .mm = mm,
1534         };
1535         struct mempolicy *pol;
1536         char buffer[64];
1537         int nid;
1538
1539         if (!mm)
1540                 return 0;
1541
1542         /* Ensure we start with an empty set of numa_maps statistics. */
1543         memset(md, 0, sizeof(*md));
1544
1545         pol = __get_vma_policy(vma, vma->vm_start);
1546         if (pol) {
1547                 mpol_to_str(buffer, sizeof(buffer), pol);
1548                 mpol_cond_put(pol);
1549         } else {
1550                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1551         }
1552
1553         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1554
1555         if (file) {
1556                 seq_puts(m, " file=");
1557                 seq_file_path(m, file, "\n\t= ");
1558         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1559                 seq_puts(m, " heap");
1560         } else if (is_stack(proc_priv, vma, is_pid)) {
1561                 seq_puts(m, " stack");
1562         }
1563
1564         if (is_vm_hugetlb_page(vma))
1565                 seq_puts(m, " huge");
1566
1567         /* mmap_sem is held by m_start */
1568         walk_page_vma(vma, &walk);
1569
1570         if (!md->pages)
1571                 goto out;
1572
1573         if (md->anon)
1574                 seq_printf(m, " anon=%lu", md->anon);
1575
1576         if (md->dirty)
1577                 seq_printf(m, " dirty=%lu", md->dirty);
1578
1579         if (md->pages != md->anon && md->pages != md->dirty)
1580                 seq_printf(m, " mapped=%lu", md->pages);
1581
1582         if (md->mapcount_max > 1)
1583                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1584
1585         if (md->swapcache)
1586                 seq_printf(m, " swapcache=%lu", md->swapcache);
1587
1588         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1589                 seq_printf(m, " active=%lu", md->active);
1590
1591         if (md->writeback)
1592                 seq_printf(m, " writeback=%lu", md->writeback);
1593
1594         for_each_node_state(nid, N_MEMORY)
1595                 if (md->node[nid])
1596                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1597
1598         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1599 out:
1600         seq_putc(m, '\n');
1601         m_cache_vma(m, vma);
1602         return 0;
1603 }
1604
1605 static int show_pid_numa_map(struct seq_file *m, void *v)
1606 {
1607         return show_numa_map(m, v, 1);
1608 }
1609
1610 static int show_tid_numa_map(struct seq_file *m, void *v)
1611 {
1612         return show_numa_map(m, v, 0);
1613 }
1614
1615 static const struct seq_operations proc_pid_numa_maps_op = {
1616         .start  = m_start,
1617         .next   = m_next,
1618         .stop   = m_stop,
1619         .show   = show_pid_numa_map,
1620 };
1621
1622 static const struct seq_operations proc_tid_numa_maps_op = {
1623         .start  = m_start,
1624         .next   = m_next,
1625         .stop   = m_stop,
1626         .show   = show_tid_numa_map,
1627 };
1628
1629 static int numa_maps_open(struct inode *inode, struct file *file,
1630                           const struct seq_operations *ops)
1631 {
1632         return proc_maps_open(inode, file, ops,
1633                                 sizeof(struct numa_maps_private));
1634 }
1635
1636 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1637 {
1638         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1639 }
1640
1641 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1642 {
1643         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1644 }
1645
1646 const struct file_operations proc_pid_numa_maps_operations = {
1647         .open           = pid_numa_maps_open,
1648         .read           = seq_read,
1649         .llseek         = seq_lseek,
1650         .release        = proc_map_release,
1651 };
1652
1653 const struct file_operations proc_tid_numa_maps_operations = {
1654         .open           = tid_numa_maps_open,
1655         .read           = seq_read,
1656         .llseek         = seq_lseek,
1657         .release        = proc_map_release,
1658 };
1659 #endif /* CONFIG_NUMA */