Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_sem_locked(iocb))
623                 ocfs2_iocb_clear_sem_locked(iocb);
624
625         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626                 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629         }
630
631         ocfs2_iocb_clear_rw_locked(iocb);
632
633         level = ocfs2_iocb_rw_locked_level(iocb);
634         ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639         if (!page_has_buffers(page))
640                 return 0;
641         return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645                 struct inode *inode, loff_t offset)
646 {
647         int ret = 0;
648         u32 v_cpos = 0;
649         u32 p_cpos = 0;
650         unsigned int num_clusters = 0;
651         unsigned int ext_flags = 0;
652
653         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655                         &num_clusters, &ext_flags);
656         if (ret < 0) {
657                 mlog_errno(ret);
658                 return ret;
659         }
660
661         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662                 return 1;
663
664         return 0;
665 }
666
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668                 struct inode *inode, loff_t offset,
669                 u64 zero_len, int cluster_align)
670 {
671         u32 p_cpos = 0;
672         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673         unsigned int num_clusters = 0;
674         unsigned int ext_flags = 0;
675         int ret = 0;
676
677         if (offset <= i_size_read(inode) || cluster_align)
678                 return 0;
679
680         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681                         &ext_flags);
682         if (ret < 0) {
683                 mlog_errno(ret);
684                 return ret;
685         }
686
687         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688                 u64 s = i_size_read(inode);
689                 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
690                         (do_div(s, osb->s_clustersize) >> 9);
691
692                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693                                 zero_len >> 9, GFP_NOFS, false);
694                 if (ret < 0)
695                         mlog_errno(ret);
696         }
697
698         return ret;
699 }
700
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702                 struct inode *inode, loff_t offset)
703 {
704         u64 zero_start, zero_len, total_zero_len;
705         u32 p_cpos = 0, clusters_to_add;
706         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707         unsigned int num_clusters = 0;
708         unsigned int ext_flags = 0;
709         u32 size_div, offset_div;
710         int ret = 0;
711
712         {
713                 u64 o = offset;
714                 u64 s = i_size_read(inode);
715
716                 offset_div = do_div(o, osb->s_clustersize);
717                 size_div = do_div(s, osb->s_clustersize);
718         }
719
720         if (offset <= i_size_read(inode))
721                 return 0;
722
723         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725         total_zero_len = offset - i_size_read(inode);
726         if (clusters_to_add)
727                 total_zero_len -= offset_div;
728
729         /* Allocate clusters to fill out holes, and this is only needed
730          * when we add more than one clusters. Otherwise the cluster will
731          * be allocated during direct IO */
732         if (clusters_to_add > 1) {
733                 ret = ocfs2_extend_allocation(inode,
734                                 OCFS2_I(inode)->ip_clusters,
735                                 clusters_to_add - 1, 0);
736                 if (ret) {
737                         mlog_errno(ret);
738                         goto out;
739                 }
740         }
741
742         while (total_zero_len) {
743                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744                                 &ext_flags);
745                 if (ret < 0) {
746                         mlog_errno(ret);
747                         goto out;
748                 }
749
750                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751                         size_div;
752                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753                         size_div;
754                 zero_len = min(total_zero_len, zero_len);
755
756                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758                                         zero_start >> 9, zero_len >> 9,
759                                         GFP_NOFS, false);
760                         if (ret < 0) {
761                                 mlog_errno(ret);
762                                 goto out;
763                         }
764                 }
765
766                 total_zero_len -= zero_len;
767                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768
769                 /* Only at first iteration can be cluster not aligned.
770                  * So set size_div to 0 for the rest */
771                 size_div = 0;
772         }
773
774 out:
775         return ret;
776 }
777
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779                 struct iov_iter *iter,
780                 loff_t offset)
781 {
782         ssize_t ret = 0;
783         ssize_t written = 0;
784         bool orphaned = false;
785         int is_overwrite = 0;
786         struct file *file = iocb->ki_filp;
787         struct inode *inode = file_inode(file)->i_mapping->host;
788         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789         struct buffer_head *di_bh = NULL;
790         size_t count = iter->count;
791         journal_t *journal = osb->journal->j_journal;
792         u64 zero_len_head, zero_len_tail;
793         int cluster_align_head, cluster_align_tail;
794         loff_t final_size = offset + count;
795         int append_write = offset >= i_size_read(inode) ? 1 : 0;
796         unsigned int num_clusters = 0;
797         unsigned int ext_flags = 0;
798
799         {
800                 u64 o = offset;
801                 u64 s = i_size_read(inode);
802
803                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804                 cluster_align_head = !zero_len_head;
805
806                 zero_len_tail = osb->s_clustersize -
807                         do_div(s, osb->s_clustersize);
808                 if ((offset - i_size_read(inode)) < zero_len_tail)
809                         zero_len_tail = offset - i_size_read(inode);
810                 cluster_align_tail = !zero_len_tail;
811         }
812
813         /*
814          * when final_size > inode->i_size, inode->i_size will be
815          * updated after direct write, so add the inode to orphan
816          * dir first.
817          */
818         if (final_size > i_size_read(inode)) {
819                 ret = ocfs2_add_inode_to_orphan(osb, inode);
820                 if (ret < 0) {
821                         mlog_errno(ret);
822                         goto out;
823                 }
824                 orphaned = true;
825         }
826
827         if (append_write) {
828                 ret = ocfs2_inode_lock(inode, NULL, 1);
829                 if (ret < 0) {
830                         mlog_errno(ret);
831                         goto clean_orphan;
832                 }
833
834                 /* zeroing out the previously allocated cluster tail
835                  * that but not zeroed */
836                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838                                         zero_len_tail, cluster_align_tail);
839                 else
840                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841                                         offset);
842                 if (ret < 0) {
843                         mlog_errno(ret);
844                         ocfs2_inode_unlock(inode, 1);
845                         goto clean_orphan;
846                 }
847
848                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849                 if (is_overwrite < 0) {
850                         mlog_errno(is_overwrite);
851                         ocfs2_inode_unlock(inode, 1);
852                         goto clean_orphan;
853                 }
854
855                 ocfs2_inode_unlock(inode, 1);
856         }
857
858         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
859                                        offset, ocfs2_direct_IO_get_blocks,
860                                        ocfs2_dio_end_io, NULL, 0);
861         if (unlikely(written < 0)) {
862                 loff_t i_size = i_size_read(inode);
863
864                 if (offset + count > i_size) {
865                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
866                         if (ret < 0) {
867                                 mlog_errno(ret);
868                                 goto clean_orphan;
869                         }
870
871                         if (i_size == i_size_read(inode)) {
872                                 ret = ocfs2_truncate_file(inode, di_bh,
873                                                 i_size);
874                                 if (ret < 0) {
875                                         if (ret != -ENOSPC)
876                                                 mlog_errno(ret);
877
878                                         ocfs2_inode_unlock(inode, 1);
879                                         brelse(di_bh);
880                                         goto clean_orphan;
881                                 }
882                         }
883
884                         ocfs2_inode_unlock(inode, 1);
885                         brelse(di_bh);
886
887                         ret = jbd2_journal_force_commit(journal);
888                         if (ret < 0)
889                                 mlog_errno(ret);
890                 }
891         } else if (written > 0 && append_write && !is_overwrite &&
892                         !cluster_align_head) {
893                 /* zeroing out the allocated cluster head */
894                 u32 p_cpos = 0;
895                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896
897                 ret = ocfs2_inode_lock(inode, NULL, 0);
898                 if (ret < 0) {
899                         mlog_errno(ret);
900                         goto clean_orphan;
901                 }
902
903                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904                                 &num_clusters, &ext_flags);
905                 if (ret < 0) {
906                         mlog_errno(ret);
907                         ocfs2_inode_unlock(inode, 0);
908                         goto clean_orphan;
909                 }
910
911                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912
913                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914                                 (u64)p_cpos << (osb->s_clustersize_bits - 9),
915                                 zero_len_head >> 9, GFP_NOFS, false);
916                 if (ret < 0)
917                         mlog_errno(ret);
918
919                 ocfs2_inode_unlock(inode, 0);
920         }
921
922 clean_orphan:
923         if (orphaned) {
924                 int tmp_ret;
925                 int update_isize = written > 0 ? 1 : 0;
926                 loff_t end = update_isize ? offset + written : 0;
927
928                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929                                 update_isize, end);
930                 if (tmp_ret < 0) {
931                         ret = tmp_ret;
932                         goto out;
933                 }
934
935                 tmp_ret = jbd2_journal_force_commit(journal);
936                 if (tmp_ret < 0) {
937                         ret = tmp_ret;
938                         mlog_errno(tmp_ret);
939                 }
940         }
941
942 out:
943         if (ret >= 0)
944                 ret = written;
945         return ret;
946 }
947
948 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
949                                loff_t offset)
950 {
951         struct file *file = iocb->ki_filp;
952         struct inode *inode = file_inode(file)->i_mapping->host;
953         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
954         int full_coherency = !(osb->s_mount_opt &
955                         OCFS2_MOUNT_COHERENCY_BUFFERED);
956
957         /*
958          * Fallback to buffered I/O if we see an inode without
959          * extents.
960          */
961         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
962                 return 0;
963
964         /* Fallback to buffered I/O if we are appending and
965          * concurrent O_DIRECT writes are allowed.
966          */
967         if (i_size_read(inode) <= offset && !full_coherency)
968                 return 0;
969
970         if (iov_iter_rw(iter) == READ)
971                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
972                                             iter, offset,
973                                             ocfs2_direct_IO_get_blocks,
974                                             ocfs2_dio_end_io, NULL, 0);
975         else
976                 return ocfs2_direct_IO_write(iocb, iter, offset);
977 }
978
979 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
980                                             u32 cpos,
981                                             unsigned int *start,
982                                             unsigned int *end)
983 {
984         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
985
986         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
987                 unsigned int cpp;
988
989                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
990
991                 cluster_start = cpos % cpp;
992                 cluster_start = cluster_start << osb->s_clustersize_bits;
993
994                 cluster_end = cluster_start + osb->s_clustersize;
995         }
996
997         BUG_ON(cluster_start > PAGE_SIZE);
998         BUG_ON(cluster_end > PAGE_SIZE);
999
1000         if (start)
1001                 *start = cluster_start;
1002         if (end)
1003                 *end = cluster_end;
1004 }
1005
1006 /*
1007  * 'from' and 'to' are the region in the page to avoid zeroing.
1008  *
1009  * If pagesize > clustersize, this function will avoid zeroing outside
1010  * of the cluster boundary.
1011  *
1012  * from == to == 0 is code for "zero the entire cluster region"
1013  */
1014 static void ocfs2_clear_page_regions(struct page *page,
1015                                      struct ocfs2_super *osb, u32 cpos,
1016                                      unsigned from, unsigned to)
1017 {
1018         void *kaddr;
1019         unsigned int cluster_start, cluster_end;
1020
1021         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1022
1023         kaddr = kmap_atomic(page);
1024
1025         if (from || to) {
1026                 if (from > cluster_start)
1027                         memset(kaddr + cluster_start, 0, from - cluster_start);
1028                 if (to < cluster_end)
1029                         memset(kaddr + to, 0, cluster_end - to);
1030         } else {
1031                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1032         }
1033
1034         kunmap_atomic(kaddr);
1035 }
1036
1037 /*
1038  * Nonsparse file systems fully allocate before we get to the write
1039  * code. This prevents ocfs2_write() from tagging the write as an
1040  * allocating one, which means ocfs2_map_page_blocks() might try to
1041  * read-in the blocks at the tail of our file. Avoid reading them by
1042  * testing i_size against each block offset.
1043  */
1044 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1045                                  unsigned int block_start)
1046 {
1047         u64 offset = page_offset(page) + block_start;
1048
1049         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1050                 return 1;
1051
1052         if (i_size_read(inode) > offset)
1053                 return 1;
1054
1055         return 0;
1056 }
1057
1058 /*
1059  * Some of this taken from __block_write_begin(). We already have our
1060  * mapping by now though, and the entire write will be allocating or
1061  * it won't, so not much need to use BH_New.
1062  *
1063  * This will also skip zeroing, which is handled externally.
1064  */
1065 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1066                           struct inode *inode, unsigned int from,
1067                           unsigned int to, int new)
1068 {
1069         int ret = 0;
1070         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1071         unsigned int block_end, block_start;
1072         unsigned int bsize = 1 << inode->i_blkbits;
1073
1074         if (!page_has_buffers(page))
1075                 create_empty_buffers(page, bsize, 0);
1076
1077         head = page_buffers(page);
1078         for (bh = head, block_start = 0; bh != head || !block_start;
1079              bh = bh->b_this_page, block_start += bsize) {
1080                 block_end = block_start + bsize;
1081
1082                 clear_buffer_new(bh);
1083
1084                 /*
1085                  * Ignore blocks outside of our i/o range -
1086                  * they may belong to unallocated clusters.
1087                  */
1088                 if (block_start >= to || block_end <= from) {
1089                         if (PageUptodate(page))
1090                                 set_buffer_uptodate(bh);
1091                         continue;
1092                 }
1093
1094                 /*
1095                  * For an allocating write with cluster size >= page
1096                  * size, we always write the entire page.
1097                  */
1098                 if (new)
1099                         set_buffer_new(bh);
1100
1101                 if (!buffer_mapped(bh)) {
1102                         map_bh(bh, inode->i_sb, *p_blkno);
1103                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1104                 }
1105
1106                 if (PageUptodate(page)) {
1107                         if (!buffer_uptodate(bh))
1108                                 set_buffer_uptodate(bh);
1109                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1110                            !buffer_new(bh) &&
1111                            ocfs2_should_read_blk(inode, page, block_start) &&
1112                            (block_start < from || block_end > to)) {
1113                         ll_rw_block(READ, 1, &bh);
1114                         *wait_bh++=bh;
1115                 }
1116
1117                 *p_blkno = *p_blkno + 1;
1118         }
1119
1120         /*
1121          * If we issued read requests - let them complete.
1122          */
1123         while(wait_bh > wait) {
1124                 wait_on_buffer(*--wait_bh);
1125                 if (!buffer_uptodate(*wait_bh))
1126                         ret = -EIO;
1127         }
1128
1129         if (ret == 0 || !new)
1130                 return ret;
1131
1132         /*
1133          * If we get -EIO above, zero out any newly allocated blocks
1134          * to avoid exposing stale data.
1135          */
1136         bh = head;
1137         block_start = 0;
1138         do {
1139                 block_end = block_start + bsize;
1140                 if (block_end <= from)
1141                         goto next_bh;
1142                 if (block_start >= to)
1143                         break;
1144
1145                 zero_user(page, block_start, bh->b_size);
1146                 set_buffer_uptodate(bh);
1147                 mark_buffer_dirty(bh);
1148
1149 next_bh:
1150                 block_start = block_end;
1151                 bh = bh->b_this_page;
1152         } while (bh != head);
1153
1154         return ret;
1155 }
1156
1157 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1158 #define OCFS2_MAX_CTXT_PAGES    1
1159 #else
1160 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1161 #endif
1162
1163 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1164
1165 /*
1166  * Describe the state of a single cluster to be written to.
1167  */
1168 struct ocfs2_write_cluster_desc {
1169         u32             c_cpos;
1170         u32             c_phys;
1171         /*
1172          * Give this a unique field because c_phys eventually gets
1173          * filled.
1174          */
1175         unsigned        c_new;
1176         unsigned        c_unwritten;
1177         unsigned        c_needs_zero;
1178 };
1179
1180 struct ocfs2_write_ctxt {
1181         /* Logical cluster position / len of write */
1182         u32                             w_cpos;
1183         u32                             w_clen;
1184
1185         /* First cluster allocated in a nonsparse extend */
1186         u32                             w_first_new_cpos;
1187
1188         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1189
1190         /*
1191          * This is true if page_size > cluster_size.
1192          *
1193          * It triggers a set of special cases during write which might
1194          * have to deal with allocating writes to partial pages.
1195          */
1196         unsigned int                    w_large_pages;
1197
1198         /*
1199          * Pages involved in this write.
1200          *
1201          * w_target_page is the page being written to by the user.
1202          *
1203          * w_pages is an array of pages which always contains
1204          * w_target_page, and in the case of an allocating write with
1205          * page_size < cluster size, it will contain zero'd and mapped
1206          * pages adjacent to w_target_page which need to be written
1207          * out in so that future reads from that region will get
1208          * zero's.
1209          */
1210         unsigned int                    w_num_pages;
1211         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1212         struct page                     *w_target_page;
1213
1214         /*
1215          * w_target_locked is used for page_mkwrite path indicating no unlocking
1216          * against w_target_page in ocfs2_write_end_nolock.
1217          */
1218         unsigned int                    w_target_locked:1;
1219
1220         /*
1221          * ocfs2_write_end() uses this to know what the real range to
1222          * write in the target should be.
1223          */
1224         unsigned int                    w_target_from;
1225         unsigned int                    w_target_to;
1226
1227         /*
1228          * We could use journal_current_handle() but this is cleaner,
1229          * IMHO -Mark
1230          */
1231         handle_t                        *w_handle;
1232
1233         struct buffer_head              *w_di_bh;
1234
1235         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1236 };
1237
1238 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1239 {
1240         int i;
1241
1242         for(i = 0; i < num_pages; i++) {
1243                 if (pages[i]) {
1244                         unlock_page(pages[i]);
1245                         mark_page_accessed(pages[i]);
1246                         page_cache_release(pages[i]);
1247                 }
1248         }
1249 }
1250
1251 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1252 {
1253         int i;
1254
1255         /*
1256          * w_target_locked is only set to true in the page_mkwrite() case.
1257          * The intent is to allow us to lock the target page from write_begin()
1258          * to write_end(). The caller must hold a ref on w_target_page.
1259          */
1260         if (wc->w_target_locked) {
1261                 BUG_ON(!wc->w_target_page);
1262                 for (i = 0; i < wc->w_num_pages; i++) {
1263                         if (wc->w_target_page == wc->w_pages[i]) {
1264                                 wc->w_pages[i] = NULL;
1265                                 break;
1266                         }
1267                 }
1268                 mark_page_accessed(wc->w_target_page);
1269                 page_cache_release(wc->w_target_page);
1270         }
1271         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1272 }
1273
1274 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1275 {
1276         ocfs2_unlock_pages(wc);
1277         brelse(wc->w_di_bh);
1278         kfree(wc);
1279 }
1280
1281 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1282                                   struct ocfs2_super *osb, loff_t pos,
1283                                   unsigned len, struct buffer_head *di_bh)
1284 {
1285         u32 cend;
1286         struct ocfs2_write_ctxt *wc;
1287
1288         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1289         if (!wc)
1290                 return -ENOMEM;
1291
1292         wc->w_cpos = pos >> osb->s_clustersize_bits;
1293         wc->w_first_new_cpos = UINT_MAX;
1294         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1295         wc->w_clen = cend - wc->w_cpos + 1;
1296         get_bh(di_bh);
1297         wc->w_di_bh = di_bh;
1298
1299         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1300                 wc->w_large_pages = 1;
1301         else
1302                 wc->w_large_pages = 0;
1303
1304         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1305
1306         *wcp = wc;
1307
1308         return 0;
1309 }
1310
1311 /*
1312  * If a page has any new buffers, zero them out here, and mark them uptodate
1313  * and dirty so they'll be written out (in order to prevent uninitialised
1314  * block data from leaking). And clear the new bit.
1315  */
1316 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1317 {
1318         unsigned int block_start, block_end;
1319         struct buffer_head *head, *bh;
1320
1321         BUG_ON(!PageLocked(page));
1322         if (!page_has_buffers(page))
1323                 return;
1324
1325         bh = head = page_buffers(page);
1326         block_start = 0;
1327         do {
1328                 block_end = block_start + bh->b_size;
1329
1330                 if (buffer_new(bh)) {
1331                         if (block_end > from && block_start < to) {
1332                                 if (!PageUptodate(page)) {
1333                                         unsigned start, end;
1334
1335                                         start = max(from, block_start);
1336                                         end = min(to, block_end);
1337
1338                                         zero_user_segment(page, start, end);
1339                                         set_buffer_uptodate(bh);
1340                                 }
1341
1342                                 clear_buffer_new(bh);
1343                                 mark_buffer_dirty(bh);
1344                         }
1345                 }
1346
1347                 block_start = block_end;
1348                 bh = bh->b_this_page;
1349         } while (bh != head);
1350 }
1351
1352 /*
1353  * Only called when we have a failure during allocating write to write
1354  * zero's to the newly allocated region.
1355  */
1356 static void ocfs2_write_failure(struct inode *inode,
1357                                 struct ocfs2_write_ctxt *wc,
1358                                 loff_t user_pos, unsigned user_len)
1359 {
1360         int i;
1361         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1362                 to = user_pos + user_len;
1363         struct page *tmppage;
1364
1365         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1366
1367         for(i = 0; i < wc->w_num_pages; i++) {
1368                 tmppage = wc->w_pages[i];
1369
1370                 if (page_has_buffers(tmppage)) {
1371                         if (ocfs2_should_order_data(inode))
1372                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1373
1374                         block_commit_write(tmppage, from, to);
1375                 }
1376         }
1377 }
1378
1379 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1380                                         struct ocfs2_write_ctxt *wc,
1381                                         struct page *page, u32 cpos,
1382                                         loff_t user_pos, unsigned user_len,
1383                                         int new)
1384 {
1385         int ret;
1386         unsigned int map_from = 0, map_to = 0;
1387         unsigned int cluster_start, cluster_end;
1388         unsigned int user_data_from = 0, user_data_to = 0;
1389
1390         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1391                                         &cluster_start, &cluster_end);
1392
1393         /* treat the write as new if the a hole/lseek spanned across
1394          * the page boundary.
1395          */
1396         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1397                         (page_offset(page) <= user_pos));
1398
1399         if (page == wc->w_target_page) {
1400                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1401                 map_to = map_from + user_len;
1402
1403                 if (new)
1404                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1405                                                     cluster_start, cluster_end,
1406                                                     new);
1407                 else
1408                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409                                                     map_from, map_to, new);
1410                 if (ret) {
1411                         mlog_errno(ret);
1412                         goto out;
1413                 }
1414
1415                 user_data_from = map_from;
1416                 user_data_to = map_to;
1417                 if (new) {
1418                         map_from = cluster_start;
1419                         map_to = cluster_end;
1420                 }
1421         } else {
1422                 /*
1423                  * If we haven't allocated the new page yet, we
1424                  * shouldn't be writing it out without copying user
1425                  * data. This is likely a math error from the caller.
1426                  */
1427                 BUG_ON(!new);
1428
1429                 map_from = cluster_start;
1430                 map_to = cluster_end;
1431
1432                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1433                                             cluster_start, cluster_end, new);
1434                 if (ret) {
1435                         mlog_errno(ret);
1436                         goto out;
1437                 }
1438         }
1439
1440         /*
1441          * Parts of newly allocated pages need to be zero'd.
1442          *
1443          * Above, we have also rewritten 'to' and 'from' - as far as
1444          * the rest of the function is concerned, the entire cluster
1445          * range inside of a page needs to be written.
1446          *
1447          * We can skip this if the page is up to date - it's already
1448          * been zero'd from being read in as a hole.
1449          */
1450         if (new && !PageUptodate(page))
1451                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1452                                          cpos, user_data_from, user_data_to);
1453
1454         flush_dcache_page(page);
1455
1456 out:
1457         return ret;
1458 }
1459
1460 /*
1461  * This function will only grab one clusters worth of pages.
1462  */
1463 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1464                                       struct ocfs2_write_ctxt *wc,
1465                                       u32 cpos, loff_t user_pos,
1466                                       unsigned user_len, int new,
1467                                       struct page *mmap_page)
1468 {
1469         int ret = 0, i;
1470         unsigned long start, target_index, end_index, index;
1471         struct inode *inode = mapping->host;
1472         loff_t last_byte;
1473
1474         target_index = user_pos >> PAGE_CACHE_SHIFT;
1475
1476         /*
1477          * Figure out how many pages we'll be manipulating here. For
1478          * non allocating write, we just change the one
1479          * page. Otherwise, we'll need a whole clusters worth.  If we're
1480          * writing past i_size, we only need enough pages to cover the
1481          * last page of the write.
1482          */
1483         if (new) {
1484                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1485                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1486                 /*
1487                  * We need the index *past* the last page we could possibly
1488                  * touch.  This is the page past the end of the write or
1489                  * i_size, whichever is greater.
1490                  */
1491                 last_byte = max(user_pos + user_len, i_size_read(inode));
1492                 BUG_ON(last_byte < 1);
1493                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1494                 if ((start + wc->w_num_pages) > end_index)
1495                         wc->w_num_pages = end_index - start;
1496         } else {
1497                 wc->w_num_pages = 1;
1498                 start = target_index;
1499         }
1500
1501         for(i = 0; i < wc->w_num_pages; i++) {
1502                 index = start + i;
1503
1504                 if (index == target_index && mmap_page) {
1505                         /*
1506                          * ocfs2_pagemkwrite() is a little different
1507                          * and wants us to directly use the page
1508                          * passed in.
1509                          */
1510                         lock_page(mmap_page);
1511
1512                         /* Exit and let the caller retry */
1513                         if (mmap_page->mapping != mapping) {
1514                                 WARN_ON(mmap_page->mapping);
1515                                 unlock_page(mmap_page);
1516                                 ret = -EAGAIN;
1517                                 goto out;
1518                         }
1519
1520                         page_cache_get(mmap_page);
1521                         wc->w_pages[i] = mmap_page;
1522                         wc->w_target_locked = true;
1523                 } else {
1524                         wc->w_pages[i] = find_or_create_page(mapping, index,
1525                                                              GFP_NOFS);
1526                         if (!wc->w_pages[i]) {
1527                                 ret = -ENOMEM;
1528                                 mlog_errno(ret);
1529                                 goto out;
1530                         }
1531                 }
1532                 wait_for_stable_page(wc->w_pages[i]);
1533
1534                 if (index == target_index)
1535                         wc->w_target_page = wc->w_pages[i];
1536         }
1537 out:
1538         if (ret)
1539                 wc->w_target_locked = false;
1540         return ret;
1541 }
1542
1543 /*
1544  * Prepare a single cluster for write one cluster into the file.
1545  */
1546 static int ocfs2_write_cluster(struct address_space *mapping,
1547                                u32 phys, unsigned int unwritten,
1548                                unsigned int should_zero,
1549                                struct ocfs2_alloc_context *data_ac,
1550                                struct ocfs2_alloc_context *meta_ac,
1551                                struct ocfs2_write_ctxt *wc, u32 cpos,
1552                                loff_t user_pos, unsigned user_len)
1553 {
1554         int ret, i, new;
1555         u64 v_blkno, p_blkno;
1556         struct inode *inode = mapping->host;
1557         struct ocfs2_extent_tree et;
1558
1559         new = phys == 0 ? 1 : 0;
1560         if (new) {
1561                 u32 tmp_pos;
1562
1563                 /*
1564                  * This is safe to call with the page locks - it won't take
1565                  * any additional semaphores or cluster locks.
1566                  */
1567                 tmp_pos = cpos;
1568                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1569                                            &tmp_pos, 1, 0, wc->w_di_bh,
1570                                            wc->w_handle, data_ac,
1571                                            meta_ac, NULL);
1572                 /*
1573                  * This shouldn't happen because we must have already
1574                  * calculated the correct meta data allocation required. The
1575                  * internal tree allocation code should know how to increase
1576                  * transaction credits itself.
1577                  *
1578                  * If need be, we could handle -EAGAIN for a
1579                  * RESTART_TRANS here.
1580                  */
1581                 mlog_bug_on_msg(ret == -EAGAIN,
1582                                 "Inode %llu: EAGAIN return during allocation.\n",
1583                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1584                 if (ret < 0) {
1585                         mlog_errno(ret);
1586                         goto out;
1587                 }
1588         } else if (unwritten) {
1589                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1590                                               wc->w_di_bh);
1591                 ret = ocfs2_mark_extent_written(inode, &et,
1592                                                 wc->w_handle, cpos, 1, phys,
1593                                                 meta_ac, &wc->w_dealloc);
1594                 if (ret < 0) {
1595                         mlog_errno(ret);
1596                         goto out;
1597                 }
1598         }
1599
1600         if (should_zero)
1601                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1602         else
1603                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1604
1605         /*
1606          * The only reason this should fail is due to an inability to
1607          * find the extent added.
1608          */
1609         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1610                                           NULL);
1611         if (ret < 0) {
1612                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1613                             "at logical block %llu",
1614                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1615                             (unsigned long long)v_blkno);
1616                 goto out;
1617         }
1618
1619         BUG_ON(p_blkno == 0);
1620
1621         for(i = 0; i < wc->w_num_pages; i++) {
1622                 int tmpret;
1623
1624                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1625                                                       wc->w_pages[i], cpos,
1626                                                       user_pos, user_len,
1627                                                       should_zero);
1628                 if (tmpret) {
1629                         mlog_errno(tmpret);
1630                         if (ret == 0)
1631                                 ret = tmpret;
1632                 }
1633         }
1634
1635         /*
1636          * We only have cleanup to do in case of allocating write.
1637          */
1638         if (ret && new)
1639                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1640
1641 out:
1642
1643         return ret;
1644 }
1645
1646 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1647                                        struct ocfs2_alloc_context *data_ac,
1648                                        struct ocfs2_alloc_context *meta_ac,
1649                                        struct ocfs2_write_ctxt *wc,
1650                                        loff_t pos, unsigned len)
1651 {
1652         int ret, i;
1653         loff_t cluster_off;
1654         unsigned int local_len = len;
1655         struct ocfs2_write_cluster_desc *desc;
1656         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1657
1658         for (i = 0; i < wc->w_clen; i++) {
1659                 desc = &wc->w_desc[i];
1660
1661                 /*
1662                  * We have to make sure that the total write passed in
1663                  * doesn't extend past a single cluster.
1664                  */
1665                 local_len = len;
1666                 cluster_off = pos & (osb->s_clustersize - 1);
1667                 if ((cluster_off + local_len) > osb->s_clustersize)
1668                         local_len = osb->s_clustersize - cluster_off;
1669
1670                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1671                                           desc->c_unwritten,
1672                                           desc->c_needs_zero,
1673                                           data_ac, meta_ac,
1674                                           wc, desc->c_cpos, pos, local_len);
1675                 if (ret) {
1676                         mlog_errno(ret);
1677                         goto out;
1678                 }
1679
1680                 len -= local_len;
1681                 pos += local_len;
1682         }
1683
1684         ret = 0;
1685 out:
1686         return ret;
1687 }
1688
1689 /*
1690  * ocfs2_write_end() wants to know which parts of the target page it
1691  * should complete the write on. It's easiest to compute them ahead of
1692  * time when a more complete view of the write is available.
1693  */
1694 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1695                                         struct ocfs2_write_ctxt *wc,
1696                                         loff_t pos, unsigned len, int alloc)
1697 {
1698         struct ocfs2_write_cluster_desc *desc;
1699
1700         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1701         wc->w_target_to = wc->w_target_from + len;
1702
1703         if (alloc == 0)
1704                 return;
1705
1706         /*
1707          * Allocating write - we may have different boundaries based
1708          * on page size and cluster size.
1709          *
1710          * NOTE: We can no longer compute one value from the other as
1711          * the actual write length and user provided length may be
1712          * different.
1713          */
1714
1715         if (wc->w_large_pages) {
1716                 /*
1717                  * We only care about the 1st and last cluster within
1718                  * our range and whether they should be zero'd or not. Either
1719                  * value may be extended out to the start/end of a
1720                  * newly allocated cluster.
1721                  */
1722                 desc = &wc->w_desc[0];
1723                 if (desc->c_needs_zero)
1724                         ocfs2_figure_cluster_boundaries(osb,
1725                                                         desc->c_cpos,
1726                                                         &wc->w_target_from,
1727                                                         NULL);
1728
1729                 desc = &wc->w_desc[wc->w_clen - 1];
1730                 if (desc->c_needs_zero)
1731                         ocfs2_figure_cluster_boundaries(osb,
1732                                                         desc->c_cpos,
1733                                                         NULL,
1734                                                         &wc->w_target_to);
1735         } else {
1736                 wc->w_target_from = 0;
1737                 wc->w_target_to = PAGE_CACHE_SIZE;
1738         }
1739 }
1740
1741 /*
1742  * Populate each single-cluster write descriptor in the write context
1743  * with information about the i/o to be done.
1744  *
1745  * Returns the number of clusters that will have to be allocated, as
1746  * well as a worst case estimate of the number of extent records that
1747  * would have to be created during a write to an unwritten region.
1748  */
1749 static int ocfs2_populate_write_desc(struct inode *inode,
1750                                      struct ocfs2_write_ctxt *wc,
1751                                      unsigned int *clusters_to_alloc,
1752                                      unsigned int *extents_to_split)
1753 {
1754         int ret;
1755         struct ocfs2_write_cluster_desc *desc;
1756         unsigned int num_clusters = 0;
1757         unsigned int ext_flags = 0;
1758         u32 phys = 0;
1759         int i;
1760
1761         *clusters_to_alloc = 0;
1762         *extents_to_split = 0;
1763
1764         for (i = 0; i < wc->w_clen; i++) {
1765                 desc = &wc->w_desc[i];
1766                 desc->c_cpos = wc->w_cpos + i;
1767
1768                 if (num_clusters == 0) {
1769                         /*
1770                          * Need to look up the next extent record.
1771                          */
1772                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1773                                                  &num_clusters, &ext_flags);
1774                         if (ret) {
1775                                 mlog_errno(ret);
1776                                 goto out;
1777                         }
1778
1779                         /* We should already CoW the refcountd extent. */
1780                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1781
1782                         /*
1783                          * Assume worst case - that we're writing in
1784                          * the middle of the extent.
1785                          *
1786                          * We can assume that the write proceeds from
1787                          * left to right, in which case the extent
1788                          * insert code is smart enough to coalesce the
1789                          * next splits into the previous records created.
1790                          */
1791                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1792                                 *extents_to_split = *extents_to_split + 2;
1793                 } else if (phys) {
1794                         /*
1795                          * Only increment phys if it doesn't describe
1796                          * a hole.
1797                          */
1798                         phys++;
1799                 }
1800
1801                 /*
1802                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1803                  * file that got extended.  w_first_new_cpos tells us
1804                  * where the newly allocated clusters are so we can
1805                  * zero them.
1806                  */
1807                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1808                         BUG_ON(phys == 0);
1809                         desc->c_needs_zero = 1;
1810                 }
1811
1812                 desc->c_phys = phys;
1813                 if (phys == 0) {
1814                         desc->c_new = 1;
1815                         desc->c_needs_zero = 1;
1816                         *clusters_to_alloc = *clusters_to_alloc + 1;
1817                 }
1818
1819                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1820                         desc->c_unwritten = 1;
1821                         desc->c_needs_zero = 1;
1822                 }
1823
1824                 num_clusters--;
1825         }
1826
1827         ret = 0;
1828 out:
1829         return ret;
1830 }
1831
1832 static int ocfs2_write_begin_inline(struct address_space *mapping,
1833                                     struct inode *inode,
1834                                     struct ocfs2_write_ctxt *wc)
1835 {
1836         int ret;
1837         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838         struct page *page;
1839         handle_t *handle;
1840         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1841
1842         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1843         if (IS_ERR(handle)) {
1844                 ret = PTR_ERR(handle);
1845                 mlog_errno(ret);
1846                 goto out;
1847         }
1848
1849         page = find_or_create_page(mapping, 0, GFP_NOFS);
1850         if (!page) {
1851                 ocfs2_commit_trans(osb, handle);
1852                 ret = -ENOMEM;
1853                 mlog_errno(ret);
1854                 goto out;
1855         }
1856         /*
1857          * If we don't set w_num_pages then this page won't get unlocked
1858          * and freed on cleanup of the write context.
1859          */
1860         wc->w_pages[0] = wc->w_target_page = page;
1861         wc->w_num_pages = 1;
1862
1863         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1864                                       OCFS2_JOURNAL_ACCESS_WRITE);
1865         if (ret) {
1866                 ocfs2_commit_trans(osb, handle);
1867
1868                 mlog_errno(ret);
1869                 goto out;
1870         }
1871
1872         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1873                 ocfs2_set_inode_data_inline(inode, di);
1874
1875         if (!PageUptodate(page)) {
1876                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1877                 if (ret) {
1878                         ocfs2_commit_trans(osb, handle);
1879
1880                         goto out;
1881                 }
1882         }
1883
1884         wc->w_handle = handle;
1885 out:
1886         return ret;
1887 }
1888
1889 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1890 {
1891         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1892
1893         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1894                 return 1;
1895         return 0;
1896 }
1897
1898 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1899                                           struct inode *inode, loff_t pos,
1900                                           unsigned len, struct page *mmap_page,
1901                                           struct ocfs2_write_ctxt *wc)
1902 {
1903         int ret, written = 0;
1904         loff_t end = pos + len;
1905         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1906         struct ocfs2_dinode *di = NULL;
1907
1908         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1909                                              len, (unsigned long long)pos,
1910                                              oi->ip_dyn_features);
1911
1912         /*
1913          * Handle inodes which already have inline data 1st.
1914          */
1915         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916                 if (mmap_page == NULL &&
1917                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1918                         goto do_inline_write;
1919
1920                 /*
1921                  * The write won't fit - we have to give this inode an
1922                  * inline extent list now.
1923                  */
1924                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1925                 if (ret)
1926                         mlog_errno(ret);
1927                 goto out;
1928         }
1929
1930         /*
1931          * Check whether the inode can accept inline data.
1932          */
1933         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1934                 return 0;
1935
1936         /*
1937          * Check whether the write can fit.
1938          */
1939         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1940         if (mmap_page ||
1941             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1942                 return 0;
1943
1944 do_inline_write:
1945         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1946         if (ret) {
1947                 mlog_errno(ret);
1948                 goto out;
1949         }
1950
1951         /*
1952          * This signals to the caller that the data can be written
1953          * inline.
1954          */
1955         written = 1;
1956 out:
1957         return written ? written : ret;
1958 }
1959
1960 /*
1961  * This function only does anything for file systems which can't
1962  * handle sparse files.
1963  *
1964  * What we want to do here is fill in any hole between the current end
1965  * of allocation and the end of our write. That way the rest of the
1966  * write path can treat it as an non-allocating write, which has no
1967  * special case code for sparse/nonsparse files.
1968  */
1969 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1970                                         struct buffer_head *di_bh,
1971                                         loff_t pos, unsigned len,
1972                                         struct ocfs2_write_ctxt *wc)
1973 {
1974         int ret;
1975         loff_t newsize = pos + len;
1976
1977         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1978
1979         if (newsize <= i_size_read(inode))
1980                 return 0;
1981
1982         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1983         if (ret)
1984                 mlog_errno(ret);
1985
1986         wc->w_first_new_cpos =
1987                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1988
1989         return ret;
1990 }
1991
1992 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1993                            loff_t pos)
1994 {
1995         int ret = 0;
1996
1997         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1998         if (pos > i_size_read(inode))
1999                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2000
2001         return ret;
2002 }
2003
2004 /*
2005  * Try to flush truncate logs if we can free enough clusters from it.
2006  * As for return value, "< 0" means error, "0" no space and "1" means
2007  * we have freed enough spaces and let the caller try to allocate again.
2008  */
2009 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2010                                           unsigned int needed)
2011 {
2012         tid_t target;
2013         int ret = 0;
2014         unsigned int truncated_clusters;
2015
2016         mutex_lock(&osb->osb_tl_inode->i_mutex);
2017         truncated_clusters = osb->truncated_clusters;
2018         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2019
2020         /*
2021          * Check whether we can succeed in allocating if we free
2022          * the truncate log.
2023          */
2024         if (truncated_clusters < needed)
2025                 goto out;
2026
2027         ret = ocfs2_flush_truncate_log(osb);
2028         if (ret) {
2029                 mlog_errno(ret);
2030                 goto out;
2031         }
2032
2033         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2034                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2035                 ret = 1;
2036         }
2037 out:
2038         return ret;
2039 }
2040
2041 int ocfs2_write_begin_nolock(struct file *filp,
2042                              struct address_space *mapping,
2043                              loff_t pos, unsigned len, unsigned flags,
2044                              struct page **pagep, void **fsdata,
2045                              struct buffer_head *di_bh, struct page *mmap_page)
2046 {
2047         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2048         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2049         struct ocfs2_write_ctxt *wc;
2050         struct inode *inode = mapping->host;
2051         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2052         struct ocfs2_dinode *di;
2053         struct ocfs2_alloc_context *data_ac = NULL;
2054         struct ocfs2_alloc_context *meta_ac = NULL;
2055         handle_t *handle;
2056         struct ocfs2_extent_tree et;
2057         int try_free = 1, ret1;
2058
2059 try_again:
2060         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2061         if (ret) {
2062                 mlog_errno(ret);
2063                 return ret;
2064         }
2065
2066         if (ocfs2_supports_inline_data(osb)) {
2067                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2068                                                      mmap_page, wc);
2069                 if (ret == 1) {
2070                         ret = 0;
2071                         goto success;
2072                 }
2073                 if (ret < 0) {
2074                         mlog_errno(ret);
2075                         goto out;
2076                 }
2077         }
2078
2079         if (ocfs2_sparse_alloc(osb))
2080                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2081         else
2082                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2083                                                    wc);
2084         if (ret) {
2085                 mlog_errno(ret);
2086                 goto out;
2087         }
2088
2089         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2090         if (ret < 0) {
2091                 mlog_errno(ret);
2092                 goto out;
2093         } else if (ret == 1) {
2094                 clusters_need = wc->w_clen;
2095                 ret = ocfs2_refcount_cow(inode, di_bh,
2096                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2097                 if (ret) {
2098                         mlog_errno(ret);
2099                         goto out;
2100                 }
2101         }
2102
2103         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2104                                         &extents_to_split);
2105         if (ret) {
2106                 mlog_errno(ret);
2107                 goto out;
2108         }
2109         clusters_need += clusters_to_alloc;
2110
2111         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2112
2113         trace_ocfs2_write_begin_nolock(
2114                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2115                         (long long)i_size_read(inode),
2116                         le32_to_cpu(di->i_clusters),
2117                         pos, len, flags, mmap_page,
2118                         clusters_to_alloc, extents_to_split);
2119
2120         /*
2121          * We set w_target_from, w_target_to here so that
2122          * ocfs2_write_end() knows which range in the target page to
2123          * write out. An allocation requires that we write the entire
2124          * cluster range.
2125          */
2126         if (clusters_to_alloc || extents_to_split) {
2127                 /*
2128                  * XXX: We are stretching the limits of
2129                  * ocfs2_lock_allocators(). It greatly over-estimates
2130                  * the work to be done.
2131                  */
2132                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2133                                               wc->w_di_bh);
2134                 ret = ocfs2_lock_allocators(inode, &et,
2135                                             clusters_to_alloc, extents_to_split,
2136                                             &data_ac, &meta_ac);
2137                 if (ret) {
2138                         mlog_errno(ret);
2139                         goto out;
2140                 }
2141
2142                 if (data_ac)
2143                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2144
2145                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2146                                                     &di->id2.i_list);
2147
2148         }
2149
2150         /*
2151          * We have to zero sparse allocated clusters, unwritten extent clusters,
2152          * and non-sparse clusters we just extended.  For non-sparse writes,
2153          * we know zeros will only be needed in the first and/or last cluster.
2154          */
2155         if (clusters_to_alloc || extents_to_split ||
2156             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2157                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2158                 cluster_of_pages = 1;
2159         else
2160                 cluster_of_pages = 0;
2161
2162         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2163
2164         handle = ocfs2_start_trans(osb, credits);
2165         if (IS_ERR(handle)) {
2166                 ret = PTR_ERR(handle);
2167                 mlog_errno(ret);
2168                 goto out;
2169         }
2170
2171         wc->w_handle = handle;
2172
2173         if (clusters_to_alloc) {
2174                 ret = dquot_alloc_space_nodirty(inode,
2175                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2176                 if (ret)
2177                         goto out_commit;
2178         }
2179         /*
2180          * We don't want this to fail in ocfs2_write_end(), so do it
2181          * here.
2182          */
2183         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2184                                       OCFS2_JOURNAL_ACCESS_WRITE);
2185         if (ret) {
2186                 mlog_errno(ret);
2187                 goto out_quota;
2188         }
2189
2190         /*
2191          * Fill our page array first. That way we've grabbed enough so
2192          * that we can zero and flush if we error after adding the
2193          * extent.
2194          */
2195         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2196                                          cluster_of_pages, mmap_page);
2197         if (ret && ret != -EAGAIN) {
2198                 mlog_errno(ret);
2199                 goto out_quota;
2200         }
2201
2202         /*
2203          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2204          * the target page. In this case, we exit with no error and no target
2205          * page. This will trigger the caller, page_mkwrite(), to re-try
2206          * the operation.
2207          */
2208         if (ret == -EAGAIN) {
2209                 BUG_ON(wc->w_target_page);
2210                 ret = 0;
2211                 goto out_quota;
2212         }
2213
2214         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2215                                           len);
2216         if (ret) {
2217                 mlog_errno(ret);
2218                 goto out_quota;
2219         }
2220
2221         if (data_ac)
2222                 ocfs2_free_alloc_context(data_ac);
2223         if (meta_ac)
2224                 ocfs2_free_alloc_context(meta_ac);
2225
2226 success:
2227         *pagep = wc->w_target_page;
2228         *fsdata = wc;
2229         return 0;
2230 out_quota:
2231         if (clusters_to_alloc)
2232                 dquot_free_space(inode,
2233                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2234 out_commit:
2235         ocfs2_commit_trans(osb, handle);
2236
2237 out:
2238         ocfs2_free_write_ctxt(wc);
2239
2240         if (data_ac) {
2241                 ocfs2_free_alloc_context(data_ac);
2242                 data_ac = NULL;
2243         }
2244         if (meta_ac) {
2245                 ocfs2_free_alloc_context(meta_ac);
2246                 meta_ac = NULL;
2247         }
2248
2249         if (ret == -ENOSPC && try_free) {
2250                 /*
2251                  * Try to free some truncate log so that we can have enough
2252                  * clusters to allocate.
2253                  */
2254                 try_free = 0;
2255
2256                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2257                 if (ret1 == 1)
2258                         goto try_again;
2259
2260                 if (ret1 < 0)
2261                         mlog_errno(ret1);
2262         }
2263
2264         return ret;
2265 }
2266
2267 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2268                              loff_t pos, unsigned len, unsigned flags,
2269                              struct page **pagep, void **fsdata)
2270 {
2271         int ret;
2272         struct buffer_head *di_bh = NULL;
2273         struct inode *inode = mapping->host;
2274
2275         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2276         if (ret) {
2277                 mlog_errno(ret);
2278                 return ret;
2279         }
2280
2281         /*
2282          * Take alloc sem here to prevent concurrent lookups. That way
2283          * the mapping, zeroing and tree manipulation within
2284          * ocfs2_write() will be safe against ->readpage(). This
2285          * should also serve to lock out allocation from a shared
2286          * writeable region.
2287          */
2288         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2289
2290         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2291                                        fsdata, di_bh, NULL);
2292         if (ret) {
2293                 mlog_errno(ret);
2294                 goto out_fail;
2295         }
2296
2297         brelse(di_bh);
2298
2299         return 0;
2300
2301 out_fail:
2302         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2303
2304         brelse(di_bh);
2305         ocfs2_inode_unlock(inode, 1);
2306
2307         return ret;
2308 }
2309
2310 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2311                                    unsigned len, unsigned *copied,
2312                                    struct ocfs2_dinode *di,
2313                                    struct ocfs2_write_ctxt *wc)
2314 {
2315         void *kaddr;
2316
2317         if (unlikely(*copied < len)) {
2318                 if (!PageUptodate(wc->w_target_page)) {
2319                         *copied = 0;
2320                         return;
2321                 }
2322         }
2323
2324         kaddr = kmap_atomic(wc->w_target_page);
2325         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2326         kunmap_atomic(kaddr);
2327
2328         trace_ocfs2_write_end_inline(
2329              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2330              (unsigned long long)pos, *copied,
2331              le16_to_cpu(di->id2.i_data.id_count),
2332              le16_to_cpu(di->i_dyn_features));
2333 }
2334
2335 int ocfs2_write_end_nolock(struct address_space *mapping,
2336                            loff_t pos, unsigned len, unsigned copied,
2337                            struct page *page, void *fsdata)
2338 {
2339         int i;
2340         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2341         struct inode *inode = mapping->host;
2342         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2343         struct ocfs2_write_ctxt *wc = fsdata;
2344         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2345         handle_t *handle = wc->w_handle;
2346         struct page *tmppage;
2347
2348         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2349                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2350                 goto out_write_size;
2351         }
2352
2353         if (unlikely(copied < len)) {
2354                 if (!PageUptodate(wc->w_target_page))
2355                         copied = 0;
2356
2357                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2358                                        start+len);
2359         }
2360         flush_dcache_page(wc->w_target_page);
2361
2362         for(i = 0; i < wc->w_num_pages; i++) {
2363                 tmppage = wc->w_pages[i];
2364
2365                 if (tmppage == wc->w_target_page) {
2366                         from = wc->w_target_from;
2367                         to = wc->w_target_to;
2368
2369                         BUG_ON(from > PAGE_CACHE_SIZE ||
2370                                to > PAGE_CACHE_SIZE ||
2371                                to < from);
2372                 } else {
2373                         /*
2374                          * Pages adjacent to the target (if any) imply
2375                          * a hole-filling write in which case we want
2376                          * to flush their entire range.
2377                          */
2378                         from = 0;
2379                         to = PAGE_CACHE_SIZE;
2380                 }
2381
2382                 if (page_has_buffers(tmppage)) {
2383                         if (ocfs2_should_order_data(inode))
2384                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2385                         block_commit_write(tmppage, from, to);
2386                 }
2387         }
2388
2389 out_write_size:
2390         pos += copied;
2391         if (pos > i_size_read(inode)) {
2392                 i_size_write(inode, pos);
2393                 mark_inode_dirty(inode);
2394         }
2395         inode->i_blocks = ocfs2_inode_sector_count(inode);
2396         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2397         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2398         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2399         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2400         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2401         ocfs2_journal_dirty(handle, wc->w_di_bh);
2402
2403         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2404          * lock, or it will cause a deadlock since journal commit threads holds
2405          * this lock and will ask for the page lock when flushing the data.
2406          * put it here to preserve the unlock order.
2407          */
2408         ocfs2_unlock_pages(wc);
2409
2410         ocfs2_commit_trans(osb, handle);
2411
2412         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2413
2414         brelse(wc->w_di_bh);
2415         kfree(wc);
2416
2417         return copied;
2418 }
2419
2420 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2421                            loff_t pos, unsigned len, unsigned copied,
2422                            struct page *page, void *fsdata)
2423 {
2424         int ret;
2425         struct inode *inode = mapping->host;
2426
2427         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2428
2429         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2430         ocfs2_inode_unlock(inode, 1);
2431
2432         return ret;
2433 }
2434
2435 const struct address_space_operations ocfs2_aops = {
2436         .readpage               = ocfs2_readpage,
2437         .readpages              = ocfs2_readpages,
2438         .writepage              = ocfs2_writepage,
2439         .write_begin            = ocfs2_write_begin,
2440         .write_end              = ocfs2_write_end,
2441         .bmap                   = ocfs2_bmap,
2442         .direct_IO              = ocfs2_direct_IO,
2443         .invalidatepage         = block_invalidatepage,
2444         .releasepage            = ocfs2_releasepage,
2445         .migratepage            = buffer_migrate_page,
2446         .is_partially_uptodate  = block_is_partially_uptodate,
2447         .error_remove_page      = generic_error_remove_page,
2448 };