These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34         unsigned long tmp = 0;
35         int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38         shift = 56;
39 #endif
40         while (shift >= 0) {
41                 tmp |= (unsigned long)str[idx++] << shift;
42                 shift -= BITS_PER_BYTE;
43         }
44         return tmp;
45 }
46
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53         int num = 0;
54
55 #if BITS_PER_LONG == 64
56         if ((word & 0xffffffff00000000UL) == 0)
57                 num += 32;
58         else
59                 word >>= 32;
60 #endif
61         if ((word & 0xffff0000) == 0)
62                 num += 16;
63         else
64                 word >>= 16;
65
66         if ((word & 0xff00) == 0)
67                 num += 8;
68         else
69                 word >>= 8;
70
71         if ((word & 0xf0) == 0)
72                 num += 4;
73         else
74                 word >>= 4;
75
76         if ((word & 0xc) == 0)
77                 num += 2;
78         else
79                 word >>= 2;
80
81         if ((word & 0x2) == 0)
82                 num += 1;
83         return num;
84 }
85
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * Example:
90  *                             MSB <--> LSB
91  *   f2fs_set_bit(0, bitmap) => 1000 0000
92  *   f2fs_set_bit(7, bitmap) => 0000 0001
93  */
94 static unsigned long __find_rev_next_bit(const unsigned long *addr,
95                         unsigned long size, unsigned long offset)
96 {
97         const unsigned long *p = addr + BIT_WORD(offset);
98         unsigned long result = offset & ~(BITS_PER_LONG - 1);
99         unsigned long tmp;
100
101         if (offset >= size)
102                 return size;
103
104         size -= result;
105         offset %= BITS_PER_LONG;
106         if (!offset)
107                 goto aligned;
108
109         tmp = __reverse_ulong((unsigned char *)p);
110         tmp &= ~0UL >> offset;
111
112         if (size < BITS_PER_LONG)
113                 goto found_first;
114         if (tmp)
115                 goto found_middle;
116
117         size -= BITS_PER_LONG;
118         result += BITS_PER_LONG;
119         p++;
120 aligned:
121         while (size & ~(BITS_PER_LONG-1)) {
122                 tmp = __reverse_ulong((unsigned char *)p);
123                 if (tmp)
124                         goto found_middle;
125                 result += BITS_PER_LONG;
126                 size -= BITS_PER_LONG;
127                 p++;
128         }
129         if (!size)
130                 return result;
131
132         tmp = __reverse_ulong((unsigned char *)p);
133 found_first:
134         tmp &= (~0UL << (BITS_PER_LONG - size));
135         if (!tmp)               /* Are any bits set? */
136                 return result + size;   /* Nope. */
137 found_middle:
138         return result + __reverse_ffs(tmp);
139 }
140
141 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
142                         unsigned long size, unsigned long offset)
143 {
144         const unsigned long *p = addr + BIT_WORD(offset);
145         unsigned long result = offset & ~(BITS_PER_LONG - 1);
146         unsigned long tmp;
147
148         if (offset >= size)
149                 return size;
150
151         size -= result;
152         offset %= BITS_PER_LONG;
153         if (!offset)
154                 goto aligned;
155
156         tmp = __reverse_ulong((unsigned char *)p);
157         tmp |= ~((~0UL << offset) >> offset);
158
159         if (size < BITS_PER_LONG)
160                 goto found_first;
161         if (tmp != ~0UL)
162                 goto found_middle;
163
164         size -= BITS_PER_LONG;
165         result += BITS_PER_LONG;
166         p++;
167 aligned:
168         while (size & ~(BITS_PER_LONG - 1)) {
169                 tmp = __reverse_ulong((unsigned char *)p);
170                 if (tmp != ~0UL)
171                         goto found_middle;
172                 result += BITS_PER_LONG;
173                 size -= BITS_PER_LONG;
174                 p++;
175         }
176         if (!size)
177                 return result;
178
179         tmp = __reverse_ulong((unsigned char *)p);
180 found_first:
181         tmp |= ~(~0UL << (BITS_PER_LONG - size));
182         if (tmp == ~0UL)        /* Are any bits zero? */
183                 return result + size;   /* Nope. */
184 found_middle:
185         return result + __reverse_ffz(tmp);
186 }
187
188 void register_inmem_page(struct inode *inode, struct page *page)
189 {
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
209         mutex_unlock(&fi->inmem_lock);
210
211         trace_f2fs_register_inmem_page(page, INMEM);
212 }
213
214 int commit_inmem_pages(struct inode *inode, bool abort)
215 {
216         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217         struct f2fs_inode_info *fi = F2FS_I(inode);
218         struct inmem_pages *cur, *tmp;
219         bool submit_bio = false;
220         struct f2fs_io_info fio = {
221                 .sbi = sbi,
222                 .type = DATA,
223                 .rw = WRITE_SYNC | REQ_PRIO,
224                 .encrypted_page = NULL,
225         };
226         int err = 0;
227
228         /*
229          * The abort is true only when f2fs_evict_inode is called.
230          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
231          * that we don't need to call f2fs_balance_fs.
232          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
233          * inode becomes free by iget_locked in f2fs_iget.
234          */
235         if (!abort) {
236                 f2fs_balance_fs(sbi);
237                 f2fs_lock_op(sbi);
238         }
239
240         mutex_lock(&fi->inmem_lock);
241         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
242                 lock_page(cur->page);
243                 if (!abort) {
244                         if (cur->page->mapping == inode->i_mapping) {
245                                 set_page_dirty(cur->page);
246                                 f2fs_wait_on_page_writeback(cur->page, DATA);
247                                 if (clear_page_dirty_for_io(cur->page))
248                                         inode_dec_dirty_pages(inode);
249                                 trace_f2fs_commit_inmem_page(cur->page, INMEM);
250                                 fio.page = cur->page;
251                                 err = do_write_data_page(&fio);
252                                 if (err) {
253                                         unlock_page(cur->page);
254                                         break;
255                                 }
256                                 clear_cold_data(cur->page);
257                                 submit_bio = true;
258                         }
259                 } else {
260                         trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
261                 }
262                 set_page_private(cur->page, 0);
263                 ClearPagePrivate(cur->page);
264                 f2fs_put_page(cur->page, 1);
265
266                 list_del(&cur->list);
267                 kmem_cache_free(inmem_entry_slab, cur);
268                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
269         }
270         mutex_unlock(&fi->inmem_lock);
271
272         if (!abort) {
273                 f2fs_unlock_op(sbi);
274                 if (submit_bio)
275                         f2fs_submit_merged_bio(sbi, DATA, WRITE);
276         }
277         return err;
278 }
279
280 /*
281  * This function balances dirty node and dentry pages.
282  * In addition, it controls garbage collection.
283  */
284 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
285 {
286         /*
287          * We should do GC or end up with checkpoint, if there are so many dirty
288          * dir/node pages without enough free segments.
289          */
290         if (has_not_enough_free_secs(sbi, 0)) {
291                 mutex_lock(&sbi->gc_mutex);
292                 f2fs_gc(sbi, false);
293         }
294 }
295
296 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
297 {
298         /* try to shrink extent cache when there is no enough memory */
299         if (!available_free_memory(sbi, EXTENT_CACHE))
300                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
301
302         /* check the # of cached NAT entries */
303         if (!available_free_memory(sbi, NAT_ENTRIES))
304                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
305
306         if (!available_free_memory(sbi, FREE_NIDS))
307                 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
308
309         /* checkpoint is the only way to shrink partial cached entries */
310         if (!available_free_memory(sbi, NAT_ENTRIES) ||
311                         excess_prefree_segs(sbi) ||
312                         !available_free_memory(sbi, INO_ENTRIES) ||
313                         jiffies > sbi->cp_expires)
314                 f2fs_sync_fs(sbi->sb, true);
315 }
316
317 static int issue_flush_thread(void *data)
318 {
319         struct f2fs_sb_info *sbi = data;
320         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
321         wait_queue_head_t *q = &fcc->flush_wait_queue;
322 repeat:
323         if (kthread_should_stop())
324                 return 0;
325
326         if (!llist_empty(&fcc->issue_list)) {
327                 struct bio *bio;
328                 struct flush_cmd *cmd, *next;
329                 int ret;
330
331                 bio = f2fs_bio_alloc(0);
332
333                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
334                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
335
336                 bio->bi_bdev = sbi->sb->s_bdev;
337                 ret = submit_bio_wait(WRITE_FLUSH, bio);
338
339                 llist_for_each_entry_safe(cmd, next,
340                                           fcc->dispatch_list, llnode) {
341                         cmd->ret = ret;
342                         complete(&cmd->wait);
343                 }
344                 bio_put(bio);
345                 fcc->dispatch_list = NULL;
346         }
347
348         wait_event_interruptible(*q,
349                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
350         goto repeat;
351 }
352
353 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
354 {
355         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
356         struct flush_cmd cmd;
357
358         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
359                                         test_opt(sbi, FLUSH_MERGE));
360
361         if (test_opt(sbi, NOBARRIER))
362                 return 0;
363
364         if (!test_opt(sbi, FLUSH_MERGE)) {
365                 struct bio *bio = f2fs_bio_alloc(0);
366                 int ret;
367
368                 bio->bi_bdev = sbi->sb->s_bdev;
369                 ret = submit_bio_wait(WRITE_FLUSH, bio);
370                 bio_put(bio);
371                 return ret;
372         }
373
374         init_completion(&cmd.wait);
375
376         llist_add(&cmd.llnode, &fcc->issue_list);
377
378         if (!fcc->dispatch_list)
379                 wake_up(&fcc->flush_wait_queue);
380
381         wait_for_completion(&cmd.wait);
382
383         return cmd.ret;
384 }
385
386 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
387 {
388         dev_t dev = sbi->sb->s_bdev->bd_dev;
389         struct flush_cmd_control *fcc;
390         int err = 0;
391
392         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
393         if (!fcc)
394                 return -ENOMEM;
395         init_waitqueue_head(&fcc->flush_wait_queue);
396         init_llist_head(&fcc->issue_list);
397         SM_I(sbi)->cmd_control_info = fcc;
398         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
399                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
400         if (IS_ERR(fcc->f2fs_issue_flush)) {
401                 err = PTR_ERR(fcc->f2fs_issue_flush);
402                 kfree(fcc);
403                 SM_I(sbi)->cmd_control_info = NULL;
404                 return err;
405         }
406
407         return err;
408 }
409
410 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
411 {
412         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
413
414         if (fcc && fcc->f2fs_issue_flush)
415                 kthread_stop(fcc->f2fs_issue_flush);
416         kfree(fcc);
417         SM_I(sbi)->cmd_control_info = NULL;
418 }
419
420 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
421                 enum dirty_type dirty_type)
422 {
423         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
424
425         /* need not be added */
426         if (IS_CURSEG(sbi, segno))
427                 return;
428
429         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
430                 dirty_i->nr_dirty[dirty_type]++;
431
432         if (dirty_type == DIRTY) {
433                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
434                 enum dirty_type t = sentry->type;
435
436                 if (unlikely(t >= DIRTY)) {
437                         f2fs_bug_on(sbi, 1);
438                         return;
439                 }
440                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
441                         dirty_i->nr_dirty[t]++;
442         }
443 }
444
445 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
446                 enum dirty_type dirty_type)
447 {
448         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
449
450         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
451                 dirty_i->nr_dirty[dirty_type]--;
452
453         if (dirty_type == DIRTY) {
454                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
455                 enum dirty_type t = sentry->type;
456
457                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
458                         dirty_i->nr_dirty[t]--;
459
460                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
461                         clear_bit(GET_SECNO(sbi, segno),
462                                                 dirty_i->victim_secmap);
463         }
464 }
465
466 /*
467  * Should not occur error such as -ENOMEM.
468  * Adding dirty entry into seglist is not critical operation.
469  * If a given segment is one of current working segments, it won't be added.
470  */
471 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
472 {
473         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
474         unsigned short valid_blocks;
475
476         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
477                 return;
478
479         mutex_lock(&dirty_i->seglist_lock);
480
481         valid_blocks = get_valid_blocks(sbi, segno, 0);
482
483         if (valid_blocks == 0) {
484                 __locate_dirty_segment(sbi, segno, PRE);
485                 __remove_dirty_segment(sbi, segno, DIRTY);
486         } else if (valid_blocks < sbi->blocks_per_seg) {
487                 __locate_dirty_segment(sbi, segno, DIRTY);
488         } else {
489                 /* Recovery routine with SSR needs this */
490                 __remove_dirty_segment(sbi, segno, DIRTY);
491         }
492
493         mutex_unlock(&dirty_i->seglist_lock);
494 }
495
496 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
497                                 block_t blkstart, block_t blklen)
498 {
499         sector_t start = SECTOR_FROM_BLOCK(blkstart);
500         sector_t len = SECTOR_FROM_BLOCK(blklen);
501         struct seg_entry *se;
502         unsigned int offset;
503         block_t i;
504
505         for (i = blkstart; i < blkstart + blklen; i++) {
506                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
507                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
508
509                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
510                         sbi->discard_blks--;
511         }
512         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
513         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
514 }
515
516 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
517 {
518         int err = -ENOTSUPP;
519
520         if (test_opt(sbi, DISCARD)) {
521                 struct seg_entry *se = get_seg_entry(sbi,
522                                 GET_SEGNO(sbi, blkaddr));
523                 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
524
525                 if (f2fs_test_bit(offset, se->discard_map))
526                         return false;
527
528                 err = f2fs_issue_discard(sbi, blkaddr, 1);
529         }
530
531         if (err) {
532                 update_meta_page(sbi, NULL, blkaddr);
533                 return true;
534         }
535         return false;
536 }
537
538 static void __add_discard_entry(struct f2fs_sb_info *sbi,
539                 struct cp_control *cpc, struct seg_entry *se,
540                 unsigned int start, unsigned int end)
541 {
542         struct list_head *head = &SM_I(sbi)->discard_list;
543         struct discard_entry *new, *last;
544
545         if (!list_empty(head)) {
546                 last = list_last_entry(head, struct discard_entry, list);
547                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
548                                                 last->blkaddr + last->len) {
549                         last->len += end - start;
550                         goto done;
551                 }
552         }
553
554         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
555         INIT_LIST_HEAD(&new->list);
556         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
557         new->len = end - start;
558         list_add_tail(&new->list, head);
559 done:
560         SM_I(sbi)->nr_discards += end - start;
561 }
562
563 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
564 {
565         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
566         int max_blocks = sbi->blocks_per_seg;
567         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
568         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
569         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
570         unsigned long *discard_map = (unsigned long *)se->discard_map;
571         unsigned long *dmap = SIT_I(sbi)->tmp_map;
572         unsigned int start = 0, end = -1;
573         bool force = (cpc->reason == CP_DISCARD);
574         int i;
575
576         if (se->valid_blocks == max_blocks)
577                 return;
578
579         if (!force) {
580                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
581                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
582                         return;
583         }
584
585         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
586         for (i = 0; i < entries; i++)
587                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
588                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
589
590         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
591                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
592                 if (start >= max_blocks)
593                         break;
594
595                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
596                 __add_discard_entry(sbi, cpc, se, start, end);
597         }
598 }
599
600 void release_discard_addrs(struct f2fs_sb_info *sbi)
601 {
602         struct list_head *head = &(SM_I(sbi)->discard_list);
603         struct discard_entry *entry, *this;
604
605         /* drop caches */
606         list_for_each_entry_safe(entry, this, head, list) {
607                 list_del(&entry->list);
608                 kmem_cache_free(discard_entry_slab, entry);
609         }
610 }
611
612 /*
613  * Should call clear_prefree_segments after checkpoint is done.
614  */
615 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
616 {
617         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
618         unsigned int segno;
619
620         mutex_lock(&dirty_i->seglist_lock);
621         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
622                 __set_test_and_free(sbi, segno);
623         mutex_unlock(&dirty_i->seglist_lock);
624 }
625
626 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
627 {
628         struct list_head *head = &(SM_I(sbi)->discard_list);
629         struct discard_entry *entry, *this;
630         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
631         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
632         unsigned int start = 0, end = -1;
633
634         mutex_lock(&dirty_i->seglist_lock);
635
636         while (1) {
637                 int i;
638                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
639                 if (start >= MAIN_SEGS(sbi))
640                         break;
641                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
642                                                                 start + 1);
643
644                 for (i = start; i < end; i++)
645                         clear_bit(i, prefree_map);
646
647                 dirty_i->nr_dirty[PRE] -= end - start;
648
649                 if (!test_opt(sbi, DISCARD))
650                         continue;
651
652                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
653                                 (end - start) << sbi->log_blocks_per_seg);
654         }
655         mutex_unlock(&dirty_i->seglist_lock);
656
657         /* send small discards */
658         list_for_each_entry_safe(entry, this, head, list) {
659                 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
660                         goto skip;
661                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
662                 cpc->trimmed += entry->len;
663 skip:
664                 list_del(&entry->list);
665                 SM_I(sbi)->nr_discards -= entry->len;
666                 kmem_cache_free(discard_entry_slab, entry);
667         }
668 }
669
670 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
671 {
672         struct sit_info *sit_i = SIT_I(sbi);
673
674         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
675                 sit_i->dirty_sentries++;
676                 return false;
677         }
678
679         return true;
680 }
681
682 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
683                                         unsigned int segno, int modified)
684 {
685         struct seg_entry *se = get_seg_entry(sbi, segno);
686         se->type = type;
687         if (modified)
688                 __mark_sit_entry_dirty(sbi, segno);
689 }
690
691 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
692 {
693         struct seg_entry *se;
694         unsigned int segno, offset;
695         long int new_vblocks;
696
697         segno = GET_SEGNO(sbi, blkaddr);
698
699         se = get_seg_entry(sbi, segno);
700         new_vblocks = se->valid_blocks + del;
701         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
702
703         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
704                                 (new_vblocks > sbi->blocks_per_seg)));
705
706         se->valid_blocks = new_vblocks;
707         se->mtime = get_mtime(sbi);
708         SIT_I(sbi)->max_mtime = se->mtime;
709
710         /* Update valid block bitmap */
711         if (del > 0) {
712                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
713                         f2fs_bug_on(sbi, 1);
714                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
715                         sbi->discard_blks--;
716         } else {
717                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
718                         f2fs_bug_on(sbi, 1);
719                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
720                         sbi->discard_blks++;
721         }
722         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
723                 se->ckpt_valid_blocks += del;
724
725         __mark_sit_entry_dirty(sbi, segno);
726
727         /* update total number of valid blocks to be written in ckpt area */
728         SIT_I(sbi)->written_valid_blocks += del;
729
730         if (sbi->segs_per_sec > 1)
731                 get_sec_entry(sbi, segno)->valid_blocks += del;
732 }
733
734 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
735 {
736         update_sit_entry(sbi, new, 1);
737         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
738                 update_sit_entry(sbi, old, -1);
739
740         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
741         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
742 }
743
744 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
745 {
746         unsigned int segno = GET_SEGNO(sbi, addr);
747         struct sit_info *sit_i = SIT_I(sbi);
748
749         f2fs_bug_on(sbi, addr == NULL_ADDR);
750         if (addr == NEW_ADDR)
751                 return;
752
753         /* add it into sit main buffer */
754         mutex_lock(&sit_i->sentry_lock);
755
756         update_sit_entry(sbi, addr, -1);
757
758         /* add it into dirty seglist */
759         locate_dirty_segment(sbi, segno);
760
761         mutex_unlock(&sit_i->sentry_lock);
762 }
763
764 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
765 {
766         struct sit_info *sit_i = SIT_I(sbi);
767         unsigned int segno, offset;
768         struct seg_entry *se;
769         bool is_cp = false;
770
771         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
772                 return true;
773
774         mutex_lock(&sit_i->sentry_lock);
775
776         segno = GET_SEGNO(sbi, blkaddr);
777         se = get_seg_entry(sbi, segno);
778         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
779
780         if (f2fs_test_bit(offset, se->ckpt_valid_map))
781                 is_cp = true;
782
783         mutex_unlock(&sit_i->sentry_lock);
784
785         return is_cp;
786 }
787
788 /*
789  * This function should be resided under the curseg_mutex lock
790  */
791 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
792                                         struct f2fs_summary *sum)
793 {
794         struct curseg_info *curseg = CURSEG_I(sbi, type);
795         void *addr = curseg->sum_blk;
796         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
797         memcpy(addr, sum, sizeof(struct f2fs_summary));
798 }
799
800 /*
801  * Calculate the number of current summary pages for writing
802  */
803 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
804 {
805         int valid_sum_count = 0;
806         int i, sum_in_page;
807
808         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
809                 if (sbi->ckpt->alloc_type[i] == SSR)
810                         valid_sum_count += sbi->blocks_per_seg;
811                 else {
812                         if (for_ra)
813                                 valid_sum_count += le16_to_cpu(
814                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
815                         else
816                                 valid_sum_count += curseg_blkoff(sbi, i);
817                 }
818         }
819
820         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
821                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
822         if (valid_sum_count <= sum_in_page)
823                 return 1;
824         else if ((valid_sum_count - sum_in_page) <=
825                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
826                 return 2;
827         return 3;
828 }
829
830 /*
831  * Caller should put this summary page
832  */
833 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
834 {
835         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
836 }
837
838 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
839 {
840         struct page *page = grab_meta_page(sbi, blk_addr);
841         void *dst = page_address(page);
842
843         if (src)
844                 memcpy(dst, src, PAGE_CACHE_SIZE);
845         else
846                 memset(dst, 0, PAGE_CACHE_SIZE);
847         set_page_dirty(page);
848         f2fs_put_page(page, 1);
849 }
850
851 static void write_sum_page(struct f2fs_sb_info *sbi,
852                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
853 {
854         update_meta_page(sbi, (void *)sum_blk, blk_addr);
855 }
856
857 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
858 {
859         struct curseg_info *curseg = CURSEG_I(sbi, type);
860         unsigned int segno = curseg->segno + 1;
861         struct free_segmap_info *free_i = FREE_I(sbi);
862
863         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
864                 return !test_bit(segno, free_i->free_segmap);
865         return 0;
866 }
867
868 /*
869  * Find a new segment from the free segments bitmap to right order
870  * This function should be returned with success, otherwise BUG
871  */
872 static void get_new_segment(struct f2fs_sb_info *sbi,
873                         unsigned int *newseg, bool new_sec, int dir)
874 {
875         struct free_segmap_info *free_i = FREE_I(sbi);
876         unsigned int segno, secno, zoneno;
877         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
878         unsigned int hint = *newseg / sbi->segs_per_sec;
879         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
880         unsigned int left_start = hint;
881         bool init = true;
882         int go_left = 0;
883         int i;
884
885         spin_lock(&free_i->segmap_lock);
886
887         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
888                 segno = find_next_zero_bit(free_i->free_segmap,
889                                         MAIN_SEGS(sbi), *newseg + 1);
890                 if (segno - *newseg < sbi->segs_per_sec -
891                                         (*newseg % sbi->segs_per_sec))
892                         goto got_it;
893         }
894 find_other_zone:
895         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
896         if (secno >= MAIN_SECS(sbi)) {
897                 if (dir == ALLOC_RIGHT) {
898                         secno = find_next_zero_bit(free_i->free_secmap,
899                                                         MAIN_SECS(sbi), 0);
900                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
901                 } else {
902                         go_left = 1;
903                         left_start = hint - 1;
904                 }
905         }
906         if (go_left == 0)
907                 goto skip_left;
908
909         while (test_bit(left_start, free_i->free_secmap)) {
910                 if (left_start > 0) {
911                         left_start--;
912                         continue;
913                 }
914                 left_start = find_next_zero_bit(free_i->free_secmap,
915                                                         MAIN_SECS(sbi), 0);
916                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
917                 break;
918         }
919         secno = left_start;
920 skip_left:
921         hint = secno;
922         segno = secno * sbi->segs_per_sec;
923         zoneno = secno / sbi->secs_per_zone;
924
925         /* give up on finding another zone */
926         if (!init)
927                 goto got_it;
928         if (sbi->secs_per_zone == 1)
929                 goto got_it;
930         if (zoneno == old_zoneno)
931                 goto got_it;
932         if (dir == ALLOC_LEFT) {
933                 if (!go_left && zoneno + 1 >= total_zones)
934                         goto got_it;
935                 if (go_left && zoneno == 0)
936                         goto got_it;
937         }
938         for (i = 0; i < NR_CURSEG_TYPE; i++)
939                 if (CURSEG_I(sbi, i)->zone == zoneno)
940                         break;
941
942         if (i < NR_CURSEG_TYPE) {
943                 /* zone is in user, try another */
944                 if (go_left)
945                         hint = zoneno * sbi->secs_per_zone - 1;
946                 else if (zoneno + 1 >= total_zones)
947                         hint = 0;
948                 else
949                         hint = (zoneno + 1) * sbi->secs_per_zone;
950                 init = false;
951                 goto find_other_zone;
952         }
953 got_it:
954         /* set it as dirty segment in free segmap */
955         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
956         __set_inuse(sbi, segno);
957         *newseg = segno;
958         spin_unlock(&free_i->segmap_lock);
959 }
960
961 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
962 {
963         struct curseg_info *curseg = CURSEG_I(sbi, type);
964         struct summary_footer *sum_footer;
965
966         curseg->segno = curseg->next_segno;
967         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
968         curseg->next_blkoff = 0;
969         curseg->next_segno = NULL_SEGNO;
970
971         sum_footer = &(curseg->sum_blk->footer);
972         memset(sum_footer, 0, sizeof(struct summary_footer));
973         if (IS_DATASEG(type))
974                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
975         if (IS_NODESEG(type))
976                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
977         __set_sit_entry_type(sbi, type, curseg->segno, modified);
978 }
979
980 /*
981  * Allocate a current working segment.
982  * This function always allocates a free segment in LFS manner.
983  */
984 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
985 {
986         struct curseg_info *curseg = CURSEG_I(sbi, type);
987         unsigned int segno = curseg->segno;
988         int dir = ALLOC_LEFT;
989
990         write_sum_page(sbi, curseg->sum_blk,
991                                 GET_SUM_BLOCK(sbi, segno));
992         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
993                 dir = ALLOC_RIGHT;
994
995         if (test_opt(sbi, NOHEAP))
996                 dir = ALLOC_RIGHT;
997
998         get_new_segment(sbi, &segno, new_sec, dir);
999         curseg->next_segno = segno;
1000         reset_curseg(sbi, type, 1);
1001         curseg->alloc_type = LFS;
1002 }
1003
1004 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1005                         struct curseg_info *seg, block_t start)
1006 {
1007         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1008         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1009         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1010         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1011         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1012         int i, pos;
1013
1014         for (i = 0; i < entries; i++)
1015                 target_map[i] = ckpt_map[i] | cur_map[i];
1016
1017         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1018
1019         seg->next_blkoff = pos;
1020 }
1021
1022 /*
1023  * If a segment is written by LFS manner, next block offset is just obtained
1024  * by increasing the current block offset. However, if a segment is written by
1025  * SSR manner, next block offset obtained by calling __next_free_blkoff
1026  */
1027 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1028                                 struct curseg_info *seg)
1029 {
1030         if (seg->alloc_type == SSR)
1031                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1032         else
1033                 seg->next_blkoff++;
1034 }
1035
1036 /*
1037  * This function always allocates a used segment(from dirty seglist) by SSR
1038  * manner, so it should recover the existing segment information of valid blocks
1039  */
1040 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1041 {
1042         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1043         struct curseg_info *curseg = CURSEG_I(sbi, type);
1044         unsigned int new_segno = curseg->next_segno;
1045         struct f2fs_summary_block *sum_node;
1046         struct page *sum_page;
1047
1048         write_sum_page(sbi, curseg->sum_blk,
1049                                 GET_SUM_BLOCK(sbi, curseg->segno));
1050         __set_test_and_inuse(sbi, new_segno);
1051
1052         mutex_lock(&dirty_i->seglist_lock);
1053         __remove_dirty_segment(sbi, new_segno, PRE);
1054         __remove_dirty_segment(sbi, new_segno, DIRTY);
1055         mutex_unlock(&dirty_i->seglist_lock);
1056
1057         reset_curseg(sbi, type, 1);
1058         curseg->alloc_type = SSR;
1059         __next_free_blkoff(sbi, curseg, 0);
1060
1061         if (reuse) {
1062                 sum_page = get_sum_page(sbi, new_segno);
1063                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1064                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1065                 f2fs_put_page(sum_page, 1);
1066         }
1067 }
1068
1069 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1070 {
1071         struct curseg_info *curseg = CURSEG_I(sbi, type);
1072         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1073
1074         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1075                 return v_ops->get_victim(sbi,
1076                                 &(curseg)->next_segno, BG_GC, type, SSR);
1077
1078         /* For data segments, let's do SSR more intensively */
1079         for (; type >= CURSEG_HOT_DATA; type--)
1080                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1081                                                 BG_GC, type, SSR))
1082                         return 1;
1083         return 0;
1084 }
1085
1086 /*
1087  * flush out current segment and replace it with new segment
1088  * This function should be returned with success, otherwise BUG
1089  */
1090 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1091                                                 int type, bool force)
1092 {
1093         struct curseg_info *curseg = CURSEG_I(sbi, type);
1094
1095         if (force)
1096                 new_curseg(sbi, type, true);
1097         else if (type == CURSEG_WARM_NODE)
1098                 new_curseg(sbi, type, false);
1099         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1100                 new_curseg(sbi, type, false);
1101         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1102                 change_curseg(sbi, type, true);
1103         else
1104                 new_curseg(sbi, type, false);
1105
1106         stat_inc_seg_type(sbi, curseg);
1107 }
1108
1109 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1110 {
1111         struct curseg_info *curseg = CURSEG_I(sbi, type);
1112         unsigned int old_segno;
1113
1114         old_segno = curseg->segno;
1115         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1116         locate_dirty_segment(sbi, old_segno);
1117 }
1118
1119 void allocate_new_segments(struct f2fs_sb_info *sbi)
1120 {
1121         int i;
1122
1123         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1124                 __allocate_new_segments(sbi, i);
1125 }
1126
1127 static const struct segment_allocation default_salloc_ops = {
1128         .allocate_segment = allocate_segment_by_default,
1129 };
1130
1131 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1132 {
1133         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1134         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1135         unsigned int start_segno, end_segno;
1136         struct cp_control cpc;
1137
1138         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1139                 return -EINVAL;
1140
1141         cpc.trimmed = 0;
1142         if (end <= MAIN_BLKADDR(sbi))
1143                 goto out;
1144
1145         /* start/end segment number in main_area */
1146         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1147         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1148                                                 GET_SEGNO(sbi, end);
1149         cpc.reason = CP_DISCARD;
1150         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1151
1152         /* do checkpoint to issue discard commands safely */
1153         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1154                 cpc.trim_start = start_segno;
1155
1156                 if (sbi->discard_blks == 0)
1157                         break;
1158                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1159                         cpc.trim_end = end_segno;
1160                 else
1161                         cpc.trim_end = min_t(unsigned int,
1162                                 rounddown(start_segno +
1163                                 BATCHED_TRIM_SEGMENTS(sbi),
1164                                 sbi->segs_per_sec) - 1, end_segno);
1165
1166                 mutex_lock(&sbi->gc_mutex);
1167                 write_checkpoint(sbi, &cpc);
1168                 mutex_unlock(&sbi->gc_mutex);
1169         }
1170 out:
1171         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1172         return 0;
1173 }
1174
1175 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1176 {
1177         struct curseg_info *curseg = CURSEG_I(sbi, type);
1178         if (curseg->next_blkoff < sbi->blocks_per_seg)
1179                 return true;
1180         return false;
1181 }
1182
1183 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1184 {
1185         if (p_type == DATA)
1186                 return CURSEG_HOT_DATA;
1187         else
1188                 return CURSEG_HOT_NODE;
1189 }
1190
1191 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1192 {
1193         if (p_type == DATA) {
1194                 struct inode *inode = page->mapping->host;
1195
1196                 if (S_ISDIR(inode->i_mode))
1197                         return CURSEG_HOT_DATA;
1198                 else
1199                         return CURSEG_COLD_DATA;
1200         } else {
1201                 if (IS_DNODE(page) && is_cold_node(page))
1202                         return CURSEG_WARM_NODE;
1203                 else
1204                         return CURSEG_COLD_NODE;
1205         }
1206 }
1207
1208 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1209 {
1210         if (p_type == DATA) {
1211                 struct inode *inode = page->mapping->host;
1212
1213                 if (S_ISDIR(inode->i_mode))
1214                         return CURSEG_HOT_DATA;
1215                 else if (is_cold_data(page) || file_is_cold(inode))
1216                         return CURSEG_COLD_DATA;
1217                 else
1218                         return CURSEG_WARM_DATA;
1219         } else {
1220                 if (IS_DNODE(page))
1221                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1222                                                 CURSEG_HOT_NODE;
1223                 else
1224                         return CURSEG_COLD_NODE;
1225         }
1226 }
1227
1228 static int __get_segment_type(struct page *page, enum page_type p_type)
1229 {
1230         switch (F2FS_P_SB(page)->active_logs) {
1231         case 2:
1232                 return __get_segment_type_2(page, p_type);
1233         case 4:
1234                 return __get_segment_type_4(page, p_type);
1235         }
1236         /* NR_CURSEG_TYPE(6) logs by default */
1237         f2fs_bug_on(F2FS_P_SB(page),
1238                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1239         return __get_segment_type_6(page, p_type);
1240 }
1241
1242 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1243                 block_t old_blkaddr, block_t *new_blkaddr,
1244                 struct f2fs_summary *sum, int type)
1245 {
1246         struct sit_info *sit_i = SIT_I(sbi);
1247         struct curseg_info *curseg;
1248         bool direct_io = (type == CURSEG_DIRECT_IO);
1249
1250         type = direct_io ? CURSEG_WARM_DATA : type;
1251
1252         curseg = CURSEG_I(sbi, type);
1253
1254         mutex_lock(&curseg->curseg_mutex);
1255         mutex_lock(&sit_i->sentry_lock);
1256
1257         /* direct_io'ed data is aligned to the segment for better performance */
1258         if (direct_io && curseg->next_blkoff &&
1259                                 !has_not_enough_free_secs(sbi, 0))
1260                 __allocate_new_segments(sbi, type);
1261
1262         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1263
1264         /*
1265          * __add_sum_entry should be resided under the curseg_mutex
1266          * because, this function updates a summary entry in the
1267          * current summary block.
1268          */
1269         __add_sum_entry(sbi, type, sum);
1270
1271         __refresh_next_blkoff(sbi, curseg);
1272
1273         stat_inc_block_count(sbi, curseg);
1274
1275         if (!__has_curseg_space(sbi, type))
1276                 sit_i->s_ops->allocate_segment(sbi, type, false);
1277         /*
1278          * SIT information should be updated before segment allocation,
1279          * since SSR needs latest valid block information.
1280          */
1281         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1282
1283         mutex_unlock(&sit_i->sentry_lock);
1284
1285         if (page && IS_NODESEG(type))
1286                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1287
1288         mutex_unlock(&curseg->curseg_mutex);
1289 }
1290
1291 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1292 {
1293         int type = __get_segment_type(fio->page, fio->type);
1294
1295         allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1296                                         &fio->blk_addr, sum, type);
1297
1298         /* writeout dirty page into bdev */
1299         f2fs_submit_page_mbio(fio);
1300 }
1301
1302 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1303 {
1304         struct f2fs_io_info fio = {
1305                 .sbi = sbi,
1306                 .type = META,
1307                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1308                 .blk_addr = page->index,
1309                 .page = page,
1310                 .encrypted_page = NULL,
1311         };
1312
1313         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1314                 fio.rw &= ~REQ_META;
1315
1316         set_page_writeback(page);
1317         f2fs_submit_page_mbio(&fio);
1318 }
1319
1320 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1321 {
1322         struct f2fs_summary sum;
1323
1324         set_summary(&sum, nid, 0, 0);
1325         do_write_page(&sum, fio);
1326 }
1327
1328 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1329 {
1330         struct f2fs_sb_info *sbi = fio->sbi;
1331         struct f2fs_summary sum;
1332         struct node_info ni;
1333
1334         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1335         get_node_info(sbi, dn->nid, &ni);
1336         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1337         do_write_page(&sum, fio);
1338         dn->data_blkaddr = fio->blk_addr;
1339 }
1340
1341 void rewrite_data_page(struct f2fs_io_info *fio)
1342 {
1343         stat_inc_inplace_blocks(fio->sbi);
1344         f2fs_submit_page_mbio(fio);
1345 }
1346
1347 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1348                                 struct f2fs_summary *sum,
1349                                 block_t old_blkaddr, block_t new_blkaddr,
1350                                 bool recover_curseg)
1351 {
1352         struct sit_info *sit_i = SIT_I(sbi);
1353         struct curseg_info *curseg;
1354         unsigned int segno, old_cursegno;
1355         struct seg_entry *se;
1356         int type;
1357         unsigned short old_blkoff;
1358
1359         segno = GET_SEGNO(sbi, new_blkaddr);
1360         se = get_seg_entry(sbi, segno);
1361         type = se->type;
1362
1363         if (!recover_curseg) {
1364                 /* for recovery flow */
1365                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1366                         if (old_blkaddr == NULL_ADDR)
1367                                 type = CURSEG_COLD_DATA;
1368                         else
1369                                 type = CURSEG_WARM_DATA;
1370                 }
1371         } else {
1372                 if (!IS_CURSEG(sbi, segno))
1373                         type = CURSEG_WARM_DATA;
1374         }
1375
1376         curseg = CURSEG_I(sbi, type);
1377
1378         mutex_lock(&curseg->curseg_mutex);
1379         mutex_lock(&sit_i->sentry_lock);
1380
1381         old_cursegno = curseg->segno;
1382         old_blkoff = curseg->next_blkoff;
1383
1384         /* change the current segment */
1385         if (segno != curseg->segno) {
1386                 curseg->next_segno = segno;
1387                 change_curseg(sbi, type, true);
1388         }
1389
1390         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1391         __add_sum_entry(sbi, type, sum);
1392
1393         if (!recover_curseg)
1394                 update_sit_entry(sbi, new_blkaddr, 1);
1395         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1396                 update_sit_entry(sbi, old_blkaddr, -1);
1397
1398         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1399         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1400
1401         locate_dirty_segment(sbi, old_cursegno);
1402
1403         if (recover_curseg) {
1404                 if (old_cursegno != curseg->segno) {
1405                         curseg->next_segno = old_cursegno;
1406                         change_curseg(sbi, type, true);
1407                 }
1408                 curseg->next_blkoff = old_blkoff;
1409         }
1410
1411         mutex_unlock(&sit_i->sentry_lock);
1412         mutex_unlock(&curseg->curseg_mutex);
1413 }
1414
1415 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1416                                 block_t old_addr, block_t new_addr,
1417                                 unsigned char version, bool recover_curseg)
1418 {
1419         struct f2fs_summary sum;
1420
1421         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1422
1423         __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1424
1425         dn->data_blkaddr = new_addr;
1426         set_data_blkaddr(dn);
1427         f2fs_update_extent_cache(dn);
1428 }
1429
1430 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1431                                         struct page *page, enum page_type type)
1432 {
1433         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1434         struct f2fs_bio_info *io = &sbi->write_io[btype];
1435         struct bio_vec *bvec;
1436         struct page *target;
1437         int i;
1438
1439         down_read(&io->io_rwsem);
1440         if (!io->bio) {
1441                 up_read(&io->io_rwsem);
1442                 return false;
1443         }
1444
1445         bio_for_each_segment_all(bvec, io->bio, i) {
1446
1447                 if (bvec->bv_page->mapping) {
1448                         target = bvec->bv_page;
1449                 } else {
1450                         struct f2fs_crypto_ctx *ctx;
1451
1452                         /* encrypted page */
1453                         ctx = (struct f2fs_crypto_ctx *)page_private(
1454                                                                 bvec->bv_page);
1455                         target = ctx->w.control_page;
1456                 }
1457
1458                 if (page == target) {
1459                         up_read(&io->io_rwsem);
1460                         return true;
1461                 }
1462         }
1463
1464         up_read(&io->io_rwsem);
1465         return false;
1466 }
1467
1468 void f2fs_wait_on_page_writeback(struct page *page,
1469                                 enum page_type type)
1470 {
1471         if (PageWriteback(page)) {
1472                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1473
1474                 if (is_merged_page(sbi, page, type))
1475                         f2fs_submit_merged_bio(sbi, type, WRITE);
1476                 wait_on_page_writeback(page);
1477         }
1478 }
1479
1480 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1481                                                         block_t blkaddr)
1482 {
1483         struct page *cpage;
1484
1485         if (blkaddr == NEW_ADDR)
1486                 return;
1487
1488         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1489
1490         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1491         if (cpage) {
1492                 f2fs_wait_on_page_writeback(cpage, DATA);
1493                 f2fs_put_page(cpage, 1);
1494         }
1495 }
1496
1497 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1498 {
1499         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1500         struct curseg_info *seg_i;
1501         unsigned char *kaddr;
1502         struct page *page;
1503         block_t start;
1504         int i, j, offset;
1505
1506         start = start_sum_block(sbi);
1507
1508         page = get_meta_page(sbi, start++);
1509         kaddr = (unsigned char *)page_address(page);
1510
1511         /* Step 1: restore nat cache */
1512         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1513         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1514
1515         /* Step 2: restore sit cache */
1516         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1517         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1518                                                 SUM_JOURNAL_SIZE);
1519         offset = 2 * SUM_JOURNAL_SIZE;
1520
1521         /* Step 3: restore summary entries */
1522         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1523                 unsigned short blk_off;
1524                 unsigned int segno;
1525
1526                 seg_i = CURSEG_I(sbi, i);
1527                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1528                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1529                 seg_i->next_segno = segno;
1530                 reset_curseg(sbi, i, 0);
1531                 seg_i->alloc_type = ckpt->alloc_type[i];
1532                 seg_i->next_blkoff = blk_off;
1533
1534                 if (seg_i->alloc_type == SSR)
1535                         blk_off = sbi->blocks_per_seg;
1536
1537                 for (j = 0; j < blk_off; j++) {
1538                         struct f2fs_summary *s;
1539                         s = (struct f2fs_summary *)(kaddr + offset);
1540                         seg_i->sum_blk->entries[j] = *s;
1541                         offset += SUMMARY_SIZE;
1542                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1543                                                 SUM_FOOTER_SIZE)
1544                                 continue;
1545
1546                         f2fs_put_page(page, 1);
1547                         page = NULL;
1548
1549                         page = get_meta_page(sbi, start++);
1550                         kaddr = (unsigned char *)page_address(page);
1551                         offset = 0;
1552                 }
1553         }
1554         f2fs_put_page(page, 1);
1555         return 0;
1556 }
1557
1558 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1559 {
1560         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1561         struct f2fs_summary_block *sum;
1562         struct curseg_info *curseg;
1563         struct page *new;
1564         unsigned short blk_off;
1565         unsigned int segno = 0;
1566         block_t blk_addr = 0;
1567
1568         /* get segment number and block addr */
1569         if (IS_DATASEG(type)) {
1570                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1571                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1572                                                         CURSEG_HOT_DATA]);
1573                 if (__exist_node_summaries(sbi))
1574                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1575                 else
1576                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1577         } else {
1578                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1579                                                         CURSEG_HOT_NODE]);
1580                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1581                                                         CURSEG_HOT_NODE]);
1582                 if (__exist_node_summaries(sbi))
1583                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1584                                                         type - CURSEG_HOT_NODE);
1585                 else
1586                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1587         }
1588
1589         new = get_meta_page(sbi, blk_addr);
1590         sum = (struct f2fs_summary_block *)page_address(new);
1591
1592         if (IS_NODESEG(type)) {
1593                 if (__exist_node_summaries(sbi)) {
1594                         struct f2fs_summary *ns = &sum->entries[0];
1595                         int i;
1596                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1597                                 ns->version = 0;
1598                                 ns->ofs_in_node = 0;
1599                         }
1600                 } else {
1601                         int err;
1602
1603                         err = restore_node_summary(sbi, segno, sum);
1604                         if (err) {
1605                                 f2fs_put_page(new, 1);
1606                                 return err;
1607                         }
1608                 }
1609         }
1610
1611         /* set uncompleted segment to curseg */
1612         curseg = CURSEG_I(sbi, type);
1613         mutex_lock(&curseg->curseg_mutex);
1614         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1615         curseg->next_segno = segno;
1616         reset_curseg(sbi, type, 0);
1617         curseg->alloc_type = ckpt->alloc_type[type];
1618         curseg->next_blkoff = blk_off;
1619         mutex_unlock(&curseg->curseg_mutex);
1620         f2fs_put_page(new, 1);
1621         return 0;
1622 }
1623
1624 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1625 {
1626         int type = CURSEG_HOT_DATA;
1627         int err;
1628
1629         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1630                 int npages = npages_for_summary_flush(sbi, true);
1631
1632                 if (npages >= 2)
1633                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1634                                                         META_CP, true);
1635
1636                 /* restore for compacted data summary */
1637                 if (read_compacted_summaries(sbi))
1638                         return -EINVAL;
1639                 type = CURSEG_HOT_NODE;
1640         }
1641
1642         if (__exist_node_summaries(sbi))
1643                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1644                                         NR_CURSEG_TYPE - type, META_CP, true);
1645
1646         for (; type <= CURSEG_COLD_NODE; type++) {
1647                 err = read_normal_summaries(sbi, type);
1648                 if (err)
1649                         return err;
1650         }
1651
1652         return 0;
1653 }
1654
1655 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1656 {
1657         struct page *page;
1658         unsigned char *kaddr;
1659         struct f2fs_summary *summary;
1660         struct curseg_info *seg_i;
1661         int written_size = 0;
1662         int i, j;
1663
1664         page = grab_meta_page(sbi, blkaddr++);
1665         kaddr = (unsigned char *)page_address(page);
1666
1667         /* Step 1: write nat cache */
1668         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1669         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1670         written_size += SUM_JOURNAL_SIZE;
1671
1672         /* Step 2: write sit cache */
1673         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1674         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1675                                                 SUM_JOURNAL_SIZE);
1676         written_size += SUM_JOURNAL_SIZE;
1677
1678         /* Step 3: write summary entries */
1679         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1680                 unsigned short blkoff;
1681                 seg_i = CURSEG_I(sbi, i);
1682                 if (sbi->ckpt->alloc_type[i] == SSR)
1683                         blkoff = sbi->blocks_per_seg;
1684                 else
1685                         blkoff = curseg_blkoff(sbi, i);
1686
1687                 for (j = 0; j < blkoff; j++) {
1688                         if (!page) {
1689                                 page = grab_meta_page(sbi, blkaddr++);
1690                                 kaddr = (unsigned char *)page_address(page);
1691                                 written_size = 0;
1692                         }
1693                         summary = (struct f2fs_summary *)(kaddr + written_size);
1694                         *summary = seg_i->sum_blk->entries[j];
1695                         written_size += SUMMARY_SIZE;
1696
1697                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1698                                                         SUM_FOOTER_SIZE)
1699                                 continue;
1700
1701                         set_page_dirty(page);
1702                         f2fs_put_page(page, 1);
1703                         page = NULL;
1704                 }
1705         }
1706         if (page) {
1707                 set_page_dirty(page);
1708                 f2fs_put_page(page, 1);
1709         }
1710 }
1711
1712 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1713                                         block_t blkaddr, int type)
1714 {
1715         int i, end;
1716         if (IS_DATASEG(type))
1717                 end = type + NR_CURSEG_DATA_TYPE;
1718         else
1719                 end = type + NR_CURSEG_NODE_TYPE;
1720
1721         for (i = type; i < end; i++) {
1722                 struct curseg_info *sum = CURSEG_I(sbi, i);
1723                 mutex_lock(&sum->curseg_mutex);
1724                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1725                 mutex_unlock(&sum->curseg_mutex);
1726         }
1727 }
1728
1729 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1730 {
1731         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1732                 write_compacted_summaries(sbi, start_blk);
1733         else
1734                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1735 }
1736
1737 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1738 {
1739         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1740 }
1741
1742 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1743                                         unsigned int val, int alloc)
1744 {
1745         int i;
1746
1747         if (type == NAT_JOURNAL) {
1748                 for (i = 0; i < nats_in_cursum(sum); i++) {
1749                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1750                                 return i;
1751                 }
1752                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1753                         return update_nats_in_cursum(sum, 1);
1754         } else if (type == SIT_JOURNAL) {
1755                 for (i = 0; i < sits_in_cursum(sum); i++)
1756                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1757                                 return i;
1758                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1759                         return update_sits_in_cursum(sum, 1);
1760         }
1761         return -1;
1762 }
1763
1764 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1765                                         unsigned int segno)
1766 {
1767         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1768 }
1769
1770 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1771                                         unsigned int start)
1772 {
1773         struct sit_info *sit_i = SIT_I(sbi);
1774         struct page *src_page, *dst_page;
1775         pgoff_t src_off, dst_off;
1776         void *src_addr, *dst_addr;
1777
1778         src_off = current_sit_addr(sbi, start);
1779         dst_off = next_sit_addr(sbi, src_off);
1780
1781         /* get current sit block page without lock */
1782         src_page = get_meta_page(sbi, src_off);
1783         dst_page = grab_meta_page(sbi, dst_off);
1784         f2fs_bug_on(sbi, PageDirty(src_page));
1785
1786         src_addr = page_address(src_page);
1787         dst_addr = page_address(dst_page);
1788         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1789
1790         set_page_dirty(dst_page);
1791         f2fs_put_page(src_page, 1);
1792
1793         set_to_next_sit(sit_i, start);
1794
1795         return dst_page;
1796 }
1797
1798 static struct sit_entry_set *grab_sit_entry_set(void)
1799 {
1800         struct sit_entry_set *ses =
1801                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1802
1803         ses->entry_cnt = 0;
1804         INIT_LIST_HEAD(&ses->set_list);
1805         return ses;
1806 }
1807
1808 static void release_sit_entry_set(struct sit_entry_set *ses)
1809 {
1810         list_del(&ses->set_list);
1811         kmem_cache_free(sit_entry_set_slab, ses);
1812 }
1813
1814 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1815                                                 struct list_head *head)
1816 {
1817         struct sit_entry_set *next = ses;
1818
1819         if (list_is_last(&ses->set_list, head))
1820                 return;
1821
1822         list_for_each_entry_continue(next, head, set_list)
1823                 if (ses->entry_cnt <= next->entry_cnt)
1824                         break;
1825
1826         list_move_tail(&ses->set_list, &next->set_list);
1827 }
1828
1829 static void add_sit_entry(unsigned int segno, struct list_head *head)
1830 {
1831         struct sit_entry_set *ses;
1832         unsigned int start_segno = START_SEGNO(segno);
1833
1834         list_for_each_entry(ses, head, set_list) {
1835                 if (ses->start_segno == start_segno) {
1836                         ses->entry_cnt++;
1837                         adjust_sit_entry_set(ses, head);
1838                         return;
1839                 }
1840         }
1841
1842         ses = grab_sit_entry_set();
1843
1844         ses->start_segno = start_segno;
1845         ses->entry_cnt++;
1846         list_add(&ses->set_list, head);
1847 }
1848
1849 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1850 {
1851         struct f2fs_sm_info *sm_info = SM_I(sbi);
1852         struct list_head *set_list = &sm_info->sit_entry_set;
1853         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1854         unsigned int segno;
1855
1856         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1857                 add_sit_entry(segno, set_list);
1858 }
1859
1860 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1861 {
1862         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1863         struct f2fs_summary_block *sum = curseg->sum_blk;
1864         int i;
1865
1866         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1867                 unsigned int segno;
1868                 bool dirtied;
1869
1870                 segno = le32_to_cpu(segno_in_journal(sum, i));
1871                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1872
1873                 if (!dirtied)
1874                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1875         }
1876         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1877 }
1878
1879 /*
1880  * CP calls this function, which flushes SIT entries including sit_journal,
1881  * and moves prefree segs to free segs.
1882  */
1883 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1884 {
1885         struct sit_info *sit_i = SIT_I(sbi);
1886         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1887         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1888         struct f2fs_summary_block *sum = curseg->sum_blk;
1889         struct sit_entry_set *ses, *tmp;
1890         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1891         bool to_journal = true;
1892         struct seg_entry *se;
1893
1894         mutex_lock(&curseg->curseg_mutex);
1895         mutex_lock(&sit_i->sentry_lock);
1896
1897         if (!sit_i->dirty_sentries)
1898                 goto out;
1899
1900         /*
1901          * add and account sit entries of dirty bitmap in sit entry
1902          * set temporarily
1903          */
1904         add_sits_in_set(sbi);
1905
1906         /*
1907          * if there are no enough space in journal to store dirty sit
1908          * entries, remove all entries from journal and add and account
1909          * them in sit entry set.
1910          */
1911         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1912                 remove_sits_in_journal(sbi);
1913
1914         /*
1915          * there are two steps to flush sit entries:
1916          * #1, flush sit entries to journal in current cold data summary block.
1917          * #2, flush sit entries to sit page.
1918          */
1919         list_for_each_entry_safe(ses, tmp, head, set_list) {
1920                 struct page *page = NULL;
1921                 struct f2fs_sit_block *raw_sit = NULL;
1922                 unsigned int start_segno = ses->start_segno;
1923                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1924                                                 (unsigned long)MAIN_SEGS(sbi));
1925                 unsigned int segno = start_segno;
1926
1927                 if (to_journal &&
1928                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1929                         to_journal = false;
1930
1931                 if (!to_journal) {
1932                         page = get_next_sit_page(sbi, start_segno);
1933                         raw_sit = page_address(page);
1934                 }
1935
1936                 /* flush dirty sit entries in region of current sit set */
1937                 for_each_set_bit_from(segno, bitmap, end) {
1938                         int offset, sit_offset;
1939
1940                         se = get_seg_entry(sbi, segno);
1941
1942                         /* add discard candidates */
1943                         if (cpc->reason != CP_DISCARD) {
1944                                 cpc->trim_start = segno;
1945                                 add_discard_addrs(sbi, cpc);
1946                         }
1947
1948                         if (to_journal) {
1949                                 offset = lookup_journal_in_cursum(sum,
1950                                                         SIT_JOURNAL, segno, 1);
1951                                 f2fs_bug_on(sbi, offset < 0);
1952                                 segno_in_journal(sum, offset) =
1953                                                         cpu_to_le32(segno);
1954                                 seg_info_to_raw_sit(se,
1955                                                 &sit_in_journal(sum, offset));
1956                         } else {
1957                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1958                                 seg_info_to_raw_sit(se,
1959                                                 &raw_sit->entries[sit_offset]);
1960                         }
1961
1962                         __clear_bit(segno, bitmap);
1963                         sit_i->dirty_sentries--;
1964                         ses->entry_cnt--;
1965                 }
1966
1967                 if (!to_journal)
1968                         f2fs_put_page(page, 1);
1969
1970                 f2fs_bug_on(sbi, ses->entry_cnt);
1971                 release_sit_entry_set(ses);
1972         }
1973
1974         f2fs_bug_on(sbi, !list_empty(head));
1975         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1976 out:
1977         if (cpc->reason == CP_DISCARD) {
1978                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1979                         add_discard_addrs(sbi, cpc);
1980         }
1981         mutex_unlock(&sit_i->sentry_lock);
1982         mutex_unlock(&curseg->curseg_mutex);
1983
1984         set_prefree_as_free_segments(sbi);
1985 }
1986
1987 static int build_sit_info(struct f2fs_sb_info *sbi)
1988 {
1989         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1990         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1991         struct sit_info *sit_i;
1992         unsigned int sit_segs, start;
1993         char *src_bitmap, *dst_bitmap;
1994         unsigned int bitmap_size;
1995
1996         /* allocate memory for SIT information */
1997         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1998         if (!sit_i)
1999                 return -ENOMEM;
2000
2001         SM_I(sbi)->sit_info = sit_i;
2002
2003         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2004                                         sizeof(struct seg_entry), GFP_KERNEL);
2005         if (!sit_i->sentries)
2006                 return -ENOMEM;
2007
2008         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2009         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2010         if (!sit_i->dirty_sentries_bitmap)
2011                 return -ENOMEM;
2012
2013         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2014                 sit_i->sentries[start].cur_valid_map
2015                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2016                 sit_i->sentries[start].ckpt_valid_map
2017                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2018                 sit_i->sentries[start].discard_map
2019                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2020                 if (!sit_i->sentries[start].cur_valid_map ||
2021                                 !sit_i->sentries[start].ckpt_valid_map ||
2022                                 !sit_i->sentries[start].discard_map)
2023                         return -ENOMEM;
2024         }
2025
2026         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2027         if (!sit_i->tmp_map)
2028                 return -ENOMEM;
2029
2030         if (sbi->segs_per_sec > 1) {
2031                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2032                                         sizeof(struct sec_entry), GFP_KERNEL);
2033                 if (!sit_i->sec_entries)
2034                         return -ENOMEM;
2035         }
2036
2037         /* get information related with SIT */
2038         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2039
2040         /* setup SIT bitmap from ckeckpoint pack */
2041         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2042         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2043
2044         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2045         if (!dst_bitmap)
2046                 return -ENOMEM;
2047
2048         /* init SIT information */
2049         sit_i->s_ops = &default_salloc_ops;
2050
2051         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2052         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2053         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2054         sit_i->sit_bitmap = dst_bitmap;
2055         sit_i->bitmap_size = bitmap_size;
2056         sit_i->dirty_sentries = 0;
2057         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2058         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2059         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2060         mutex_init(&sit_i->sentry_lock);
2061         return 0;
2062 }
2063
2064 static int build_free_segmap(struct f2fs_sb_info *sbi)
2065 {
2066         struct free_segmap_info *free_i;
2067         unsigned int bitmap_size, sec_bitmap_size;
2068
2069         /* allocate memory for free segmap information */
2070         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2071         if (!free_i)
2072                 return -ENOMEM;
2073
2074         SM_I(sbi)->free_info = free_i;
2075
2076         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2077         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2078         if (!free_i->free_segmap)
2079                 return -ENOMEM;
2080
2081         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2082         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2083         if (!free_i->free_secmap)
2084                 return -ENOMEM;
2085
2086         /* set all segments as dirty temporarily */
2087         memset(free_i->free_segmap, 0xff, bitmap_size);
2088         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2089
2090         /* init free segmap information */
2091         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2092         free_i->free_segments = 0;
2093         free_i->free_sections = 0;
2094         spin_lock_init(&free_i->segmap_lock);
2095         return 0;
2096 }
2097
2098 static int build_curseg(struct f2fs_sb_info *sbi)
2099 {
2100         struct curseg_info *array;
2101         int i;
2102
2103         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2104         if (!array)
2105                 return -ENOMEM;
2106
2107         SM_I(sbi)->curseg_array = array;
2108
2109         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2110                 mutex_init(&array[i].curseg_mutex);
2111                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2112                 if (!array[i].sum_blk)
2113                         return -ENOMEM;
2114                 array[i].segno = NULL_SEGNO;
2115                 array[i].next_blkoff = 0;
2116         }
2117         return restore_curseg_summaries(sbi);
2118 }
2119
2120 static void build_sit_entries(struct f2fs_sb_info *sbi)
2121 {
2122         struct sit_info *sit_i = SIT_I(sbi);
2123         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2124         struct f2fs_summary_block *sum = curseg->sum_blk;
2125         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2126         unsigned int i, start, end;
2127         unsigned int readed, start_blk = 0;
2128         int nrpages = MAX_BIO_BLOCKS(sbi);
2129
2130         do {
2131                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2132
2133                 start = start_blk * sit_i->sents_per_block;
2134                 end = (start_blk + readed) * sit_i->sents_per_block;
2135
2136                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2137                         struct seg_entry *se = &sit_i->sentries[start];
2138                         struct f2fs_sit_block *sit_blk;
2139                         struct f2fs_sit_entry sit;
2140                         struct page *page;
2141
2142                         mutex_lock(&curseg->curseg_mutex);
2143                         for (i = 0; i < sits_in_cursum(sum); i++) {
2144                                 if (le32_to_cpu(segno_in_journal(sum, i))
2145                                                                 == start) {
2146                                         sit = sit_in_journal(sum, i);
2147                                         mutex_unlock(&curseg->curseg_mutex);
2148                                         goto got_it;
2149                                 }
2150                         }
2151                         mutex_unlock(&curseg->curseg_mutex);
2152
2153                         page = get_current_sit_page(sbi, start);
2154                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2155                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2156                         f2fs_put_page(page, 1);
2157 got_it:
2158                         check_block_count(sbi, start, &sit);
2159                         seg_info_from_raw_sit(se, &sit);
2160
2161                         /* build discard map only one time */
2162                         memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2163                         sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2164
2165                         if (sbi->segs_per_sec > 1) {
2166                                 struct sec_entry *e = get_sec_entry(sbi, start);
2167                                 e->valid_blocks += se->valid_blocks;
2168                         }
2169                 }
2170                 start_blk += readed;
2171         } while (start_blk < sit_blk_cnt);
2172 }
2173
2174 static void init_free_segmap(struct f2fs_sb_info *sbi)
2175 {
2176         unsigned int start;
2177         int type;
2178
2179         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2180                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2181                 if (!sentry->valid_blocks)
2182                         __set_free(sbi, start);
2183         }
2184
2185         /* set use the current segments */
2186         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2187                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2188                 __set_test_and_inuse(sbi, curseg_t->segno);
2189         }
2190 }
2191
2192 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2193 {
2194         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2195         struct free_segmap_info *free_i = FREE_I(sbi);
2196         unsigned int segno = 0, offset = 0;
2197         unsigned short valid_blocks;
2198
2199         while (1) {
2200                 /* find dirty segment based on free segmap */
2201                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2202                 if (segno >= MAIN_SEGS(sbi))
2203                         break;
2204                 offset = segno + 1;
2205                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2206                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2207                         continue;
2208                 if (valid_blocks > sbi->blocks_per_seg) {
2209                         f2fs_bug_on(sbi, 1);
2210                         continue;
2211                 }
2212                 mutex_lock(&dirty_i->seglist_lock);
2213                 __locate_dirty_segment(sbi, segno, DIRTY);
2214                 mutex_unlock(&dirty_i->seglist_lock);
2215         }
2216 }
2217
2218 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2219 {
2220         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2221         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2222
2223         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2224         if (!dirty_i->victim_secmap)
2225                 return -ENOMEM;
2226         return 0;
2227 }
2228
2229 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2230 {
2231         struct dirty_seglist_info *dirty_i;
2232         unsigned int bitmap_size, i;
2233
2234         /* allocate memory for dirty segments list information */
2235         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2236         if (!dirty_i)
2237                 return -ENOMEM;
2238
2239         SM_I(sbi)->dirty_info = dirty_i;
2240         mutex_init(&dirty_i->seglist_lock);
2241
2242         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2243
2244         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2245                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2246                 if (!dirty_i->dirty_segmap[i])
2247                         return -ENOMEM;
2248         }
2249
2250         init_dirty_segmap(sbi);
2251         return init_victim_secmap(sbi);
2252 }
2253
2254 /*
2255  * Update min, max modified time for cost-benefit GC algorithm
2256  */
2257 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2258 {
2259         struct sit_info *sit_i = SIT_I(sbi);
2260         unsigned int segno;
2261
2262         mutex_lock(&sit_i->sentry_lock);
2263
2264         sit_i->min_mtime = LLONG_MAX;
2265
2266         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2267                 unsigned int i;
2268                 unsigned long long mtime = 0;
2269
2270                 for (i = 0; i < sbi->segs_per_sec; i++)
2271                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2272
2273                 mtime = div_u64(mtime, sbi->segs_per_sec);
2274
2275                 if (sit_i->min_mtime > mtime)
2276                         sit_i->min_mtime = mtime;
2277         }
2278         sit_i->max_mtime = get_mtime(sbi);
2279         mutex_unlock(&sit_i->sentry_lock);
2280 }
2281
2282 int build_segment_manager(struct f2fs_sb_info *sbi)
2283 {
2284         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2285         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2286         struct f2fs_sm_info *sm_info;
2287         int err;
2288
2289         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2290         if (!sm_info)
2291                 return -ENOMEM;
2292
2293         /* init sm info */
2294         sbi->sm_info = sm_info;
2295         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2296         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2297         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2298         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2299         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2300         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2301         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2302         sm_info->rec_prefree_segments = sm_info->main_segments *
2303                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2304         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2305         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2306         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2307
2308         INIT_LIST_HEAD(&sm_info->discard_list);
2309         sm_info->nr_discards = 0;
2310         sm_info->max_discards = 0;
2311
2312         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2313
2314         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2315
2316         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2317                 err = create_flush_cmd_control(sbi);
2318                 if (err)
2319                         return err;
2320         }
2321
2322         err = build_sit_info(sbi);
2323         if (err)
2324                 return err;
2325         err = build_free_segmap(sbi);
2326         if (err)
2327                 return err;
2328         err = build_curseg(sbi);
2329         if (err)
2330                 return err;
2331
2332         /* reinit free segmap based on SIT */
2333         build_sit_entries(sbi);
2334
2335         init_free_segmap(sbi);
2336         err = build_dirty_segmap(sbi);
2337         if (err)
2338                 return err;
2339
2340         init_min_max_mtime(sbi);
2341         return 0;
2342 }
2343
2344 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2345                 enum dirty_type dirty_type)
2346 {
2347         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2348
2349         mutex_lock(&dirty_i->seglist_lock);
2350         kvfree(dirty_i->dirty_segmap[dirty_type]);
2351         dirty_i->nr_dirty[dirty_type] = 0;
2352         mutex_unlock(&dirty_i->seglist_lock);
2353 }
2354
2355 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2356 {
2357         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2358         kvfree(dirty_i->victim_secmap);
2359 }
2360
2361 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2362 {
2363         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2364         int i;
2365
2366         if (!dirty_i)
2367                 return;
2368
2369         /* discard pre-free/dirty segments list */
2370         for (i = 0; i < NR_DIRTY_TYPE; i++)
2371                 discard_dirty_segmap(sbi, i);
2372
2373         destroy_victim_secmap(sbi);
2374         SM_I(sbi)->dirty_info = NULL;
2375         kfree(dirty_i);
2376 }
2377
2378 static void destroy_curseg(struct f2fs_sb_info *sbi)
2379 {
2380         struct curseg_info *array = SM_I(sbi)->curseg_array;
2381         int i;
2382
2383         if (!array)
2384                 return;
2385         SM_I(sbi)->curseg_array = NULL;
2386         for (i = 0; i < NR_CURSEG_TYPE; i++)
2387                 kfree(array[i].sum_blk);
2388         kfree(array);
2389 }
2390
2391 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2392 {
2393         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2394         if (!free_i)
2395                 return;
2396         SM_I(sbi)->free_info = NULL;
2397         kvfree(free_i->free_segmap);
2398         kvfree(free_i->free_secmap);
2399         kfree(free_i);
2400 }
2401
2402 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2403 {
2404         struct sit_info *sit_i = SIT_I(sbi);
2405         unsigned int start;
2406
2407         if (!sit_i)
2408                 return;
2409
2410         if (sit_i->sentries) {
2411                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2412                         kfree(sit_i->sentries[start].cur_valid_map);
2413                         kfree(sit_i->sentries[start].ckpt_valid_map);
2414                         kfree(sit_i->sentries[start].discard_map);
2415                 }
2416         }
2417         kfree(sit_i->tmp_map);
2418
2419         kvfree(sit_i->sentries);
2420         kvfree(sit_i->sec_entries);
2421         kvfree(sit_i->dirty_sentries_bitmap);
2422
2423         SM_I(sbi)->sit_info = NULL;
2424         kfree(sit_i->sit_bitmap);
2425         kfree(sit_i);
2426 }
2427
2428 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2429 {
2430         struct f2fs_sm_info *sm_info = SM_I(sbi);
2431
2432         if (!sm_info)
2433                 return;
2434         destroy_flush_cmd_control(sbi);
2435         destroy_dirty_segmap(sbi);
2436         destroy_curseg(sbi);
2437         destroy_free_segmap(sbi);
2438         destroy_sit_info(sbi);
2439         sbi->sm_info = NULL;
2440         kfree(sm_info);
2441 }
2442
2443 int __init create_segment_manager_caches(void)
2444 {
2445         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2446                         sizeof(struct discard_entry));
2447         if (!discard_entry_slab)
2448                 goto fail;
2449
2450         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2451                         sizeof(struct sit_entry_set));
2452         if (!sit_entry_set_slab)
2453                 goto destory_discard_entry;
2454
2455         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2456                         sizeof(struct inmem_pages));
2457         if (!inmem_entry_slab)
2458                 goto destroy_sit_entry_set;
2459         return 0;
2460
2461 destroy_sit_entry_set:
2462         kmem_cache_destroy(sit_entry_set_slab);
2463 destory_discard_entry:
2464         kmem_cache_destroy(discard_entry_slab);
2465 fail:
2466         return -ENOMEM;
2467 }
2468
2469 void destroy_segment_manager_caches(void)
2470 {
2471         kmem_cache_destroy(sit_entry_set_slab);
2472         kmem_cache_destroy(discard_entry_slab);
2473         kmem_cache_destroy(inmem_entry_slab);
2474 }