Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50                               struct ext4_inode_info *ei)
51 {
52         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53         __u16 csum_lo;
54         __u16 csum_hi = 0;
55         __u32 csum;
56
57         csum_lo = le16_to_cpu(raw->i_checksum_lo);
58         raw->i_checksum_lo = 0;
59         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62                 raw->i_checksum_hi = 0;
63         }
64
65         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66                            EXT4_INODE_SIZE(inode->i_sb));
67
68         raw->i_checksum_lo = cpu_to_le16(csum_lo);
69         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73         return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77                                   struct ext4_inode_info *ei)
78 {
79         __u32 provided, calculated;
80
81         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82             cpu_to_le32(EXT4_OS_LINUX) ||
83             !ext4_has_metadata_csum(inode->i_sb))
84                 return 1;
85
86         provided = le16_to_cpu(raw->i_checksum_lo);
87         calculated = ext4_inode_csum(inode, raw, ei);
88         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91         else
92                 calculated &= 0xFFFF;
93
94         return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98                                 struct ext4_inode_info *ei)
99 {
100         __u32 csum;
101
102         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103             cpu_to_le32(EXT4_OS_LINUX) ||
104             !ext4_has_metadata_csum(inode->i_sb))
105                 return;
106
107         csum = ext4_inode_csum(inode, raw, ei);
108         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115                                               loff_t new_size)
116 {
117         trace_ext4_begin_ordered_truncate(inode, new_size);
118         /*
119          * If jinode is zero, then we never opened the file for
120          * writing, so there's no need to call
121          * jbd2_journal_begin_ordered_truncate() since there's no
122          * outstanding writes we need to flush.
123          */
124         if (!EXT4_I(inode)->jinode)
125                 return 0;
126         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127                                                    EXT4_I(inode)->jinode,
128                                                    new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132                                 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136                                   int pextents);
137
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146         if (ext4_has_inline_data(inode))
147                 return 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages_final(&inode->i_data);
217
218                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326                                         int used, int quota_claim)
327 {
328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329         struct ext4_inode_info *ei = EXT4_I(inode);
330
331         spin_lock(&ei->i_block_reservation_lock);
332         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333         if (unlikely(used > ei->i_reserved_data_blocks)) {
334                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335                          "with only %d reserved data blocks",
336                          __func__, inode->i_ino, used,
337                          ei->i_reserved_data_blocks);
338                 WARN_ON(1);
339                 used = ei->i_reserved_data_blocks;
340         }
341
342         /* Update per-inode reservations */
343         ei->i_reserved_data_blocks -= used;
344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348         /* Update quota subsystem for data blocks */
349         if (quota_claim)
350                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351         else {
352                 /*
353                  * We did fallocate with an offset that is already delayed
354                  * allocated. So on delayed allocated writeback we should
355                  * not re-claim the quota for fallocated blocks.
356                  */
357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358         }
359
360         /*
361          * If we have done all the pending block allocations and if
362          * there aren't any writers on the inode, we can discard the
363          * inode's preallocations.
364          */
365         if ((ei->i_reserved_data_blocks == 0) &&
366             (atomic_read(&inode->i_writecount) == 0))
367                 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371                                 unsigned int line,
372                                 struct ext4_map_blocks *map)
373 {
374         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375                                    map->m_len)) {
376                 ext4_error_inode(inode, func, line, map->m_pblk,
377                                  "lblock %lu mapped to illegal pblock "
378                                  "(length %d)", (unsigned long) map->m_lblk,
379                                  map->m_len);
380                 return -EIO;
381         }
382         return 0;
383 }
384
385 #define check_block_validity(inode, map)        \
386         __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390                                        struct inode *inode,
391                                        struct ext4_map_blocks *es_map,
392                                        struct ext4_map_blocks *map,
393                                        int flags)
394 {
395         int retval;
396
397         map->m_flags = 0;
398         /*
399          * There is a race window that the result is not the same.
400          * e.g. xfstests #223 when dioread_nolock enables.  The reason
401          * is that we lookup a block mapping in extent status tree with
402          * out taking i_data_sem.  So at the time the unwritten extent
403          * could be converted.
404          */
405         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406                 down_read(&EXT4_I(inode)->i_data_sem);
407         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409                                              EXT4_GET_BLOCKS_KEEP_SIZE);
410         } else {
411                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         }
414         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415                 up_read((&EXT4_I(inode)->i_data_sem));
416
417         /*
418          * We don't check m_len because extent will be collpased in status
419          * tree.  So the m_len might not equal.
420          */
421         if (es_map->m_lblk != map->m_lblk ||
422             es_map->m_flags != map->m_flags ||
423             es_map->m_pblk != map->m_pblk) {
424                 printk("ES cache assertion failed for inode: %lu "
425                        "es_cached ex [%d/%d/%llu/%x] != "
426                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427                        inode->i_ino, es_map->m_lblk, es_map->m_len,
428                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
429                        map->m_len, map->m_pblk, map->m_flags,
430                        retval, flags);
431         }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458                     struct ext4_map_blocks *map, int flags)
459 {
460         struct extent_status es;
461         int retval;
462         int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464         struct ext4_map_blocks orig_map;
465
466         memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469         map->m_flags = 0;
470         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
472                   (unsigned long) map->m_lblk);
473
474         /*
475          * ext4_map_blocks returns an int, and m_len is an unsigned int
476          */
477         if (unlikely(map->m_len > INT_MAX))
478                 map->m_len = INT_MAX;
479
480         /* We can handle the block number less than EXT_MAX_BLOCKS */
481         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482                 return -EIO;
483
484         /* Lookup extent status tree firstly */
485         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487                         map->m_pblk = ext4_es_pblock(&es) +
488                                         map->m_lblk - es.es_lblk;
489                         map->m_flags |= ext4_es_is_written(&es) ?
490                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491                         retval = es.es_len - (map->m_lblk - es.es_lblk);
492                         if (retval > map->m_len)
493                                 retval = map->m_len;
494                         map->m_len = retval;
495                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496                         retval = 0;
497                 } else {
498                         BUG_ON(1);
499                 }
500 #ifdef ES_AGGRESSIVE_TEST
501                 ext4_map_blocks_es_recheck(handle, inode, map,
502                                            &orig_map, flags);
503 #endif
504                 goto found;
505         }
506
507         /*
508          * Try to see if we can get the block without requesting a new
509          * file system block.
510          */
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 down_read(&EXT4_I(inode)->i_data_sem);
513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515                                              EXT4_GET_BLOCKS_KEEP_SIZE);
516         } else {
517                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         }
520         if (retval > 0) {
521                 unsigned int status;
522
523                 if (unlikely(retval != map->m_len)) {
524                         ext4_warning(inode->i_sb,
525                                      "ES len assertion failed for inode "
526                                      "%lu: retval %d != map->m_len %d",
527                                      inode->i_ino, retval, map->m_len);
528                         WARN_ON(1);
529                 }
530
531                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534                     !(status & EXTENT_STATUS_WRITTEN) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     !(status & EXTENT_STATUS_WRITTEN) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661         struct inode *inode = bh->b_assoc_map->host;
662         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664         int err;
665         if (!uptodate)
666                 return;
667         WARN_ON(!buffer_unwritten(bh));
668         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675                            struct buffer_head *bh, int flags)
676 {
677         handle_t *handle = ext4_journal_current_handle();
678         struct ext4_map_blocks map;
679         int ret = 0, started = 0;
680         int dio_credits;
681
682         if (ext4_has_inline_data(inode))
683                 return -ERANGE;
684
685         map.m_lblk = iblock;
686         map.m_len = bh->b_size >> inode->i_blkbits;
687
688         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689                 /* Direct IO write... */
690                 if (map.m_len > DIO_MAX_BLOCKS)
691                         map.m_len = DIO_MAX_BLOCKS;
692                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694                                             dio_credits);
695                 if (IS_ERR(handle)) {
696                         ret = PTR_ERR(handle);
697                         return ret;
698                 }
699                 started = 1;
700         }
701
702         ret = ext4_map_blocks(handle, inode, &map, flags);
703         if (ret > 0) {
704                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706                 map_bh(bh, inode->i_sb, map.m_pblk);
707                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709                         bh->b_assoc_map = inode->i_mapping;
710                         bh->b_private = (void *)(unsigned long)iblock;
711                         bh->b_end_io = ext4_end_io_unwritten;
712                 }
713                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714                         set_buffer_defer_completion(bh);
715                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716                 ret = 0;
717         }
718         if (started)
719                 ext4_journal_stop(handle);
720         return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724                    struct buffer_head *bh, int create)
725 {
726         return _ext4_get_block(inode, iblock, bh,
727                                create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t block, int create)
735 {
736         struct ext4_map_blocks map;
737         struct buffer_head *bh;
738         int err;
739
740         J_ASSERT(handle != NULL || create == 0);
741
742         map.m_lblk = block;
743         map.m_len = 1;
744         err = ext4_map_blocks(handle, inode, &map,
745                               create ? EXT4_GET_BLOCKS_CREATE : 0);
746
747         if (err == 0)
748                 return create ? ERR_PTR(-ENOSPC) : NULL;
749         if (err < 0)
750                 return ERR_PTR(err);
751
752         bh = sb_getblk(inode->i_sb, map.m_pblk);
753         if (unlikely(!bh))
754                 return ERR_PTR(-ENOMEM);
755         if (map.m_flags & EXT4_MAP_NEW) {
756                 J_ASSERT(create != 0);
757                 J_ASSERT(handle != NULL);
758
759                 /*
760                  * Now that we do not always journal data, we should
761                  * keep in mind whether this should always journal the
762                  * new buffer as metadata.  For now, regular file
763                  * writes use ext4_get_block instead, so it's not a
764                  * problem.
765                  */
766                 lock_buffer(bh);
767                 BUFFER_TRACE(bh, "call get_create_access");
768                 err = ext4_journal_get_create_access(handle, bh);
769                 if (unlikely(err)) {
770                         unlock_buffer(bh);
771                         goto errout;
772                 }
773                 if (!buffer_uptodate(bh)) {
774                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775                         set_buffer_uptodate(bh);
776                 }
777                 unlock_buffer(bh);
778                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
780                 if (unlikely(err))
781                         goto errout;
782         } else
783                 BUFFER_TRACE(bh, "not a new buffer");
784         return bh;
785 errout:
786         brelse(bh);
787         return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791                                ext4_lblk_t block, int create)
792 {
793         struct buffer_head *bh;
794
795         bh = ext4_getblk(handle, inode, block, create);
796         if (IS_ERR(bh))
797                 return bh;
798         if (!bh || buffer_uptodate(bh))
799                 return bh;
800         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801         wait_on_buffer(bh);
802         if (buffer_uptodate(bh))
803                 return bh;
804         put_bh(bh);
805         return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809                            struct buffer_head *head,
810                            unsigned from,
811                            unsigned to,
812                            int *partial,
813                            int (*fn)(handle_t *handle,
814                                      struct buffer_head *bh))
815 {
816         struct buffer_head *bh;
817         unsigned block_start, block_end;
818         unsigned blocksize = head->b_size;
819         int err, ret = 0;
820         struct buffer_head *next;
821
822         for (bh = head, block_start = 0;
823              ret == 0 && (bh != head || !block_start);
824              block_start = block_end, bh = next) {
825                 next = bh->b_this_page;
826                 block_end = block_start + blocksize;
827                 if (block_end <= from || block_start >= to) {
828                         if (partial && !buffer_uptodate(bh))
829                                 *partial = 1;
830                         continue;
831                 }
832                 err = (*fn)(handle, bh);
833                 if (!ret)
834                         ret = err;
835         }
836         return ret;
837 }
838
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864                                 struct buffer_head *bh)
865 {
866         int dirty = buffer_dirty(bh);
867         int ret;
868
869         if (!buffer_mapped(bh) || buffer_freed(bh))
870                 return 0;
871         /*
872          * __block_write_begin() could have dirtied some buffers. Clean
873          * the dirty bit as jbd2_journal_get_write_access() could complain
874          * otherwise about fs integrity issues. Setting of the dirty bit
875          * by __block_write_begin() isn't a real problem here as we clear
876          * the bit before releasing a page lock and thus writeback cannot
877          * ever write the buffer.
878          */
879         if (dirty)
880                 clear_buffer_dirty(bh);
881         BUFFER_TRACE(bh, "get write access");
882         ret = ext4_journal_get_write_access(handle, bh);
883         if (!ret && dirty)
884                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885         return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889                    struct buffer_head *bh_result, int create);
890
891 #ifdef CONFIG_EXT4_FS_ENCRYPTION
892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893                                   get_block_t *get_block)
894 {
895         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896         unsigned to = from + len;
897         struct inode *inode = page->mapping->host;
898         unsigned block_start, block_end;
899         sector_t block;
900         int err = 0;
901         unsigned blocksize = inode->i_sb->s_blocksize;
902         unsigned bbits;
903         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904         bool decrypt = false;
905
906         BUG_ON(!PageLocked(page));
907         BUG_ON(from > PAGE_CACHE_SIZE);
908         BUG_ON(to > PAGE_CACHE_SIZE);
909         BUG_ON(from > to);
910
911         if (!page_has_buffers(page))
912                 create_empty_buffers(page, blocksize, 0);
913         head = page_buffers(page);
914         bbits = ilog2(blocksize);
915         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916
917         for (bh = head, block_start = 0; bh != head || !block_start;
918             block++, block_start = block_end, bh = bh->b_this_page) {
919                 block_end = block_start + blocksize;
920                 if (block_end <= from || block_start >= to) {
921                         if (PageUptodate(page)) {
922                                 if (!buffer_uptodate(bh))
923                                         set_buffer_uptodate(bh);
924                         }
925                         continue;
926                 }
927                 if (buffer_new(bh))
928                         clear_buffer_new(bh);
929                 if (!buffer_mapped(bh)) {
930                         WARN_ON(bh->b_size != blocksize);
931                         err = get_block(inode, block, bh, 1);
932                         if (err)
933                                 break;
934                         if (buffer_new(bh)) {
935                                 unmap_underlying_metadata(bh->b_bdev,
936                                                           bh->b_blocknr);
937                                 if (PageUptodate(page)) {
938                                         clear_buffer_new(bh);
939                                         set_buffer_uptodate(bh);
940                                         mark_buffer_dirty(bh);
941                                         continue;
942                                 }
943                                 if (block_end > to || block_start < from)
944                                         zero_user_segments(page, to, block_end,
945                                                            block_start, from);
946                                 continue;
947                         }
948                 }
949                 if (PageUptodate(page)) {
950                         if (!buffer_uptodate(bh))
951                                 set_buffer_uptodate(bh);
952                         continue;
953                 }
954                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955                     !buffer_unwritten(bh) &&
956                     (block_start < from || block_end > to)) {
957                         ll_rw_block(READ, 1, &bh);
958                         *wait_bh++ = bh;
959                         decrypt = ext4_encrypted_inode(inode) &&
960                                 S_ISREG(inode->i_mode);
961                 }
962         }
963         /*
964          * If we issued read requests, let them complete.
965          */
966         while (wait_bh > wait) {
967                 wait_on_buffer(*--wait_bh);
968                 if (!buffer_uptodate(*wait_bh))
969                         err = -EIO;
970         }
971         if (unlikely(err))
972                 page_zero_new_buffers(page, from, to);
973         else if (decrypt)
974                 err = ext4_decrypt_one(inode, page);
975         return err;
976 }
977 #endif
978
979 static int ext4_write_begin(struct file *file, struct address_space *mapping,
980                             loff_t pos, unsigned len, unsigned flags,
981                             struct page **pagep, void **fsdata)
982 {
983         struct inode *inode = mapping->host;
984         int ret, needed_blocks;
985         handle_t *handle;
986         int retries = 0;
987         struct page *page;
988         pgoff_t index;
989         unsigned from, to;
990
991         trace_ext4_write_begin(inode, pos, len, flags);
992         /*
993          * Reserve one block more for addition to orphan list in case
994          * we allocate blocks but write fails for some reason
995          */
996         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
997         index = pos >> PAGE_CACHE_SHIFT;
998         from = pos & (PAGE_CACHE_SIZE - 1);
999         to = from + len;
1000
1001         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003                                                     flags, pagep);
1004                 if (ret < 0)
1005                         return ret;
1006                 if (ret == 1)
1007                         return 0;
1008         }
1009
1010         /*
1011          * grab_cache_page_write_begin() can take a long time if the
1012          * system is thrashing due to memory pressure, or if the page
1013          * is being written back.  So grab it first before we start
1014          * the transaction handle.  This also allows us to allocate
1015          * the page (if needed) without using GFP_NOFS.
1016          */
1017 retry_grab:
1018         page = grab_cache_page_write_begin(mapping, index, flags);
1019         if (!page)
1020                 return -ENOMEM;
1021         unlock_page(page);
1022
1023 retry_journal:
1024         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1025         if (IS_ERR(handle)) {
1026                 page_cache_release(page);
1027                 return PTR_ERR(handle);
1028         }
1029
1030         lock_page(page);
1031         if (page->mapping != mapping) {
1032                 /* The page got truncated from under us */
1033                 unlock_page(page);
1034                 page_cache_release(page);
1035                 ext4_journal_stop(handle);
1036                 goto retry_grab;
1037         }
1038         /* In case writeback began while the page was unlocked */
1039         wait_for_stable_page(page);
1040
1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1042         if (ext4_should_dioread_nolock(inode))
1043                 ret = ext4_block_write_begin(page, pos, len,
1044                                              ext4_get_block_write);
1045         else
1046                 ret = ext4_block_write_begin(page, pos, len,
1047                                              ext4_get_block);
1048 #else
1049         if (ext4_should_dioread_nolock(inode))
1050                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1051         else
1052                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1053 #endif
1054         if (!ret && ext4_should_journal_data(inode)) {
1055                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056                                              from, to, NULL,
1057                                              do_journal_get_write_access);
1058         }
1059
1060         if (ret) {
1061                 unlock_page(page);
1062                 /*
1063                  * __block_write_begin may have instantiated a few blocks
1064                  * outside i_size.  Trim these off again. Don't need
1065                  * i_size_read because we hold i_mutex.
1066                  *
1067                  * Add inode to orphan list in case we crash before
1068                  * truncate finishes
1069                  */
1070                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071                         ext4_orphan_add(handle, inode);
1072
1073                 ext4_journal_stop(handle);
1074                 if (pos + len > inode->i_size) {
1075                         ext4_truncate_failed_write(inode);
1076                         /*
1077                          * If truncate failed early the inode might
1078                          * still be on the orphan list; we need to
1079                          * make sure the inode is removed from the
1080                          * orphan list in that case.
1081                          */
1082                         if (inode->i_nlink)
1083                                 ext4_orphan_del(NULL, inode);
1084                 }
1085
1086                 if (ret == -ENOSPC &&
1087                     ext4_should_retry_alloc(inode->i_sb, &retries))
1088                         goto retry_journal;
1089                 page_cache_release(page);
1090                 return ret;
1091         }
1092         *pagep = page;
1093         return ret;
1094 }
1095
1096 /* For write_end() in data=journal mode */
1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1098 {
1099         int ret;
1100         if (!buffer_mapped(bh) || buffer_freed(bh))
1101                 return 0;
1102         set_buffer_uptodate(bh);
1103         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104         clear_buffer_meta(bh);
1105         clear_buffer_prio(bh);
1106         return ret;
1107 }
1108
1109 /*
1110  * We need to pick up the new inode size which generic_commit_write gave us
1111  * `file' can be NULL - eg, when called from page_symlink().
1112  *
1113  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1114  * buffers are managed internally.
1115  */
1116 static int ext4_write_end(struct file *file,
1117                           struct address_space *mapping,
1118                           loff_t pos, unsigned len, unsigned copied,
1119                           struct page *page, void *fsdata)
1120 {
1121         handle_t *handle = ext4_journal_current_handle();
1122         struct inode *inode = mapping->host;
1123         loff_t old_size = inode->i_size;
1124         int ret = 0, ret2;
1125         int i_size_changed = 0;
1126
1127         trace_ext4_write_end(inode, pos, len, copied);
1128         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129                 ret = ext4_jbd2_file_inode(handle, inode);
1130                 if (ret) {
1131                         unlock_page(page);
1132                         page_cache_release(page);
1133                         goto errout;
1134                 }
1135         }
1136
1137         if (ext4_has_inline_data(inode)) {
1138                 ret = ext4_write_inline_data_end(inode, pos, len,
1139                                                  copied, page);
1140                 if (ret < 0)
1141                         goto errout;
1142                 copied = ret;
1143         } else
1144                 copied = block_write_end(file, mapping, pos,
1145                                          len, copied, page, fsdata);
1146         /*
1147          * it's important to update i_size while still holding page lock:
1148          * page writeout could otherwise come in and zero beyond i_size.
1149          */
1150         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1151         unlock_page(page);
1152         page_cache_release(page);
1153
1154         if (old_size < pos)
1155                 pagecache_isize_extended(inode, old_size, pos);
1156         /*
1157          * Don't mark the inode dirty under page lock. First, it unnecessarily
1158          * makes the holding time of page lock longer. Second, it forces lock
1159          * ordering of page lock and transaction start for journaling
1160          * filesystems.
1161          */
1162         if (i_size_changed)
1163                 ext4_mark_inode_dirty(handle, inode);
1164
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171 errout:
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175
1176         if (pos + len > inode->i_size) {
1177                 ext4_truncate_failed_write(inode);
1178                 /*
1179                  * If truncate failed early the inode might still be
1180                  * on the orphan list; we need to make sure the inode
1181                  * is removed from the orphan list in that case.
1182                  */
1183                 if (inode->i_nlink)
1184                         ext4_orphan_del(NULL, inode);
1185         }
1186
1187         return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191                                      struct address_space *mapping,
1192                                      loff_t pos, unsigned len, unsigned copied,
1193                                      struct page *page, void *fsdata)
1194 {
1195         handle_t *handle = ext4_journal_current_handle();
1196         struct inode *inode = mapping->host;
1197         loff_t old_size = inode->i_size;
1198         int ret = 0, ret2;
1199         int partial = 0;
1200         unsigned from, to;
1201         int size_changed = 0;
1202
1203         trace_ext4_journalled_write_end(inode, pos, len, copied);
1204         from = pos & (PAGE_CACHE_SIZE - 1);
1205         to = from + len;
1206
1207         BUG_ON(!ext4_handle_valid(handle));
1208
1209         if (ext4_has_inline_data(inode))
1210                 copied = ext4_write_inline_data_end(inode, pos, len,
1211                                                     copied, page);
1212         else {
1213                 if (copied < len) {
1214                         if (!PageUptodate(page))
1215                                 copied = 0;
1216                         page_zero_new_buffers(page, from+copied, to);
1217                 }
1218
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220                                              to, &partial, write_end_fn);
1221                 if (!partial)
1222                         SetPageUptodate(page);
1223         }
1224         size_changed = ext4_update_inode_size(inode, pos + copied);
1225         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1226         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1227         unlock_page(page);
1228         page_cache_release(page);
1229
1230         if (old_size < pos)
1231                 pagecache_isize_extended(inode, old_size, pos);
1232
1233         if (size_changed) {
1234                 ret2 = ext4_mark_inode_dirty(handle, inode);
1235                 if (!ret)
1236                         ret = ret2;
1237         }
1238
1239         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1240                 /* if we have allocated more blocks and copied
1241                  * less. We will have blocks allocated outside
1242                  * inode->i_size. So truncate them
1243                  */
1244                 ext4_orphan_add(handle, inode);
1245
1246         ret2 = ext4_journal_stop(handle);
1247         if (!ret)
1248                 ret = ret2;
1249         if (pos + len > inode->i_size) {
1250                 ext4_truncate_failed_write(inode);
1251                 /*
1252                  * If truncate failed early the inode might still be
1253                  * on the orphan list; we need to make sure the inode
1254                  * is removed from the orphan list in that case.
1255                  */
1256                 if (inode->i_nlink)
1257                         ext4_orphan_del(NULL, inode);
1258         }
1259
1260         return ret ? ret : copied;
1261 }
1262
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         unsigned int md_needed;
1271         int ret;
1272
1273         /*
1274          * We will charge metadata quota at writeout time; this saves
1275          * us from metadata over-estimation, though we may go over by
1276          * a small amount in the end.  Here we just reserve for data.
1277          */
1278         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1279         if (ret)
1280                 return ret;
1281
1282         /*
1283          * recalculate the amount of metadata blocks to reserve
1284          * in order to allocate nrblocks
1285          * worse case is one extent per block
1286          */
1287         spin_lock(&ei->i_block_reservation_lock);
1288         /*
1289          * ext4_calc_metadata_amount() has side effects, which we have
1290          * to be prepared undo if we fail to claim space.
1291          */
1292         md_needed = 0;
1293         trace_ext4_da_reserve_space(inode, 0);
1294
1295         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1298                 return -ENOSPC;
1299         }
1300         ei->i_reserved_data_blocks++;
1301         spin_unlock(&ei->i_block_reservation_lock);
1302
1303         return 0;       /* success */
1304 }
1305
1306 static void ext4_da_release_space(struct inode *inode, int to_free)
1307 {
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310
1311         if (!to_free)
1312                 return;         /* Nothing to release, exit */
1313
1314         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1315
1316         trace_ext4_da_release_space(inode, to_free);
1317         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1318                 /*
1319                  * if there aren't enough reserved blocks, then the
1320                  * counter is messed up somewhere.  Since this
1321                  * function is called from invalidate page, it's
1322                  * harmless to return without any action.
1323                  */
1324                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1325                          "ino %lu, to_free %d with only %d reserved "
1326                          "data blocks", inode->i_ino, to_free,
1327                          ei->i_reserved_data_blocks);
1328                 WARN_ON(1);
1329                 to_free = ei->i_reserved_data_blocks;
1330         }
1331         ei->i_reserved_data_blocks -= to_free;
1332
1333         /* update fs dirty data blocks counter */
1334         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1335
1336         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1337
1338         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1339 }
1340
1341 static void ext4_da_page_release_reservation(struct page *page,
1342                                              unsigned int offset,
1343                                              unsigned int length)
1344 {
1345         int to_release = 0, contiguous_blks = 0;
1346         struct buffer_head *head, *bh;
1347         unsigned int curr_off = 0;
1348         struct inode *inode = page->mapping->host;
1349         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1350         unsigned int stop = offset + length;
1351         int num_clusters;
1352         ext4_fsblk_t lblk;
1353
1354         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1355
1356         head = page_buffers(page);
1357         bh = head;
1358         do {
1359                 unsigned int next_off = curr_off + bh->b_size;
1360
1361                 if (next_off > stop)
1362                         break;
1363
1364                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1365                         to_release++;
1366                         contiguous_blks++;
1367                         clear_buffer_delay(bh);
1368                 } else if (contiguous_blks) {
1369                         lblk = page->index <<
1370                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1371                         lblk += (curr_off >> inode->i_blkbits) -
1372                                 contiguous_blks;
1373                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1374                         contiguous_blks = 0;
1375                 }
1376                 curr_off = next_off;
1377         } while ((bh = bh->b_this_page) != head);
1378
1379         if (contiguous_blks) {
1380                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1381                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1382                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1383         }
1384
1385         /* If we have released all the blocks belonging to a cluster, then we
1386          * need to release the reserved space for that cluster. */
1387         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1388         while (num_clusters > 0) {
1389                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1390                         ((num_clusters - 1) << sbi->s_cluster_bits);
1391                 if (sbi->s_cluster_ratio == 1 ||
1392                     !ext4_find_delalloc_cluster(inode, lblk))
1393                         ext4_da_release_space(inode, 1);
1394
1395                 num_clusters--;
1396         }
1397 }
1398
1399 /*
1400  * Delayed allocation stuff
1401  */
1402
1403 struct mpage_da_data {
1404         struct inode *inode;
1405         struct writeback_control *wbc;
1406
1407         pgoff_t first_page;     /* The first page to write */
1408         pgoff_t next_page;      /* Current page to examine */
1409         pgoff_t last_page;      /* Last page to examine */
1410         /*
1411          * Extent to map - this can be after first_page because that can be
1412          * fully mapped. We somewhat abuse m_flags to store whether the extent
1413          * is delalloc or unwritten.
1414          */
1415         struct ext4_map_blocks map;
1416         struct ext4_io_submit io_submit;        /* IO submission data */
1417 };
1418
1419 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1420                                        bool invalidate)
1421 {
1422         int nr_pages, i;
1423         pgoff_t index, end;
1424         struct pagevec pvec;
1425         struct inode *inode = mpd->inode;
1426         struct address_space *mapping = inode->i_mapping;
1427
1428         /* This is necessary when next_page == 0. */
1429         if (mpd->first_page >= mpd->next_page)
1430                 return;
1431
1432         index = mpd->first_page;
1433         end   = mpd->next_page - 1;
1434         if (invalidate) {
1435                 ext4_lblk_t start, last;
1436                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438                 ext4_es_remove_extent(inode, start, last - start + 1);
1439         }
1440
1441         pagevec_init(&pvec, 0);
1442         while (index <= end) {
1443                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1444                 if (nr_pages == 0)
1445                         break;
1446                 for (i = 0; i < nr_pages; i++) {
1447                         struct page *page = pvec.pages[i];
1448                         if (page->index > end)
1449                                 break;
1450                         BUG_ON(!PageLocked(page));
1451                         BUG_ON(PageWriteback(page));
1452                         if (invalidate) {
1453                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1454                                 ClearPageUptodate(page);
1455                         }
1456                         unlock_page(page);
1457                 }
1458                 index = pvec.pages[nr_pages - 1]->index + 1;
1459                 pagevec_release(&pvec);
1460         }
1461 }
1462
1463 static void ext4_print_free_blocks(struct inode *inode)
1464 {
1465         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1466         struct super_block *sb = inode->i_sb;
1467         struct ext4_inode_info *ei = EXT4_I(inode);
1468
1469         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1470                EXT4_C2B(EXT4_SB(inode->i_sb),
1471                         ext4_count_free_clusters(sb)));
1472         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1473         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1474                (long long) EXT4_C2B(EXT4_SB(sb),
1475                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1476         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1477                (long long) EXT4_C2B(EXT4_SB(sb),
1478                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1479         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1480         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1481                  ei->i_reserved_data_blocks);
1482         return;
1483 }
1484
1485 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1486 {
1487         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1488 }
1489
1490 /*
1491  * This function is grabs code from the very beginning of
1492  * ext4_map_blocks, but assumes that the caller is from delayed write
1493  * time. This function looks up the requested blocks and sets the
1494  * buffer delay bit under the protection of i_data_sem.
1495  */
1496 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1497                               struct ext4_map_blocks *map,
1498                               struct buffer_head *bh)
1499 {
1500         struct extent_status es;
1501         int retval;
1502         sector_t invalid_block = ~((sector_t) 0xffff);
1503 #ifdef ES_AGGRESSIVE_TEST
1504         struct ext4_map_blocks orig_map;
1505
1506         memcpy(&orig_map, map, sizeof(*map));
1507 #endif
1508
1509         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1510                 invalid_block = ~0;
1511
1512         map->m_flags = 0;
1513         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1514                   "logical block %lu\n", inode->i_ino, map->m_len,
1515                   (unsigned long) map->m_lblk);
1516
1517         /* Lookup extent status tree firstly */
1518         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1519                 if (ext4_es_is_hole(&es)) {
1520                         retval = 0;
1521                         down_read(&EXT4_I(inode)->i_data_sem);
1522                         goto add_delayed;
1523                 }
1524
1525                 /*
1526                  * Delayed extent could be allocated by fallocate.
1527                  * So we need to check it.
1528                  */
1529                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1530                         map_bh(bh, inode->i_sb, invalid_block);
1531                         set_buffer_new(bh);
1532                         set_buffer_delay(bh);
1533                         return 0;
1534                 }
1535
1536                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1537                 retval = es.es_len - (iblock - es.es_lblk);
1538                 if (retval > map->m_len)
1539                         retval = map->m_len;
1540                 map->m_len = retval;
1541                 if (ext4_es_is_written(&es))
1542                         map->m_flags |= EXT4_MAP_MAPPED;
1543                 else if (ext4_es_is_unwritten(&es))
1544                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1545                 else
1546                         BUG_ON(1);
1547
1548 #ifdef ES_AGGRESSIVE_TEST
1549                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1550 #endif
1551                 return retval;
1552         }
1553
1554         /*
1555          * Try to see if we can get the block without requesting a new
1556          * file system block.
1557          */
1558         down_read(&EXT4_I(inode)->i_data_sem);
1559         if (ext4_has_inline_data(inode))
1560                 retval = 0;
1561         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1562                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1563         else
1564                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1565
1566 add_delayed:
1567         if (retval == 0) {
1568                 int ret;
1569                 /*
1570                  * XXX: __block_prepare_write() unmaps passed block,
1571                  * is it OK?
1572                  */
1573                 /*
1574                  * If the block was allocated from previously allocated cluster,
1575                  * then we don't need to reserve it again. However we still need
1576                  * to reserve metadata for every block we're going to write.
1577                  */
1578                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1579                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1580                         ret = ext4_da_reserve_space(inode, iblock);
1581                         if (ret) {
1582                                 /* not enough space to reserve */
1583                                 retval = ret;
1584                                 goto out_unlock;
1585                         }
1586                 }
1587
1588                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1589                                             ~0, EXTENT_STATUS_DELAYED);
1590                 if (ret) {
1591                         retval = ret;
1592                         goto out_unlock;
1593                 }
1594
1595                 map_bh(bh, inode->i_sb, invalid_block);
1596                 set_buffer_new(bh);
1597                 set_buffer_delay(bh);
1598         } else if (retval > 0) {
1599                 int ret;
1600                 unsigned int status;
1601
1602                 if (unlikely(retval != map->m_len)) {
1603                         ext4_warning(inode->i_sb,
1604                                      "ES len assertion failed for inode "
1605                                      "%lu: retval %d != map->m_len %d",
1606                                      inode->i_ino, retval, map->m_len);
1607                         WARN_ON(1);
1608                 }
1609
1610                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1611                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1612                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1613                                             map->m_pblk, status);
1614                 if (ret != 0)
1615                         retval = ret;
1616         }
1617
1618 out_unlock:
1619         up_read((&EXT4_I(inode)->i_data_sem));
1620
1621         return retval;
1622 }
1623
1624 /*
1625  * This is a special get_block_t callback which is used by
1626  * ext4_da_write_begin().  It will either return mapped block or
1627  * reserve space for a single block.
1628  *
1629  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1630  * We also have b_blocknr = -1 and b_bdev initialized properly
1631  *
1632  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1633  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1634  * initialized properly.
1635  */
1636 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1637                            struct buffer_head *bh, int create)
1638 {
1639         struct ext4_map_blocks map;
1640         int ret = 0;
1641
1642         BUG_ON(create == 0);
1643         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1644
1645         map.m_lblk = iblock;
1646         map.m_len = 1;
1647
1648         /*
1649          * first, we need to know whether the block is allocated already
1650          * preallocated blocks are unmapped but should treated
1651          * the same as allocated blocks.
1652          */
1653         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1654         if (ret <= 0)
1655                 return ret;
1656
1657         map_bh(bh, inode->i_sb, map.m_pblk);
1658         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1659
1660         if (buffer_unwritten(bh)) {
1661                 /* A delayed write to unwritten bh should be marked
1662                  * new and mapped.  Mapped ensures that we don't do
1663                  * get_block multiple times when we write to the same
1664                  * offset and new ensures that we do proper zero out
1665                  * for partial write.
1666                  */
1667                 set_buffer_new(bh);
1668                 set_buffer_mapped(bh);
1669         }
1670         return 0;
1671 }
1672
1673 static int bget_one(handle_t *handle, struct buffer_head *bh)
1674 {
1675         get_bh(bh);
1676         return 0;
1677 }
1678
1679 static int bput_one(handle_t *handle, struct buffer_head *bh)
1680 {
1681         put_bh(bh);
1682         return 0;
1683 }
1684
1685 static int __ext4_journalled_writepage(struct page *page,
1686                                        unsigned int len)
1687 {
1688         struct address_space *mapping = page->mapping;
1689         struct inode *inode = mapping->host;
1690         struct buffer_head *page_bufs = NULL;
1691         handle_t *handle = NULL;
1692         int ret = 0, err = 0;
1693         int inline_data = ext4_has_inline_data(inode);
1694         struct buffer_head *inode_bh = NULL;
1695
1696         ClearPageChecked(page);
1697
1698         if (inline_data) {
1699                 BUG_ON(page->index != 0);
1700                 BUG_ON(len > ext4_get_max_inline_size(inode));
1701                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1702                 if (inode_bh == NULL)
1703                         goto out;
1704         } else {
1705                 page_bufs = page_buffers(page);
1706                 if (!page_bufs) {
1707                         BUG();
1708                         goto out;
1709                 }
1710                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1711                                        NULL, bget_one);
1712         }
1713         /*
1714          * We need to release the page lock before we start the
1715          * journal, so grab a reference so the page won't disappear
1716          * out from under us.
1717          */
1718         get_page(page);
1719         unlock_page(page);
1720
1721         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1722                                     ext4_writepage_trans_blocks(inode));
1723         if (IS_ERR(handle)) {
1724                 ret = PTR_ERR(handle);
1725                 put_page(page);
1726                 goto out_no_pagelock;
1727         }
1728         BUG_ON(!ext4_handle_valid(handle));
1729
1730         lock_page(page);
1731         put_page(page);
1732         if (page->mapping != mapping) {
1733                 /* The page got truncated from under us */
1734                 ext4_journal_stop(handle);
1735                 ret = 0;
1736                 goto out;
1737         }
1738
1739         if (inline_data) {
1740                 BUFFER_TRACE(inode_bh, "get write access");
1741                 ret = ext4_journal_get_write_access(handle, inode_bh);
1742
1743                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1744
1745         } else {
1746                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1747                                              do_journal_get_write_access);
1748
1749                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1750                                              write_end_fn);
1751         }
1752         if (ret == 0)
1753                 ret = err;
1754         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1755         err = ext4_journal_stop(handle);
1756         if (!ret)
1757                 ret = err;
1758
1759         if (!ext4_has_inline_data(inode))
1760                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1761                                        NULL, bput_one);
1762         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1763 out:
1764         unlock_page(page);
1765 out_no_pagelock:
1766         brelse(inode_bh);
1767         return ret;
1768 }
1769
1770 /*
1771  * Note that we don't need to start a transaction unless we're journaling data
1772  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1773  * need to file the inode to the transaction's list in ordered mode because if
1774  * we are writing back data added by write(), the inode is already there and if
1775  * we are writing back data modified via mmap(), no one guarantees in which
1776  * transaction the data will hit the disk. In case we are journaling data, we
1777  * cannot start transaction directly because transaction start ranks above page
1778  * lock so we have to do some magic.
1779  *
1780  * This function can get called via...
1781  *   - ext4_writepages after taking page lock (have journal handle)
1782  *   - journal_submit_inode_data_buffers (no journal handle)
1783  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1784  *   - grab_page_cache when doing write_begin (have journal handle)
1785  *
1786  * We don't do any block allocation in this function. If we have page with
1787  * multiple blocks we need to write those buffer_heads that are mapped. This
1788  * is important for mmaped based write. So if we do with blocksize 1K
1789  * truncate(f, 1024);
1790  * a = mmap(f, 0, 4096);
1791  * a[0] = 'a';
1792  * truncate(f, 4096);
1793  * we have in the page first buffer_head mapped via page_mkwrite call back
1794  * but other buffer_heads would be unmapped but dirty (dirty done via the
1795  * do_wp_page). So writepage should write the first block. If we modify
1796  * the mmap area beyond 1024 we will again get a page_fault and the
1797  * page_mkwrite callback will do the block allocation and mark the
1798  * buffer_heads mapped.
1799  *
1800  * We redirty the page if we have any buffer_heads that is either delay or
1801  * unwritten in the page.
1802  *
1803  * We can get recursively called as show below.
1804  *
1805  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1806  *              ext4_writepage()
1807  *
1808  * But since we don't do any block allocation we should not deadlock.
1809  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1810  */
1811 static int ext4_writepage(struct page *page,
1812                           struct writeback_control *wbc)
1813 {
1814         int ret = 0;
1815         loff_t size;
1816         unsigned int len;
1817         struct buffer_head *page_bufs = NULL;
1818         struct inode *inode = page->mapping->host;
1819         struct ext4_io_submit io_submit;
1820         bool keep_towrite = false;
1821
1822         trace_ext4_writepage(page);
1823         size = i_size_read(inode);
1824         if (page->index == size >> PAGE_CACHE_SHIFT)
1825                 len = size & ~PAGE_CACHE_MASK;
1826         else
1827                 len = PAGE_CACHE_SIZE;
1828
1829         page_bufs = page_buffers(page);
1830         /*
1831          * We cannot do block allocation or other extent handling in this
1832          * function. If there are buffers needing that, we have to redirty
1833          * the page. But we may reach here when we do a journal commit via
1834          * journal_submit_inode_data_buffers() and in that case we must write
1835          * allocated buffers to achieve data=ordered mode guarantees.
1836          */
1837         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1838                                    ext4_bh_delay_or_unwritten)) {
1839                 redirty_page_for_writepage(wbc, page);
1840                 if (current->flags & PF_MEMALLOC) {
1841                         /*
1842                          * For memory cleaning there's no point in writing only
1843                          * some buffers. So just bail out. Warn if we came here
1844                          * from direct reclaim.
1845                          */
1846                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1847                                                         == PF_MEMALLOC);
1848                         unlock_page(page);
1849                         return 0;
1850                 }
1851                 keep_towrite = true;
1852         }
1853
1854         if (PageChecked(page) && ext4_should_journal_data(inode))
1855                 /*
1856                  * It's mmapped pagecache.  Add buffers and journal it.  There
1857                  * doesn't seem much point in redirtying the page here.
1858                  */
1859                 return __ext4_journalled_writepage(page, len);
1860
1861         ext4_io_submit_init(&io_submit, wbc);
1862         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1863         if (!io_submit.io_end) {
1864                 redirty_page_for_writepage(wbc, page);
1865                 unlock_page(page);
1866                 return -ENOMEM;
1867         }
1868         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1869         ext4_io_submit(&io_submit);
1870         /* Drop io_end reference we got from init */
1871         ext4_put_io_end_defer(io_submit.io_end);
1872         return ret;
1873 }
1874
1875 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1876 {
1877         int len;
1878         loff_t size = i_size_read(mpd->inode);
1879         int err;
1880
1881         BUG_ON(page->index != mpd->first_page);
1882         if (page->index == size >> PAGE_CACHE_SHIFT)
1883                 len = size & ~PAGE_CACHE_MASK;
1884         else
1885                 len = PAGE_CACHE_SIZE;
1886         clear_page_dirty_for_io(page);
1887         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1888         if (!err)
1889                 mpd->wbc->nr_to_write--;
1890         mpd->first_page++;
1891
1892         return err;
1893 }
1894
1895 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1896
1897 /*
1898  * mballoc gives us at most this number of blocks...
1899  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1900  * The rest of mballoc seems to handle chunks up to full group size.
1901  */
1902 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1903
1904 /*
1905  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1906  *
1907  * @mpd - extent of blocks
1908  * @lblk - logical number of the block in the file
1909  * @bh - buffer head we want to add to the extent
1910  *
1911  * The function is used to collect contig. blocks in the same state. If the
1912  * buffer doesn't require mapping for writeback and we haven't started the
1913  * extent of buffers to map yet, the function returns 'true' immediately - the
1914  * caller can write the buffer right away. Otherwise the function returns true
1915  * if the block has been added to the extent, false if the block couldn't be
1916  * added.
1917  */
1918 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1919                                    struct buffer_head *bh)
1920 {
1921         struct ext4_map_blocks *map = &mpd->map;
1922
1923         /* Buffer that doesn't need mapping for writeback? */
1924         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1925             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1926                 /* So far no extent to map => we write the buffer right away */
1927                 if (map->m_len == 0)
1928                         return true;
1929                 return false;
1930         }
1931
1932         /* First block in the extent? */
1933         if (map->m_len == 0) {
1934                 map->m_lblk = lblk;
1935                 map->m_len = 1;
1936                 map->m_flags = bh->b_state & BH_FLAGS;
1937                 return true;
1938         }
1939
1940         /* Don't go larger than mballoc is willing to allocate */
1941         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1942                 return false;
1943
1944         /* Can we merge the block to our big extent? */
1945         if (lblk == map->m_lblk + map->m_len &&
1946             (bh->b_state & BH_FLAGS) == map->m_flags) {
1947                 map->m_len++;
1948                 return true;
1949         }
1950         return false;
1951 }
1952
1953 /*
1954  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1955  *
1956  * @mpd - extent of blocks for mapping
1957  * @head - the first buffer in the page
1958  * @bh - buffer we should start processing from
1959  * @lblk - logical number of the block in the file corresponding to @bh
1960  *
1961  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1962  * the page for IO if all buffers in this page were mapped and there's no
1963  * accumulated extent of buffers to map or add buffers in the page to the
1964  * extent of buffers to map. The function returns 1 if the caller can continue
1965  * by processing the next page, 0 if it should stop adding buffers to the
1966  * extent to map because we cannot extend it anymore. It can also return value
1967  * < 0 in case of error during IO submission.
1968  */
1969 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1970                                    struct buffer_head *head,
1971                                    struct buffer_head *bh,
1972                                    ext4_lblk_t lblk)
1973 {
1974         struct inode *inode = mpd->inode;
1975         int err;
1976         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1977                                                         >> inode->i_blkbits;
1978
1979         do {
1980                 BUG_ON(buffer_locked(bh));
1981
1982                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1983                         /* Found extent to map? */
1984                         if (mpd->map.m_len)
1985                                 return 0;
1986                         /* Everything mapped so far and we hit EOF */
1987                         break;
1988                 }
1989         } while (lblk++, (bh = bh->b_this_page) != head);
1990         /* So far everything mapped? Submit the page for IO. */
1991         if (mpd->map.m_len == 0) {
1992                 err = mpage_submit_page(mpd, head->b_page);
1993                 if (err < 0)
1994                         return err;
1995         }
1996         return lblk < blocks;
1997 }
1998
1999 /*
2000  * mpage_map_buffers - update buffers corresponding to changed extent and
2001  *                     submit fully mapped pages for IO
2002  *
2003  * @mpd - description of extent to map, on return next extent to map
2004  *
2005  * Scan buffers corresponding to changed extent (we expect corresponding pages
2006  * to be already locked) and update buffer state according to new extent state.
2007  * We map delalloc buffers to their physical location, clear unwritten bits,
2008  * and mark buffers as uninit when we perform writes to unwritten extents
2009  * and do extent conversion after IO is finished. If the last page is not fully
2010  * mapped, we update @map to the next extent in the last page that needs
2011  * mapping. Otherwise we submit the page for IO.
2012  */
2013 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2014 {
2015         struct pagevec pvec;
2016         int nr_pages, i;
2017         struct inode *inode = mpd->inode;
2018         struct buffer_head *head, *bh;
2019         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2020         pgoff_t start, end;
2021         ext4_lblk_t lblk;
2022         sector_t pblock;
2023         int err;
2024
2025         start = mpd->map.m_lblk >> bpp_bits;
2026         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2027         lblk = start << bpp_bits;
2028         pblock = mpd->map.m_pblk;
2029
2030         pagevec_init(&pvec, 0);
2031         while (start <= end) {
2032                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2033                                           PAGEVEC_SIZE);
2034                 if (nr_pages == 0)
2035                         break;
2036                 for (i = 0; i < nr_pages; i++) {
2037                         struct page *page = pvec.pages[i];
2038
2039                         if (page->index > end)
2040                                 break;
2041                         /* Up to 'end' pages must be contiguous */
2042                         BUG_ON(page->index != start);
2043                         bh = head = page_buffers(page);
2044                         do {
2045                                 if (lblk < mpd->map.m_lblk)
2046                                         continue;
2047                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2048                                         /*
2049                                          * Buffer after end of mapped extent.
2050                                          * Find next buffer in the page to map.
2051                                          */
2052                                         mpd->map.m_len = 0;
2053                                         mpd->map.m_flags = 0;
2054                                         /*
2055                                          * FIXME: If dioread_nolock supports
2056                                          * blocksize < pagesize, we need to make
2057                                          * sure we add size mapped so far to
2058                                          * io_end->size as the following call
2059                                          * can submit the page for IO.
2060                                          */
2061                                         err = mpage_process_page_bufs(mpd, head,
2062                                                                       bh, lblk);
2063                                         pagevec_release(&pvec);
2064                                         if (err > 0)
2065                                                 err = 0;
2066                                         return err;
2067                                 }
2068                                 if (buffer_delay(bh)) {
2069                                         clear_buffer_delay(bh);
2070                                         bh->b_blocknr = pblock++;
2071                                 }
2072                                 clear_buffer_unwritten(bh);
2073                         } while (lblk++, (bh = bh->b_this_page) != head);
2074
2075                         /*
2076                          * FIXME: This is going to break if dioread_nolock
2077                          * supports blocksize < pagesize as we will try to
2078                          * convert potentially unmapped parts of inode.
2079                          */
2080                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2081                         /* Page fully mapped - let IO run! */
2082                         err = mpage_submit_page(mpd, page);
2083                         if (err < 0) {
2084                                 pagevec_release(&pvec);
2085                                 return err;
2086                         }
2087                         start++;
2088                 }
2089                 pagevec_release(&pvec);
2090         }
2091         /* Extent fully mapped and matches with page boundary. We are done. */
2092         mpd->map.m_len = 0;
2093         mpd->map.m_flags = 0;
2094         return 0;
2095 }
2096
2097 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2098 {
2099         struct inode *inode = mpd->inode;
2100         struct ext4_map_blocks *map = &mpd->map;
2101         int get_blocks_flags;
2102         int err, dioread_nolock;
2103
2104         trace_ext4_da_write_pages_extent(inode, map);
2105         /*
2106          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2107          * to convert an unwritten extent to be initialized (in the case
2108          * where we have written into one or more preallocated blocks).  It is
2109          * possible that we're going to need more metadata blocks than
2110          * previously reserved. However we must not fail because we're in
2111          * writeback and there is nothing we can do about it so it might result
2112          * in data loss.  So use reserved blocks to allocate metadata if
2113          * possible.
2114          *
2115          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2116          * the blocks in question are delalloc blocks.  This indicates
2117          * that the blocks and quotas has already been checked when
2118          * the data was copied into the page cache.
2119          */
2120         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2121                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2122         dioread_nolock = ext4_should_dioread_nolock(inode);
2123         if (dioread_nolock)
2124                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2125         if (map->m_flags & (1 << BH_Delay))
2126                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2127
2128         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2129         if (err < 0)
2130                 return err;
2131         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2132                 if (!mpd->io_submit.io_end->handle &&
2133                     ext4_handle_valid(handle)) {
2134                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2135                         handle->h_rsv_handle = NULL;
2136                 }
2137                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2138         }
2139
2140         BUG_ON(map->m_len == 0);
2141         if (map->m_flags & EXT4_MAP_NEW) {
2142                 struct block_device *bdev = inode->i_sb->s_bdev;
2143                 int i;
2144
2145                 for (i = 0; i < map->m_len; i++)
2146                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2147         }
2148         return 0;
2149 }
2150
2151 /*
2152  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2153  *                               mpd->len and submit pages underlying it for IO
2154  *
2155  * @handle - handle for journal operations
2156  * @mpd - extent to map
2157  * @give_up_on_write - we set this to true iff there is a fatal error and there
2158  *                     is no hope of writing the data. The caller should discard
2159  *                     dirty pages to avoid infinite loops.
2160  *
2161  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2162  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2163  * them to initialized or split the described range from larger unwritten
2164  * extent. Note that we need not map all the described range since allocation
2165  * can return less blocks or the range is covered by more unwritten extents. We
2166  * cannot map more because we are limited by reserved transaction credits. On
2167  * the other hand we always make sure that the last touched page is fully
2168  * mapped so that it can be written out (and thus forward progress is
2169  * guaranteed). After mapping we submit all mapped pages for IO.
2170  */
2171 static int mpage_map_and_submit_extent(handle_t *handle,
2172                                        struct mpage_da_data *mpd,
2173                                        bool *give_up_on_write)
2174 {
2175         struct inode *inode = mpd->inode;
2176         struct ext4_map_blocks *map = &mpd->map;
2177         int err;
2178         loff_t disksize;
2179         int progress = 0;
2180
2181         mpd->io_submit.io_end->offset =
2182                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2183         do {
2184                 err = mpage_map_one_extent(handle, mpd);
2185                 if (err < 0) {
2186                         struct super_block *sb = inode->i_sb;
2187
2188                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2189                                 goto invalidate_dirty_pages;
2190                         /*
2191                          * Let the uper layers retry transient errors.
2192                          * In the case of ENOSPC, if ext4_count_free_blocks()
2193                          * is non-zero, a commit should free up blocks.
2194                          */
2195                         if ((err == -ENOMEM) ||
2196                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2197                                 if (progress)
2198                                         goto update_disksize;
2199                                 return err;
2200                         }
2201                         ext4_msg(sb, KERN_CRIT,
2202                                  "Delayed block allocation failed for "
2203                                  "inode %lu at logical offset %llu with"
2204                                  " max blocks %u with error %d",
2205                                  inode->i_ino,
2206                                  (unsigned long long)map->m_lblk,
2207                                  (unsigned)map->m_len, -err);
2208                         ext4_msg(sb, KERN_CRIT,
2209                                  "This should not happen!! Data will "
2210                                  "be lost\n");
2211                         if (err == -ENOSPC)
2212                                 ext4_print_free_blocks(inode);
2213                 invalidate_dirty_pages:
2214                         *give_up_on_write = true;
2215                         return err;
2216                 }
2217                 progress = 1;
2218                 /*
2219                  * Update buffer state, submit mapped pages, and get us new
2220                  * extent to map
2221                  */
2222                 err = mpage_map_and_submit_buffers(mpd);
2223                 if (err < 0)
2224                         goto update_disksize;
2225         } while (map->m_len);
2226
2227 update_disksize:
2228         /*
2229          * Update on-disk size after IO is submitted.  Races with
2230          * truncate are avoided by checking i_size under i_data_sem.
2231          */
2232         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2233         if (disksize > EXT4_I(inode)->i_disksize) {
2234                 int err2;
2235                 loff_t i_size;
2236
2237                 down_write(&EXT4_I(inode)->i_data_sem);
2238                 i_size = i_size_read(inode);
2239                 if (disksize > i_size)
2240                         disksize = i_size;
2241                 if (disksize > EXT4_I(inode)->i_disksize)
2242                         EXT4_I(inode)->i_disksize = disksize;
2243                 err2 = ext4_mark_inode_dirty(handle, inode);
2244                 up_write(&EXT4_I(inode)->i_data_sem);
2245                 if (err2)
2246                         ext4_error(inode->i_sb,
2247                                    "Failed to mark inode %lu dirty",
2248                                    inode->i_ino);
2249                 if (!err)
2250                         err = err2;
2251         }
2252         return err;
2253 }
2254
2255 /*
2256  * Calculate the total number of credits to reserve for one writepages
2257  * iteration. This is called from ext4_writepages(). We map an extent of
2258  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2259  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2260  * bpp - 1 blocks in bpp different extents.
2261  */
2262 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2263 {
2264         int bpp = ext4_journal_blocks_per_page(inode);
2265
2266         return ext4_meta_trans_blocks(inode,
2267                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2268 }
2269
2270 /*
2271  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2272  *                               and underlying extent to map
2273  *
2274  * @mpd - where to look for pages
2275  *
2276  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2277  * IO immediately. When we find a page which isn't mapped we start accumulating
2278  * extent of buffers underlying these pages that needs mapping (formed by
2279  * either delayed or unwritten buffers). We also lock the pages containing
2280  * these buffers. The extent found is returned in @mpd structure (starting at
2281  * mpd->lblk with length mpd->len blocks).
2282  *
2283  * Note that this function can attach bios to one io_end structure which are
2284  * neither logically nor physically contiguous. Although it may seem as an
2285  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2286  * case as we need to track IO to all buffers underlying a page in one io_end.
2287  */
2288 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2289 {
2290         struct address_space *mapping = mpd->inode->i_mapping;
2291         struct pagevec pvec;
2292         unsigned int nr_pages;
2293         long left = mpd->wbc->nr_to_write;
2294         pgoff_t index = mpd->first_page;
2295         pgoff_t end = mpd->last_page;
2296         int tag;
2297         int i, err = 0;
2298         int blkbits = mpd->inode->i_blkbits;
2299         ext4_lblk_t lblk;
2300         struct buffer_head *head;
2301
2302         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2303                 tag = PAGECACHE_TAG_TOWRITE;
2304         else
2305                 tag = PAGECACHE_TAG_DIRTY;
2306
2307         pagevec_init(&pvec, 0);
2308         mpd->map.m_len = 0;
2309         mpd->next_page = index;
2310         while (index <= end) {
2311                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313                 if (nr_pages == 0)
2314                         goto out;
2315
2316                 for (i = 0; i < nr_pages; i++) {
2317                         struct page *page = pvec.pages[i];
2318
2319                         /*
2320                          * At this point, the page may be truncated or
2321                          * invalidated (changing page->mapping to NULL), or
2322                          * even swizzled back from swapper_space to tmpfs file
2323                          * mapping. However, page->index will not change
2324                          * because we have a reference on the page.
2325                          */
2326                         if (page->index > end)
2327                                 goto out;
2328
2329                         /*
2330                          * Accumulated enough dirty pages? This doesn't apply
2331                          * to WB_SYNC_ALL mode. For integrity sync we have to
2332                          * keep going because someone may be concurrently
2333                          * dirtying pages, and we might have synced a lot of
2334                          * newly appeared dirty pages, but have not synced all
2335                          * of the old dirty pages.
2336                          */
2337                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2338                                 goto out;
2339
2340                         /* If we can't merge this page, we are done. */
2341                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2342                                 goto out;
2343
2344                         lock_page(page);
2345                         /*
2346                          * If the page is no longer dirty, or its mapping no
2347                          * longer corresponds to inode we are writing (which
2348                          * means it has been truncated or invalidated), or the
2349                          * page is already under writeback and we are not doing
2350                          * a data integrity writeback, skip the page
2351                          */
2352                         if (!PageDirty(page) ||
2353                             (PageWriteback(page) &&
2354                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2355                             unlikely(page->mapping != mapping)) {
2356                                 unlock_page(page);
2357                                 continue;
2358                         }
2359
2360                         wait_on_page_writeback(page);
2361                         BUG_ON(PageWriteback(page));
2362
2363                         if (mpd->map.m_len == 0)
2364                                 mpd->first_page = page->index;
2365                         mpd->next_page = page->index + 1;
2366                         /* Add all dirty buffers to mpd */
2367                         lblk = ((ext4_lblk_t)page->index) <<
2368                                 (PAGE_CACHE_SHIFT - blkbits);
2369                         head = page_buffers(page);
2370                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2371                         if (err <= 0)
2372                                 goto out;
2373                         err = 0;
2374                         left--;
2375                 }
2376                 pagevec_release(&pvec);
2377                 cond_resched();
2378         }
2379         return 0;
2380 out:
2381         pagevec_release(&pvec);
2382         return err;
2383 }
2384
2385 static int __writepage(struct page *page, struct writeback_control *wbc,
2386                        void *data)
2387 {
2388         struct address_space *mapping = data;
2389         int ret = ext4_writepage(page, wbc);
2390         mapping_set_error(mapping, ret);
2391         return ret;
2392 }
2393
2394 static int ext4_writepages(struct address_space *mapping,
2395                            struct writeback_control *wbc)
2396 {
2397         pgoff_t writeback_index = 0;
2398         long nr_to_write = wbc->nr_to_write;
2399         int range_whole = 0;
2400         int cycled = 1;
2401         handle_t *handle = NULL;
2402         struct mpage_da_data mpd;
2403         struct inode *inode = mapping->host;
2404         int needed_blocks, rsv_blocks = 0, ret = 0;
2405         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2406         bool done;
2407         struct blk_plug plug;
2408         bool give_up_on_write = false;
2409
2410         trace_ext4_writepages(inode, wbc);
2411
2412         /*
2413          * No pages to write? This is mainly a kludge to avoid starting
2414          * a transaction for special inodes like journal inode on last iput()
2415          * because that could violate lock ordering on umount
2416          */
2417         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2418                 goto out_writepages;
2419
2420         if (ext4_should_journal_data(inode)) {
2421                 struct blk_plug plug;
2422
2423                 blk_start_plug(&plug);
2424                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2425                 blk_finish_plug(&plug);
2426                 goto out_writepages;
2427         }
2428
2429         /*
2430          * If the filesystem has aborted, it is read-only, so return
2431          * right away instead of dumping stack traces later on that
2432          * will obscure the real source of the problem.  We test
2433          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2434          * the latter could be true if the filesystem is mounted
2435          * read-only, and in that case, ext4_writepages should
2436          * *never* be called, so if that ever happens, we would want
2437          * the stack trace.
2438          */
2439         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2440                 ret = -EROFS;
2441                 goto out_writepages;
2442         }
2443
2444         if (ext4_should_dioread_nolock(inode)) {
2445                 /*
2446                  * We may need to convert up to one extent per block in
2447                  * the page and we may dirty the inode.
2448                  */
2449                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2450         }
2451
2452         /*
2453          * If we have inline data and arrive here, it means that
2454          * we will soon create the block for the 1st page, so
2455          * we'd better clear the inline data here.
2456          */
2457         if (ext4_has_inline_data(inode)) {
2458                 /* Just inode will be modified... */
2459                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2460                 if (IS_ERR(handle)) {
2461                         ret = PTR_ERR(handle);
2462                         goto out_writepages;
2463                 }
2464                 BUG_ON(ext4_test_inode_state(inode,
2465                                 EXT4_STATE_MAY_INLINE_DATA));
2466                 ext4_destroy_inline_data(handle, inode);
2467                 ext4_journal_stop(handle);
2468         }
2469
2470         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2471                 range_whole = 1;
2472
2473         if (wbc->range_cyclic) {
2474                 writeback_index = mapping->writeback_index;
2475                 if (writeback_index)
2476                         cycled = 0;
2477                 mpd.first_page = writeback_index;
2478                 mpd.last_page = -1;
2479         } else {
2480                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2481                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2482         }
2483
2484         mpd.inode = inode;
2485         mpd.wbc = wbc;
2486         ext4_io_submit_init(&mpd.io_submit, wbc);
2487 retry:
2488         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2489                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2490         done = false;
2491         blk_start_plug(&plug);
2492         while (!done && mpd.first_page <= mpd.last_page) {
2493                 /* For each extent of pages we use new io_end */
2494                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2495                 if (!mpd.io_submit.io_end) {
2496                         ret = -ENOMEM;
2497                         break;
2498                 }
2499
2500                 /*
2501                  * We have two constraints: We find one extent to map and we
2502                  * must always write out whole page (makes a difference when
2503                  * blocksize < pagesize) so that we don't block on IO when we
2504                  * try to write out the rest of the page. Journalled mode is
2505                  * not supported by delalloc.
2506                  */
2507                 BUG_ON(ext4_should_journal_data(inode));
2508                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2509
2510                 /* start a new transaction */
2511                 handle = ext4_journal_start_with_reserve(inode,
2512                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2513                 if (IS_ERR(handle)) {
2514                         ret = PTR_ERR(handle);
2515                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2516                                "%ld pages, ino %lu; err %d", __func__,
2517                                 wbc->nr_to_write, inode->i_ino, ret);
2518                         /* Release allocated io_end */
2519                         ext4_put_io_end(mpd.io_submit.io_end);
2520                         break;
2521                 }
2522
2523                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2524                 ret = mpage_prepare_extent_to_map(&mpd);
2525                 if (!ret) {
2526                         if (mpd.map.m_len)
2527                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2528                                         &give_up_on_write);
2529                         else {
2530                                 /*
2531                                  * We scanned the whole range (or exhausted
2532                                  * nr_to_write), submitted what was mapped and
2533                                  * didn't find anything needing mapping. We are
2534                                  * done.
2535                                  */
2536                                 done = true;
2537                         }
2538                 }
2539                 ext4_journal_stop(handle);
2540                 /* Submit prepared bio */
2541                 ext4_io_submit(&mpd.io_submit);
2542                 /* Unlock pages we didn't use */
2543                 mpage_release_unused_pages(&mpd, give_up_on_write);
2544                 /* Drop our io_end reference we got from init */
2545                 ext4_put_io_end(mpd.io_submit.io_end);
2546
2547                 if (ret == -ENOSPC && sbi->s_journal) {
2548                         /*
2549                          * Commit the transaction which would
2550                          * free blocks released in the transaction
2551                          * and try again
2552                          */
2553                         jbd2_journal_force_commit_nested(sbi->s_journal);
2554                         ret = 0;
2555                         continue;
2556                 }
2557                 /* Fatal error - ENOMEM, EIO... */
2558                 if (ret)
2559                         break;
2560         }
2561         blk_finish_plug(&plug);
2562         if (!ret && !cycled && wbc->nr_to_write > 0) {
2563                 cycled = 1;
2564                 mpd.last_page = writeback_index - 1;
2565                 mpd.first_page = 0;
2566                 goto retry;
2567         }
2568
2569         /* Update index */
2570         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2571                 /*
2572                  * Set the writeback_index so that range_cyclic
2573                  * mode will write it back later
2574                  */
2575                 mapping->writeback_index = mpd.first_page;
2576
2577 out_writepages:
2578         trace_ext4_writepages_result(inode, wbc, ret,
2579                                      nr_to_write - wbc->nr_to_write);
2580         return ret;
2581 }
2582
2583 static int ext4_nonda_switch(struct super_block *sb)
2584 {
2585         s64 free_clusters, dirty_clusters;
2586         struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
2588         /*
2589          * switch to non delalloc mode if we are running low
2590          * on free block. The free block accounting via percpu
2591          * counters can get slightly wrong with percpu_counter_batch getting
2592          * accumulated on each CPU without updating global counters
2593          * Delalloc need an accurate free block accounting. So switch
2594          * to non delalloc when we are near to error range.
2595          */
2596         free_clusters =
2597                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2598         dirty_clusters =
2599                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2600         /*
2601          * Start pushing delalloc when 1/2 of free blocks are dirty.
2602          */
2603         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2604                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2605
2606         if (2 * free_clusters < 3 * dirty_clusters ||
2607             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2608                 /*
2609                  * free block count is less than 150% of dirty blocks
2610                  * or free blocks is less than watermark
2611                  */
2612                 return 1;
2613         }
2614         return 0;
2615 }
2616
2617 /* We always reserve for an inode update; the superblock could be there too */
2618 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2619 {
2620         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2621                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2622                 return 1;
2623
2624         if (pos + len <= 0x7fffffffULL)
2625                 return 1;
2626
2627         /* We might need to update the superblock to set LARGE_FILE */
2628         return 2;
2629 }
2630
2631 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2632                                loff_t pos, unsigned len, unsigned flags,
2633                                struct page **pagep, void **fsdata)
2634 {
2635         int ret, retries = 0;
2636         struct page *page;
2637         pgoff_t index;
2638         struct inode *inode = mapping->host;
2639         handle_t *handle;
2640
2641         index = pos >> PAGE_CACHE_SHIFT;
2642
2643         if (ext4_nonda_switch(inode->i_sb)) {
2644                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2645                 return ext4_write_begin(file, mapping, pos,
2646                                         len, flags, pagep, fsdata);
2647         }
2648         *fsdata = (void *)0;
2649         trace_ext4_da_write_begin(inode, pos, len, flags);
2650
2651         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2652                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2653                                                       pos, len, flags,
2654                                                       pagep, fsdata);
2655                 if (ret < 0)
2656                         return ret;
2657                 if (ret == 1)
2658                         return 0;
2659         }
2660
2661         /*
2662          * grab_cache_page_write_begin() can take a long time if the
2663          * system is thrashing due to memory pressure, or if the page
2664          * is being written back.  So grab it first before we start
2665          * the transaction handle.  This also allows us to allocate
2666          * the page (if needed) without using GFP_NOFS.
2667          */
2668 retry_grab:
2669         page = grab_cache_page_write_begin(mapping, index, flags);
2670         if (!page)
2671                 return -ENOMEM;
2672         unlock_page(page);
2673
2674         /*
2675          * With delayed allocation, we don't log the i_disksize update
2676          * if there is delayed block allocation. But we still need
2677          * to journalling the i_disksize update if writes to the end
2678          * of file which has an already mapped buffer.
2679          */
2680 retry_journal:
2681         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2682                                 ext4_da_write_credits(inode, pos, len));
2683         if (IS_ERR(handle)) {
2684                 page_cache_release(page);
2685                 return PTR_ERR(handle);
2686         }
2687
2688         lock_page(page);
2689         if (page->mapping != mapping) {
2690                 /* The page got truncated from under us */
2691                 unlock_page(page);
2692                 page_cache_release(page);
2693                 ext4_journal_stop(handle);
2694                 goto retry_grab;
2695         }
2696         /* In case writeback began while the page was unlocked */
2697         wait_for_stable_page(page);
2698
2699 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2700         ret = ext4_block_write_begin(page, pos, len,
2701                                      ext4_da_get_block_prep);
2702 #else
2703         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2704 #endif
2705         if (ret < 0) {
2706                 unlock_page(page);
2707                 ext4_journal_stop(handle);
2708                 /*
2709                  * block_write_begin may have instantiated a few blocks
2710                  * outside i_size.  Trim these off again. Don't need
2711                  * i_size_read because we hold i_mutex.
2712                  */
2713                 if (pos + len > inode->i_size)
2714                         ext4_truncate_failed_write(inode);
2715
2716                 if (ret == -ENOSPC &&
2717                     ext4_should_retry_alloc(inode->i_sb, &retries))
2718                         goto retry_journal;
2719
2720                 page_cache_release(page);
2721                 return ret;
2722         }
2723
2724         *pagep = page;
2725         return ret;
2726 }
2727
2728 /*
2729  * Check if we should update i_disksize
2730  * when write to the end of file but not require block allocation
2731  */
2732 static int ext4_da_should_update_i_disksize(struct page *page,
2733                                             unsigned long offset)
2734 {
2735         struct buffer_head *bh;
2736         struct inode *inode = page->mapping->host;
2737         unsigned int idx;
2738         int i;
2739
2740         bh = page_buffers(page);
2741         idx = offset >> inode->i_blkbits;
2742
2743         for (i = 0; i < idx; i++)
2744                 bh = bh->b_this_page;
2745
2746         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2747                 return 0;
2748         return 1;
2749 }
2750
2751 static int ext4_da_write_end(struct file *file,
2752                              struct address_space *mapping,
2753                              loff_t pos, unsigned len, unsigned copied,
2754                              struct page *page, void *fsdata)
2755 {
2756         struct inode *inode = mapping->host;
2757         int ret = 0, ret2;
2758         handle_t *handle = ext4_journal_current_handle();
2759         loff_t new_i_size;
2760         unsigned long start, end;
2761         int write_mode = (int)(unsigned long)fsdata;
2762
2763         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2764                 return ext4_write_end(file, mapping, pos,
2765                                       len, copied, page, fsdata);
2766
2767         trace_ext4_da_write_end(inode, pos, len, copied);
2768         start = pos & (PAGE_CACHE_SIZE - 1);
2769         end = start + copied - 1;
2770
2771         /*
2772          * generic_write_end() will run mark_inode_dirty() if i_size
2773          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2774          * into that.
2775          */
2776         new_i_size = pos + copied;
2777         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2778                 if (ext4_has_inline_data(inode) ||
2779                     ext4_da_should_update_i_disksize(page, end)) {
2780                         ext4_update_i_disksize(inode, new_i_size);
2781                         /* We need to mark inode dirty even if
2782                          * new_i_size is less that inode->i_size
2783                          * bu greater than i_disksize.(hint delalloc)
2784                          */
2785                         ext4_mark_inode_dirty(handle, inode);
2786                 }
2787         }
2788
2789         if (write_mode != CONVERT_INLINE_DATA &&
2790             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2791             ext4_has_inline_data(inode))
2792                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2793                                                      page);
2794         else
2795                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2796                                                         page, fsdata);
2797
2798         copied = ret2;
2799         if (ret2 < 0)
2800                 ret = ret2;
2801         ret2 = ext4_journal_stop(handle);
2802         if (!ret)
2803                 ret = ret2;
2804
2805         return ret ? ret : copied;
2806 }
2807
2808 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2809                                    unsigned int length)
2810 {
2811         /*
2812          * Drop reserved blocks
2813          */
2814         BUG_ON(!PageLocked(page));
2815         if (!page_has_buffers(page))
2816                 goto out;
2817
2818         ext4_da_page_release_reservation(page, offset, length);
2819
2820 out:
2821         ext4_invalidatepage(page, offset, length);
2822
2823         return;
2824 }
2825
2826 /*
2827  * Force all delayed allocation blocks to be allocated for a given inode.
2828  */
2829 int ext4_alloc_da_blocks(struct inode *inode)
2830 {
2831         trace_ext4_alloc_da_blocks(inode);
2832
2833         if (!EXT4_I(inode)->i_reserved_data_blocks)
2834                 return 0;
2835
2836         /*
2837          * We do something simple for now.  The filemap_flush() will
2838          * also start triggering a write of the data blocks, which is
2839          * not strictly speaking necessary (and for users of
2840          * laptop_mode, not even desirable).  However, to do otherwise
2841          * would require replicating code paths in:
2842          *
2843          * ext4_writepages() ->
2844          *    write_cache_pages() ---> (via passed in callback function)
2845          *        __mpage_da_writepage() -->
2846          *           mpage_add_bh_to_extent()
2847          *           mpage_da_map_blocks()
2848          *
2849          * The problem is that write_cache_pages(), located in
2850          * mm/page-writeback.c, marks pages clean in preparation for
2851          * doing I/O, which is not desirable if we're not planning on
2852          * doing I/O at all.
2853          *
2854          * We could call write_cache_pages(), and then redirty all of
2855          * the pages by calling redirty_page_for_writepage() but that
2856          * would be ugly in the extreme.  So instead we would need to
2857          * replicate parts of the code in the above functions,
2858          * simplifying them because we wouldn't actually intend to
2859          * write out the pages, but rather only collect contiguous
2860          * logical block extents, call the multi-block allocator, and
2861          * then update the buffer heads with the block allocations.
2862          *
2863          * For now, though, we'll cheat by calling filemap_flush(),
2864          * which will map the blocks, and start the I/O, but not
2865          * actually wait for the I/O to complete.
2866          */
2867         return filemap_flush(inode->i_mapping);
2868 }
2869
2870 /*
2871  * bmap() is special.  It gets used by applications such as lilo and by
2872  * the swapper to find the on-disk block of a specific piece of data.
2873  *
2874  * Naturally, this is dangerous if the block concerned is still in the
2875  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2876  * filesystem and enables swap, then they may get a nasty shock when the
2877  * data getting swapped to that swapfile suddenly gets overwritten by
2878  * the original zero's written out previously to the journal and
2879  * awaiting writeback in the kernel's buffer cache.
2880  *
2881  * So, if we see any bmap calls here on a modified, data-journaled file,
2882  * take extra steps to flush any blocks which might be in the cache.
2883  */
2884 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2885 {
2886         struct inode *inode = mapping->host;
2887         journal_t *journal;
2888         int err;
2889
2890         /*
2891          * We can get here for an inline file via the FIBMAP ioctl
2892          */
2893         if (ext4_has_inline_data(inode))
2894                 return 0;
2895
2896         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2897                         test_opt(inode->i_sb, DELALLOC)) {
2898                 /*
2899                  * With delalloc we want to sync the file
2900                  * so that we can make sure we allocate
2901                  * blocks for file
2902                  */
2903                 filemap_write_and_wait(mapping);
2904         }
2905
2906         if (EXT4_JOURNAL(inode) &&
2907             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2908                 /*
2909                  * This is a REALLY heavyweight approach, but the use of
2910                  * bmap on dirty files is expected to be extremely rare:
2911                  * only if we run lilo or swapon on a freshly made file
2912                  * do we expect this to happen.
2913                  *
2914                  * (bmap requires CAP_SYS_RAWIO so this does not
2915                  * represent an unprivileged user DOS attack --- we'd be
2916                  * in trouble if mortal users could trigger this path at
2917                  * will.)
2918                  *
2919                  * NB. EXT4_STATE_JDATA is not set on files other than
2920                  * regular files.  If somebody wants to bmap a directory
2921                  * or symlink and gets confused because the buffer
2922                  * hasn't yet been flushed to disk, they deserve
2923                  * everything they get.
2924                  */
2925
2926                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2927                 journal = EXT4_JOURNAL(inode);
2928                 jbd2_journal_lock_updates(journal);
2929                 err = jbd2_journal_flush(journal);
2930                 jbd2_journal_unlock_updates(journal);
2931
2932                 if (err)
2933                         return 0;
2934         }
2935
2936         return generic_block_bmap(mapping, block, ext4_get_block);
2937 }
2938
2939 static int ext4_readpage(struct file *file, struct page *page)
2940 {
2941         int ret = -EAGAIN;
2942         struct inode *inode = page->mapping->host;
2943
2944         trace_ext4_readpage(page);
2945
2946         if (ext4_has_inline_data(inode))
2947                 ret = ext4_readpage_inline(inode, page);
2948
2949         if (ret == -EAGAIN)
2950                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2951
2952         return ret;
2953 }
2954
2955 static int
2956 ext4_readpages(struct file *file, struct address_space *mapping,
2957                 struct list_head *pages, unsigned nr_pages)
2958 {
2959         struct inode *inode = mapping->host;
2960
2961         /* If the file has inline data, no need to do readpages. */
2962         if (ext4_has_inline_data(inode))
2963                 return 0;
2964
2965         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2966 }
2967
2968 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2969                                 unsigned int length)
2970 {
2971         trace_ext4_invalidatepage(page, offset, length);
2972
2973         /* No journalling happens on data buffers when this function is used */
2974         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2975
2976         block_invalidatepage(page, offset, length);
2977 }
2978
2979 static int __ext4_journalled_invalidatepage(struct page *page,
2980                                             unsigned int offset,
2981                                             unsigned int length)
2982 {
2983         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2984
2985         trace_ext4_journalled_invalidatepage(page, offset, length);
2986
2987         /*
2988          * If it's a full truncate we just forget about the pending dirtying
2989          */
2990         if (offset == 0 && length == PAGE_CACHE_SIZE)
2991                 ClearPageChecked(page);
2992
2993         return jbd2_journal_invalidatepage(journal, page, offset, length);
2994 }
2995
2996 /* Wrapper for aops... */
2997 static void ext4_journalled_invalidatepage(struct page *page,
2998                                            unsigned int offset,
2999                                            unsigned int length)
3000 {
3001         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3002 }
3003
3004 static int ext4_releasepage(struct page *page, gfp_t wait)
3005 {
3006         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3007
3008         trace_ext4_releasepage(page);
3009
3010         /* Page has dirty journalled data -> cannot release */
3011         if (PageChecked(page))
3012                 return 0;
3013         if (journal)
3014                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3015         else
3016                 return try_to_free_buffers(page);
3017 }
3018
3019 /*
3020  * ext4_get_block used when preparing for a DIO write or buffer write.
3021  * We allocate an uinitialized extent if blocks haven't been allocated.
3022  * The extent will be converted to initialized after the IO is complete.
3023  */
3024 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3025                    struct buffer_head *bh_result, int create)
3026 {
3027         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3028                    inode->i_ino, create);
3029         return _ext4_get_block(inode, iblock, bh_result,
3030                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3031 }
3032
3033 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3034                    struct buffer_head *bh_result, int create)
3035 {
3036         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3037                    inode->i_ino, create);
3038         return _ext4_get_block(inode, iblock, bh_result,
3039                                EXT4_GET_BLOCKS_NO_LOCK);
3040 }
3041
3042 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3043                             ssize_t size, void *private)
3044 {
3045         ext4_io_end_t *io_end = iocb->private;
3046
3047         /* if not async direct IO just return */
3048         if (!io_end)
3049                 return;
3050
3051         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3052                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3053                   iocb->private, io_end->inode->i_ino, iocb, offset,
3054                   size);
3055
3056         iocb->private = NULL;
3057         io_end->offset = offset;
3058         io_end->size = size;
3059         ext4_put_io_end(io_end);
3060 }
3061
3062 /*
3063  * For ext4 extent files, ext4 will do direct-io write to holes,
3064  * preallocated extents, and those write extend the file, no need to
3065  * fall back to buffered IO.
3066  *
3067  * For holes, we fallocate those blocks, mark them as unwritten
3068  * If those blocks were preallocated, we mark sure they are split, but
3069  * still keep the range to write as unwritten.
3070  *
3071  * The unwritten extents will be converted to written when DIO is completed.
3072  * For async direct IO, since the IO may still pending when return, we
3073  * set up an end_io call back function, which will do the conversion
3074  * when async direct IO completed.
3075  *
3076  * If the O_DIRECT write will extend the file then add this inode to the
3077  * orphan list.  So recovery will truncate it back to the original size
3078  * if the machine crashes during the write.
3079  *
3080  */
3081 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3082                                   loff_t offset)
3083 {
3084         struct file *file = iocb->ki_filp;
3085         struct inode *inode = file->f_mapping->host;
3086         ssize_t ret;
3087         size_t count = iov_iter_count(iter);
3088         int overwrite = 0;
3089         get_block_t *get_block_func = NULL;
3090         int dio_flags = 0;
3091         loff_t final_size = offset + count;
3092         ext4_io_end_t *io_end = NULL;
3093
3094         /* Use the old path for reads and writes beyond i_size. */
3095         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3096                 return ext4_ind_direct_IO(iocb, iter, offset);
3097
3098         BUG_ON(iocb->private == NULL);
3099
3100         /*
3101          * Make all waiters for direct IO properly wait also for extent
3102          * conversion. This also disallows race between truncate() and
3103          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3104          */
3105         if (iov_iter_rw(iter) == WRITE)
3106                 inode_dio_begin(inode);
3107
3108         /* If we do a overwrite dio, i_mutex locking can be released */
3109         overwrite = *((int *)iocb->private);
3110
3111         if (overwrite) {
3112                 down_read(&EXT4_I(inode)->i_data_sem);
3113                 mutex_unlock(&inode->i_mutex);
3114         }
3115
3116         /*
3117          * We could direct write to holes and fallocate.
3118          *
3119          * Allocated blocks to fill the hole are marked as
3120          * unwritten to prevent parallel buffered read to expose
3121          * the stale data before DIO complete the data IO.
3122          *
3123          * As to previously fallocated extents, ext4 get_block will
3124          * just simply mark the buffer mapped but still keep the
3125          * extents unwritten.
3126          *
3127          * For non AIO case, we will convert those unwritten extents
3128          * to written after return back from blockdev_direct_IO.
3129          *
3130          * For async DIO, the conversion needs to be deferred when the
3131          * IO is completed. The ext4 end_io callback function will be
3132          * called to take care of the conversion work.  Here for async
3133          * case, we allocate an io_end structure to hook to the iocb.
3134          */
3135         iocb->private = NULL;
3136         ext4_inode_aio_set(inode, NULL);
3137         if (!is_sync_kiocb(iocb)) {
3138                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3139                 if (!io_end) {
3140                         ret = -ENOMEM;
3141                         goto retake_lock;
3142                 }
3143                 /*
3144                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3145                  */
3146                 iocb->private = ext4_get_io_end(io_end);
3147                 /*
3148                  * we save the io structure for current async direct
3149                  * IO, so that later ext4_map_blocks() could flag the
3150                  * io structure whether there is a unwritten extents
3151                  * needs to be converted when IO is completed.
3152                  */
3153                 ext4_inode_aio_set(inode, io_end);
3154         }
3155
3156         if (overwrite) {
3157                 get_block_func = ext4_get_block_write_nolock;
3158         } else {
3159                 get_block_func = ext4_get_block_write;
3160                 dio_flags = DIO_LOCKING;
3161         }
3162 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3163         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3164 #endif
3165         if (IS_DAX(inode))
3166                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3167                                 ext4_end_io_dio, dio_flags);
3168         else
3169                 ret = __blockdev_direct_IO(iocb, inode,
3170                                            inode->i_sb->s_bdev, iter, offset,
3171                                            get_block_func,
3172                                            ext4_end_io_dio, NULL, dio_flags);
3173
3174         /*
3175          * Put our reference to io_end. This can free the io_end structure e.g.
3176          * in sync IO case or in case of error. It can even perform extent
3177          * conversion if all bios we submitted finished before we got here.
3178          * Note that in that case iocb->private can be already set to NULL
3179          * here.
3180          */
3181         if (io_end) {
3182                 ext4_inode_aio_set(inode, NULL);
3183                 ext4_put_io_end(io_end);
3184                 /*
3185                  * When no IO was submitted ext4_end_io_dio() was not
3186                  * called so we have to put iocb's reference.
3187                  */
3188                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3189                         WARN_ON(iocb->private != io_end);
3190                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3191                         ext4_put_io_end(io_end);
3192                         iocb->private = NULL;
3193                 }
3194         }
3195         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3196                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3197                 int err;
3198                 /*
3199                  * for non AIO case, since the IO is already
3200                  * completed, we could do the conversion right here
3201                  */
3202                 err = ext4_convert_unwritten_extents(NULL, inode,
3203                                                      offset, ret);
3204                 if (err < 0)
3205                         ret = err;
3206                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3207         }
3208
3209 retake_lock:
3210         if (iov_iter_rw(iter) == WRITE)
3211                 inode_dio_end(inode);
3212         /* take i_mutex locking again if we do a ovewrite dio */
3213         if (overwrite) {
3214                 up_read(&EXT4_I(inode)->i_data_sem);
3215                 mutex_lock(&inode->i_mutex);
3216         }
3217
3218         return ret;
3219 }
3220
3221 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3222                               loff_t offset)
3223 {
3224         struct file *file = iocb->ki_filp;
3225         struct inode *inode = file->f_mapping->host;
3226         size_t count = iov_iter_count(iter);
3227         ssize_t ret;
3228
3229 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3230         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3231                 return 0;
3232 #endif
3233
3234         /*
3235          * If we are doing data journalling we don't support O_DIRECT
3236          */
3237         if (ext4_should_journal_data(inode))
3238                 return 0;
3239
3240         /* Let buffer I/O handle the inline data case. */
3241         if (ext4_has_inline_data(inode))
3242                 return 0;
3243
3244         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3245         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3246                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3247         else
3248                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3249         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3250         return ret;
3251 }
3252
3253 /*
3254  * Pages can be marked dirty completely asynchronously from ext4's journalling
3255  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3256  * much here because ->set_page_dirty is called under VFS locks.  The page is
3257  * not necessarily locked.
3258  *
3259  * We cannot just dirty the page and leave attached buffers clean, because the
3260  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3261  * or jbddirty because all the journalling code will explode.
3262  *
3263  * So what we do is to mark the page "pending dirty" and next time writepage
3264  * is called, propagate that into the buffers appropriately.
3265  */
3266 static int ext4_journalled_set_page_dirty(struct page *page)
3267 {
3268         SetPageChecked(page);
3269         return __set_page_dirty_nobuffers(page);
3270 }
3271
3272 static const struct address_space_operations ext4_aops = {
3273         .readpage               = ext4_readpage,
3274         .readpages              = ext4_readpages,
3275         .writepage              = ext4_writepage,
3276         .writepages             = ext4_writepages,
3277         .write_begin            = ext4_write_begin,
3278         .write_end              = ext4_write_end,
3279         .bmap                   = ext4_bmap,
3280         .invalidatepage         = ext4_invalidatepage,
3281         .releasepage            = ext4_releasepage,
3282         .direct_IO              = ext4_direct_IO,
3283         .migratepage            = buffer_migrate_page,
3284         .is_partially_uptodate  = block_is_partially_uptodate,
3285         .error_remove_page      = generic_error_remove_page,
3286 };
3287
3288 static const struct address_space_operations ext4_journalled_aops = {
3289         .readpage               = ext4_readpage,
3290         .readpages              = ext4_readpages,
3291         .writepage              = ext4_writepage,
3292         .writepages             = ext4_writepages,
3293         .write_begin            = ext4_write_begin,
3294         .write_end              = ext4_journalled_write_end,
3295         .set_page_dirty         = ext4_journalled_set_page_dirty,
3296         .bmap                   = ext4_bmap,
3297         .invalidatepage         = ext4_journalled_invalidatepage,
3298         .releasepage            = ext4_releasepage,
3299         .direct_IO              = ext4_direct_IO,
3300         .is_partially_uptodate  = block_is_partially_uptodate,
3301         .error_remove_page      = generic_error_remove_page,
3302 };
3303
3304 static const struct address_space_operations ext4_da_aops = {
3305         .readpage               = ext4_readpage,
3306         .readpages              = ext4_readpages,
3307         .writepage              = ext4_writepage,
3308         .writepages             = ext4_writepages,
3309         .write_begin            = ext4_da_write_begin,
3310         .write_end              = ext4_da_write_end,
3311         .bmap                   = ext4_bmap,
3312         .invalidatepage         = ext4_da_invalidatepage,
3313         .releasepage            = ext4_releasepage,
3314         .direct_IO              = ext4_direct_IO,
3315         .migratepage            = buffer_migrate_page,
3316         .is_partially_uptodate  = block_is_partially_uptodate,
3317         .error_remove_page      = generic_error_remove_page,
3318 };
3319
3320 void ext4_set_aops(struct inode *inode)
3321 {
3322         switch (ext4_inode_journal_mode(inode)) {
3323         case EXT4_INODE_ORDERED_DATA_MODE:
3324                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3325                 break;
3326         case EXT4_INODE_WRITEBACK_DATA_MODE:
3327                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3328                 break;
3329         case EXT4_INODE_JOURNAL_DATA_MODE:
3330                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3331                 return;
3332         default:
3333                 BUG();
3334         }
3335         if (test_opt(inode->i_sb, DELALLOC))
3336                 inode->i_mapping->a_ops = &ext4_da_aops;
3337         else
3338                 inode->i_mapping->a_ops = &ext4_aops;
3339 }
3340
3341 static int __ext4_block_zero_page_range(handle_t *handle,
3342                 struct address_space *mapping, loff_t from, loff_t length)
3343 {
3344         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3345         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346         unsigned blocksize, pos;
3347         ext4_lblk_t iblock;
3348         struct inode *inode = mapping->host;
3349         struct buffer_head *bh;
3350         struct page *page;
3351         int err = 0;
3352
3353         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3354                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3355         if (!page)
3356                 return -ENOMEM;
3357
3358         blocksize = inode->i_sb->s_blocksize;
3359
3360         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3361
3362         if (!page_has_buffers(page))
3363                 create_empty_buffers(page, blocksize, 0);
3364
3365         /* Find the buffer that contains "offset" */
3366         bh = page_buffers(page);
3367         pos = blocksize;
3368         while (offset >= pos) {
3369                 bh = bh->b_this_page;
3370                 iblock++;
3371                 pos += blocksize;
3372         }
3373         if (buffer_freed(bh)) {
3374                 BUFFER_TRACE(bh, "freed: skip");
3375                 goto unlock;
3376         }
3377         if (!buffer_mapped(bh)) {
3378                 BUFFER_TRACE(bh, "unmapped");
3379                 ext4_get_block(inode, iblock, bh, 0);
3380                 /* unmapped? It's a hole - nothing to do */
3381                 if (!buffer_mapped(bh)) {
3382                         BUFFER_TRACE(bh, "still unmapped");
3383                         goto unlock;
3384                 }
3385         }
3386
3387         /* Ok, it's mapped. Make sure it's up-to-date */
3388         if (PageUptodate(page))
3389                 set_buffer_uptodate(bh);
3390
3391         if (!buffer_uptodate(bh)) {
3392                 err = -EIO;
3393                 ll_rw_block(READ, 1, &bh);
3394                 wait_on_buffer(bh);
3395                 /* Uhhuh. Read error. Complain and punt. */
3396                 if (!buffer_uptodate(bh))
3397                         goto unlock;
3398                 if (S_ISREG(inode->i_mode) &&
3399                     ext4_encrypted_inode(inode)) {
3400                         /* We expect the key to be set. */
3401                         BUG_ON(!ext4_has_encryption_key(inode));
3402                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3403                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3404                 }
3405         }
3406         if (ext4_should_journal_data(inode)) {
3407                 BUFFER_TRACE(bh, "get write access");
3408                 err = ext4_journal_get_write_access(handle, bh);
3409                 if (err)
3410                         goto unlock;
3411         }
3412         zero_user(page, offset, length);
3413         BUFFER_TRACE(bh, "zeroed end of block");
3414
3415         if (ext4_should_journal_data(inode)) {
3416                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3417         } else {
3418                 err = 0;
3419                 mark_buffer_dirty(bh);
3420                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3421                         err = ext4_jbd2_file_inode(handle, inode);
3422         }
3423
3424 unlock:
3425         unlock_page(page);
3426         page_cache_release(page);
3427         return err;
3428 }
3429
3430 /*
3431  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3432  * starting from file offset 'from'.  The range to be zero'd must
3433  * be contained with in one block.  If the specified range exceeds
3434  * the end of the block it will be shortened to end of the block
3435  * that cooresponds to 'from'
3436  */
3437 static int ext4_block_zero_page_range(handle_t *handle,
3438                 struct address_space *mapping, loff_t from, loff_t length)
3439 {
3440         struct inode *inode = mapping->host;
3441         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3442         unsigned blocksize = inode->i_sb->s_blocksize;
3443         unsigned max = blocksize - (offset & (blocksize - 1));
3444
3445         /*
3446          * correct length if it does not fall between
3447          * 'from' and the end of the block
3448          */
3449         if (length > max || length < 0)
3450                 length = max;
3451
3452         if (IS_DAX(inode))
3453                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3454         return __ext4_block_zero_page_range(handle, mapping, from, length);
3455 }
3456
3457 /*
3458  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3459  * up to the end of the block which corresponds to `from'.
3460  * This required during truncate. We need to physically zero the tail end
3461  * of that block so it doesn't yield old data if the file is later grown.
3462  */
3463 static int ext4_block_truncate_page(handle_t *handle,
3464                 struct address_space *mapping, loff_t from)
3465 {
3466         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3467         unsigned length;
3468         unsigned blocksize;
3469         struct inode *inode = mapping->host;
3470
3471         blocksize = inode->i_sb->s_blocksize;
3472         length = blocksize - (offset & (blocksize - 1));
3473
3474         return ext4_block_zero_page_range(handle, mapping, from, length);
3475 }
3476
3477 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3478                              loff_t lstart, loff_t length)
3479 {
3480         struct super_block *sb = inode->i_sb;
3481         struct address_space *mapping = inode->i_mapping;
3482         unsigned partial_start, partial_end;
3483         ext4_fsblk_t start, end;
3484         loff_t byte_end = (lstart + length - 1);
3485         int err = 0;
3486
3487         partial_start = lstart & (sb->s_blocksize - 1);
3488         partial_end = byte_end & (sb->s_blocksize - 1);
3489
3490         start = lstart >> sb->s_blocksize_bits;
3491         end = byte_end >> sb->s_blocksize_bits;
3492
3493         /* Handle partial zero within the single block */
3494         if (start == end &&
3495             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3496                 err = ext4_block_zero_page_range(handle, mapping,
3497                                                  lstart, length);
3498                 return err;
3499         }
3500         /* Handle partial zero out on the start of the range */
3501         if (partial_start) {
3502                 err = ext4_block_zero_page_range(handle, mapping,
3503                                                  lstart, sb->s_blocksize);
3504                 if (err)
3505                         return err;
3506         }
3507         /* Handle partial zero out on the end of the range */
3508         if (partial_end != sb->s_blocksize - 1)
3509                 err = ext4_block_zero_page_range(handle, mapping,
3510                                                  byte_end - partial_end,
3511                                                  partial_end + 1);
3512         return err;
3513 }
3514
3515 int ext4_can_truncate(struct inode *inode)
3516 {
3517         if (S_ISREG(inode->i_mode))
3518                 return 1;
3519         if (S_ISDIR(inode->i_mode))
3520                 return 1;
3521         if (S_ISLNK(inode->i_mode))
3522                 return !ext4_inode_is_fast_symlink(inode);
3523         return 0;
3524 }
3525
3526 /*
3527  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3528  * associated with the given offset and length
3529  *
3530  * @inode:  File inode
3531  * @offset: The offset where the hole will begin
3532  * @len:    The length of the hole
3533  *
3534  * Returns: 0 on success or negative on failure
3535  */
3536
3537 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3538 {
3539         struct super_block *sb = inode->i_sb;
3540         ext4_lblk_t first_block, stop_block;
3541         struct address_space *mapping = inode->i_mapping;
3542         loff_t first_block_offset, last_block_offset;
3543         handle_t *handle;
3544         unsigned int credits;
3545         int ret = 0;
3546
3547         if (!S_ISREG(inode->i_mode))
3548                 return -EOPNOTSUPP;
3549
3550         trace_ext4_punch_hole(inode, offset, length, 0);
3551
3552         /*
3553          * Write out all dirty pages to avoid race conditions
3554          * Then release them.
3555          */
3556         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3557                 ret = filemap_write_and_wait_range(mapping, offset,
3558                                                    offset + length - 1);
3559                 if (ret)
3560                         return ret;
3561         }
3562
3563         mutex_lock(&inode->i_mutex);
3564
3565         /* No need to punch hole beyond i_size */
3566         if (offset >= inode->i_size)
3567                 goto out_mutex;
3568
3569         /*
3570          * If the hole extends beyond i_size, set the hole
3571          * to end after the page that contains i_size
3572          */
3573         if (offset + length > inode->i_size) {
3574                 length = inode->i_size +
3575                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3576                    offset;
3577         }
3578
3579         if (offset & (sb->s_blocksize - 1) ||
3580             (offset + length) & (sb->s_blocksize - 1)) {
3581                 /*
3582                  * Attach jinode to inode for jbd2 if we do any zeroing of
3583                  * partial block
3584                  */
3585                 ret = ext4_inode_attach_jinode(inode);
3586                 if (ret < 0)
3587                         goto out_mutex;
3588
3589         }
3590
3591         first_block_offset = round_up(offset, sb->s_blocksize);
3592         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3593
3594         /* Now release the pages and zero block aligned part of pages*/
3595         if (last_block_offset > first_block_offset)
3596                 truncate_pagecache_range(inode, first_block_offset,
3597                                          last_block_offset);
3598
3599         /* Wait all existing dio workers, newcomers will block on i_mutex */
3600         ext4_inode_block_unlocked_dio(inode);
3601         inode_dio_wait(inode);
3602
3603         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3604                 credits = ext4_writepage_trans_blocks(inode);
3605         else
3606                 credits = ext4_blocks_for_truncate(inode);
3607         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3608         if (IS_ERR(handle)) {
3609                 ret = PTR_ERR(handle);
3610                 ext4_std_error(sb, ret);
3611                 goto out_dio;
3612         }
3613
3614         ret = ext4_zero_partial_blocks(handle, inode, offset,
3615                                        length);
3616         if (ret)
3617                 goto out_stop;
3618
3619         first_block = (offset + sb->s_blocksize - 1) >>
3620                 EXT4_BLOCK_SIZE_BITS(sb);
3621         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3622
3623         /* If there are no blocks to remove, return now */
3624         if (first_block >= stop_block)
3625                 goto out_stop;
3626
3627         down_write(&EXT4_I(inode)->i_data_sem);
3628         ext4_discard_preallocations(inode);
3629
3630         ret = ext4_es_remove_extent(inode, first_block,
3631                                     stop_block - first_block);
3632         if (ret) {
3633                 up_write(&EXT4_I(inode)->i_data_sem);
3634                 goto out_stop;
3635         }
3636
3637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3638                 ret = ext4_ext_remove_space(inode, first_block,
3639                                             stop_block - 1);
3640         else
3641                 ret = ext4_ind_remove_space(handle, inode, first_block,
3642                                             stop_block);
3643
3644         up_write(&EXT4_I(inode)->i_data_sem);
3645         if (IS_SYNC(inode))
3646                 ext4_handle_sync(handle);
3647
3648         /* Now release the pages again to reduce race window */
3649         if (last_block_offset > first_block_offset)
3650                 truncate_pagecache_range(inode, first_block_offset,
3651                                          last_block_offset);
3652
3653         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3654         ext4_mark_inode_dirty(handle, inode);
3655 out_stop:
3656         ext4_journal_stop(handle);
3657 out_dio:
3658         ext4_inode_resume_unlocked_dio(inode);
3659 out_mutex:
3660         mutex_unlock(&inode->i_mutex);
3661         return ret;
3662 }
3663
3664 int ext4_inode_attach_jinode(struct inode *inode)
3665 {
3666         struct ext4_inode_info *ei = EXT4_I(inode);
3667         struct jbd2_inode *jinode;
3668
3669         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3670                 return 0;
3671
3672         jinode = jbd2_alloc_inode(GFP_KERNEL);
3673         spin_lock(&inode->i_lock);
3674         if (!ei->jinode) {
3675                 if (!jinode) {
3676                         spin_unlock(&inode->i_lock);
3677                         return -ENOMEM;
3678                 }
3679                 ei->jinode = jinode;
3680                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3681                 jinode = NULL;
3682         }
3683         spin_unlock(&inode->i_lock);
3684         if (unlikely(jinode != NULL))
3685                 jbd2_free_inode(jinode);
3686         return 0;
3687 }
3688
3689 /*
3690  * ext4_truncate()
3691  *
3692  * We block out ext4_get_block() block instantiations across the entire
3693  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3694  * simultaneously on behalf of the same inode.
3695  *
3696  * As we work through the truncate and commit bits of it to the journal there
3697  * is one core, guiding principle: the file's tree must always be consistent on
3698  * disk.  We must be able to restart the truncate after a crash.
3699  *
3700  * The file's tree may be transiently inconsistent in memory (although it
3701  * probably isn't), but whenever we close off and commit a journal transaction,
3702  * the contents of (the filesystem + the journal) must be consistent and
3703  * restartable.  It's pretty simple, really: bottom up, right to left (although
3704  * left-to-right works OK too).
3705  *
3706  * Note that at recovery time, journal replay occurs *before* the restart of
3707  * truncate against the orphan inode list.
3708  *
3709  * The committed inode has the new, desired i_size (which is the same as
3710  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3711  * that this inode's truncate did not complete and it will again call
3712  * ext4_truncate() to have another go.  So there will be instantiated blocks
3713  * to the right of the truncation point in a crashed ext4 filesystem.  But
3714  * that's fine - as long as they are linked from the inode, the post-crash
3715  * ext4_truncate() run will find them and release them.
3716  */
3717 void ext4_truncate(struct inode *inode)
3718 {
3719         struct ext4_inode_info *ei = EXT4_I(inode);
3720         unsigned int credits;
3721         handle_t *handle;
3722         struct address_space *mapping = inode->i_mapping;
3723
3724         /*
3725          * There is a possibility that we're either freeing the inode
3726          * or it's a completely new inode. In those cases we might not
3727          * have i_mutex locked because it's not necessary.
3728          */
3729         if (!(inode->i_state & (I_NEW|I_FREEING)))
3730                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3731         trace_ext4_truncate_enter(inode);
3732
3733         if (!ext4_can_truncate(inode))
3734                 return;
3735
3736         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3737
3738         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3739                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3740
3741         if (ext4_has_inline_data(inode)) {
3742                 int has_inline = 1;
3743
3744                 ext4_inline_data_truncate(inode, &has_inline);
3745                 if (has_inline)
3746                         return;
3747         }
3748
3749         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3750         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3751                 if (ext4_inode_attach_jinode(inode) < 0)
3752                         return;
3753         }
3754
3755         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3756                 credits = ext4_writepage_trans_blocks(inode);
3757         else
3758                 credits = ext4_blocks_for_truncate(inode);
3759
3760         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3761         if (IS_ERR(handle)) {
3762                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3763                 return;
3764         }
3765
3766         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3767                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3768
3769         /*
3770          * We add the inode to the orphan list, so that if this
3771          * truncate spans multiple transactions, and we crash, we will
3772          * resume the truncate when the filesystem recovers.  It also
3773          * marks the inode dirty, to catch the new size.
3774          *
3775          * Implication: the file must always be in a sane, consistent
3776          * truncatable state while each transaction commits.
3777          */
3778         if (ext4_orphan_add(handle, inode))
3779                 goto out_stop;
3780
3781         down_write(&EXT4_I(inode)->i_data_sem);
3782
3783         ext4_discard_preallocations(inode);
3784
3785         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3786                 ext4_ext_truncate(handle, inode);
3787         else
3788                 ext4_ind_truncate(handle, inode);
3789
3790         up_write(&ei->i_data_sem);
3791
3792         if (IS_SYNC(inode))
3793                 ext4_handle_sync(handle);
3794
3795 out_stop:
3796         /*
3797          * If this was a simple ftruncate() and the file will remain alive,
3798          * then we need to clear up the orphan record which we created above.
3799          * However, if this was a real unlink then we were called by
3800          * ext4_evict_inode(), and we allow that function to clean up the
3801          * orphan info for us.
3802          */
3803         if (inode->i_nlink)
3804                 ext4_orphan_del(handle, inode);
3805
3806         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3807         ext4_mark_inode_dirty(handle, inode);
3808         ext4_journal_stop(handle);
3809
3810         trace_ext4_truncate_exit(inode);
3811 }
3812
3813 /*
3814  * ext4_get_inode_loc returns with an extra refcount against the inode's
3815  * underlying buffer_head on success. If 'in_mem' is true, we have all
3816  * data in memory that is needed to recreate the on-disk version of this
3817  * inode.
3818  */
3819 static int __ext4_get_inode_loc(struct inode *inode,
3820                                 struct ext4_iloc *iloc, int in_mem)
3821 {
3822         struct ext4_group_desc  *gdp;
3823         struct buffer_head      *bh;
3824         struct super_block      *sb = inode->i_sb;
3825         ext4_fsblk_t            block;
3826         int                     inodes_per_block, inode_offset;
3827
3828         iloc->bh = NULL;
3829         if (!ext4_valid_inum(sb, inode->i_ino))
3830                 return -EIO;
3831
3832         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3833         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3834         if (!gdp)
3835                 return -EIO;
3836
3837         /*
3838          * Figure out the offset within the block group inode table
3839          */
3840         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3841         inode_offset = ((inode->i_ino - 1) %
3842                         EXT4_INODES_PER_GROUP(sb));
3843         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3844         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3845
3846         bh = sb_getblk(sb, block);
3847         if (unlikely(!bh))
3848                 return -ENOMEM;
3849         if (!buffer_uptodate(bh)) {
3850                 lock_buffer(bh);
3851
3852                 /*
3853                  * If the buffer has the write error flag, we have failed
3854                  * to write out another inode in the same block.  In this
3855                  * case, we don't have to read the block because we may
3856                  * read the old inode data successfully.
3857                  */
3858                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3859                         set_buffer_uptodate(bh);
3860
3861                 if (buffer_uptodate(bh)) {
3862                         /* someone brought it uptodate while we waited */
3863                         unlock_buffer(bh);
3864                         goto has_buffer;
3865                 }
3866
3867                 /*
3868                  * If we have all information of the inode in memory and this
3869                  * is the only valid inode in the block, we need not read the
3870                  * block.
3871                  */
3872                 if (in_mem) {
3873                         struct buffer_head *bitmap_bh;
3874                         int i, start;
3875
3876                         start = inode_offset & ~(inodes_per_block - 1);
3877
3878                         /* Is the inode bitmap in cache? */
3879                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3880                         if (unlikely(!bitmap_bh))
3881                                 goto make_io;
3882
3883                         /*
3884                          * If the inode bitmap isn't in cache then the
3885                          * optimisation may end up performing two reads instead
3886                          * of one, so skip it.
3887                          */
3888                         if (!buffer_uptodate(bitmap_bh)) {
3889                                 brelse(bitmap_bh);
3890                                 goto make_io;
3891                         }
3892                         for (i = start; i < start + inodes_per_block; i++) {
3893                                 if (i == inode_offset)
3894                                         continue;
3895                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3896                                         break;
3897                         }
3898                         brelse(bitmap_bh);
3899                         if (i == start + inodes_per_block) {
3900                                 /* all other inodes are free, so skip I/O */
3901                                 memset(bh->b_data, 0, bh->b_size);
3902                                 set_buffer_uptodate(bh);
3903                                 unlock_buffer(bh);
3904                                 goto has_buffer;
3905                         }
3906                 }
3907
3908 make_io:
3909                 /*
3910                  * If we need to do any I/O, try to pre-readahead extra
3911                  * blocks from the inode table.
3912                  */
3913                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3914                         ext4_fsblk_t b, end, table;
3915                         unsigned num;
3916                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3917
3918                         table = ext4_inode_table(sb, gdp);
3919                         /* s_inode_readahead_blks is always a power of 2 */
3920                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3921                         if (table > b)
3922                                 b = table;
3923                         end = b + ra_blks;
3924                         num = EXT4_INODES_PER_GROUP(sb);
3925                         if (ext4_has_group_desc_csum(sb))
3926                                 num -= ext4_itable_unused_count(sb, gdp);
3927                         table += num / inodes_per_block;
3928                         if (end > table)
3929                                 end = table;
3930                         while (b <= end)
3931                                 sb_breadahead(sb, b++);
3932                 }
3933
3934                 /*
3935                  * There are other valid inodes in the buffer, this inode
3936                  * has in-inode xattrs, or we don't have this inode in memory.
3937                  * Read the block from disk.
3938                  */
3939                 trace_ext4_load_inode(inode);
3940                 get_bh(bh);
3941                 bh->b_end_io = end_buffer_read_sync;
3942                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3943                 wait_on_buffer(bh);
3944                 if (!buffer_uptodate(bh)) {
3945                         EXT4_ERROR_INODE_BLOCK(inode, block,
3946                                                "unable to read itable block");
3947                         brelse(bh);
3948                         return -EIO;
3949                 }
3950         }
3951 has_buffer:
3952         iloc->bh = bh;
3953         return 0;
3954 }
3955
3956 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3957 {
3958         /* We have all inode data except xattrs in memory here. */
3959         return __ext4_get_inode_loc(inode, iloc,
3960                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3961 }
3962
3963 void ext4_set_inode_flags(struct inode *inode)
3964 {
3965         unsigned int flags = EXT4_I(inode)->i_flags;
3966         unsigned int new_fl = 0;
3967
3968         if (flags & EXT4_SYNC_FL)
3969                 new_fl |= S_SYNC;
3970         if (flags & EXT4_APPEND_FL)
3971                 new_fl |= S_APPEND;
3972         if (flags & EXT4_IMMUTABLE_FL)
3973                 new_fl |= S_IMMUTABLE;
3974         if (flags & EXT4_NOATIME_FL)
3975                 new_fl |= S_NOATIME;
3976         if (flags & EXT4_DIRSYNC_FL)
3977                 new_fl |= S_DIRSYNC;
3978         if (test_opt(inode->i_sb, DAX))
3979                 new_fl |= S_DAX;
3980         inode_set_flags(inode, new_fl,
3981                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3982 }
3983
3984 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3985 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3986 {
3987         unsigned int vfs_fl;
3988         unsigned long old_fl, new_fl;
3989
3990         do {
3991                 vfs_fl = ei->vfs_inode.i_flags;
3992                 old_fl = ei->i_flags;
3993                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3994                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3995                                 EXT4_DIRSYNC_FL);
3996                 if (vfs_fl & S_SYNC)
3997                         new_fl |= EXT4_SYNC_FL;
3998                 if (vfs_fl & S_APPEND)
3999                         new_fl |= EXT4_APPEND_FL;
4000                 if (vfs_fl & S_IMMUTABLE)
4001                         new_fl |= EXT4_IMMUTABLE_FL;
4002                 if (vfs_fl & S_NOATIME)
4003                         new_fl |= EXT4_NOATIME_FL;
4004                 if (vfs_fl & S_DIRSYNC)
4005                         new_fl |= EXT4_DIRSYNC_FL;
4006         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4007 }
4008
4009 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4010                                   struct ext4_inode_info *ei)
4011 {
4012         blkcnt_t i_blocks ;
4013         struct inode *inode = &(ei->vfs_inode);
4014         struct super_block *sb = inode->i_sb;
4015
4016         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4017                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4018                 /* we are using combined 48 bit field */
4019                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4020                                         le32_to_cpu(raw_inode->i_blocks_lo);
4021                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4022                         /* i_blocks represent file system block size */
4023                         return i_blocks  << (inode->i_blkbits - 9);
4024                 } else {
4025                         return i_blocks;
4026                 }
4027         } else {
4028                 return le32_to_cpu(raw_inode->i_blocks_lo);
4029         }
4030 }
4031
4032 static inline void ext4_iget_extra_inode(struct inode *inode,
4033                                          struct ext4_inode *raw_inode,
4034                                          struct ext4_inode_info *ei)
4035 {
4036         __le32 *magic = (void *)raw_inode +
4037                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4038         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4039                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4040                 ext4_find_inline_data_nolock(inode);
4041         } else
4042                 EXT4_I(inode)->i_inline_off = 0;
4043 }
4044
4045 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4046 {
4047         struct ext4_iloc iloc;
4048         struct ext4_inode *raw_inode;
4049         struct ext4_inode_info *ei;
4050         struct inode *inode;
4051         journal_t *journal = EXT4_SB(sb)->s_journal;
4052         long ret;
4053         int block;
4054         uid_t i_uid;
4055         gid_t i_gid;
4056
4057         inode = iget_locked(sb, ino);
4058         if (!inode)
4059                 return ERR_PTR(-ENOMEM);
4060         if (!(inode->i_state & I_NEW))
4061                 return inode;
4062
4063         ei = EXT4_I(inode);
4064         iloc.bh = NULL;
4065
4066         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4067         if (ret < 0)
4068                 goto bad_inode;
4069         raw_inode = ext4_raw_inode(&iloc);
4070
4071         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4073                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4074                     EXT4_INODE_SIZE(inode->i_sb)) {
4075                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4076                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4077                                 EXT4_INODE_SIZE(inode->i_sb));
4078                         ret = -EIO;
4079                         goto bad_inode;
4080                 }
4081         } else
4082                 ei->i_extra_isize = 0;
4083
4084         /* Precompute checksum seed for inode metadata */
4085         if (ext4_has_metadata_csum(sb)) {
4086                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4087                 __u32 csum;
4088                 __le32 inum = cpu_to_le32(inode->i_ino);
4089                 __le32 gen = raw_inode->i_generation;
4090                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4091                                    sizeof(inum));
4092                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4093                                               sizeof(gen));
4094         }
4095
4096         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4097                 EXT4_ERROR_INODE(inode, "checksum invalid");
4098                 ret = -EIO;
4099                 goto bad_inode;
4100         }
4101
4102         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4103         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4104         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4105         if (!(test_opt(inode->i_sb, NO_UID32))) {
4106                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4107                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4108         }
4109         i_uid_write(inode, i_uid);
4110         i_gid_write(inode, i_gid);
4111         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4112
4113         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4114         ei->i_inline_off = 0;
4115         ei->i_dir_start_lookup = 0;
4116         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4117         /* We now have enough fields to check if the inode was active or not.
4118          * This is needed because nfsd might try to access dead inodes
4119          * the test is that same one that e2fsck uses
4120          * NeilBrown 1999oct15
4121          */
4122         if (inode->i_nlink == 0) {
4123                 if ((inode->i_mode == 0 ||
4124                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4125                     ino != EXT4_BOOT_LOADER_INO) {
4126                         /* this inode is deleted */
4127                         ret = -ESTALE;
4128                         goto bad_inode;
4129                 }
4130                 /* The only unlinked inodes we let through here have
4131                  * valid i_mode and are being read by the orphan
4132                  * recovery code: that's fine, we're about to complete
4133                  * the process of deleting those.
4134                  * OR it is the EXT4_BOOT_LOADER_INO which is
4135                  * not initialized on a new filesystem. */
4136         }
4137         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4138         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4139         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4140         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4141                 ei->i_file_acl |=
4142                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4143         inode->i_size = ext4_isize(raw_inode);
4144         ei->i_disksize = inode->i_size;
4145 #ifdef CONFIG_QUOTA
4146         ei->i_reserved_quota = 0;
4147 #endif
4148         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4149         ei->i_block_group = iloc.block_group;
4150         ei->i_last_alloc_group = ~0;
4151         /*
4152          * NOTE! The in-memory inode i_data array is in little-endian order
4153          * even on big-endian machines: we do NOT byteswap the block numbers!
4154          */
4155         for (block = 0; block < EXT4_N_BLOCKS; block++)
4156                 ei->i_data[block] = raw_inode->i_block[block];
4157         INIT_LIST_HEAD(&ei->i_orphan);
4158
4159         /*
4160          * Set transaction id's of transactions that have to be committed
4161          * to finish f[data]sync. We set them to currently running transaction
4162          * as we cannot be sure that the inode or some of its metadata isn't
4163          * part of the transaction - the inode could have been reclaimed and
4164          * now it is reread from disk.
4165          */
4166         if (journal) {
4167                 transaction_t *transaction;
4168                 tid_t tid;
4169
4170                 read_lock(&journal->j_state_lock);
4171                 if (journal->j_running_transaction)
4172                         transaction = journal->j_running_transaction;
4173                 else
4174                         transaction = journal->j_committing_transaction;
4175                 if (transaction)
4176                         tid = transaction->t_tid;
4177                 else
4178                         tid = journal->j_commit_sequence;
4179                 read_unlock(&journal->j_state_lock);
4180                 ei->i_sync_tid = tid;
4181                 ei->i_datasync_tid = tid;
4182         }
4183
4184         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4185                 if (ei->i_extra_isize == 0) {
4186                         /* The extra space is currently unused. Use it. */
4187                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4188                                             EXT4_GOOD_OLD_INODE_SIZE;
4189                 } else {
4190                         ext4_iget_extra_inode(inode, raw_inode, ei);
4191                 }
4192         }
4193
4194         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4195         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4196         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4197         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4198
4199         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4200                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4201                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4202                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4203                                 inode->i_version |=
4204                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4205                 }
4206         }
4207
4208         ret = 0;
4209         if (ei->i_file_acl &&
4210             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4211                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4212                                  ei->i_file_acl);
4213                 ret = -EIO;
4214                 goto bad_inode;
4215         } else if (!ext4_has_inline_data(inode)) {
4216                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4217                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4218                             (S_ISLNK(inode->i_mode) &&
4219                              !ext4_inode_is_fast_symlink(inode))))
4220                                 /* Validate extent which is part of inode */
4221                                 ret = ext4_ext_check_inode(inode);
4222                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4223                            (S_ISLNK(inode->i_mode) &&
4224                             !ext4_inode_is_fast_symlink(inode))) {
4225                         /* Validate block references which are part of inode */
4226                         ret = ext4_ind_check_inode(inode);
4227                 }
4228         }
4229         if (ret)
4230                 goto bad_inode;
4231
4232         if (S_ISREG(inode->i_mode)) {
4233                 inode->i_op = &ext4_file_inode_operations;
4234                 inode->i_fop = &ext4_file_operations;
4235                 ext4_set_aops(inode);
4236         } else if (S_ISDIR(inode->i_mode)) {
4237                 inode->i_op = &ext4_dir_inode_operations;
4238                 inode->i_fop = &ext4_dir_operations;
4239         } else if (S_ISLNK(inode->i_mode)) {
4240                 if (ext4_inode_is_fast_symlink(inode) &&
4241                     !ext4_encrypted_inode(inode)) {
4242                         inode->i_op = &ext4_fast_symlink_inode_operations;
4243                         nd_terminate_link(ei->i_data, inode->i_size,
4244                                 sizeof(ei->i_data) - 1);
4245                 } else {
4246                         inode->i_op = &ext4_symlink_inode_operations;
4247                         ext4_set_aops(inode);
4248                 }
4249         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4250               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4251                 inode->i_op = &ext4_special_inode_operations;
4252                 if (raw_inode->i_block[0])
4253                         init_special_inode(inode, inode->i_mode,
4254                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4255                 else
4256                         init_special_inode(inode, inode->i_mode,
4257                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4258         } else if (ino == EXT4_BOOT_LOADER_INO) {
4259                 make_bad_inode(inode);
4260         } else {
4261                 ret = -EIO;
4262                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4263                 goto bad_inode;
4264         }
4265         brelse(iloc.bh);
4266         ext4_set_inode_flags(inode);
4267         unlock_new_inode(inode);
4268         return inode;
4269
4270 bad_inode:
4271         brelse(iloc.bh);
4272         iget_failed(inode);
4273         return ERR_PTR(ret);
4274 }
4275
4276 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4277 {
4278         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4279                 return ERR_PTR(-EIO);
4280         return ext4_iget(sb, ino);
4281 }
4282
4283 static int ext4_inode_blocks_set(handle_t *handle,
4284                                 struct ext4_inode *raw_inode,
4285                                 struct ext4_inode_info *ei)
4286 {
4287         struct inode *inode = &(ei->vfs_inode);
4288         u64 i_blocks = inode->i_blocks;
4289         struct super_block *sb = inode->i_sb;
4290
4291         if (i_blocks <= ~0U) {
4292                 /*
4293                  * i_blocks can be represented in a 32 bit variable
4294                  * as multiple of 512 bytes
4295                  */
4296                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297                 raw_inode->i_blocks_high = 0;
4298                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4299                 return 0;
4300         }
4301         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4302                 return -EFBIG;
4303
4304         if (i_blocks <= 0xffffffffffffULL) {
4305                 /*
4306                  * i_blocks can be represented in a 48 bit variable
4307                  * as multiple of 512 bytes
4308                  */
4309                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4310                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4311                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4312         } else {
4313                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4314                 /* i_block is stored in file system block size */
4315                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4316                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4317                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4318         }
4319         return 0;
4320 }
4321
4322 struct other_inode {
4323         unsigned long           orig_ino;
4324         struct ext4_inode       *raw_inode;
4325 };
4326
4327 static int other_inode_match(struct inode * inode, unsigned long ino,
4328                              void *data)
4329 {
4330         struct other_inode *oi = (struct other_inode *) data;
4331
4332         if ((inode->i_ino != ino) ||
4333             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4334                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4335             ((inode->i_state & I_DIRTY_TIME) == 0))
4336                 return 0;
4337         spin_lock(&inode->i_lock);
4338         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4339                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4340             (inode->i_state & I_DIRTY_TIME)) {
4341                 struct ext4_inode_info  *ei = EXT4_I(inode);
4342
4343                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4344                 spin_unlock(&inode->i_lock);
4345
4346                 spin_lock(&ei->i_raw_lock);
4347                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4348                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4349                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4350                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4351                 spin_unlock(&ei->i_raw_lock);
4352                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4353                 return -1;
4354         }
4355         spin_unlock(&inode->i_lock);
4356         return -1;
4357 }
4358
4359 /*
4360  * Opportunistically update the other time fields for other inodes in
4361  * the same inode table block.
4362  */
4363 static void ext4_update_other_inodes_time(struct super_block *sb,
4364                                           unsigned long orig_ino, char *buf)
4365 {
4366         struct other_inode oi;
4367         unsigned long ino;
4368         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4369         int inode_size = EXT4_INODE_SIZE(sb);
4370
4371         oi.orig_ino = orig_ino;
4372         /*
4373          * Calculate the first inode in the inode table block.  Inode
4374          * numbers are one-based.  That is, the first inode in a block
4375          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4376          */
4377         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4378         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4379                 if (ino == orig_ino)
4380                         continue;
4381                 oi.raw_inode = (struct ext4_inode *) buf;
4382                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4383         }
4384 }
4385
4386 /*
4387  * Post the struct inode info into an on-disk inode location in the
4388  * buffer-cache.  This gobbles the caller's reference to the
4389  * buffer_head in the inode location struct.
4390  *
4391  * The caller must have write access to iloc->bh.
4392  */
4393 static int ext4_do_update_inode(handle_t *handle,
4394                                 struct inode *inode,
4395                                 struct ext4_iloc *iloc)
4396 {
4397         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4398         struct ext4_inode_info *ei = EXT4_I(inode);
4399         struct buffer_head *bh = iloc->bh;
4400         struct super_block *sb = inode->i_sb;
4401         int err = 0, rc, block;
4402         int need_datasync = 0, set_large_file = 0;
4403         uid_t i_uid;
4404         gid_t i_gid;
4405
4406         spin_lock(&ei->i_raw_lock);
4407
4408         /* For fields not tracked in the in-memory inode,
4409          * initialise them to zero for new inodes. */
4410         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4411                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4412
4413         ext4_get_inode_flags(ei);
4414         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4415         i_uid = i_uid_read(inode);
4416         i_gid = i_gid_read(inode);
4417         if (!(test_opt(inode->i_sb, NO_UID32))) {
4418                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4419                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4420 /*
4421  * Fix up interoperability with old kernels. Otherwise, old inodes get
4422  * re-used with the upper 16 bits of the uid/gid intact
4423  */
4424                 if (!ei->i_dtime) {
4425                         raw_inode->i_uid_high =
4426                                 cpu_to_le16(high_16_bits(i_uid));
4427                         raw_inode->i_gid_high =
4428                                 cpu_to_le16(high_16_bits(i_gid));
4429                 } else {
4430                         raw_inode->i_uid_high = 0;
4431                         raw_inode->i_gid_high = 0;
4432                 }
4433         } else {
4434                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4435                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4436                 raw_inode->i_uid_high = 0;
4437                 raw_inode->i_gid_high = 0;
4438         }
4439         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4440
4441         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4442         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4443         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4444         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4445
4446         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4447         if (err) {
4448                 spin_unlock(&ei->i_raw_lock);
4449                 goto out_brelse;
4450         }
4451         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4452         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4453         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4454                 raw_inode->i_file_acl_high =
4455                         cpu_to_le16(ei->i_file_acl >> 32);
4456         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4457         if (ei->i_disksize != ext4_isize(raw_inode)) {
4458                 ext4_isize_set(raw_inode, ei->i_disksize);
4459                 need_datasync = 1;
4460         }
4461         if (ei->i_disksize > 0x7fffffffULL) {
4462                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4463                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4464                                 EXT4_SB(sb)->s_es->s_rev_level ==
4465                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4466                         set_large_file = 1;
4467         }
4468         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4469         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4470                 if (old_valid_dev(inode->i_rdev)) {
4471                         raw_inode->i_block[0] =
4472                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4473                         raw_inode->i_block[1] = 0;
4474                 } else {
4475                         raw_inode->i_block[0] = 0;
4476                         raw_inode->i_block[1] =
4477                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4478                         raw_inode->i_block[2] = 0;
4479                 }
4480         } else if (!ext4_has_inline_data(inode)) {
4481                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4482                         raw_inode->i_block[block] = ei->i_data[block];
4483         }
4484
4485         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4486                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4487                 if (ei->i_extra_isize) {
4488                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4489                                 raw_inode->i_version_hi =
4490                                         cpu_to_le32(inode->i_version >> 32);
4491                         raw_inode->i_extra_isize =
4492                                 cpu_to_le16(ei->i_extra_isize);
4493                 }
4494         }
4495         ext4_inode_csum_set(inode, raw_inode, ei);
4496         spin_unlock(&ei->i_raw_lock);
4497         if (inode->i_sb->s_flags & MS_LAZYTIME)
4498                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4499                                               bh->b_data);
4500
4501         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4502         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4503         if (!err)
4504                 err = rc;
4505         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4506         if (set_large_file) {
4507                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4508                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4509                 if (err)
4510                         goto out_brelse;
4511                 ext4_update_dynamic_rev(sb);
4512                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4513                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4514                 ext4_handle_sync(handle);
4515                 err = ext4_handle_dirty_super(handle, sb);
4516         }
4517         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4518 out_brelse:
4519         brelse(bh);
4520         ext4_std_error(inode->i_sb, err);
4521         return err;
4522 }
4523
4524 /*
4525  * ext4_write_inode()
4526  *
4527  * We are called from a few places:
4528  *
4529  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4530  *   Here, there will be no transaction running. We wait for any running
4531  *   transaction to commit.
4532  *
4533  * - Within flush work (sys_sync(), kupdate and such).
4534  *   We wait on commit, if told to.
4535  *
4536  * - Within iput_final() -> write_inode_now()
4537  *   We wait on commit, if told to.
4538  *
4539  * In all cases it is actually safe for us to return without doing anything,
4540  * because the inode has been copied into a raw inode buffer in
4541  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4542  * writeback.
4543  *
4544  * Note that we are absolutely dependent upon all inode dirtiers doing the
4545  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4546  * which we are interested.
4547  *
4548  * It would be a bug for them to not do this.  The code:
4549  *
4550  *      mark_inode_dirty(inode)
4551  *      stuff();
4552  *      inode->i_size = expr;
4553  *
4554  * is in error because write_inode() could occur while `stuff()' is running,
4555  * and the new i_size will be lost.  Plus the inode will no longer be on the
4556  * superblock's dirty inode list.
4557  */
4558 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4559 {
4560         int err;
4561
4562         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4563                 return 0;
4564
4565         if (EXT4_SB(inode->i_sb)->s_journal) {
4566                 if (ext4_journal_current_handle()) {
4567                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4568                         dump_stack();
4569                         return -EIO;
4570                 }
4571
4572                 /*
4573                  * No need to force transaction in WB_SYNC_NONE mode. Also
4574                  * ext4_sync_fs() will force the commit after everything is
4575                  * written.
4576                  */
4577                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4578                         return 0;
4579
4580                 err = ext4_force_commit(inode->i_sb);
4581         } else {
4582                 struct ext4_iloc iloc;
4583
4584                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4585                 if (err)
4586                         return err;
4587                 /*
4588                  * sync(2) will flush the whole buffer cache. No need to do
4589                  * it here separately for each inode.
4590                  */
4591                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4592                         sync_dirty_buffer(iloc.bh);
4593                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4594                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4595                                          "IO error syncing inode");
4596                         err = -EIO;
4597                 }
4598                 brelse(iloc.bh);
4599         }
4600         return err;
4601 }
4602
4603 /*
4604  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4605  * buffers that are attached to a page stradding i_size and are undergoing
4606  * commit. In that case we have to wait for commit to finish and try again.
4607  */
4608 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4609 {
4610         struct page *page;
4611         unsigned offset;
4612         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4613         tid_t commit_tid = 0;
4614         int ret;
4615
4616         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4617         /*
4618          * All buffers in the last page remain valid? Then there's nothing to
4619          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4620          * blocksize case
4621          */
4622         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4623                 return;
4624         while (1) {
4625                 page = find_lock_page(inode->i_mapping,
4626                                       inode->i_size >> PAGE_CACHE_SHIFT);
4627                 if (!page)
4628                         return;
4629                 ret = __ext4_journalled_invalidatepage(page, offset,
4630                                                 PAGE_CACHE_SIZE - offset);
4631                 unlock_page(page);
4632                 page_cache_release(page);
4633                 if (ret != -EBUSY)
4634                         return;
4635                 commit_tid = 0;
4636                 read_lock(&journal->j_state_lock);
4637                 if (journal->j_committing_transaction)
4638                         commit_tid = journal->j_committing_transaction->t_tid;
4639                 read_unlock(&journal->j_state_lock);
4640                 if (commit_tid)
4641                         jbd2_log_wait_commit(journal, commit_tid);
4642         }
4643 }
4644
4645 /*
4646  * ext4_setattr()
4647  *
4648  * Called from notify_change.
4649  *
4650  * We want to trap VFS attempts to truncate the file as soon as
4651  * possible.  In particular, we want to make sure that when the VFS
4652  * shrinks i_size, we put the inode on the orphan list and modify
4653  * i_disksize immediately, so that during the subsequent flushing of
4654  * dirty pages and freeing of disk blocks, we can guarantee that any
4655  * commit will leave the blocks being flushed in an unused state on
4656  * disk.  (On recovery, the inode will get truncated and the blocks will
4657  * be freed, so we have a strong guarantee that no future commit will
4658  * leave these blocks visible to the user.)
4659  *
4660  * Another thing we have to assure is that if we are in ordered mode
4661  * and inode is still attached to the committing transaction, we must
4662  * we start writeout of all the dirty pages which are being truncated.
4663  * This way we are sure that all the data written in the previous
4664  * transaction are already on disk (truncate waits for pages under
4665  * writeback).
4666  *
4667  * Called with inode->i_mutex down.
4668  */
4669 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4670 {
4671         struct inode *inode = d_inode(dentry);
4672         int error, rc = 0;
4673         int orphan = 0;
4674         const unsigned int ia_valid = attr->ia_valid;
4675
4676         error = inode_change_ok(inode, attr);
4677         if (error)
4678                 return error;
4679
4680         if (is_quota_modification(inode, attr))
4681                 dquot_initialize(inode);
4682         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4683             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4684                 handle_t *handle;
4685
4686                 /* (user+group)*(old+new) structure, inode write (sb,
4687                  * inode block, ? - but truncate inode update has it) */
4688                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4689                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4690                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4691                 if (IS_ERR(handle)) {
4692                         error = PTR_ERR(handle);
4693                         goto err_out;
4694                 }
4695                 error = dquot_transfer(inode, attr);
4696                 if (error) {
4697                         ext4_journal_stop(handle);
4698                         return error;
4699                 }
4700                 /* Update corresponding info in inode so that everything is in
4701                  * one transaction */
4702                 if (attr->ia_valid & ATTR_UID)
4703                         inode->i_uid = attr->ia_uid;
4704                 if (attr->ia_valid & ATTR_GID)
4705                         inode->i_gid = attr->ia_gid;
4706                 error = ext4_mark_inode_dirty(handle, inode);
4707                 ext4_journal_stop(handle);
4708         }
4709
4710         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4711                 handle_t *handle;
4712
4713                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4714                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715
4716                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4717                                 return -EFBIG;
4718                 }
4719
4720                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4721                         inode_inc_iversion(inode);
4722
4723                 if (S_ISREG(inode->i_mode) &&
4724                     (attr->ia_size < inode->i_size)) {
4725                         if (ext4_should_order_data(inode)) {
4726                                 error = ext4_begin_ordered_truncate(inode,
4727                                                             attr->ia_size);
4728                                 if (error)
4729                                         goto err_out;
4730                         }
4731                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4732                         if (IS_ERR(handle)) {
4733                                 error = PTR_ERR(handle);
4734                                 goto err_out;
4735                         }
4736                         if (ext4_handle_valid(handle)) {
4737                                 error = ext4_orphan_add(handle, inode);
4738                                 orphan = 1;
4739                         }
4740                         down_write(&EXT4_I(inode)->i_data_sem);
4741                         EXT4_I(inode)->i_disksize = attr->ia_size;
4742                         rc = ext4_mark_inode_dirty(handle, inode);
4743                         if (!error)
4744                                 error = rc;
4745                         /*
4746                          * We have to update i_size under i_data_sem together
4747                          * with i_disksize to avoid races with writeback code
4748                          * running ext4_wb_update_i_disksize().
4749                          */
4750                         if (!error)
4751                                 i_size_write(inode, attr->ia_size);
4752                         up_write(&EXT4_I(inode)->i_data_sem);
4753                         ext4_journal_stop(handle);
4754                         if (error) {
4755                                 ext4_orphan_del(NULL, inode);
4756                                 goto err_out;
4757                         }
4758                 } else {
4759                         loff_t oldsize = inode->i_size;
4760
4761                         i_size_write(inode, attr->ia_size);
4762                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4763                 }
4764
4765                 /*
4766                  * Blocks are going to be removed from the inode. Wait
4767                  * for dio in flight.  Temporarily disable
4768                  * dioread_nolock to prevent livelock.
4769                  */
4770                 if (orphan) {
4771                         if (!ext4_should_journal_data(inode)) {
4772                                 ext4_inode_block_unlocked_dio(inode);
4773                                 inode_dio_wait(inode);
4774                                 ext4_inode_resume_unlocked_dio(inode);
4775                         } else
4776                                 ext4_wait_for_tail_page_commit(inode);
4777                 }
4778                 /*
4779                  * Truncate pagecache after we've waited for commit
4780                  * in data=journal mode to make pages freeable.
4781                  */
4782                 truncate_pagecache(inode, inode->i_size);
4783         }
4784         /*
4785          * We want to call ext4_truncate() even if attr->ia_size ==
4786          * inode->i_size for cases like truncation of fallocated space
4787          */
4788         if (attr->ia_valid & ATTR_SIZE)
4789                 ext4_truncate(inode);
4790
4791         if (!rc) {
4792                 setattr_copy(inode, attr);
4793                 mark_inode_dirty(inode);
4794         }
4795
4796         /*
4797          * If the call to ext4_truncate failed to get a transaction handle at
4798          * all, we need to clean up the in-core orphan list manually.
4799          */
4800         if (orphan && inode->i_nlink)
4801                 ext4_orphan_del(NULL, inode);
4802
4803         if (!rc && (ia_valid & ATTR_MODE))
4804                 rc = posix_acl_chmod(inode, inode->i_mode);
4805
4806 err_out:
4807         ext4_std_error(inode->i_sb, error);
4808         if (!error)
4809                 error = rc;
4810         return error;
4811 }
4812
4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4814                  struct kstat *stat)
4815 {
4816         struct inode *inode;
4817         unsigned long long delalloc_blocks;
4818
4819         inode = d_inode(dentry);
4820         generic_fillattr(inode, stat);
4821
4822         /*
4823          * If there is inline data in the inode, the inode will normally not
4824          * have data blocks allocated (it may have an external xattr block).
4825          * Report at least one sector for such files, so tools like tar, rsync,
4826          * others doen't incorrectly think the file is completely sparse.
4827          */
4828         if (unlikely(ext4_has_inline_data(inode)))
4829                 stat->blocks += (stat->size + 511) >> 9;
4830
4831         /*
4832          * We can't update i_blocks if the block allocation is delayed
4833          * otherwise in the case of system crash before the real block
4834          * allocation is done, we will have i_blocks inconsistent with
4835          * on-disk file blocks.
4836          * We always keep i_blocks updated together with real
4837          * allocation. But to not confuse with user, stat
4838          * will return the blocks that include the delayed allocation
4839          * blocks for this file.
4840          */
4841         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4842                                    EXT4_I(inode)->i_reserved_data_blocks);
4843         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4844         return 0;
4845 }
4846
4847 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4848                                    int pextents)
4849 {
4850         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4851                 return ext4_ind_trans_blocks(inode, lblocks);
4852         return ext4_ext_index_trans_blocks(inode, pextents);
4853 }
4854
4855 /*
4856  * Account for index blocks, block groups bitmaps and block group
4857  * descriptor blocks if modify datablocks and index blocks
4858  * worse case, the indexs blocks spread over different block groups
4859  *
4860  * If datablocks are discontiguous, they are possible to spread over
4861  * different block groups too. If they are contiguous, with flexbg,
4862  * they could still across block group boundary.
4863  *
4864  * Also account for superblock, inode, quota and xattr blocks
4865  */
4866 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4867                                   int pextents)
4868 {
4869         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4870         int gdpblocks;
4871         int idxblocks;
4872         int ret = 0;
4873
4874         /*
4875          * How many index blocks need to touch to map @lblocks logical blocks
4876          * to @pextents physical extents?
4877          */
4878         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4879
4880         ret = idxblocks;
4881
4882         /*
4883          * Now let's see how many group bitmaps and group descriptors need
4884          * to account
4885          */
4886         groups = idxblocks + pextents;
4887         gdpblocks = groups;
4888         if (groups > ngroups)
4889                 groups = ngroups;
4890         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4891                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4892
4893         /* bitmaps and block group descriptor blocks */
4894         ret += groups + gdpblocks;
4895
4896         /* Blocks for super block, inode, quota and xattr blocks */
4897         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4898
4899         return ret;
4900 }
4901
4902 /*
4903  * Calculate the total number of credits to reserve to fit
4904  * the modification of a single pages into a single transaction,
4905  * which may include multiple chunks of block allocations.
4906  *
4907  * This could be called via ext4_write_begin()
4908  *
4909  * We need to consider the worse case, when
4910  * one new block per extent.
4911  */
4912 int ext4_writepage_trans_blocks(struct inode *inode)
4913 {
4914         int bpp = ext4_journal_blocks_per_page(inode);
4915         int ret;
4916
4917         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4918
4919         /* Account for data blocks for journalled mode */
4920         if (ext4_should_journal_data(inode))
4921                 ret += bpp;
4922         return ret;
4923 }
4924
4925 /*
4926  * Calculate the journal credits for a chunk of data modification.
4927  *
4928  * This is called from DIO, fallocate or whoever calling
4929  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4930  *
4931  * journal buffers for data blocks are not included here, as DIO
4932  * and fallocate do no need to journal data buffers.
4933  */
4934 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4935 {
4936         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4937 }
4938
4939 /*
4940  * The caller must have previously called ext4_reserve_inode_write().
4941  * Give this, we know that the caller already has write access to iloc->bh.
4942  */
4943 int ext4_mark_iloc_dirty(handle_t *handle,
4944                          struct inode *inode, struct ext4_iloc *iloc)
4945 {
4946         int err = 0;
4947
4948         if (IS_I_VERSION(inode))
4949                 inode_inc_iversion(inode);
4950
4951         /* the do_update_inode consumes one bh->b_count */
4952         get_bh(iloc->bh);
4953
4954         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4955         err = ext4_do_update_inode(handle, inode, iloc);
4956         put_bh(iloc->bh);
4957         return err;
4958 }
4959
4960 /*
4961  * On success, We end up with an outstanding reference count against
4962  * iloc->bh.  This _must_ be cleaned up later.
4963  */
4964
4965 int
4966 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4967                          struct ext4_iloc *iloc)
4968 {
4969         int err;
4970
4971         err = ext4_get_inode_loc(inode, iloc);
4972         if (!err) {
4973                 BUFFER_TRACE(iloc->bh, "get_write_access");
4974                 err = ext4_journal_get_write_access(handle, iloc->bh);
4975                 if (err) {
4976                         brelse(iloc->bh);
4977                         iloc->bh = NULL;
4978                 }
4979         }
4980         ext4_std_error(inode->i_sb, err);
4981         return err;
4982 }
4983
4984 /*
4985  * Expand an inode by new_extra_isize bytes.
4986  * Returns 0 on success or negative error number on failure.
4987  */
4988 static int ext4_expand_extra_isize(struct inode *inode,
4989                                    unsigned int new_extra_isize,
4990                                    struct ext4_iloc iloc,
4991                                    handle_t *handle)
4992 {
4993         struct ext4_inode *raw_inode;
4994         struct ext4_xattr_ibody_header *header;
4995
4996         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4997                 return 0;
4998
4999         raw_inode = ext4_raw_inode(&iloc);
5000
5001         header = IHDR(inode, raw_inode);
5002
5003         /* No extended attributes present */
5004         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5005             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5006                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5007                         new_extra_isize);
5008                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5009                 return 0;
5010         }
5011
5012         /* try to expand with EAs present */
5013         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5014                                           raw_inode, handle);
5015 }
5016
5017 /*
5018  * What we do here is to mark the in-core inode as clean with respect to inode
5019  * dirtiness (it may still be data-dirty).
5020  * This means that the in-core inode may be reaped by prune_icache
5021  * without having to perform any I/O.  This is a very good thing,
5022  * because *any* task may call prune_icache - even ones which
5023  * have a transaction open against a different journal.
5024  *
5025  * Is this cheating?  Not really.  Sure, we haven't written the
5026  * inode out, but prune_icache isn't a user-visible syncing function.
5027  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5028  * we start and wait on commits.
5029  */
5030 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5031 {
5032         struct ext4_iloc iloc;
5033         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5034         static unsigned int mnt_count;
5035         int err, ret;
5036
5037         might_sleep();
5038         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5039         err = ext4_reserve_inode_write(handle, inode, &iloc);
5040         if (ext4_handle_valid(handle) &&
5041             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5042             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5043                 /*
5044                  * We need extra buffer credits since we may write into EA block
5045                  * with this same handle. If journal_extend fails, then it will
5046                  * only result in a minor loss of functionality for that inode.
5047                  * If this is felt to be critical, then e2fsck should be run to
5048                  * force a large enough s_min_extra_isize.
5049                  */
5050                 if ((jbd2_journal_extend(handle,
5051                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5052                         ret = ext4_expand_extra_isize(inode,
5053                                                       sbi->s_want_extra_isize,
5054                                                       iloc, handle);
5055                         if (ret) {
5056                                 ext4_set_inode_state(inode,
5057                                                      EXT4_STATE_NO_EXPAND);
5058                                 if (mnt_count !=
5059                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5060                                         ext4_warning(inode->i_sb,
5061                                         "Unable to expand inode %lu. Delete"
5062                                         " some EAs or run e2fsck.",
5063                                         inode->i_ino);
5064                                         mnt_count =
5065                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5066                                 }
5067                         }
5068                 }
5069         }
5070         if (!err)
5071                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5072         return err;
5073 }
5074
5075 /*
5076  * ext4_dirty_inode() is called from __mark_inode_dirty()
5077  *
5078  * We're really interested in the case where a file is being extended.
5079  * i_size has been changed by generic_commit_write() and we thus need
5080  * to include the updated inode in the current transaction.
5081  *
5082  * Also, dquot_alloc_block() will always dirty the inode when blocks
5083  * are allocated to the file.
5084  *
5085  * If the inode is marked synchronous, we don't honour that here - doing
5086  * so would cause a commit on atime updates, which we don't bother doing.
5087  * We handle synchronous inodes at the highest possible level.
5088  *
5089  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5090  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5091  * to copy into the on-disk inode structure are the timestamp files.
5092  */
5093 void ext4_dirty_inode(struct inode *inode, int flags)
5094 {
5095         handle_t *handle;
5096
5097         if (flags == I_DIRTY_TIME)
5098                 return;
5099         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5100         if (IS_ERR(handle))
5101                 goto out;
5102
5103         ext4_mark_inode_dirty(handle, inode);
5104
5105         ext4_journal_stop(handle);
5106 out:
5107         return;
5108 }
5109
5110 #if 0
5111 /*
5112  * Bind an inode's backing buffer_head into this transaction, to prevent
5113  * it from being flushed to disk early.  Unlike
5114  * ext4_reserve_inode_write, this leaves behind no bh reference and
5115  * returns no iloc structure, so the caller needs to repeat the iloc
5116  * lookup to mark the inode dirty later.
5117  */
5118 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5119 {
5120         struct ext4_iloc iloc;
5121
5122         int err = 0;
5123         if (handle) {
5124                 err = ext4_get_inode_loc(inode, &iloc);
5125                 if (!err) {
5126                         BUFFER_TRACE(iloc.bh, "get_write_access");
5127                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5128                         if (!err)
5129                                 err = ext4_handle_dirty_metadata(handle,
5130                                                                  NULL,
5131                                                                  iloc.bh);
5132                         brelse(iloc.bh);
5133                 }
5134         }
5135         ext4_std_error(inode->i_sb, err);
5136         return err;
5137 }
5138 #endif
5139
5140 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5141 {
5142         journal_t *journal;
5143         handle_t *handle;
5144         int err;
5145
5146         /*
5147          * We have to be very careful here: changing a data block's
5148          * journaling status dynamically is dangerous.  If we write a
5149          * data block to the journal, change the status and then delete
5150          * that block, we risk forgetting to revoke the old log record
5151          * from the journal and so a subsequent replay can corrupt data.
5152          * So, first we make sure that the journal is empty and that
5153          * nobody is changing anything.
5154          */
5155
5156         journal = EXT4_JOURNAL(inode);
5157         if (!journal)
5158                 return 0;
5159         if (is_journal_aborted(journal))
5160                 return -EROFS;
5161         /* We have to allocate physical blocks for delalloc blocks
5162          * before flushing journal. otherwise delalloc blocks can not
5163          * be allocated any more. even more truncate on delalloc blocks
5164          * could trigger BUG by flushing delalloc blocks in journal.
5165          * There is no delalloc block in non-journal data mode.
5166          */
5167         if (val && test_opt(inode->i_sb, DELALLOC)) {
5168                 err = ext4_alloc_da_blocks(inode);
5169                 if (err < 0)
5170                         return err;
5171         }
5172
5173         /* Wait for all existing dio workers */
5174         ext4_inode_block_unlocked_dio(inode);
5175         inode_dio_wait(inode);
5176
5177         jbd2_journal_lock_updates(journal);
5178
5179         /*
5180          * OK, there are no updates running now, and all cached data is
5181          * synced to disk.  We are now in a completely consistent state
5182          * which doesn't have anything in the journal, and we know that
5183          * no filesystem updates are running, so it is safe to modify
5184          * the inode's in-core data-journaling state flag now.
5185          */
5186
5187         if (val)
5188                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5189         else {
5190                 err = jbd2_journal_flush(journal);
5191                 if (err < 0) {
5192                         jbd2_journal_unlock_updates(journal);
5193                         ext4_inode_resume_unlocked_dio(inode);
5194                         return err;
5195                 }
5196                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5197         }
5198         ext4_set_aops(inode);
5199
5200         jbd2_journal_unlock_updates(journal);
5201         ext4_inode_resume_unlocked_dio(inode);
5202
5203         /* Finally we can mark the inode as dirty. */
5204
5205         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5206         if (IS_ERR(handle))
5207                 return PTR_ERR(handle);
5208
5209         err = ext4_mark_inode_dirty(handle, inode);
5210         ext4_handle_sync(handle);
5211         ext4_journal_stop(handle);
5212         ext4_std_error(inode->i_sb, err);
5213
5214         return err;
5215 }
5216
5217 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5218 {
5219         return !buffer_mapped(bh);
5220 }
5221
5222 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5223 {
5224         struct page *page = vmf->page;
5225         loff_t size;
5226         unsigned long len;
5227         int ret;
5228         struct file *file = vma->vm_file;
5229         struct inode *inode = file_inode(file);
5230         struct address_space *mapping = inode->i_mapping;
5231         handle_t *handle;
5232         get_block_t *get_block;
5233         int retries = 0;
5234
5235         sb_start_pagefault(inode->i_sb);
5236         file_update_time(vma->vm_file);
5237         /* Delalloc case is easy... */
5238         if (test_opt(inode->i_sb, DELALLOC) &&
5239             !ext4_should_journal_data(inode) &&
5240             !ext4_nonda_switch(inode->i_sb)) {
5241                 do {
5242                         ret = __block_page_mkwrite(vma, vmf,
5243                                                    ext4_da_get_block_prep);
5244                 } while (ret == -ENOSPC &&
5245                        ext4_should_retry_alloc(inode->i_sb, &retries));
5246                 goto out_ret;
5247         }
5248
5249         lock_page(page);
5250         size = i_size_read(inode);
5251         /* Page got truncated from under us? */
5252         if (page->mapping != mapping || page_offset(page) > size) {
5253                 unlock_page(page);
5254                 ret = VM_FAULT_NOPAGE;
5255                 goto out;
5256         }
5257
5258         if (page->index == size >> PAGE_CACHE_SHIFT)
5259                 len = size & ~PAGE_CACHE_MASK;
5260         else
5261                 len = PAGE_CACHE_SIZE;
5262         /*
5263          * Return if we have all the buffers mapped. This avoids the need to do
5264          * journal_start/journal_stop which can block and take a long time
5265          */
5266         if (page_has_buffers(page)) {
5267                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5268                                             0, len, NULL,
5269                                             ext4_bh_unmapped)) {
5270                         /* Wait so that we don't change page under IO */
5271                         wait_for_stable_page(page);
5272                         ret = VM_FAULT_LOCKED;
5273                         goto out;
5274                 }
5275         }
5276         unlock_page(page);
5277         /* OK, we need to fill the hole... */
5278         if (ext4_should_dioread_nolock(inode))
5279                 get_block = ext4_get_block_write;
5280         else
5281                 get_block = ext4_get_block;
5282 retry_alloc:
5283         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5284                                     ext4_writepage_trans_blocks(inode));
5285         if (IS_ERR(handle)) {
5286                 ret = VM_FAULT_SIGBUS;
5287                 goto out;
5288         }
5289         ret = __block_page_mkwrite(vma, vmf, get_block);
5290         if (!ret && ext4_should_journal_data(inode)) {
5291                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5292                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5293                         unlock_page(page);
5294                         ret = VM_FAULT_SIGBUS;
5295                         ext4_journal_stop(handle);
5296                         goto out;
5297                 }
5298                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5299         }
5300         ext4_journal_stop(handle);
5301         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5302                 goto retry_alloc;
5303 out_ret:
5304         ret = block_page_mkwrite_return(ret);
5305 out:
5306         sb_end_pagefault(inode->i_sb);
5307         return ret;
5308 }