Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75                                            EXT4_INODE_SIZE(inode->i_sb) -
76                                            offset);
77                 }
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
226                 goto no_delete;
227         }
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231         dquot_initialize(inode);
232
233         if (ext4_should_order_data(inode))
234                 ext4_begin_ordered_truncate(inode, 0);
235         truncate_inode_pages_final(&inode->i_data);
236
237         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
238
239         /*
240          * Protect us against freezing - iput() caller didn't have to have any
241          * protection against it
242          */
243         sb_start_intwrite(inode->i_sb);
244         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245                                     ext4_blocks_for_truncate(inode)+3);
246         if (IS_ERR(handle)) {
247                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248                 /*
249                  * If we're going to skip the normal cleanup, we still need to
250                  * make sure that the in-core orphan linked list is properly
251                  * cleaned up.
252                  */
253                 ext4_orphan_del(NULL, inode);
254                 sb_end_intwrite(inode->i_sb);
255                 goto no_delete;
256         }
257
258         if (IS_SYNC(inode))
259                 ext4_handle_sync(handle);
260         inode->i_size = 0;
261         err = ext4_mark_inode_dirty(handle, inode);
262         if (err) {
263                 ext4_warning(inode->i_sb,
264                              "couldn't mark inode dirty (err %d)", err);
265                 goto stop_handle;
266         }
267         if (inode->i_blocks)
268                 ext4_truncate(inode);
269
270         /*
271          * ext4_ext_truncate() doesn't reserve any slop when it
272          * restarts journal transactions; therefore there may not be
273          * enough credits left in the handle to remove the inode from
274          * the orphan list and set the dtime field.
275          */
276         if (!ext4_handle_has_enough_credits(handle, 3)) {
277                 err = ext4_journal_extend(handle, 3);
278                 if (err > 0)
279                         err = ext4_journal_restart(handle, 3);
280                 if (err != 0) {
281                         ext4_warning(inode->i_sb,
282                                      "couldn't extend journal (err %d)", err);
283                 stop_handle:
284                         ext4_journal_stop(handle);
285                         ext4_orphan_del(NULL, inode);
286                         sb_end_intwrite(inode->i_sb);
287                         goto no_delete;
288                 }
289         }
290
291         /*
292          * Kill off the orphan record which ext4_truncate created.
293          * AKPM: I think this can be inside the above `if'.
294          * Note that ext4_orphan_del() has to be able to cope with the
295          * deletion of a non-existent orphan - this is because we don't
296          * know if ext4_truncate() actually created an orphan record.
297          * (Well, we could do this if we need to, but heck - it works)
298          */
299         ext4_orphan_del(handle, inode);
300         EXT4_I(inode)->i_dtime  = get_seconds();
301
302         /*
303          * One subtle ordering requirement: if anything has gone wrong
304          * (transaction abort, IO errors, whatever), then we can still
305          * do these next steps (the fs will already have been marked as
306          * having errors), but we can't free the inode if the mark_dirty
307          * fails.
308          */
309         if (ext4_mark_inode_dirty(handle, inode))
310                 /* If that failed, just do the required in-core inode clear. */
311                 ext4_clear_inode(inode);
312         else
313                 ext4_free_inode(handle, inode);
314         ext4_journal_stop(handle);
315         sb_end_intwrite(inode->i_sb);
316         return;
317 no_delete:
318         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324         return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354
355         /* Update quota subsystem for data blocks */
356         if (quota_claim)
357                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358         else {
359                 /*
360                  * We did fallocate with an offset that is already delayed
361                  * allocated. So on delayed allocated writeback we should
362                  * not re-claim the quota for fallocated blocks.
363                  */
364                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365         }
366
367         /*
368          * If we have done all the pending block allocations and if
369          * there aren't any writers on the inode, we can discard the
370          * inode's preallocations.
371          */
372         if ((ei->i_reserved_data_blocks == 0) &&
373             (atomic_read(&inode->i_writecount) == 0))
374                 ext4_discard_preallocations(inode);
375 }
376
377 static int __check_block_validity(struct inode *inode, const char *func,
378                                 unsigned int line,
379                                 struct ext4_map_blocks *map)
380 {
381         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
382                                    map->m_len)) {
383                 ext4_error_inode(inode, func, line, map->m_pblk,
384                                  "lblock %lu mapped to illegal pblock "
385                                  "(length %d)", (unsigned long) map->m_lblk,
386                                  map->m_len);
387                 return -EFSCORRUPTED;
388         }
389         return 0;
390 }
391
392 #define check_block_validity(inode, map)        \
393         __check_block_validity((inode), __func__, __LINE__, (map))
394
395 #ifdef ES_AGGRESSIVE_TEST
396 static void ext4_map_blocks_es_recheck(handle_t *handle,
397                                        struct inode *inode,
398                                        struct ext4_map_blocks *es_map,
399                                        struct ext4_map_blocks *map,
400                                        int flags)
401 {
402         int retval;
403
404         map->m_flags = 0;
405         /*
406          * There is a race window that the result is not the same.
407          * e.g. xfstests #223 when dioread_nolock enables.  The reason
408          * is that we lookup a block mapping in extent status tree with
409          * out taking i_data_sem.  So at the time the unwritten extent
410          * could be converted.
411          */
412         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
413                 down_read(&EXT4_I(inode)->i_data_sem);
414         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
415                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
416                                              EXT4_GET_BLOCKS_KEEP_SIZE);
417         } else {
418                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
419                                              EXT4_GET_BLOCKS_KEEP_SIZE);
420         }
421         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
422                 up_read((&EXT4_I(inode)->i_data_sem));
423
424         /*
425          * We don't check m_len because extent will be collpased in status
426          * tree.  So the m_len might not equal.
427          */
428         if (es_map->m_lblk != map->m_lblk ||
429             es_map->m_flags != map->m_flags ||
430             es_map->m_pblk != map->m_pblk) {
431                 printk("ES cache assertion failed for inode: %lu "
432                        "es_cached ex [%d/%d/%llu/%x] != "
433                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
434                        inode->i_ino, es_map->m_lblk, es_map->m_len,
435                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
436                        map->m_len, map->m_pblk, map->m_flags,
437                        retval, flags);
438         }
439 }
440 #endif /* ES_AGGRESSIVE_TEST */
441
442 /*
443  * The ext4_map_blocks() function tries to look up the requested blocks,
444  * and returns if the blocks are already mapped.
445  *
446  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
447  * and store the allocated blocks in the result buffer head and mark it
448  * mapped.
449  *
450  * If file type is extents based, it will call ext4_ext_map_blocks(),
451  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
452  * based files
453  *
454  * On success, it returns the number of blocks being mapped or allocated.
455  * if create==0 and the blocks are pre-allocated and unwritten block,
456  * the result buffer head is unmapped. If the create ==1, it will make sure
457  * the buffer head is mapped.
458  *
459  * It returns 0 if plain look up failed (blocks have not been allocated), in
460  * that case, buffer head is unmapped
461  *
462  * It returns the error in case of allocation failure.
463  */
464 int ext4_map_blocks(handle_t *handle, struct inode *inode,
465                     struct ext4_map_blocks *map, int flags)
466 {
467         struct extent_status es;
468         int retval;
469         int ret = 0;
470 #ifdef ES_AGGRESSIVE_TEST
471         struct ext4_map_blocks orig_map;
472
473         memcpy(&orig_map, map, sizeof(*map));
474 #endif
475
476         map->m_flags = 0;
477         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
478                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
479                   (unsigned long) map->m_lblk);
480
481         /*
482          * ext4_map_blocks returns an int, and m_len is an unsigned int
483          */
484         if (unlikely(map->m_len > INT_MAX))
485                 map->m_len = INT_MAX;
486
487         /* We can handle the block number less than EXT_MAX_BLOCKS */
488         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
489                 return -EFSCORRUPTED;
490
491         /* Lookup extent status tree firstly */
492         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
493                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
494                         map->m_pblk = ext4_es_pblock(&es) +
495                                         map->m_lblk - es.es_lblk;
496                         map->m_flags |= ext4_es_is_written(&es) ?
497                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
498                         retval = es.es_len - (map->m_lblk - es.es_lblk);
499                         if (retval > map->m_len)
500                                 retval = map->m_len;
501                         map->m_len = retval;
502                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
503                         retval = 0;
504                 } else {
505                         BUG_ON(1);
506                 }
507 #ifdef ES_AGGRESSIVE_TEST
508                 ext4_map_blocks_es_recheck(handle, inode, map,
509                                            &orig_map, flags);
510 #endif
511                 goto found;
512         }
513
514         /*
515          * Try to see if we can get the block without requesting a new
516          * file system block.
517          */
518         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
519                 down_read(&EXT4_I(inode)->i_data_sem);
520         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
521                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
522                                              EXT4_GET_BLOCKS_KEEP_SIZE);
523         } else {
524                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
525                                              EXT4_GET_BLOCKS_KEEP_SIZE);
526         }
527         if (retval > 0) {
528                 unsigned int status;
529
530                 if (unlikely(retval != map->m_len)) {
531                         ext4_warning(inode->i_sb,
532                                      "ES len assertion failed for inode "
533                                      "%lu: retval %d != map->m_len %d",
534                                      inode->i_ino, retval, map->m_len);
535                         WARN_ON(1);
536                 }
537
538                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
539                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
540                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
541                     !(status & EXTENT_STATUS_WRITTEN) &&
542                     ext4_find_delalloc_range(inode, map->m_lblk,
543                                              map->m_lblk + map->m_len - 1))
544                         status |= EXTENT_STATUS_DELAYED;
545                 ret = ext4_es_insert_extent(inode, map->m_lblk,
546                                             map->m_len, map->m_pblk, status);
547                 if (ret < 0)
548                         retval = ret;
549         }
550         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
551                 up_read((&EXT4_I(inode)->i_data_sem));
552
553 found:
554         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
555                 ret = check_block_validity(inode, map);
556                 if (ret != 0)
557                         return ret;
558         }
559
560         /* If it is only a block(s) look up */
561         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
562                 return retval;
563
564         /*
565          * Returns if the blocks have already allocated
566          *
567          * Note that if blocks have been preallocated
568          * ext4_ext_get_block() returns the create = 0
569          * with buffer head unmapped.
570          */
571         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572                 /*
573                  * If we need to convert extent to unwritten
574                  * we continue and do the actual work in
575                  * ext4_ext_map_blocks()
576                  */
577                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
578                         return retval;
579
580         /*
581          * Here we clear m_flags because after allocating an new extent,
582          * it will be set again.
583          */
584         map->m_flags &= ~EXT4_MAP_FLAGS;
585
586         /*
587          * New blocks allocate and/or writing to unwritten extent
588          * will possibly result in updating i_data, so we take
589          * the write lock of i_data_sem, and call get_block()
590          * with create == 1 flag.
591          */
592         down_write(&EXT4_I(inode)->i_data_sem);
593
594         /*
595          * We need to check for EXT4 here because migrate
596          * could have changed the inode type in between
597          */
598         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
599                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
600         } else {
601                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
602
603                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
604                         /*
605                          * We allocated new blocks which will result in
606                          * i_data's format changing.  Force the migrate
607                          * to fail by clearing migrate flags
608                          */
609                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
610                 }
611
612                 /*
613                  * Update reserved blocks/metadata blocks after successful
614                  * block allocation which had been deferred till now. We don't
615                  * support fallocate for non extent files. So we can update
616                  * reserve space here.
617                  */
618                 if ((retval > 0) &&
619                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
620                         ext4_da_update_reserve_space(inode, retval, 1);
621         }
622
623         if (retval > 0) {
624                 unsigned int status;
625
626                 if (unlikely(retval != map->m_len)) {
627                         ext4_warning(inode->i_sb,
628                                      "ES len assertion failed for inode "
629                                      "%lu: retval %d != map->m_len %d",
630                                      inode->i_ino, retval, map->m_len);
631                         WARN_ON(1);
632                 }
633
634                 /*
635                  * If the extent has been zeroed out, we don't need to update
636                  * extent status tree.
637                  */
638                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
639                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
640                         if (ext4_es_is_written(&es))
641                                 goto has_zeroout;
642                 }
643                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
644                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
645                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
646                     !(status & EXTENT_STATUS_WRITTEN) &&
647                     ext4_find_delalloc_range(inode, map->m_lblk,
648                                              map->m_lblk + map->m_len - 1))
649                         status |= EXTENT_STATUS_DELAYED;
650                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
651                                             map->m_pblk, status);
652                 if (ret < 0)
653                         retval = ret;
654         }
655
656 has_zeroout:
657         up_write((&EXT4_I(inode)->i_data_sem));
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
659                 ret = check_block_validity(inode, map);
660                 if (ret != 0)
661                         return ret;
662         }
663         return retval;
664 }
665
666 /*
667  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
668  * we have to be careful as someone else may be manipulating b_state as well.
669  */
670 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
671 {
672         unsigned long old_state;
673         unsigned long new_state;
674
675         flags &= EXT4_MAP_FLAGS;
676
677         /* Dummy buffer_head? Set non-atomically. */
678         if (!bh->b_page) {
679                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
680                 return;
681         }
682         /*
683          * Someone else may be modifying b_state. Be careful! This is ugly but
684          * once we get rid of using bh as a container for mapping information
685          * to pass to / from get_block functions, this can go away.
686          */
687         do {
688                 old_state = READ_ONCE(bh->b_state);
689                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
690         } while (unlikely(
691                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
692 }
693
694 /* Maximum number of blocks we map for direct IO at once. */
695 #define DIO_MAX_BLOCKS 4096
696
697 static int _ext4_get_block(struct inode *inode, sector_t iblock,
698                            struct buffer_head *bh, int flags)
699 {
700         handle_t *handle = ext4_journal_current_handle();
701         struct ext4_map_blocks map;
702         int ret = 0, started = 0;
703         int dio_credits;
704
705         if (ext4_has_inline_data(inode))
706                 return -ERANGE;
707
708         map.m_lblk = iblock;
709         map.m_len = bh->b_size >> inode->i_blkbits;
710
711         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
712                 /* Direct IO write... */
713                 if (map.m_len > DIO_MAX_BLOCKS)
714                         map.m_len = DIO_MAX_BLOCKS;
715                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
716                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
717                                             dio_credits);
718                 if (IS_ERR(handle)) {
719                         ret = PTR_ERR(handle);
720                         return ret;
721                 }
722                 started = 1;
723         }
724
725         ret = ext4_map_blocks(handle, inode, &map, flags);
726         if (ret > 0) {
727                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
728
729                 map_bh(bh, inode->i_sb, map.m_pblk);
730                 ext4_update_bh_state(bh, map.m_flags);
731                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
732                         /*
733                          * dgc: I suspect unwritten conversion on ext4+DAX is
734                          * fundamentally broken here when there are concurrent
735                          * read/write in progress on this inode.
736                          */
737                         WARN_ON_ONCE(io_end);
738                         bh->b_assoc_map = inode->i_mapping;
739                         bh->b_private = (void *)(unsigned long)iblock;
740                 }
741                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
742                         set_buffer_defer_completion(bh);
743                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
744                 ret = 0;
745         }
746         if (started)
747                 ext4_journal_stop(handle);
748         return ret;
749 }
750
751 int ext4_get_block(struct inode *inode, sector_t iblock,
752                    struct buffer_head *bh, int create)
753 {
754         return _ext4_get_block(inode, iblock, bh,
755                                create ? EXT4_GET_BLOCKS_CREATE : 0);
756 }
757
758 /*
759  * `handle' can be NULL if create is zero
760  */
761 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
762                                 ext4_lblk_t block, int map_flags)
763 {
764         struct ext4_map_blocks map;
765         struct buffer_head *bh;
766         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
767         int err;
768
769         J_ASSERT(handle != NULL || create == 0);
770
771         map.m_lblk = block;
772         map.m_len = 1;
773         err = ext4_map_blocks(handle, inode, &map, map_flags);
774
775         if (err == 0)
776                 return create ? ERR_PTR(-ENOSPC) : NULL;
777         if (err < 0)
778                 return ERR_PTR(err);
779
780         bh = sb_getblk(inode->i_sb, map.m_pblk);
781         if (unlikely(!bh))
782                 return ERR_PTR(-ENOMEM);
783         if (map.m_flags & EXT4_MAP_NEW) {
784                 J_ASSERT(create != 0);
785                 J_ASSERT(handle != NULL);
786
787                 /*
788                  * Now that we do not always journal data, we should
789                  * keep in mind whether this should always journal the
790                  * new buffer as metadata.  For now, regular file
791                  * writes use ext4_get_block instead, so it's not a
792                  * problem.
793                  */
794                 lock_buffer(bh);
795                 BUFFER_TRACE(bh, "call get_create_access");
796                 err = ext4_journal_get_create_access(handle, bh);
797                 if (unlikely(err)) {
798                         unlock_buffer(bh);
799                         goto errout;
800                 }
801                 if (!buffer_uptodate(bh)) {
802                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
803                         set_buffer_uptodate(bh);
804                 }
805                 unlock_buffer(bh);
806                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
807                 err = ext4_handle_dirty_metadata(handle, inode, bh);
808                 if (unlikely(err))
809                         goto errout;
810         } else
811                 BUFFER_TRACE(bh, "not a new buffer");
812         return bh;
813 errout:
814         brelse(bh);
815         return ERR_PTR(err);
816 }
817
818 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
819                                ext4_lblk_t block, int map_flags)
820 {
821         struct buffer_head *bh;
822
823         bh = ext4_getblk(handle, inode, block, map_flags);
824         if (IS_ERR(bh))
825                 return bh;
826         if (!bh || buffer_uptodate(bh))
827                 return bh;
828         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
829         wait_on_buffer(bh);
830         if (buffer_uptodate(bh))
831                 return bh;
832         put_bh(bh);
833         return ERR_PTR(-EIO);
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837                            struct buffer_head *head,
838                            unsigned from,
839                            unsigned to,
840                            int *partial,
841                            int (*fn)(handle_t *handle,
842                                      struct buffer_head *bh))
843 {
844         struct buffer_head *bh;
845         unsigned block_start, block_end;
846         unsigned blocksize = head->b_size;
847         int err, ret = 0;
848         struct buffer_head *next;
849
850         for (bh = head, block_start = 0;
851              ret == 0 && (bh != head || !block_start);
852              block_start = block_end, bh = next) {
853                 next = bh->b_this_page;
854                 block_end = block_start + blocksize;
855                 if (block_end <= from || block_start >= to) {
856                         if (partial && !buffer_uptodate(bh))
857                                 *partial = 1;
858                         continue;
859                 }
860                 err = (*fn)(handle, bh);
861                 if (!ret)
862                         ret = err;
863         }
864         return ret;
865 }
866
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892                                 struct buffer_head *bh)
893 {
894         int dirty = buffer_dirty(bh);
895         int ret;
896
897         if (!buffer_mapped(bh) || buffer_freed(bh))
898                 return 0;
899         /*
900          * __block_write_begin() could have dirtied some buffers. Clean
901          * the dirty bit as jbd2_journal_get_write_access() could complain
902          * otherwise about fs integrity issues. Setting of the dirty bit
903          * by __block_write_begin() isn't a real problem here as we clear
904          * the bit before releasing a page lock and thus writeback cannot
905          * ever write the buffer.
906          */
907         if (dirty)
908                 clear_buffer_dirty(bh);
909         BUFFER_TRACE(bh, "get write access");
910         ret = ext4_journal_get_write_access(handle, bh);
911         if (!ret && dirty)
912                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
913         return ret;
914 }
915
916 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
917                    struct buffer_head *bh_result, int create);
918
919 #ifdef CONFIG_EXT4_FS_ENCRYPTION
920 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
921                                   get_block_t *get_block)
922 {
923         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
924         unsigned to = from + len;
925         struct inode *inode = page->mapping->host;
926         unsigned block_start, block_end;
927         sector_t block;
928         int err = 0;
929         unsigned blocksize = inode->i_sb->s_blocksize;
930         unsigned bbits;
931         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
932         bool decrypt = false;
933
934         BUG_ON(!PageLocked(page));
935         BUG_ON(from > PAGE_CACHE_SIZE);
936         BUG_ON(to > PAGE_CACHE_SIZE);
937         BUG_ON(from > to);
938
939         if (!page_has_buffers(page))
940                 create_empty_buffers(page, blocksize, 0);
941         head = page_buffers(page);
942         bbits = ilog2(blocksize);
943         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
944
945         for (bh = head, block_start = 0; bh != head || !block_start;
946             block++, block_start = block_end, bh = bh->b_this_page) {
947                 block_end = block_start + blocksize;
948                 if (block_end <= from || block_start >= to) {
949                         if (PageUptodate(page)) {
950                                 if (!buffer_uptodate(bh))
951                                         set_buffer_uptodate(bh);
952                         }
953                         continue;
954                 }
955                 if (buffer_new(bh))
956                         clear_buffer_new(bh);
957                 if (!buffer_mapped(bh)) {
958                         WARN_ON(bh->b_size != blocksize);
959                         err = get_block(inode, block, bh, 1);
960                         if (err)
961                                 break;
962                         if (buffer_new(bh)) {
963                                 unmap_underlying_metadata(bh->b_bdev,
964                                                           bh->b_blocknr);
965                                 if (PageUptodate(page)) {
966                                         clear_buffer_new(bh);
967                                         set_buffer_uptodate(bh);
968                                         mark_buffer_dirty(bh);
969                                         continue;
970                                 }
971                                 if (block_end > to || block_start < from)
972                                         zero_user_segments(page, to, block_end,
973                                                            block_start, from);
974                                 continue;
975                         }
976                 }
977                 if (PageUptodate(page)) {
978                         if (!buffer_uptodate(bh))
979                                 set_buffer_uptodate(bh);
980                         continue;
981                 }
982                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
983                     !buffer_unwritten(bh) &&
984                     (block_start < from || block_end > to)) {
985                         ll_rw_block(READ, 1, &bh);
986                         *wait_bh++ = bh;
987                         decrypt = ext4_encrypted_inode(inode) &&
988                                 S_ISREG(inode->i_mode);
989                 }
990         }
991         /*
992          * If we issued read requests, let them complete.
993          */
994         while (wait_bh > wait) {
995                 wait_on_buffer(*--wait_bh);
996                 if (!buffer_uptodate(*wait_bh))
997                         err = -EIO;
998         }
999         if (unlikely(err))
1000                 page_zero_new_buffers(page, from, to);
1001         else if (decrypt)
1002                 err = ext4_decrypt(page);
1003         return err;
1004 }
1005 #endif
1006
1007 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1008                             loff_t pos, unsigned len, unsigned flags,
1009                             struct page **pagep, void **fsdata)
1010 {
1011         struct inode *inode = mapping->host;
1012         int ret, needed_blocks;
1013         handle_t *handle;
1014         int retries = 0;
1015         struct page *page;
1016         pgoff_t index;
1017         unsigned from, to;
1018
1019         trace_ext4_write_begin(inode, pos, len, flags);
1020         /*
1021          * Reserve one block more for addition to orphan list in case
1022          * we allocate blocks but write fails for some reason
1023          */
1024         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1025         index = pos >> PAGE_CACHE_SHIFT;
1026         from = pos & (PAGE_CACHE_SIZE - 1);
1027         to = from + len;
1028
1029         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1030                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1031                                                     flags, pagep);
1032                 if (ret < 0)
1033                         return ret;
1034                 if (ret == 1)
1035                         return 0;
1036         }
1037
1038         /*
1039          * grab_cache_page_write_begin() can take a long time if the
1040          * system is thrashing due to memory pressure, or if the page
1041          * is being written back.  So grab it first before we start
1042          * the transaction handle.  This also allows us to allocate
1043          * the page (if needed) without using GFP_NOFS.
1044          */
1045 retry_grab:
1046         page = grab_cache_page_write_begin(mapping, index, flags);
1047         if (!page)
1048                 return -ENOMEM;
1049         unlock_page(page);
1050
1051 retry_journal:
1052         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1053         if (IS_ERR(handle)) {
1054                 page_cache_release(page);
1055                 return PTR_ERR(handle);
1056         }
1057
1058         lock_page(page);
1059         if (page->mapping != mapping) {
1060                 /* The page got truncated from under us */
1061                 unlock_page(page);
1062                 page_cache_release(page);
1063                 ext4_journal_stop(handle);
1064                 goto retry_grab;
1065         }
1066         /* In case writeback began while the page was unlocked */
1067         wait_for_stable_page(page);
1068
1069 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1070         if (ext4_should_dioread_nolock(inode))
1071                 ret = ext4_block_write_begin(page, pos, len,
1072                                              ext4_get_block_write);
1073         else
1074                 ret = ext4_block_write_begin(page, pos, len,
1075                                              ext4_get_block);
1076 #else
1077         if (ext4_should_dioread_nolock(inode))
1078                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1079         else
1080                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1081 #endif
1082         if (!ret && ext4_should_journal_data(inode)) {
1083                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1084                                              from, to, NULL,
1085                                              do_journal_get_write_access);
1086         }
1087
1088         if (ret) {
1089                 unlock_page(page);
1090                 /*
1091                  * __block_write_begin may have instantiated a few blocks
1092                  * outside i_size.  Trim these off again. Don't need
1093                  * i_size_read because we hold i_mutex.
1094                  *
1095                  * Add inode to orphan list in case we crash before
1096                  * truncate finishes
1097                  */
1098                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1099                         ext4_orphan_add(handle, inode);
1100
1101                 ext4_journal_stop(handle);
1102                 if (pos + len > inode->i_size) {
1103                         ext4_truncate_failed_write(inode);
1104                         /*
1105                          * If truncate failed early the inode might
1106                          * still be on the orphan list; we need to
1107                          * make sure the inode is removed from the
1108                          * orphan list in that case.
1109                          */
1110                         if (inode->i_nlink)
1111                                 ext4_orphan_del(NULL, inode);
1112                 }
1113
1114                 if (ret == -ENOSPC &&
1115                     ext4_should_retry_alloc(inode->i_sb, &retries))
1116                         goto retry_journal;
1117                 page_cache_release(page);
1118                 return ret;
1119         }
1120         *pagep = page;
1121         return ret;
1122 }
1123
1124 /* For write_end() in data=journal mode */
1125 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1126 {
1127         int ret;
1128         if (!buffer_mapped(bh) || buffer_freed(bh))
1129                 return 0;
1130         set_buffer_uptodate(bh);
1131         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1132         clear_buffer_meta(bh);
1133         clear_buffer_prio(bh);
1134         return ret;
1135 }
1136
1137 /*
1138  * We need to pick up the new inode size which generic_commit_write gave us
1139  * `file' can be NULL - eg, when called from page_symlink().
1140  *
1141  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1142  * buffers are managed internally.
1143  */
1144 static int ext4_write_end(struct file *file,
1145                           struct address_space *mapping,
1146                           loff_t pos, unsigned len, unsigned copied,
1147                           struct page *page, void *fsdata)
1148 {
1149         handle_t *handle = ext4_journal_current_handle();
1150         struct inode *inode = mapping->host;
1151         loff_t old_size = inode->i_size;
1152         int ret = 0, ret2;
1153         int i_size_changed = 0;
1154
1155         trace_ext4_write_end(inode, pos, len, copied);
1156         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1157                 ret = ext4_jbd2_file_inode(handle, inode);
1158                 if (ret) {
1159                         unlock_page(page);
1160                         page_cache_release(page);
1161                         goto errout;
1162                 }
1163         }
1164
1165         if (ext4_has_inline_data(inode)) {
1166                 ret = ext4_write_inline_data_end(inode, pos, len,
1167                                                  copied, page);
1168                 if (ret < 0)
1169                         goto errout;
1170                 copied = ret;
1171         } else
1172                 copied = block_write_end(file, mapping, pos,
1173                                          len, copied, page, fsdata);
1174         /*
1175          * it's important to update i_size while still holding page lock:
1176          * page writeout could otherwise come in and zero beyond i_size.
1177          */
1178         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1179         unlock_page(page);
1180         page_cache_release(page);
1181
1182         if (old_size < pos)
1183                 pagecache_isize_extended(inode, old_size, pos);
1184         /*
1185          * Don't mark the inode dirty under page lock. First, it unnecessarily
1186          * makes the holding time of page lock longer. Second, it forces lock
1187          * ordering of page lock and transaction start for journaling
1188          * filesystems.
1189          */
1190         if (i_size_changed)
1191                 ext4_mark_inode_dirty(handle, inode);
1192
1193         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1194                 /* if we have allocated more blocks and copied
1195                  * less. We will have blocks allocated outside
1196                  * inode->i_size. So truncate them
1197                  */
1198                 ext4_orphan_add(handle, inode);
1199 errout:
1200         ret2 = ext4_journal_stop(handle);
1201         if (!ret)
1202                 ret = ret2;
1203
1204         if (pos + len > inode->i_size) {
1205                 ext4_truncate_failed_write(inode);
1206                 /*
1207                  * If truncate failed early the inode might still be
1208                  * on the orphan list; we need to make sure the inode
1209                  * is removed from the orphan list in that case.
1210                  */
1211                 if (inode->i_nlink)
1212                         ext4_orphan_del(NULL, inode);
1213         }
1214
1215         return ret ? ret : copied;
1216 }
1217
1218 /*
1219  * This is a private version of page_zero_new_buffers() which doesn't
1220  * set the buffer to be dirty, since in data=journalled mode we need
1221  * to call ext4_handle_dirty_metadata() instead.
1222  */
1223 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1224 {
1225         unsigned int block_start = 0, block_end;
1226         struct buffer_head *head, *bh;
1227
1228         bh = head = page_buffers(page);
1229         do {
1230                 block_end = block_start + bh->b_size;
1231                 if (buffer_new(bh)) {
1232                         if (block_end > from && block_start < to) {
1233                                 if (!PageUptodate(page)) {
1234                                         unsigned start, size;
1235
1236                                         start = max(from, block_start);
1237                                         size = min(to, block_end) - start;
1238
1239                                         zero_user(page, start, size);
1240                                         set_buffer_uptodate(bh);
1241                                 }
1242                                 clear_buffer_new(bh);
1243                         }
1244                 }
1245                 block_start = block_end;
1246                 bh = bh->b_this_page;
1247         } while (bh != head);
1248 }
1249
1250 static int ext4_journalled_write_end(struct file *file,
1251                                      struct address_space *mapping,
1252                                      loff_t pos, unsigned len, unsigned copied,
1253                                      struct page *page, void *fsdata)
1254 {
1255         handle_t *handle = ext4_journal_current_handle();
1256         struct inode *inode = mapping->host;
1257         loff_t old_size = inode->i_size;
1258         int ret = 0, ret2;
1259         int partial = 0;
1260         unsigned from, to;
1261         int size_changed = 0;
1262
1263         trace_ext4_journalled_write_end(inode, pos, len, copied);
1264         from = pos & (PAGE_CACHE_SIZE - 1);
1265         to = from + len;
1266
1267         BUG_ON(!ext4_handle_valid(handle));
1268
1269         if (ext4_has_inline_data(inode))
1270                 copied = ext4_write_inline_data_end(inode, pos, len,
1271                                                     copied, page);
1272         else {
1273                 if (copied < len) {
1274                         if (!PageUptodate(page))
1275                                 copied = 0;
1276                         zero_new_buffers(page, from+copied, to);
1277                 }
1278
1279                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1280                                              to, &partial, write_end_fn);
1281                 if (!partial)
1282                         SetPageUptodate(page);
1283         }
1284         size_changed = ext4_update_inode_size(inode, pos + copied);
1285         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1286         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1287         unlock_page(page);
1288         page_cache_release(page);
1289
1290         if (old_size < pos)
1291                 pagecache_isize_extended(inode, old_size, pos);
1292
1293         if (size_changed) {
1294                 ret2 = ext4_mark_inode_dirty(handle, inode);
1295                 if (!ret)
1296                         ret = ret2;
1297         }
1298
1299         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1300                 /* if we have allocated more blocks and copied
1301                  * less. We will have blocks allocated outside
1302                  * inode->i_size. So truncate them
1303                  */
1304                 ext4_orphan_add(handle, inode);
1305
1306         ret2 = ext4_journal_stop(handle);
1307         if (!ret)
1308                 ret = ret2;
1309         if (pos + len > inode->i_size) {
1310                 ext4_truncate_failed_write(inode);
1311                 /*
1312                  * If truncate failed early the inode might still be
1313                  * on the orphan list; we need to make sure the inode
1314                  * is removed from the orphan list in that case.
1315                  */
1316                 if (inode->i_nlink)
1317                         ext4_orphan_del(NULL, inode);
1318         }
1319
1320         return ret ? ret : copied;
1321 }
1322
1323 /*
1324  * Reserve space for a single cluster
1325  */
1326 static int ext4_da_reserve_space(struct inode *inode)
1327 {
1328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1329         struct ext4_inode_info *ei = EXT4_I(inode);
1330         int ret;
1331
1332         /*
1333          * We will charge metadata quota at writeout time; this saves
1334          * us from metadata over-estimation, though we may go over by
1335          * a small amount in the end.  Here we just reserve for data.
1336          */
1337         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1338         if (ret)
1339                 return ret;
1340
1341         spin_lock(&ei->i_block_reservation_lock);
1342         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1343                 spin_unlock(&ei->i_block_reservation_lock);
1344                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1345                 return -ENOSPC;
1346         }
1347         ei->i_reserved_data_blocks++;
1348         trace_ext4_da_reserve_space(inode);
1349         spin_unlock(&ei->i_block_reservation_lock);
1350
1351         return 0;       /* success */
1352 }
1353
1354 static void ext4_da_release_space(struct inode *inode, int to_free)
1355 {
1356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1357         struct ext4_inode_info *ei = EXT4_I(inode);
1358
1359         if (!to_free)
1360                 return;         /* Nothing to release, exit */
1361
1362         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364         trace_ext4_da_release_space(inode, to_free);
1365         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1366                 /*
1367                  * if there aren't enough reserved blocks, then the
1368                  * counter is messed up somewhere.  Since this
1369                  * function is called from invalidate page, it's
1370                  * harmless to return without any action.
1371                  */
1372                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1373                          "ino %lu, to_free %d with only %d reserved "
1374                          "data blocks", inode->i_ino, to_free,
1375                          ei->i_reserved_data_blocks);
1376                 WARN_ON(1);
1377                 to_free = ei->i_reserved_data_blocks;
1378         }
1379         ei->i_reserved_data_blocks -= to_free;
1380
1381         /* update fs dirty data blocks counter */
1382         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1383
1384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1385
1386         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1387 }
1388
1389 static void ext4_da_page_release_reservation(struct page *page,
1390                                              unsigned int offset,
1391                                              unsigned int length)
1392 {
1393         int to_release = 0, contiguous_blks = 0;
1394         struct buffer_head *head, *bh;
1395         unsigned int curr_off = 0;
1396         struct inode *inode = page->mapping->host;
1397         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1398         unsigned int stop = offset + length;
1399         int num_clusters;
1400         ext4_fsblk_t lblk;
1401
1402         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1403
1404         head = page_buffers(page);
1405         bh = head;
1406         do {
1407                 unsigned int next_off = curr_off + bh->b_size;
1408
1409                 if (next_off > stop)
1410                         break;
1411
1412                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1413                         to_release++;
1414                         contiguous_blks++;
1415                         clear_buffer_delay(bh);
1416                 } else if (contiguous_blks) {
1417                         lblk = page->index <<
1418                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419                         lblk += (curr_off >> inode->i_blkbits) -
1420                                 contiguous_blks;
1421                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1422                         contiguous_blks = 0;
1423                 }
1424                 curr_off = next_off;
1425         } while ((bh = bh->b_this_page) != head);
1426
1427         if (contiguous_blks) {
1428                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1430                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1431         }
1432
1433         /* If we have released all the blocks belonging to a cluster, then we
1434          * need to release the reserved space for that cluster. */
1435         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1436         while (num_clusters > 0) {
1437                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1438                         ((num_clusters - 1) << sbi->s_cluster_bits);
1439                 if (sbi->s_cluster_ratio == 1 ||
1440                     !ext4_find_delalloc_cluster(inode, lblk))
1441                         ext4_da_release_space(inode, 1);
1442
1443                 num_clusters--;
1444         }
1445 }
1446
1447 /*
1448  * Delayed allocation stuff
1449  */
1450
1451 struct mpage_da_data {
1452         struct inode *inode;
1453         struct writeback_control *wbc;
1454
1455         pgoff_t first_page;     /* The first page to write */
1456         pgoff_t next_page;      /* Current page to examine */
1457         pgoff_t last_page;      /* Last page to examine */
1458         /*
1459          * Extent to map - this can be after first_page because that can be
1460          * fully mapped. We somewhat abuse m_flags to store whether the extent
1461          * is delalloc or unwritten.
1462          */
1463         struct ext4_map_blocks map;
1464         struct ext4_io_submit io_submit;        /* IO submission data */
1465 };
1466
1467 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1468                                        bool invalidate)
1469 {
1470         int nr_pages, i;
1471         pgoff_t index, end;
1472         struct pagevec pvec;
1473         struct inode *inode = mpd->inode;
1474         struct address_space *mapping = inode->i_mapping;
1475
1476         /* This is necessary when next_page == 0. */
1477         if (mpd->first_page >= mpd->next_page)
1478                 return;
1479
1480         index = mpd->first_page;
1481         end   = mpd->next_page - 1;
1482         if (invalidate) {
1483                 ext4_lblk_t start, last;
1484                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1485                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1486                 ext4_es_remove_extent(inode, start, last - start + 1);
1487         }
1488
1489         pagevec_init(&pvec, 0);
1490         while (index <= end) {
1491                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1492                 if (nr_pages == 0)
1493                         break;
1494                 for (i = 0; i < nr_pages; i++) {
1495                         struct page *page = pvec.pages[i];
1496                         if (page->index > end)
1497                                 break;
1498                         BUG_ON(!PageLocked(page));
1499                         BUG_ON(PageWriteback(page));
1500                         if (invalidate) {
1501                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1502                                 ClearPageUptodate(page);
1503                         }
1504                         unlock_page(page);
1505                 }
1506                 index = pvec.pages[nr_pages - 1]->index + 1;
1507                 pagevec_release(&pvec);
1508         }
1509 }
1510
1511 static void ext4_print_free_blocks(struct inode *inode)
1512 {
1513         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1514         struct super_block *sb = inode->i_sb;
1515         struct ext4_inode_info *ei = EXT4_I(inode);
1516
1517         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1518                EXT4_C2B(EXT4_SB(inode->i_sb),
1519                         ext4_count_free_clusters(sb)));
1520         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1521         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1522                (long long) EXT4_C2B(EXT4_SB(sb),
1523                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1524         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1525                (long long) EXT4_C2B(EXT4_SB(sb),
1526                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1527         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1528         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1529                  ei->i_reserved_data_blocks);
1530         return;
1531 }
1532
1533 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1534 {
1535         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1536 }
1537
1538 /*
1539  * This function is grabs code from the very beginning of
1540  * ext4_map_blocks, but assumes that the caller is from delayed write
1541  * time. This function looks up the requested blocks and sets the
1542  * buffer delay bit under the protection of i_data_sem.
1543  */
1544 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1545                               struct ext4_map_blocks *map,
1546                               struct buffer_head *bh)
1547 {
1548         struct extent_status es;
1549         int retval;
1550         sector_t invalid_block = ~((sector_t) 0xffff);
1551 #ifdef ES_AGGRESSIVE_TEST
1552         struct ext4_map_blocks orig_map;
1553
1554         memcpy(&orig_map, map, sizeof(*map));
1555 #endif
1556
1557         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1558                 invalid_block = ~0;
1559
1560         map->m_flags = 0;
1561         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1562                   "logical block %lu\n", inode->i_ino, map->m_len,
1563                   (unsigned long) map->m_lblk);
1564
1565         /* Lookup extent status tree firstly */
1566         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1567                 if (ext4_es_is_hole(&es)) {
1568                         retval = 0;
1569                         down_read(&EXT4_I(inode)->i_data_sem);
1570                         goto add_delayed;
1571                 }
1572
1573                 /*
1574                  * Delayed extent could be allocated by fallocate.
1575                  * So we need to check it.
1576                  */
1577                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1578                         map_bh(bh, inode->i_sb, invalid_block);
1579                         set_buffer_new(bh);
1580                         set_buffer_delay(bh);
1581                         return 0;
1582                 }
1583
1584                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1585                 retval = es.es_len - (iblock - es.es_lblk);
1586                 if (retval > map->m_len)
1587                         retval = map->m_len;
1588                 map->m_len = retval;
1589                 if (ext4_es_is_written(&es))
1590                         map->m_flags |= EXT4_MAP_MAPPED;
1591                 else if (ext4_es_is_unwritten(&es))
1592                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1593                 else
1594                         BUG_ON(1);
1595
1596 #ifdef ES_AGGRESSIVE_TEST
1597                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1598 #endif
1599                 return retval;
1600         }
1601
1602         /*
1603          * Try to see if we can get the block without requesting a new
1604          * file system block.
1605          */
1606         down_read(&EXT4_I(inode)->i_data_sem);
1607         if (ext4_has_inline_data(inode))
1608                 retval = 0;
1609         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1610                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1611         else
1612                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1613
1614 add_delayed:
1615         if (retval == 0) {
1616                 int ret;
1617                 /*
1618                  * XXX: __block_prepare_write() unmaps passed block,
1619                  * is it OK?
1620                  */
1621                 /*
1622                  * If the block was allocated from previously allocated cluster,
1623                  * then we don't need to reserve it again. However we still need
1624                  * to reserve metadata for every block we're going to write.
1625                  */
1626                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1627                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1628                         ret = ext4_da_reserve_space(inode);
1629                         if (ret) {
1630                                 /* not enough space to reserve */
1631                                 retval = ret;
1632                                 goto out_unlock;
1633                         }
1634                 }
1635
1636                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1637                                             ~0, EXTENT_STATUS_DELAYED);
1638                 if (ret) {
1639                         retval = ret;
1640                         goto out_unlock;
1641                 }
1642
1643                 map_bh(bh, inode->i_sb, invalid_block);
1644                 set_buffer_new(bh);
1645                 set_buffer_delay(bh);
1646         } else if (retval > 0) {
1647                 int ret;
1648                 unsigned int status;
1649
1650                 if (unlikely(retval != map->m_len)) {
1651                         ext4_warning(inode->i_sb,
1652                                      "ES len assertion failed for inode "
1653                                      "%lu: retval %d != map->m_len %d",
1654                                      inode->i_ino, retval, map->m_len);
1655                         WARN_ON(1);
1656                 }
1657
1658                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1659                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1660                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1661                                             map->m_pblk, status);
1662                 if (ret != 0)
1663                         retval = ret;
1664         }
1665
1666 out_unlock:
1667         up_read((&EXT4_I(inode)->i_data_sem));
1668
1669         return retval;
1670 }
1671
1672 /*
1673  * This is a special get_block_t callback which is used by
1674  * ext4_da_write_begin().  It will either return mapped block or
1675  * reserve space for a single block.
1676  *
1677  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1678  * We also have b_blocknr = -1 and b_bdev initialized properly
1679  *
1680  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1681  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1682  * initialized properly.
1683  */
1684 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1685                            struct buffer_head *bh, int create)
1686 {
1687         struct ext4_map_blocks map;
1688         int ret = 0;
1689
1690         BUG_ON(create == 0);
1691         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1692
1693         map.m_lblk = iblock;
1694         map.m_len = 1;
1695
1696         /*
1697          * first, we need to know whether the block is allocated already
1698          * preallocated blocks are unmapped but should treated
1699          * the same as allocated blocks.
1700          */
1701         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1702         if (ret <= 0)
1703                 return ret;
1704
1705         map_bh(bh, inode->i_sb, map.m_pblk);
1706         ext4_update_bh_state(bh, map.m_flags);
1707
1708         if (buffer_unwritten(bh)) {
1709                 /* A delayed write to unwritten bh should be marked
1710                  * new and mapped.  Mapped ensures that we don't do
1711                  * get_block multiple times when we write to the same
1712                  * offset and new ensures that we do proper zero out
1713                  * for partial write.
1714                  */
1715                 set_buffer_new(bh);
1716                 set_buffer_mapped(bh);
1717         }
1718         return 0;
1719 }
1720
1721 static int bget_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723         get_bh(bh);
1724         return 0;
1725 }
1726
1727 static int bput_one(handle_t *handle, struct buffer_head *bh)
1728 {
1729         put_bh(bh);
1730         return 0;
1731 }
1732
1733 static int __ext4_journalled_writepage(struct page *page,
1734                                        unsigned int len)
1735 {
1736         struct address_space *mapping = page->mapping;
1737         struct inode *inode = mapping->host;
1738         struct buffer_head *page_bufs = NULL;
1739         handle_t *handle = NULL;
1740         int ret = 0, err = 0;
1741         int inline_data = ext4_has_inline_data(inode);
1742         struct buffer_head *inode_bh = NULL;
1743
1744         ClearPageChecked(page);
1745
1746         if (inline_data) {
1747                 BUG_ON(page->index != 0);
1748                 BUG_ON(len > ext4_get_max_inline_size(inode));
1749                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1750                 if (inode_bh == NULL)
1751                         goto out;
1752         } else {
1753                 page_bufs = page_buffers(page);
1754                 if (!page_bufs) {
1755                         BUG();
1756                         goto out;
1757                 }
1758                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1759                                        NULL, bget_one);
1760         }
1761         /*
1762          * We need to release the page lock before we start the
1763          * journal, so grab a reference so the page won't disappear
1764          * out from under us.
1765          */
1766         get_page(page);
1767         unlock_page(page);
1768
1769         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1770                                     ext4_writepage_trans_blocks(inode));
1771         if (IS_ERR(handle)) {
1772                 ret = PTR_ERR(handle);
1773                 put_page(page);
1774                 goto out_no_pagelock;
1775         }
1776         BUG_ON(!ext4_handle_valid(handle));
1777
1778         lock_page(page);
1779         put_page(page);
1780         if (page->mapping != mapping) {
1781                 /* The page got truncated from under us */
1782                 ext4_journal_stop(handle);
1783                 ret = 0;
1784                 goto out;
1785         }
1786
1787         if (inline_data) {
1788                 BUFFER_TRACE(inode_bh, "get write access");
1789                 ret = ext4_journal_get_write_access(handle, inode_bh);
1790
1791                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1792
1793         } else {
1794                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1795                                              do_journal_get_write_access);
1796
1797                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1798                                              write_end_fn);
1799         }
1800         if (ret == 0)
1801                 ret = err;
1802         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1803         err = ext4_journal_stop(handle);
1804         if (!ret)
1805                 ret = err;
1806
1807         if (!ext4_has_inline_data(inode))
1808                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1809                                        NULL, bput_one);
1810         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1811 out:
1812         unlock_page(page);
1813 out_no_pagelock:
1814         brelse(inode_bh);
1815         return ret;
1816 }
1817
1818 /*
1819  * Note that we don't need to start a transaction unless we're journaling data
1820  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1821  * need to file the inode to the transaction's list in ordered mode because if
1822  * we are writing back data added by write(), the inode is already there and if
1823  * we are writing back data modified via mmap(), no one guarantees in which
1824  * transaction the data will hit the disk. In case we are journaling data, we
1825  * cannot start transaction directly because transaction start ranks above page
1826  * lock so we have to do some magic.
1827  *
1828  * This function can get called via...
1829  *   - ext4_writepages after taking page lock (have journal handle)
1830  *   - journal_submit_inode_data_buffers (no journal handle)
1831  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1832  *   - grab_page_cache when doing write_begin (have journal handle)
1833  *
1834  * We don't do any block allocation in this function. If we have page with
1835  * multiple blocks we need to write those buffer_heads that are mapped. This
1836  * is important for mmaped based write. So if we do with blocksize 1K
1837  * truncate(f, 1024);
1838  * a = mmap(f, 0, 4096);
1839  * a[0] = 'a';
1840  * truncate(f, 4096);
1841  * we have in the page first buffer_head mapped via page_mkwrite call back
1842  * but other buffer_heads would be unmapped but dirty (dirty done via the
1843  * do_wp_page). So writepage should write the first block. If we modify
1844  * the mmap area beyond 1024 we will again get a page_fault and the
1845  * page_mkwrite callback will do the block allocation and mark the
1846  * buffer_heads mapped.
1847  *
1848  * We redirty the page if we have any buffer_heads that is either delay or
1849  * unwritten in the page.
1850  *
1851  * We can get recursively called as show below.
1852  *
1853  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1854  *              ext4_writepage()
1855  *
1856  * But since we don't do any block allocation we should not deadlock.
1857  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1858  */
1859 static int ext4_writepage(struct page *page,
1860                           struct writeback_control *wbc)
1861 {
1862         int ret = 0;
1863         loff_t size;
1864         unsigned int len;
1865         struct buffer_head *page_bufs = NULL;
1866         struct inode *inode = page->mapping->host;
1867         struct ext4_io_submit io_submit;
1868         bool keep_towrite = false;
1869
1870         trace_ext4_writepage(page);
1871         size = i_size_read(inode);
1872         if (page->index == size >> PAGE_CACHE_SHIFT)
1873                 len = size & ~PAGE_CACHE_MASK;
1874         else
1875                 len = PAGE_CACHE_SIZE;
1876
1877         page_bufs = page_buffers(page);
1878         /*
1879          * We cannot do block allocation or other extent handling in this
1880          * function. If there are buffers needing that, we have to redirty
1881          * the page. But we may reach here when we do a journal commit via
1882          * journal_submit_inode_data_buffers() and in that case we must write
1883          * allocated buffers to achieve data=ordered mode guarantees.
1884          *
1885          * Also, if there is only one buffer per page (the fs block
1886          * size == the page size), if one buffer needs block
1887          * allocation or needs to modify the extent tree to clear the
1888          * unwritten flag, we know that the page can't be written at
1889          * all, so we might as well refuse the write immediately.
1890          * Unfortunately if the block size != page size, we can't as
1891          * easily detect this case using ext4_walk_page_buffers(), but
1892          * for the extremely common case, this is an optimization that
1893          * skips a useless round trip through ext4_bio_write_page().
1894          */
1895         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1896                                    ext4_bh_delay_or_unwritten)) {
1897                 redirty_page_for_writepage(wbc, page);
1898                 if ((current->flags & PF_MEMALLOC) ||
1899                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1900                         /*
1901                          * For memory cleaning there's no point in writing only
1902                          * some buffers. So just bail out. Warn if we came here
1903                          * from direct reclaim.
1904                          */
1905                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1906                                                         == PF_MEMALLOC);
1907                         unlock_page(page);
1908                         return 0;
1909                 }
1910                 keep_towrite = true;
1911         }
1912
1913         if (PageChecked(page) && ext4_should_journal_data(inode))
1914                 /*
1915                  * It's mmapped pagecache.  Add buffers and journal it.  There
1916                  * doesn't seem much point in redirtying the page here.
1917                  */
1918                 return __ext4_journalled_writepage(page, len);
1919
1920         ext4_io_submit_init(&io_submit, wbc);
1921         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1922         if (!io_submit.io_end) {
1923                 redirty_page_for_writepage(wbc, page);
1924                 unlock_page(page);
1925                 return -ENOMEM;
1926         }
1927         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1928         ext4_io_submit(&io_submit);
1929         /* Drop io_end reference we got from init */
1930         ext4_put_io_end_defer(io_submit.io_end);
1931         return ret;
1932 }
1933
1934 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1935 {
1936         int len;
1937         loff_t size = i_size_read(mpd->inode);
1938         int err;
1939
1940         BUG_ON(page->index != mpd->first_page);
1941         if (page->index == size >> PAGE_CACHE_SHIFT)
1942                 len = size & ~PAGE_CACHE_MASK;
1943         else
1944                 len = PAGE_CACHE_SIZE;
1945         clear_page_dirty_for_io(page);
1946         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1947         if (!err)
1948                 mpd->wbc->nr_to_write--;
1949         mpd->first_page++;
1950
1951         return err;
1952 }
1953
1954 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1955
1956 /*
1957  * mballoc gives us at most this number of blocks...
1958  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1959  * The rest of mballoc seems to handle chunks up to full group size.
1960  */
1961 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1962
1963 /*
1964  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1965  *
1966  * @mpd - extent of blocks
1967  * @lblk - logical number of the block in the file
1968  * @bh - buffer head we want to add to the extent
1969  *
1970  * The function is used to collect contig. blocks in the same state. If the
1971  * buffer doesn't require mapping for writeback and we haven't started the
1972  * extent of buffers to map yet, the function returns 'true' immediately - the
1973  * caller can write the buffer right away. Otherwise the function returns true
1974  * if the block has been added to the extent, false if the block couldn't be
1975  * added.
1976  */
1977 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1978                                    struct buffer_head *bh)
1979 {
1980         struct ext4_map_blocks *map = &mpd->map;
1981
1982         /* Buffer that doesn't need mapping for writeback? */
1983         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1984             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1985                 /* So far no extent to map => we write the buffer right away */
1986                 if (map->m_len == 0)
1987                         return true;
1988                 return false;
1989         }
1990
1991         /* First block in the extent? */
1992         if (map->m_len == 0) {
1993                 map->m_lblk = lblk;
1994                 map->m_len = 1;
1995                 map->m_flags = bh->b_state & BH_FLAGS;
1996                 return true;
1997         }
1998
1999         /* Don't go larger than mballoc is willing to allocate */
2000         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2001                 return false;
2002
2003         /* Can we merge the block to our big extent? */
2004         if (lblk == map->m_lblk + map->m_len &&
2005             (bh->b_state & BH_FLAGS) == map->m_flags) {
2006                 map->m_len++;
2007                 return true;
2008         }
2009         return false;
2010 }
2011
2012 /*
2013  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2014  *
2015  * @mpd - extent of blocks for mapping
2016  * @head - the first buffer in the page
2017  * @bh - buffer we should start processing from
2018  * @lblk - logical number of the block in the file corresponding to @bh
2019  *
2020  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2021  * the page for IO if all buffers in this page were mapped and there's no
2022  * accumulated extent of buffers to map or add buffers in the page to the
2023  * extent of buffers to map. The function returns 1 if the caller can continue
2024  * by processing the next page, 0 if it should stop adding buffers to the
2025  * extent to map because we cannot extend it anymore. It can also return value
2026  * < 0 in case of error during IO submission.
2027  */
2028 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2029                                    struct buffer_head *head,
2030                                    struct buffer_head *bh,
2031                                    ext4_lblk_t lblk)
2032 {
2033         struct inode *inode = mpd->inode;
2034         int err;
2035         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2036                                                         >> inode->i_blkbits;
2037
2038         do {
2039                 BUG_ON(buffer_locked(bh));
2040
2041                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2042                         /* Found extent to map? */
2043                         if (mpd->map.m_len)
2044                                 return 0;
2045                         /* Everything mapped so far and we hit EOF */
2046                         break;
2047                 }
2048         } while (lblk++, (bh = bh->b_this_page) != head);
2049         /* So far everything mapped? Submit the page for IO. */
2050         if (mpd->map.m_len == 0) {
2051                 err = mpage_submit_page(mpd, head->b_page);
2052                 if (err < 0)
2053                         return err;
2054         }
2055         return lblk < blocks;
2056 }
2057
2058 /*
2059  * mpage_map_buffers - update buffers corresponding to changed extent and
2060  *                     submit fully mapped pages for IO
2061  *
2062  * @mpd - description of extent to map, on return next extent to map
2063  *
2064  * Scan buffers corresponding to changed extent (we expect corresponding pages
2065  * to be already locked) and update buffer state according to new extent state.
2066  * We map delalloc buffers to their physical location, clear unwritten bits,
2067  * and mark buffers as uninit when we perform writes to unwritten extents
2068  * and do extent conversion after IO is finished. If the last page is not fully
2069  * mapped, we update @map to the next extent in the last page that needs
2070  * mapping. Otherwise we submit the page for IO.
2071  */
2072 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2073 {
2074         struct pagevec pvec;
2075         int nr_pages, i;
2076         struct inode *inode = mpd->inode;
2077         struct buffer_head *head, *bh;
2078         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2079         pgoff_t start, end;
2080         ext4_lblk_t lblk;
2081         sector_t pblock;
2082         int err;
2083
2084         start = mpd->map.m_lblk >> bpp_bits;
2085         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2086         lblk = start << bpp_bits;
2087         pblock = mpd->map.m_pblk;
2088
2089         pagevec_init(&pvec, 0);
2090         while (start <= end) {
2091                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2092                                           PAGEVEC_SIZE);
2093                 if (nr_pages == 0)
2094                         break;
2095                 for (i = 0; i < nr_pages; i++) {
2096                         struct page *page = pvec.pages[i];
2097
2098                         if (page->index > end)
2099                                 break;
2100                         /* Up to 'end' pages must be contiguous */
2101                         BUG_ON(page->index != start);
2102                         bh = head = page_buffers(page);
2103                         do {
2104                                 if (lblk < mpd->map.m_lblk)
2105                                         continue;
2106                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2107                                         /*
2108                                          * Buffer after end of mapped extent.
2109                                          * Find next buffer in the page to map.
2110                                          */
2111                                         mpd->map.m_len = 0;
2112                                         mpd->map.m_flags = 0;
2113                                         /*
2114                                          * FIXME: If dioread_nolock supports
2115                                          * blocksize < pagesize, we need to make
2116                                          * sure we add size mapped so far to
2117                                          * io_end->size as the following call
2118                                          * can submit the page for IO.
2119                                          */
2120                                         err = mpage_process_page_bufs(mpd, head,
2121                                                                       bh, lblk);
2122                                         pagevec_release(&pvec);
2123                                         if (err > 0)
2124                                                 err = 0;
2125                                         return err;
2126                                 }
2127                                 if (buffer_delay(bh)) {
2128                                         clear_buffer_delay(bh);
2129                                         bh->b_blocknr = pblock++;
2130                                 }
2131                                 clear_buffer_unwritten(bh);
2132                         } while (lblk++, (bh = bh->b_this_page) != head);
2133
2134                         /*
2135                          * FIXME: This is going to break if dioread_nolock
2136                          * supports blocksize < pagesize as we will try to
2137                          * convert potentially unmapped parts of inode.
2138                          */
2139                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2140                         /* Page fully mapped - let IO run! */
2141                         err = mpage_submit_page(mpd, page);
2142                         if (err < 0) {
2143                                 pagevec_release(&pvec);
2144                                 return err;
2145                         }
2146                         start++;
2147                 }
2148                 pagevec_release(&pvec);
2149         }
2150         /* Extent fully mapped and matches with page boundary. We are done. */
2151         mpd->map.m_len = 0;
2152         mpd->map.m_flags = 0;
2153         return 0;
2154 }
2155
2156 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2157 {
2158         struct inode *inode = mpd->inode;
2159         struct ext4_map_blocks *map = &mpd->map;
2160         int get_blocks_flags;
2161         int err, dioread_nolock;
2162
2163         trace_ext4_da_write_pages_extent(inode, map);
2164         /*
2165          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2166          * to convert an unwritten extent to be initialized (in the case
2167          * where we have written into one or more preallocated blocks).  It is
2168          * possible that we're going to need more metadata blocks than
2169          * previously reserved. However we must not fail because we're in
2170          * writeback and there is nothing we can do about it so it might result
2171          * in data loss.  So use reserved blocks to allocate metadata if
2172          * possible.
2173          *
2174          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2175          * the blocks in question are delalloc blocks.  This indicates
2176          * that the blocks and quotas has already been checked when
2177          * the data was copied into the page cache.
2178          */
2179         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2180                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2181         dioread_nolock = ext4_should_dioread_nolock(inode);
2182         if (dioread_nolock)
2183                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2184         if (map->m_flags & (1 << BH_Delay))
2185                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2186
2187         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2188         if (err < 0)
2189                 return err;
2190         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2191                 if (!mpd->io_submit.io_end->handle &&
2192                     ext4_handle_valid(handle)) {
2193                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2194                         handle->h_rsv_handle = NULL;
2195                 }
2196                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2197         }
2198
2199         BUG_ON(map->m_len == 0);
2200         if (map->m_flags & EXT4_MAP_NEW) {
2201                 struct block_device *bdev = inode->i_sb->s_bdev;
2202                 int i;
2203
2204                 for (i = 0; i < map->m_len; i++)
2205                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2206         }
2207         return 0;
2208 }
2209
2210 /*
2211  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2212  *                               mpd->len and submit pages underlying it for IO
2213  *
2214  * @handle - handle for journal operations
2215  * @mpd - extent to map
2216  * @give_up_on_write - we set this to true iff there is a fatal error and there
2217  *                     is no hope of writing the data. The caller should discard
2218  *                     dirty pages to avoid infinite loops.
2219  *
2220  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2221  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2222  * them to initialized or split the described range from larger unwritten
2223  * extent. Note that we need not map all the described range since allocation
2224  * can return less blocks or the range is covered by more unwritten extents. We
2225  * cannot map more because we are limited by reserved transaction credits. On
2226  * the other hand we always make sure that the last touched page is fully
2227  * mapped so that it can be written out (and thus forward progress is
2228  * guaranteed). After mapping we submit all mapped pages for IO.
2229  */
2230 static int mpage_map_and_submit_extent(handle_t *handle,
2231                                        struct mpage_da_data *mpd,
2232                                        bool *give_up_on_write)
2233 {
2234         struct inode *inode = mpd->inode;
2235         struct ext4_map_blocks *map = &mpd->map;
2236         int err;
2237         loff_t disksize;
2238         int progress = 0;
2239
2240         mpd->io_submit.io_end->offset =
2241                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2242         do {
2243                 err = mpage_map_one_extent(handle, mpd);
2244                 if (err < 0) {
2245                         struct super_block *sb = inode->i_sb;
2246
2247                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2248                                 goto invalidate_dirty_pages;
2249                         /*
2250                          * Let the uper layers retry transient errors.
2251                          * In the case of ENOSPC, if ext4_count_free_blocks()
2252                          * is non-zero, a commit should free up blocks.
2253                          */
2254                         if ((err == -ENOMEM) ||
2255                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2256                                 if (progress)
2257                                         goto update_disksize;
2258                                 return err;
2259                         }
2260                         ext4_msg(sb, KERN_CRIT,
2261                                  "Delayed block allocation failed for "
2262                                  "inode %lu at logical offset %llu with"
2263                                  " max blocks %u with error %d",
2264                                  inode->i_ino,
2265                                  (unsigned long long)map->m_lblk,
2266                                  (unsigned)map->m_len, -err);
2267                         ext4_msg(sb, KERN_CRIT,
2268                                  "This should not happen!! Data will "
2269                                  "be lost\n");
2270                         if (err == -ENOSPC)
2271                                 ext4_print_free_blocks(inode);
2272                 invalidate_dirty_pages:
2273                         *give_up_on_write = true;
2274                         return err;
2275                 }
2276                 progress = 1;
2277                 /*
2278                  * Update buffer state, submit mapped pages, and get us new
2279                  * extent to map
2280                  */
2281                 err = mpage_map_and_submit_buffers(mpd);
2282                 if (err < 0)
2283                         goto update_disksize;
2284         } while (map->m_len);
2285
2286 update_disksize:
2287         /*
2288          * Update on-disk size after IO is submitted.  Races with
2289          * truncate are avoided by checking i_size under i_data_sem.
2290          */
2291         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2292         if (disksize > EXT4_I(inode)->i_disksize) {
2293                 int err2;
2294                 loff_t i_size;
2295
2296                 down_write(&EXT4_I(inode)->i_data_sem);
2297                 i_size = i_size_read(inode);
2298                 if (disksize > i_size)
2299                         disksize = i_size;
2300                 if (disksize > EXT4_I(inode)->i_disksize)
2301                         EXT4_I(inode)->i_disksize = disksize;
2302                 err2 = ext4_mark_inode_dirty(handle, inode);
2303                 up_write(&EXT4_I(inode)->i_data_sem);
2304                 if (err2)
2305                         ext4_error(inode->i_sb,
2306                                    "Failed to mark inode %lu dirty",
2307                                    inode->i_ino);
2308                 if (!err)
2309                         err = err2;
2310         }
2311         return err;
2312 }
2313
2314 /*
2315  * Calculate the total number of credits to reserve for one writepages
2316  * iteration. This is called from ext4_writepages(). We map an extent of
2317  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2318  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2319  * bpp - 1 blocks in bpp different extents.
2320  */
2321 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2322 {
2323         int bpp = ext4_journal_blocks_per_page(inode);
2324
2325         return ext4_meta_trans_blocks(inode,
2326                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2327 }
2328
2329 /*
2330  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2331  *                               and underlying extent to map
2332  *
2333  * @mpd - where to look for pages
2334  *
2335  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2336  * IO immediately. When we find a page which isn't mapped we start accumulating
2337  * extent of buffers underlying these pages that needs mapping (formed by
2338  * either delayed or unwritten buffers). We also lock the pages containing
2339  * these buffers. The extent found is returned in @mpd structure (starting at
2340  * mpd->lblk with length mpd->len blocks).
2341  *
2342  * Note that this function can attach bios to one io_end structure which are
2343  * neither logically nor physically contiguous. Although it may seem as an
2344  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2345  * case as we need to track IO to all buffers underlying a page in one io_end.
2346  */
2347 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2348 {
2349         struct address_space *mapping = mpd->inode->i_mapping;
2350         struct pagevec pvec;
2351         unsigned int nr_pages;
2352         long left = mpd->wbc->nr_to_write;
2353         pgoff_t index = mpd->first_page;
2354         pgoff_t end = mpd->last_page;
2355         int tag;
2356         int i, err = 0;
2357         int blkbits = mpd->inode->i_blkbits;
2358         ext4_lblk_t lblk;
2359         struct buffer_head *head;
2360
2361         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2362                 tag = PAGECACHE_TAG_TOWRITE;
2363         else
2364                 tag = PAGECACHE_TAG_DIRTY;
2365
2366         pagevec_init(&pvec, 0);
2367         mpd->map.m_len = 0;
2368         mpd->next_page = index;
2369         while (index <= end) {
2370                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2371                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2372                 if (nr_pages == 0)
2373                         goto out;
2374
2375                 for (i = 0; i < nr_pages; i++) {
2376                         struct page *page = pvec.pages[i];
2377
2378                         /*
2379                          * At this point, the page may be truncated or
2380                          * invalidated (changing page->mapping to NULL), or
2381                          * even swizzled back from swapper_space to tmpfs file
2382                          * mapping. However, page->index will not change
2383                          * because we have a reference on the page.
2384                          */
2385                         if (page->index > end)
2386                                 goto out;
2387
2388                         /*
2389                          * Accumulated enough dirty pages? This doesn't apply
2390                          * to WB_SYNC_ALL mode. For integrity sync we have to
2391                          * keep going because someone may be concurrently
2392                          * dirtying pages, and we might have synced a lot of
2393                          * newly appeared dirty pages, but have not synced all
2394                          * of the old dirty pages.
2395                          */
2396                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2397                                 goto out;
2398
2399                         /* If we can't merge this page, we are done. */
2400                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2401                                 goto out;
2402
2403                         lock_page(page);
2404                         /*
2405                          * If the page is no longer dirty, or its mapping no
2406                          * longer corresponds to inode we are writing (which
2407                          * means it has been truncated or invalidated), or the
2408                          * page is already under writeback and we are not doing
2409                          * a data integrity writeback, skip the page
2410                          */
2411                         if (!PageDirty(page) ||
2412                             (PageWriteback(page) &&
2413                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2414                             unlikely(page->mapping != mapping)) {
2415                                 unlock_page(page);
2416                                 continue;
2417                         }
2418
2419                         wait_on_page_writeback(page);
2420                         BUG_ON(PageWriteback(page));
2421
2422                         if (mpd->map.m_len == 0)
2423                                 mpd->first_page = page->index;
2424                         mpd->next_page = page->index + 1;
2425                         /* Add all dirty buffers to mpd */
2426                         lblk = ((ext4_lblk_t)page->index) <<
2427                                 (PAGE_CACHE_SHIFT - blkbits);
2428                         head = page_buffers(page);
2429                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2430                         if (err <= 0)
2431                                 goto out;
2432                         err = 0;
2433                         left--;
2434                 }
2435                 pagevec_release(&pvec);
2436                 cond_resched();
2437         }
2438         return 0;
2439 out:
2440         pagevec_release(&pvec);
2441         return err;
2442 }
2443
2444 static int __writepage(struct page *page, struct writeback_control *wbc,
2445                        void *data)
2446 {
2447         struct address_space *mapping = data;
2448         int ret = ext4_writepage(page, wbc);
2449         mapping_set_error(mapping, ret);
2450         return ret;
2451 }
2452
2453 static int ext4_writepages(struct address_space *mapping,
2454                            struct writeback_control *wbc)
2455 {
2456         pgoff_t writeback_index = 0;
2457         long nr_to_write = wbc->nr_to_write;
2458         int range_whole = 0;
2459         int cycled = 1;
2460         handle_t *handle = NULL;
2461         struct mpage_da_data mpd;
2462         struct inode *inode = mapping->host;
2463         int needed_blocks, rsv_blocks = 0, ret = 0;
2464         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2465         bool done;
2466         struct blk_plug plug;
2467         bool give_up_on_write = false;
2468
2469         trace_ext4_writepages(inode, wbc);
2470
2471         /*
2472          * No pages to write? This is mainly a kludge to avoid starting
2473          * a transaction for special inodes like journal inode on last iput()
2474          * because that could violate lock ordering on umount
2475          */
2476         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2477                 goto out_writepages;
2478
2479         if (ext4_should_journal_data(inode)) {
2480                 struct blk_plug plug;
2481
2482                 blk_start_plug(&plug);
2483                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2484                 blk_finish_plug(&plug);
2485                 goto out_writepages;
2486         }
2487
2488         /*
2489          * If the filesystem has aborted, it is read-only, so return
2490          * right away instead of dumping stack traces later on that
2491          * will obscure the real source of the problem.  We test
2492          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2493          * the latter could be true if the filesystem is mounted
2494          * read-only, and in that case, ext4_writepages should
2495          * *never* be called, so if that ever happens, we would want
2496          * the stack trace.
2497          */
2498         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2499                 ret = -EROFS;
2500                 goto out_writepages;
2501         }
2502
2503         if (ext4_should_dioread_nolock(inode)) {
2504                 /*
2505                  * We may need to convert up to one extent per block in
2506                  * the page and we may dirty the inode.
2507                  */
2508                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2509         }
2510
2511         /*
2512          * If we have inline data and arrive here, it means that
2513          * we will soon create the block for the 1st page, so
2514          * we'd better clear the inline data here.
2515          */
2516         if (ext4_has_inline_data(inode)) {
2517                 /* Just inode will be modified... */
2518                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2519                 if (IS_ERR(handle)) {
2520                         ret = PTR_ERR(handle);
2521                         goto out_writepages;
2522                 }
2523                 BUG_ON(ext4_test_inode_state(inode,
2524                                 EXT4_STATE_MAY_INLINE_DATA));
2525                 ext4_destroy_inline_data(handle, inode);
2526                 ext4_journal_stop(handle);
2527         }
2528
2529         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2530                 range_whole = 1;
2531
2532         if (wbc->range_cyclic) {
2533                 writeback_index = mapping->writeback_index;
2534                 if (writeback_index)
2535                         cycled = 0;
2536                 mpd.first_page = writeback_index;
2537                 mpd.last_page = -1;
2538         } else {
2539                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2540                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2541         }
2542
2543         mpd.inode = inode;
2544         mpd.wbc = wbc;
2545         ext4_io_submit_init(&mpd.io_submit, wbc);
2546 retry:
2547         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2548                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2549         done = false;
2550         blk_start_plug(&plug);
2551         while (!done && mpd.first_page <= mpd.last_page) {
2552                 /* For each extent of pages we use new io_end */
2553                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2554                 if (!mpd.io_submit.io_end) {
2555                         ret = -ENOMEM;
2556                         break;
2557                 }
2558
2559                 /*
2560                  * We have two constraints: We find one extent to map and we
2561                  * must always write out whole page (makes a difference when
2562                  * blocksize < pagesize) so that we don't block on IO when we
2563                  * try to write out the rest of the page. Journalled mode is
2564                  * not supported by delalloc.
2565                  */
2566                 BUG_ON(ext4_should_journal_data(inode));
2567                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2568
2569                 /* start a new transaction */
2570                 handle = ext4_journal_start_with_reserve(inode,
2571                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2572                 if (IS_ERR(handle)) {
2573                         ret = PTR_ERR(handle);
2574                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2575                                "%ld pages, ino %lu; err %d", __func__,
2576                                 wbc->nr_to_write, inode->i_ino, ret);
2577                         /* Release allocated io_end */
2578                         ext4_put_io_end(mpd.io_submit.io_end);
2579                         break;
2580                 }
2581
2582                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2583                 ret = mpage_prepare_extent_to_map(&mpd);
2584                 if (!ret) {
2585                         if (mpd.map.m_len)
2586                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2587                                         &give_up_on_write);
2588                         else {
2589                                 /*
2590                                  * We scanned the whole range (or exhausted
2591                                  * nr_to_write), submitted what was mapped and
2592                                  * didn't find anything needing mapping. We are
2593                                  * done.
2594                                  */
2595                                 done = true;
2596                         }
2597                 }
2598                 /*
2599                  * Caution: If the handle is synchronous,
2600                  * ext4_journal_stop() can wait for transaction commit
2601                  * to finish which may depend on writeback of pages to
2602                  * complete or on page lock to be released.  In that
2603                  * case, we have to wait until after after we have
2604                  * submitted all the IO, released page locks we hold,
2605                  * and dropped io_end reference (for extent conversion
2606                  * to be able to complete) before stopping the handle.
2607                  */
2608                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2609                         ext4_journal_stop(handle);
2610                         handle = NULL;
2611                 }
2612                 /* Submit prepared bio */
2613                 ext4_io_submit(&mpd.io_submit);
2614                 /* Unlock pages we didn't use */
2615                 mpage_release_unused_pages(&mpd, give_up_on_write);
2616                 /*
2617                  * Drop our io_end reference we got from init. We have
2618                  * to be careful and use deferred io_end finishing if
2619                  * we are still holding the transaction as we can
2620                  * release the last reference to io_end which may end
2621                  * up doing unwritten extent conversion.
2622                  */
2623                 if (handle) {
2624                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2625                         ext4_journal_stop(handle);
2626                 } else
2627                         ext4_put_io_end(mpd.io_submit.io_end);
2628
2629                 if (ret == -ENOSPC && sbi->s_journal) {
2630                         /*
2631                          * Commit the transaction which would
2632                          * free blocks released in the transaction
2633                          * and try again
2634                          */
2635                         jbd2_journal_force_commit_nested(sbi->s_journal);
2636                         ret = 0;
2637                         continue;
2638                 }
2639                 /* Fatal error - ENOMEM, EIO... */
2640                 if (ret)
2641                         break;
2642         }
2643         blk_finish_plug(&plug);
2644         if (!ret && !cycled && wbc->nr_to_write > 0) {
2645                 cycled = 1;
2646                 mpd.last_page = writeback_index - 1;
2647                 mpd.first_page = 0;
2648                 goto retry;
2649         }
2650
2651         /* Update index */
2652         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2653                 /*
2654                  * Set the writeback_index so that range_cyclic
2655                  * mode will write it back later
2656                  */
2657                 mapping->writeback_index = mpd.first_page;
2658
2659 out_writepages:
2660         trace_ext4_writepages_result(inode, wbc, ret,
2661                                      nr_to_write - wbc->nr_to_write);
2662         return ret;
2663 }
2664
2665 static int ext4_nonda_switch(struct super_block *sb)
2666 {
2667         s64 free_clusters, dirty_clusters;
2668         struct ext4_sb_info *sbi = EXT4_SB(sb);
2669
2670         /*
2671          * switch to non delalloc mode if we are running low
2672          * on free block. The free block accounting via percpu
2673          * counters can get slightly wrong with percpu_counter_batch getting
2674          * accumulated on each CPU without updating global counters
2675          * Delalloc need an accurate free block accounting. So switch
2676          * to non delalloc when we are near to error range.
2677          */
2678         free_clusters =
2679                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2680         dirty_clusters =
2681                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2682         /*
2683          * Start pushing delalloc when 1/2 of free blocks are dirty.
2684          */
2685         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2686                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2687
2688         if (2 * free_clusters < 3 * dirty_clusters ||
2689             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2690                 /*
2691                  * free block count is less than 150% of dirty blocks
2692                  * or free blocks is less than watermark
2693                  */
2694                 return 1;
2695         }
2696         return 0;
2697 }
2698
2699 /* We always reserve for an inode update; the superblock could be there too */
2700 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2701 {
2702         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2703                 return 1;
2704
2705         if (pos + len <= 0x7fffffffULL)
2706                 return 1;
2707
2708         /* We might need to update the superblock to set LARGE_FILE */
2709         return 2;
2710 }
2711
2712 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2713                                loff_t pos, unsigned len, unsigned flags,
2714                                struct page **pagep, void **fsdata)
2715 {
2716         int ret, retries = 0;
2717         struct page *page;
2718         pgoff_t index;
2719         struct inode *inode = mapping->host;
2720         handle_t *handle;
2721
2722         index = pos >> PAGE_CACHE_SHIFT;
2723
2724         if (ext4_nonda_switch(inode->i_sb)) {
2725                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2726                 return ext4_write_begin(file, mapping, pos,
2727                                         len, flags, pagep, fsdata);
2728         }
2729         *fsdata = (void *)0;
2730         trace_ext4_da_write_begin(inode, pos, len, flags);
2731
2732         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2733                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2734                                                       pos, len, flags,
2735                                                       pagep, fsdata);
2736                 if (ret < 0)
2737                         return ret;
2738                 if (ret == 1)
2739                         return 0;
2740         }
2741
2742         /*
2743          * grab_cache_page_write_begin() can take a long time if the
2744          * system is thrashing due to memory pressure, or if the page
2745          * is being written back.  So grab it first before we start
2746          * the transaction handle.  This also allows us to allocate
2747          * the page (if needed) without using GFP_NOFS.
2748          */
2749 retry_grab:
2750         page = grab_cache_page_write_begin(mapping, index, flags);
2751         if (!page)
2752                 return -ENOMEM;
2753         unlock_page(page);
2754
2755         /*
2756          * With delayed allocation, we don't log the i_disksize update
2757          * if there is delayed block allocation. But we still need
2758          * to journalling the i_disksize update if writes to the end
2759          * of file which has an already mapped buffer.
2760          */
2761 retry_journal:
2762         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2763                                 ext4_da_write_credits(inode, pos, len));
2764         if (IS_ERR(handle)) {
2765                 page_cache_release(page);
2766                 return PTR_ERR(handle);
2767         }
2768
2769         lock_page(page);
2770         if (page->mapping != mapping) {
2771                 /* The page got truncated from under us */
2772                 unlock_page(page);
2773                 page_cache_release(page);
2774                 ext4_journal_stop(handle);
2775                 goto retry_grab;
2776         }
2777         /* In case writeback began while the page was unlocked */
2778         wait_for_stable_page(page);
2779
2780 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2781         ret = ext4_block_write_begin(page, pos, len,
2782                                      ext4_da_get_block_prep);
2783 #else
2784         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2785 #endif
2786         if (ret < 0) {
2787                 unlock_page(page);
2788                 ext4_journal_stop(handle);
2789                 /*
2790                  * block_write_begin may have instantiated a few blocks
2791                  * outside i_size.  Trim these off again. Don't need
2792                  * i_size_read because we hold i_mutex.
2793                  */
2794                 if (pos + len > inode->i_size)
2795                         ext4_truncate_failed_write(inode);
2796
2797                 if (ret == -ENOSPC &&
2798                     ext4_should_retry_alloc(inode->i_sb, &retries))
2799                         goto retry_journal;
2800
2801                 page_cache_release(page);
2802                 return ret;
2803         }
2804
2805         *pagep = page;
2806         return ret;
2807 }
2808
2809 /*
2810  * Check if we should update i_disksize
2811  * when write to the end of file but not require block allocation
2812  */
2813 static int ext4_da_should_update_i_disksize(struct page *page,
2814                                             unsigned long offset)
2815 {
2816         struct buffer_head *bh;
2817         struct inode *inode = page->mapping->host;
2818         unsigned int idx;
2819         int i;
2820
2821         bh = page_buffers(page);
2822         idx = offset >> inode->i_blkbits;
2823
2824         for (i = 0; i < idx; i++)
2825                 bh = bh->b_this_page;
2826
2827         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2828                 return 0;
2829         return 1;
2830 }
2831
2832 static int ext4_da_write_end(struct file *file,
2833                              struct address_space *mapping,
2834                              loff_t pos, unsigned len, unsigned copied,
2835                              struct page *page, void *fsdata)
2836 {
2837         struct inode *inode = mapping->host;
2838         int ret = 0, ret2;
2839         handle_t *handle = ext4_journal_current_handle();
2840         loff_t new_i_size;
2841         unsigned long start, end;
2842         int write_mode = (int)(unsigned long)fsdata;
2843
2844         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2845                 return ext4_write_end(file, mapping, pos,
2846                                       len, copied, page, fsdata);
2847
2848         trace_ext4_da_write_end(inode, pos, len, copied);
2849         start = pos & (PAGE_CACHE_SIZE - 1);
2850         end = start + copied - 1;
2851
2852         /*
2853          * generic_write_end() will run mark_inode_dirty() if i_size
2854          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2855          * into that.
2856          */
2857         new_i_size = pos + copied;
2858         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2859                 if (ext4_has_inline_data(inode) ||
2860                     ext4_da_should_update_i_disksize(page, end)) {
2861                         ext4_update_i_disksize(inode, new_i_size);
2862                         /* We need to mark inode dirty even if
2863                          * new_i_size is less that inode->i_size
2864                          * bu greater than i_disksize.(hint delalloc)
2865                          */
2866                         ext4_mark_inode_dirty(handle, inode);
2867                 }
2868         }
2869
2870         if (write_mode != CONVERT_INLINE_DATA &&
2871             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2872             ext4_has_inline_data(inode))
2873                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2874                                                      page);
2875         else
2876                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2877                                                         page, fsdata);
2878
2879         copied = ret2;
2880         if (ret2 < 0)
2881                 ret = ret2;
2882         ret2 = ext4_journal_stop(handle);
2883         if (!ret)
2884                 ret = ret2;
2885
2886         return ret ? ret : copied;
2887 }
2888
2889 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2890                                    unsigned int length)
2891 {
2892         /*
2893          * Drop reserved blocks
2894          */
2895         BUG_ON(!PageLocked(page));
2896         if (!page_has_buffers(page))
2897                 goto out;
2898
2899         ext4_da_page_release_reservation(page, offset, length);
2900
2901 out:
2902         ext4_invalidatepage(page, offset, length);
2903
2904         return;
2905 }
2906
2907 /*
2908  * Force all delayed allocation blocks to be allocated for a given inode.
2909  */
2910 int ext4_alloc_da_blocks(struct inode *inode)
2911 {
2912         trace_ext4_alloc_da_blocks(inode);
2913
2914         if (!EXT4_I(inode)->i_reserved_data_blocks)
2915                 return 0;
2916
2917         /*
2918          * We do something simple for now.  The filemap_flush() will
2919          * also start triggering a write of the data blocks, which is
2920          * not strictly speaking necessary (and for users of
2921          * laptop_mode, not even desirable).  However, to do otherwise
2922          * would require replicating code paths in:
2923          *
2924          * ext4_writepages() ->
2925          *    write_cache_pages() ---> (via passed in callback function)
2926          *        __mpage_da_writepage() -->
2927          *           mpage_add_bh_to_extent()
2928          *           mpage_da_map_blocks()
2929          *
2930          * The problem is that write_cache_pages(), located in
2931          * mm/page-writeback.c, marks pages clean in preparation for
2932          * doing I/O, which is not desirable if we're not planning on
2933          * doing I/O at all.
2934          *
2935          * We could call write_cache_pages(), and then redirty all of
2936          * the pages by calling redirty_page_for_writepage() but that
2937          * would be ugly in the extreme.  So instead we would need to
2938          * replicate parts of the code in the above functions,
2939          * simplifying them because we wouldn't actually intend to
2940          * write out the pages, but rather only collect contiguous
2941          * logical block extents, call the multi-block allocator, and
2942          * then update the buffer heads with the block allocations.
2943          *
2944          * For now, though, we'll cheat by calling filemap_flush(),
2945          * which will map the blocks, and start the I/O, but not
2946          * actually wait for the I/O to complete.
2947          */
2948         return filemap_flush(inode->i_mapping);
2949 }
2950
2951 /*
2952  * bmap() is special.  It gets used by applications such as lilo and by
2953  * the swapper to find the on-disk block of a specific piece of data.
2954  *
2955  * Naturally, this is dangerous if the block concerned is still in the
2956  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2957  * filesystem and enables swap, then they may get a nasty shock when the
2958  * data getting swapped to that swapfile suddenly gets overwritten by
2959  * the original zero's written out previously to the journal and
2960  * awaiting writeback in the kernel's buffer cache.
2961  *
2962  * So, if we see any bmap calls here on a modified, data-journaled file,
2963  * take extra steps to flush any blocks which might be in the cache.
2964  */
2965 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2966 {
2967         struct inode *inode = mapping->host;
2968         journal_t *journal;
2969         int err;
2970
2971         /*
2972          * We can get here for an inline file via the FIBMAP ioctl
2973          */
2974         if (ext4_has_inline_data(inode))
2975                 return 0;
2976
2977         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2978                         test_opt(inode->i_sb, DELALLOC)) {
2979                 /*
2980                  * With delalloc we want to sync the file
2981                  * so that we can make sure we allocate
2982                  * blocks for file
2983                  */
2984                 filemap_write_and_wait(mapping);
2985         }
2986
2987         if (EXT4_JOURNAL(inode) &&
2988             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2989                 /*
2990                  * This is a REALLY heavyweight approach, but the use of
2991                  * bmap on dirty files is expected to be extremely rare:
2992                  * only if we run lilo or swapon on a freshly made file
2993                  * do we expect this to happen.
2994                  *
2995                  * (bmap requires CAP_SYS_RAWIO so this does not
2996                  * represent an unprivileged user DOS attack --- we'd be
2997                  * in trouble if mortal users could trigger this path at
2998                  * will.)
2999                  *
3000                  * NB. EXT4_STATE_JDATA is not set on files other than
3001                  * regular files.  If somebody wants to bmap a directory
3002                  * or symlink and gets confused because the buffer
3003                  * hasn't yet been flushed to disk, they deserve
3004                  * everything they get.
3005                  */
3006
3007                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3008                 journal = EXT4_JOURNAL(inode);
3009                 jbd2_journal_lock_updates(journal);
3010                 err = jbd2_journal_flush(journal);
3011                 jbd2_journal_unlock_updates(journal);
3012
3013                 if (err)
3014                         return 0;
3015         }
3016
3017         return generic_block_bmap(mapping, block, ext4_get_block);
3018 }
3019
3020 static int ext4_readpage(struct file *file, struct page *page)
3021 {
3022         int ret = -EAGAIN;
3023         struct inode *inode = page->mapping->host;
3024
3025         trace_ext4_readpage(page);
3026
3027         if (ext4_has_inline_data(inode))
3028                 ret = ext4_readpage_inline(inode, page);
3029
3030         if (ret == -EAGAIN)
3031                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3032
3033         return ret;
3034 }
3035
3036 static int
3037 ext4_readpages(struct file *file, struct address_space *mapping,
3038                 struct list_head *pages, unsigned nr_pages)
3039 {
3040         struct inode *inode = mapping->host;
3041
3042         /* If the file has inline data, no need to do readpages. */
3043         if (ext4_has_inline_data(inode))
3044                 return 0;
3045
3046         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3047 }
3048
3049 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3050                                 unsigned int length)
3051 {
3052         trace_ext4_invalidatepage(page, offset, length);
3053
3054         /* No journalling happens on data buffers when this function is used */
3055         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3056
3057         block_invalidatepage(page, offset, length);
3058 }
3059
3060 static int __ext4_journalled_invalidatepage(struct page *page,
3061                                             unsigned int offset,
3062                                             unsigned int length)
3063 {
3064         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3065
3066         trace_ext4_journalled_invalidatepage(page, offset, length);
3067
3068         /*
3069          * If it's a full truncate we just forget about the pending dirtying
3070          */
3071         if (offset == 0 && length == PAGE_CACHE_SIZE)
3072                 ClearPageChecked(page);
3073
3074         return jbd2_journal_invalidatepage(journal, page, offset, length);
3075 }
3076
3077 /* Wrapper for aops... */
3078 static void ext4_journalled_invalidatepage(struct page *page,
3079                                            unsigned int offset,
3080                                            unsigned int length)
3081 {
3082         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3083 }
3084
3085 static int ext4_releasepage(struct page *page, gfp_t wait)
3086 {
3087         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3088
3089         trace_ext4_releasepage(page);
3090
3091         /* Page has dirty journalled data -> cannot release */
3092         if (PageChecked(page))
3093                 return 0;
3094         if (journal)
3095                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3096         else
3097                 return try_to_free_buffers(page);
3098 }
3099
3100 /*
3101  * ext4_get_block used when preparing for a DIO write or buffer write.
3102  * We allocate an uinitialized extent if blocks haven't been allocated.
3103  * The extent will be converted to initialized after the IO is complete.
3104  */
3105 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3106                    struct buffer_head *bh_result, int create)
3107 {
3108         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3109                    inode->i_ino, create);
3110         return _ext4_get_block(inode, iblock, bh_result,
3111                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3112 }
3113
3114 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3115                    struct buffer_head *bh_result, int create)
3116 {
3117         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3118                    inode->i_ino, create);
3119         return _ext4_get_block(inode, iblock, bh_result,
3120                                EXT4_GET_BLOCKS_NO_LOCK);
3121 }
3122
3123 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3124                    struct buffer_head *bh_result, int create)
3125 {
3126         int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3127         if (create)
3128                 flags |= EXT4_GET_BLOCKS_CREATE;
3129         ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3130                    inode->i_ino, create);
3131         return _ext4_get_block(inode, iblock, bh_result, flags);
3132 }
3133
3134 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3135                             ssize_t size, void *private)
3136 {
3137         ext4_io_end_t *io_end = iocb->private;
3138
3139         /* if not async direct IO just return */
3140         if (!io_end)
3141                 return;
3142
3143         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3144                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3145                   iocb->private, io_end->inode->i_ino, iocb, offset,
3146                   size);
3147
3148         iocb->private = NULL;
3149         io_end->offset = offset;
3150         io_end->size = size;
3151         ext4_put_io_end(io_end);
3152 }
3153
3154 /*
3155  * For ext4 extent files, ext4 will do direct-io write to holes,
3156  * preallocated extents, and those write extend the file, no need to
3157  * fall back to buffered IO.
3158  *
3159  * For holes, we fallocate those blocks, mark them as unwritten
3160  * If those blocks were preallocated, we mark sure they are split, but
3161  * still keep the range to write as unwritten.
3162  *
3163  * The unwritten extents will be converted to written when DIO is completed.
3164  * For async direct IO, since the IO may still pending when return, we
3165  * set up an end_io call back function, which will do the conversion
3166  * when async direct IO completed.
3167  *
3168  * If the O_DIRECT write will extend the file then add this inode to the
3169  * orphan list.  So recovery will truncate it back to the original size
3170  * if the machine crashes during the write.
3171  *
3172  */
3173 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3174                                   loff_t offset)
3175 {
3176         struct file *file = iocb->ki_filp;
3177         struct inode *inode = file->f_mapping->host;
3178         ssize_t ret;
3179         size_t count = iov_iter_count(iter);
3180         int overwrite = 0;
3181         get_block_t *get_block_func = NULL;
3182         int dio_flags = 0;
3183         loff_t final_size = offset + count;
3184         ext4_io_end_t *io_end = NULL;
3185
3186         /* Use the old path for reads and writes beyond i_size. */
3187         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3188                 return ext4_ind_direct_IO(iocb, iter, offset);
3189
3190         BUG_ON(iocb->private == NULL);
3191
3192         /*
3193          * Make all waiters for direct IO properly wait also for extent
3194          * conversion. This also disallows race between truncate() and
3195          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3196          */
3197         if (iov_iter_rw(iter) == WRITE)
3198                 inode_dio_begin(inode);
3199
3200         /* If we do a overwrite dio, i_mutex locking can be released */
3201         overwrite = *((int *)iocb->private);
3202
3203         if (overwrite) {
3204                 down_read(&EXT4_I(inode)->i_data_sem);
3205                 mutex_unlock(&inode->i_mutex);
3206         }
3207
3208         /*
3209          * We could direct write to holes and fallocate.
3210          *
3211          * Allocated blocks to fill the hole are marked as
3212          * unwritten to prevent parallel buffered read to expose
3213          * the stale data before DIO complete the data IO.
3214          *
3215          * As to previously fallocated extents, ext4 get_block will
3216          * just simply mark the buffer mapped but still keep the
3217          * extents unwritten.
3218          *
3219          * For non AIO case, we will convert those unwritten extents
3220          * to written after return back from blockdev_direct_IO.
3221          *
3222          * For async DIO, the conversion needs to be deferred when the
3223          * IO is completed. The ext4 end_io callback function will be
3224          * called to take care of the conversion work.  Here for async
3225          * case, we allocate an io_end structure to hook to the iocb.
3226          */
3227         iocb->private = NULL;
3228         ext4_inode_aio_set(inode, NULL);
3229         if (!is_sync_kiocb(iocb)) {
3230                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3231                 if (!io_end) {
3232                         ret = -ENOMEM;
3233                         goto retake_lock;
3234                 }
3235                 /*
3236                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3237                  */
3238                 iocb->private = ext4_get_io_end(io_end);
3239                 /*
3240                  * we save the io structure for current async direct
3241                  * IO, so that later ext4_map_blocks() could flag the
3242                  * io structure whether there is a unwritten extents
3243                  * needs to be converted when IO is completed.
3244                  */
3245                 ext4_inode_aio_set(inode, io_end);
3246         }
3247
3248         if (overwrite) {
3249                 get_block_func = ext4_get_block_write_nolock;
3250         } else {
3251                 get_block_func = ext4_get_block_write;
3252                 dio_flags = DIO_LOCKING;
3253         }
3254 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3255         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3256 #endif
3257         if (IS_DAX(inode))
3258                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3259                                 ext4_end_io_dio, dio_flags);
3260         else
3261                 ret = __blockdev_direct_IO(iocb, inode,
3262                                            inode->i_sb->s_bdev, iter, offset,
3263                                            get_block_func,
3264                                            ext4_end_io_dio, NULL, dio_flags);
3265
3266         /*
3267          * Put our reference to io_end. This can free the io_end structure e.g.
3268          * in sync IO case or in case of error. It can even perform extent
3269          * conversion if all bios we submitted finished before we got here.
3270          * Note that in that case iocb->private can be already set to NULL
3271          * here.
3272          */
3273         if (io_end) {
3274                 ext4_inode_aio_set(inode, NULL);
3275                 ext4_put_io_end(io_end);
3276                 /*
3277                  * When no IO was submitted ext4_end_io_dio() was not
3278                  * called so we have to put iocb's reference.
3279                  */
3280                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3281                         WARN_ON(iocb->private != io_end);
3282                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3283                         ext4_put_io_end(io_end);
3284                         iocb->private = NULL;
3285                 }
3286         }
3287         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3288                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3289                 int err;
3290                 /*
3291                  * for non AIO case, since the IO is already
3292                  * completed, we could do the conversion right here
3293                  */
3294                 err = ext4_convert_unwritten_extents(NULL, inode,
3295                                                      offset, ret);
3296                 if (err < 0)
3297                         ret = err;
3298                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3299         }
3300
3301 retake_lock:
3302         if (iov_iter_rw(iter) == WRITE)
3303                 inode_dio_end(inode);
3304         /* take i_mutex locking again if we do a ovewrite dio */
3305         if (overwrite) {
3306                 up_read(&EXT4_I(inode)->i_data_sem);
3307                 mutex_lock(&inode->i_mutex);
3308         }
3309
3310         return ret;
3311 }
3312
3313 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3314                               loff_t offset)
3315 {
3316         struct file *file = iocb->ki_filp;
3317         struct inode *inode = file->f_mapping->host;
3318         size_t count = iov_iter_count(iter);
3319         ssize_t ret;
3320
3321 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3322         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3323                 return 0;
3324 #endif
3325
3326         /*
3327          * If we are doing data journalling we don't support O_DIRECT
3328          */
3329         if (ext4_should_journal_data(inode))
3330                 return 0;
3331
3332         /* Let buffer I/O handle the inline data case. */
3333         if (ext4_has_inline_data(inode))
3334                 return 0;
3335
3336         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3337         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3338                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3339         else
3340                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3341         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3342         return ret;
3343 }
3344
3345 /*
3346  * Pages can be marked dirty completely asynchronously from ext4's journalling
3347  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3348  * much here because ->set_page_dirty is called under VFS locks.  The page is
3349  * not necessarily locked.
3350  *
3351  * We cannot just dirty the page and leave attached buffers clean, because the
3352  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3353  * or jbddirty because all the journalling code will explode.
3354  *
3355  * So what we do is to mark the page "pending dirty" and next time writepage
3356  * is called, propagate that into the buffers appropriately.
3357  */
3358 static int ext4_journalled_set_page_dirty(struct page *page)
3359 {
3360         SetPageChecked(page);
3361         return __set_page_dirty_nobuffers(page);
3362 }
3363
3364 static const struct address_space_operations ext4_aops = {
3365         .readpage               = ext4_readpage,
3366         .readpages              = ext4_readpages,
3367         .writepage              = ext4_writepage,
3368         .writepages             = ext4_writepages,
3369         .write_begin            = ext4_write_begin,
3370         .write_end              = ext4_write_end,
3371         .bmap                   = ext4_bmap,
3372         .invalidatepage         = ext4_invalidatepage,
3373         .releasepage            = ext4_releasepage,
3374         .direct_IO              = ext4_direct_IO,
3375         .migratepage            = buffer_migrate_page,
3376         .is_partially_uptodate  = block_is_partially_uptodate,
3377         .error_remove_page      = generic_error_remove_page,
3378 };
3379
3380 static const struct address_space_operations ext4_journalled_aops = {
3381         .readpage               = ext4_readpage,
3382         .readpages              = ext4_readpages,
3383         .writepage              = ext4_writepage,
3384         .writepages             = ext4_writepages,
3385         .write_begin            = ext4_write_begin,
3386         .write_end              = ext4_journalled_write_end,
3387         .set_page_dirty         = ext4_journalled_set_page_dirty,
3388         .bmap                   = ext4_bmap,
3389         .invalidatepage         = ext4_journalled_invalidatepage,
3390         .releasepage            = ext4_releasepage,
3391         .direct_IO              = ext4_direct_IO,
3392         .is_partially_uptodate  = block_is_partially_uptodate,
3393         .error_remove_page      = generic_error_remove_page,
3394 };
3395
3396 static const struct address_space_operations ext4_da_aops = {
3397         .readpage               = ext4_readpage,
3398         .readpages              = ext4_readpages,
3399         .writepage              = ext4_writepage,
3400         .writepages             = ext4_writepages,
3401         .write_begin            = ext4_da_write_begin,
3402         .write_end              = ext4_da_write_end,
3403         .bmap                   = ext4_bmap,
3404         .invalidatepage         = ext4_da_invalidatepage,
3405         .releasepage            = ext4_releasepage,
3406         .direct_IO              = ext4_direct_IO,
3407         .migratepage            = buffer_migrate_page,
3408         .is_partially_uptodate  = block_is_partially_uptodate,
3409         .error_remove_page      = generic_error_remove_page,
3410 };
3411
3412 void ext4_set_aops(struct inode *inode)
3413 {
3414         switch (ext4_inode_journal_mode(inode)) {
3415         case EXT4_INODE_ORDERED_DATA_MODE:
3416                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3417                 break;
3418         case EXT4_INODE_WRITEBACK_DATA_MODE:
3419                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3420                 break;
3421         case EXT4_INODE_JOURNAL_DATA_MODE:
3422                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3423                 return;
3424         default:
3425                 BUG();
3426         }
3427         if (test_opt(inode->i_sb, DELALLOC))
3428                 inode->i_mapping->a_ops = &ext4_da_aops;
3429         else
3430                 inode->i_mapping->a_ops = &ext4_aops;
3431 }
3432
3433 static int __ext4_block_zero_page_range(handle_t *handle,
3434                 struct address_space *mapping, loff_t from, loff_t length)
3435 {
3436         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3437         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3438         unsigned blocksize, pos;
3439         ext4_lblk_t iblock;
3440         struct inode *inode = mapping->host;
3441         struct buffer_head *bh;
3442         struct page *page;
3443         int err = 0;
3444
3445         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3446                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3447         if (!page)
3448                 return -ENOMEM;
3449
3450         blocksize = inode->i_sb->s_blocksize;
3451
3452         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3453
3454         if (!page_has_buffers(page))
3455                 create_empty_buffers(page, blocksize, 0);
3456
3457         /* Find the buffer that contains "offset" */
3458         bh = page_buffers(page);
3459         pos = blocksize;
3460         while (offset >= pos) {
3461                 bh = bh->b_this_page;
3462                 iblock++;
3463                 pos += blocksize;
3464         }
3465         if (buffer_freed(bh)) {
3466                 BUFFER_TRACE(bh, "freed: skip");
3467                 goto unlock;
3468         }
3469         if (!buffer_mapped(bh)) {
3470                 BUFFER_TRACE(bh, "unmapped");
3471                 ext4_get_block(inode, iblock, bh, 0);
3472                 /* unmapped? It's a hole - nothing to do */
3473                 if (!buffer_mapped(bh)) {
3474                         BUFFER_TRACE(bh, "still unmapped");
3475                         goto unlock;
3476                 }
3477         }
3478
3479         /* Ok, it's mapped. Make sure it's up-to-date */
3480         if (PageUptodate(page))
3481                 set_buffer_uptodate(bh);
3482
3483         if (!buffer_uptodate(bh)) {
3484                 err = -EIO;
3485                 ll_rw_block(READ, 1, &bh);
3486                 wait_on_buffer(bh);
3487                 /* Uhhuh. Read error. Complain and punt. */
3488                 if (!buffer_uptodate(bh))
3489                         goto unlock;
3490                 if (S_ISREG(inode->i_mode) &&
3491                     ext4_encrypted_inode(inode)) {
3492                         /* We expect the key to be set. */
3493                         BUG_ON(!ext4_has_encryption_key(inode));
3494                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3495                         WARN_ON_ONCE(ext4_decrypt(page));
3496                 }
3497         }
3498         if (ext4_should_journal_data(inode)) {
3499                 BUFFER_TRACE(bh, "get write access");
3500                 err = ext4_journal_get_write_access(handle, bh);
3501                 if (err)
3502                         goto unlock;
3503         }
3504         zero_user(page, offset, length);
3505         BUFFER_TRACE(bh, "zeroed end of block");
3506
3507         if (ext4_should_journal_data(inode)) {
3508                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3509         } else {
3510                 err = 0;
3511                 mark_buffer_dirty(bh);
3512                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3513                         err = ext4_jbd2_file_inode(handle, inode);
3514         }
3515
3516 unlock:
3517         unlock_page(page);
3518         page_cache_release(page);
3519         return err;
3520 }
3521
3522 /*
3523  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3524  * starting from file offset 'from'.  The range to be zero'd must
3525  * be contained with in one block.  If the specified range exceeds
3526  * the end of the block it will be shortened to end of the block
3527  * that cooresponds to 'from'
3528  */
3529 static int ext4_block_zero_page_range(handle_t *handle,
3530                 struct address_space *mapping, loff_t from, loff_t length)
3531 {
3532         struct inode *inode = mapping->host;
3533         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3534         unsigned blocksize = inode->i_sb->s_blocksize;
3535         unsigned max = blocksize - (offset & (blocksize - 1));
3536
3537         /*
3538          * correct length if it does not fall between
3539          * 'from' and the end of the block
3540          */
3541         if (length > max || length < 0)
3542                 length = max;
3543
3544         if (IS_DAX(inode))
3545                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3546         return __ext4_block_zero_page_range(handle, mapping, from, length);
3547 }
3548
3549 /*
3550  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3551  * up to the end of the block which corresponds to `from'.
3552  * This required during truncate. We need to physically zero the tail end
3553  * of that block so it doesn't yield old data if the file is later grown.
3554  */
3555 static int ext4_block_truncate_page(handle_t *handle,
3556                 struct address_space *mapping, loff_t from)
3557 {
3558         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3559         unsigned length;
3560         unsigned blocksize;
3561         struct inode *inode = mapping->host;
3562
3563         blocksize = inode->i_sb->s_blocksize;
3564         length = blocksize - (offset & (blocksize - 1));
3565
3566         return ext4_block_zero_page_range(handle, mapping, from, length);
3567 }
3568
3569 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3570                              loff_t lstart, loff_t length)
3571 {
3572         struct super_block *sb = inode->i_sb;
3573         struct address_space *mapping = inode->i_mapping;
3574         unsigned partial_start, partial_end;
3575         ext4_fsblk_t start, end;
3576         loff_t byte_end = (lstart + length - 1);
3577         int err = 0;
3578
3579         partial_start = lstart & (sb->s_blocksize - 1);
3580         partial_end = byte_end & (sb->s_blocksize - 1);
3581
3582         start = lstart >> sb->s_blocksize_bits;
3583         end = byte_end >> sb->s_blocksize_bits;
3584
3585         /* Handle partial zero within the single block */
3586         if (start == end &&
3587             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3588                 err = ext4_block_zero_page_range(handle, mapping,
3589                                                  lstart, length);
3590                 return err;
3591         }
3592         /* Handle partial zero out on the start of the range */
3593         if (partial_start) {
3594                 err = ext4_block_zero_page_range(handle, mapping,
3595                                                  lstart, sb->s_blocksize);
3596                 if (err)
3597                         return err;
3598         }
3599         /* Handle partial zero out on the end of the range */
3600         if (partial_end != sb->s_blocksize - 1)
3601                 err = ext4_block_zero_page_range(handle, mapping,
3602                                                  byte_end - partial_end,
3603                                                  partial_end + 1);
3604         return err;
3605 }
3606
3607 int ext4_can_truncate(struct inode *inode)
3608 {
3609         if (S_ISREG(inode->i_mode))
3610                 return 1;
3611         if (S_ISDIR(inode->i_mode))
3612                 return 1;
3613         if (S_ISLNK(inode->i_mode))
3614                 return !ext4_inode_is_fast_symlink(inode);
3615         return 0;
3616 }
3617
3618 /*
3619  * We have to make sure i_disksize gets properly updated before we truncate
3620  * page cache due to hole punching or zero range. Otherwise i_disksize update
3621  * can get lost as it may have been postponed to submission of writeback but
3622  * that will never happen after we truncate page cache.
3623  */
3624 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3625                                       loff_t len)
3626 {
3627         handle_t *handle;
3628         loff_t size = i_size_read(inode);
3629
3630         WARN_ON(!mutex_is_locked(&inode->i_mutex));
3631         if (offset > size || offset + len < size)
3632                 return 0;
3633
3634         if (EXT4_I(inode)->i_disksize >= size)
3635                 return 0;
3636
3637         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3638         if (IS_ERR(handle))
3639                 return PTR_ERR(handle);
3640         ext4_update_i_disksize(inode, size);
3641         ext4_mark_inode_dirty(handle, inode);
3642         ext4_journal_stop(handle);
3643
3644         return 0;
3645 }
3646
3647 /*
3648  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3649  * associated with the given offset and length
3650  *
3651  * @inode:  File inode
3652  * @offset: The offset where the hole will begin
3653  * @len:    The length of the hole
3654  *
3655  * Returns: 0 on success or negative on failure
3656  */
3657
3658 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3659 {
3660         struct super_block *sb = inode->i_sb;
3661         ext4_lblk_t first_block, stop_block;
3662         struct address_space *mapping = inode->i_mapping;
3663         loff_t first_block_offset, last_block_offset;
3664         handle_t *handle;
3665         unsigned int credits;
3666         int ret = 0;
3667
3668         if (!S_ISREG(inode->i_mode))
3669                 return -EOPNOTSUPP;
3670
3671         trace_ext4_punch_hole(inode, offset, length, 0);
3672
3673         /*
3674          * Write out all dirty pages to avoid race conditions
3675          * Then release them.
3676          */
3677         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3678                 ret = filemap_write_and_wait_range(mapping, offset,
3679                                                    offset + length - 1);
3680                 if (ret)
3681                         return ret;
3682         }
3683
3684         mutex_lock(&inode->i_mutex);
3685
3686         /* No need to punch hole beyond i_size */
3687         if (offset >= inode->i_size)
3688                 goto out_mutex;
3689
3690         /*
3691          * If the hole extends beyond i_size, set the hole
3692          * to end after the page that contains i_size
3693          */
3694         if (offset + length > inode->i_size) {
3695                 length = inode->i_size +
3696                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3697                    offset;
3698         }
3699
3700         if (offset & (sb->s_blocksize - 1) ||
3701             (offset + length) & (sb->s_blocksize - 1)) {
3702                 /*
3703                  * Attach jinode to inode for jbd2 if we do any zeroing of
3704                  * partial block
3705                  */
3706                 ret = ext4_inode_attach_jinode(inode);
3707                 if (ret < 0)
3708                         goto out_mutex;
3709
3710         }
3711
3712         /* Wait all existing dio workers, newcomers will block on i_mutex */
3713         ext4_inode_block_unlocked_dio(inode);
3714         inode_dio_wait(inode);
3715
3716         /*
3717          * Prevent page faults from reinstantiating pages we have released from
3718          * page cache.
3719          */
3720         down_write(&EXT4_I(inode)->i_mmap_sem);
3721         first_block_offset = round_up(offset, sb->s_blocksize);
3722         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3723
3724         /* Now release the pages and zero block aligned part of pages*/
3725         if (last_block_offset > first_block_offset) {
3726                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3727                 if (ret)
3728                         goto out_dio;
3729                 truncate_pagecache_range(inode, first_block_offset,
3730                                          last_block_offset);
3731         }
3732
3733         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3734                 credits = ext4_writepage_trans_blocks(inode);
3735         else
3736                 credits = ext4_blocks_for_truncate(inode);
3737         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3738         if (IS_ERR(handle)) {
3739                 ret = PTR_ERR(handle);
3740                 ext4_std_error(sb, ret);
3741                 goto out_dio;
3742         }
3743
3744         ret = ext4_zero_partial_blocks(handle, inode, offset,
3745                                        length);
3746         if (ret)
3747                 goto out_stop;
3748
3749         first_block = (offset + sb->s_blocksize - 1) >>
3750                 EXT4_BLOCK_SIZE_BITS(sb);
3751         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3752
3753         /* If there are no blocks to remove, return now */
3754         if (first_block >= stop_block)
3755                 goto out_stop;
3756
3757         down_write(&EXT4_I(inode)->i_data_sem);
3758         ext4_discard_preallocations(inode);
3759
3760         ret = ext4_es_remove_extent(inode, first_block,
3761                                     stop_block - first_block);
3762         if (ret) {
3763                 up_write(&EXT4_I(inode)->i_data_sem);
3764                 goto out_stop;
3765         }
3766
3767         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3768                 ret = ext4_ext_remove_space(inode, first_block,
3769                                             stop_block - 1);
3770         else
3771                 ret = ext4_ind_remove_space(handle, inode, first_block,
3772                                             stop_block);
3773
3774         up_write(&EXT4_I(inode)->i_data_sem);
3775         if (IS_SYNC(inode))
3776                 ext4_handle_sync(handle);
3777
3778         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3779         ext4_mark_inode_dirty(handle, inode);
3780 out_stop:
3781         ext4_journal_stop(handle);
3782 out_dio:
3783         up_write(&EXT4_I(inode)->i_mmap_sem);
3784         ext4_inode_resume_unlocked_dio(inode);
3785 out_mutex:
3786         mutex_unlock(&inode->i_mutex);
3787         return ret;
3788 }
3789
3790 int ext4_inode_attach_jinode(struct inode *inode)
3791 {
3792         struct ext4_inode_info *ei = EXT4_I(inode);
3793         struct jbd2_inode *jinode;
3794
3795         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3796                 return 0;
3797
3798         jinode = jbd2_alloc_inode(GFP_KERNEL);
3799         spin_lock(&inode->i_lock);
3800         if (!ei->jinode) {
3801                 if (!jinode) {
3802                         spin_unlock(&inode->i_lock);
3803                         return -ENOMEM;
3804                 }
3805                 ei->jinode = jinode;
3806                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3807                 jinode = NULL;
3808         }
3809         spin_unlock(&inode->i_lock);
3810         if (unlikely(jinode != NULL))
3811                 jbd2_free_inode(jinode);
3812         return 0;
3813 }
3814
3815 /*
3816  * ext4_truncate()
3817  *
3818  * We block out ext4_get_block() block instantiations across the entire
3819  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3820  * simultaneously on behalf of the same inode.
3821  *
3822  * As we work through the truncate and commit bits of it to the journal there
3823  * is one core, guiding principle: the file's tree must always be consistent on
3824  * disk.  We must be able to restart the truncate after a crash.
3825  *
3826  * The file's tree may be transiently inconsistent in memory (although it
3827  * probably isn't), but whenever we close off and commit a journal transaction,
3828  * the contents of (the filesystem + the journal) must be consistent and
3829  * restartable.  It's pretty simple, really: bottom up, right to left (although
3830  * left-to-right works OK too).
3831  *
3832  * Note that at recovery time, journal replay occurs *before* the restart of
3833  * truncate against the orphan inode list.
3834  *
3835  * The committed inode has the new, desired i_size (which is the same as
3836  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3837  * that this inode's truncate did not complete and it will again call
3838  * ext4_truncate() to have another go.  So there will be instantiated blocks
3839  * to the right of the truncation point in a crashed ext4 filesystem.  But
3840  * that's fine - as long as they are linked from the inode, the post-crash
3841  * ext4_truncate() run will find them and release them.
3842  */
3843 void ext4_truncate(struct inode *inode)
3844 {
3845         struct ext4_inode_info *ei = EXT4_I(inode);
3846         unsigned int credits;
3847         handle_t *handle;
3848         struct address_space *mapping = inode->i_mapping;
3849
3850         /*
3851          * There is a possibility that we're either freeing the inode
3852          * or it's a completely new inode. In those cases we might not
3853          * have i_mutex locked because it's not necessary.
3854          */
3855         if (!(inode->i_state & (I_NEW|I_FREEING)))
3856                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3857         trace_ext4_truncate_enter(inode);
3858
3859         if (!ext4_can_truncate(inode))
3860                 return;
3861
3862         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3863
3864         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3865                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3866
3867         if (ext4_has_inline_data(inode)) {
3868                 int has_inline = 1;
3869
3870                 ext4_inline_data_truncate(inode, &has_inline);
3871                 if (has_inline)
3872                         return;
3873         }
3874
3875         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3876         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3877                 if (ext4_inode_attach_jinode(inode) < 0)
3878                         return;
3879         }
3880
3881         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3882                 credits = ext4_writepage_trans_blocks(inode);
3883         else
3884                 credits = ext4_blocks_for_truncate(inode);
3885
3886         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3887         if (IS_ERR(handle)) {
3888                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3889                 return;
3890         }
3891
3892         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3893                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3894
3895         /*
3896          * We add the inode to the orphan list, so that if this
3897          * truncate spans multiple transactions, and we crash, we will
3898          * resume the truncate when the filesystem recovers.  It also
3899          * marks the inode dirty, to catch the new size.
3900          *
3901          * Implication: the file must always be in a sane, consistent
3902          * truncatable state while each transaction commits.
3903          */
3904         if (ext4_orphan_add(handle, inode))
3905                 goto out_stop;
3906
3907         down_write(&EXT4_I(inode)->i_data_sem);
3908
3909         ext4_discard_preallocations(inode);
3910
3911         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3912                 ext4_ext_truncate(handle, inode);
3913         else
3914                 ext4_ind_truncate(handle, inode);
3915
3916         up_write(&ei->i_data_sem);
3917
3918         if (IS_SYNC(inode))
3919                 ext4_handle_sync(handle);
3920
3921 out_stop:
3922         /*
3923          * If this was a simple ftruncate() and the file will remain alive,
3924          * then we need to clear up the orphan record which we created above.
3925          * However, if this was a real unlink then we were called by
3926          * ext4_evict_inode(), and we allow that function to clean up the
3927          * orphan info for us.
3928          */
3929         if (inode->i_nlink)
3930                 ext4_orphan_del(handle, inode);
3931
3932         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3933         ext4_mark_inode_dirty(handle, inode);
3934         ext4_journal_stop(handle);
3935
3936         trace_ext4_truncate_exit(inode);
3937 }
3938
3939 /*
3940  * ext4_get_inode_loc returns with an extra refcount against the inode's
3941  * underlying buffer_head on success. If 'in_mem' is true, we have all
3942  * data in memory that is needed to recreate the on-disk version of this
3943  * inode.
3944  */
3945 static int __ext4_get_inode_loc(struct inode *inode,
3946                                 struct ext4_iloc *iloc, int in_mem)
3947 {
3948         struct ext4_group_desc  *gdp;
3949         struct buffer_head      *bh;
3950         struct super_block      *sb = inode->i_sb;
3951         ext4_fsblk_t            block;
3952         int                     inodes_per_block, inode_offset;
3953
3954         iloc->bh = NULL;
3955         if (!ext4_valid_inum(sb, inode->i_ino))
3956                 return -EFSCORRUPTED;
3957
3958         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3959         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3960         if (!gdp)
3961                 return -EIO;
3962
3963         /*
3964          * Figure out the offset within the block group inode table
3965          */
3966         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3967         inode_offset = ((inode->i_ino - 1) %
3968                         EXT4_INODES_PER_GROUP(sb));
3969         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3970         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3971
3972         bh = sb_getblk(sb, block);
3973         if (unlikely(!bh))
3974                 return -ENOMEM;
3975         if (!buffer_uptodate(bh)) {
3976                 lock_buffer(bh);
3977
3978                 /*
3979                  * If the buffer has the write error flag, we have failed
3980                  * to write out another inode in the same block.  In this
3981                  * case, we don't have to read the block because we may
3982                  * read the old inode data successfully.
3983                  */
3984                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3985                         set_buffer_uptodate(bh);
3986
3987                 if (buffer_uptodate(bh)) {
3988                         /* someone brought it uptodate while we waited */
3989                         unlock_buffer(bh);
3990                         goto has_buffer;
3991                 }
3992
3993                 /*
3994                  * If we have all information of the inode in memory and this
3995                  * is the only valid inode in the block, we need not read the
3996                  * block.
3997                  */
3998                 if (in_mem) {
3999                         struct buffer_head *bitmap_bh;
4000                         int i, start;
4001
4002                         start = inode_offset & ~(inodes_per_block - 1);
4003
4004                         /* Is the inode bitmap in cache? */
4005                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4006                         if (unlikely(!bitmap_bh))
4007                                 goto make_io;
4008
4009                         /*
4010                          * If the inode bitmap isn't in cache then the
4011                          * optimisation may end up performing two reads instead
4012                          * of one, so skip it.
4013                          */
4014                         if (!buffer_uptodate(bitmap_bh)) {
4015                                 brelse(bitmap_bh);
4016                                 goto make_io;
4017                         }
4018                         for (i = start; i < start + inodes_per_block; i++) {
4019                                 if (i == inode_offset)
4020                                         continue;
4021                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4022                                         break;
4023                         }
4024                         brelse(bitmap_bh);
4025                         if (i == start + inodes_per_block) {
4026                                 /* all other inodes are free, so skip I/O */
4027                                 memset(bh->b_data, 0, bh->b_size);
4028                                 set_buffer_uptodate(bh);
4029                                 unlock_buffer(bh);
4030                                 goto has_buffer;
4031                         }
4032                 }
4033
4034 make_io:
4035                 /*
4036                  * If we need to do any I/O, try to pre-readahead extra
4037                  * blocks from the inode table.
4038                  */
4039                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4040                         ext4_fsblk_t b, end, table;
4041                         unsigned num;
4042                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4043
4044                         table = ext4_inode_table(sb, gdp);
4045                         /* s_inode_readahead_blks is always a power of 2 */
4046                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4047                         if (table > b)
4048                                 b = table;
4049                         end = b + ra_blks;
4050                         num = EXT4_INODES_PER_GROUP(sb);
4051                         if (ext4_has_group_desc_csum(sb))
4052                                 num -= ext4_itable_unused_count(sb, gdp);
4053                         table += num / inodes_per_block;
4054                         if (end > table)
4055                                 end = table;
4056                         while (b <= end)
4057                                 sb_breadahead(sb, b++);
4058                 }
4059
4060                 /*
4061                  * There are other valid inodes in the buffer, this inode
4062                  * has in-inode xattrs, or we don't have this inode in memory.
4063                  * Read the block from disk.
4064                  */
4065                 trace_ext4_load_inode(inode);
4066                 get_bh(bh);
4067                 bh->b_end_io = end_buffer_read_sync;
4068                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4069                 wait_on_buffer(bh);
4070                 if (!buffer_uptodate(bh)) {
4071                         EXT4_ERROR_INODE_BLOCK(inode, block,
4072                                                "unable to read itable block");
4073                         brelse(bh);
4074                         return -EIO;
4075                 }
4076         }
4077 has_buffer:
4078         iloc->bh = bh;
4079         return 0;
4080 }
4081
4082 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4083 {
4084         /* We have all inode data except xattrs in memory here. */
4085         return __ext4_get_inode_loc(inode, iloc,
4086                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4087 }
4088
4089 void ext4_set_inode_flags(struct inode *inode)
4090 {
4091         unsigned int flags = EXT4_I(inode)->i_flags;
4092         unsigned int new_fl = 0;
4093
4094         if (flags & EXT4_SYNC_FL)
4095                 new_fl |= S_SYNC;
4096         if (flags & EXT4_APPEND_FL)
4097                 new_fl |= S_APPEND;
4098         if (flags & EXT4_IMMUTABLE_FL)
4099                 new_fl |= S_IMMUTABLE;
4100         if (flags & EXT4_NOATIME_FL)
4101                 new_fl |= S_NOATIME;
4102         if (flags & EXT4_DIRSYNC_FL)
4103                 new_fl |= S_DIRSYNC;
4104         if (test_opt(inode->i_sb, DAX))
4105                 new_fl |= S_DAX;
4106         inode_set_flags(inode, new_fl,
4107                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4108 }
4109
4110 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4111 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4112 {
4113         unsigned int vfs_fl;
4114         unsigned long old_fl, new_fl;
4115
4116         do {
4117                 vfs_fl = ei->vfs_inode.i_flags;
4118                 old_fl = ei->i_flags;
4119                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4120                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4121                                 EXT4_DIRSYNC_FL);
4122                 if (vfs_fl & S_SYNC)
4123                         new_fl |= EXT4_SYNC_FL;
4124                 if (vfs_fl & S_APPEND)
4125                         new_fl |= EXT4_APPEND_FL;
4126                 if (vfs_fl & S_IMMUTABLE)
4127                         new_fl |= EXT4_IMMUTABLE_FL;
4128                 if (vfs_fl & S_NOATIME)
4129                         new_fl |= EXT4_NOATIME_FL;
4130                 if (vfs_fl & S_DIRSYNC)
4131                         new_fl |= EXT4_DIRSYNC_FL;
4132         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4133 }
4134
4135 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4136                                   struct ext4_inode_info *ei)
4137 {
4138         blkcnt_t i_blocks ;
4139         struct inode *inode = &(ei->vfs_inode);
4140         struct super_block *sb = inode->i_sb;
4141
4142         if (ext4_has_feature_huge_file(sb)) {
4143                 /* we are using combined 48 bit field */
4144                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4145                                         le32_to_cpu(raw_inode->i_blocks_lo);
4146                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4147                         /* i_blocks represent file system block size */
4148                         return i_blocks  << (inode->i_blkbits - 9);
4149                 } else {
4150                         return i_blocks;
4151                 }
4152         } else {
4153                 return le32_to_cpu(raw_inode->i_blocks_lo);
4154         }
4155 }
4156
4157 static inline void ext4_iget_extra_inode(struct inode *inode,
4158                                          struct ext4_inode *raw_inode,
4159                                          struct ext4_inode_info *ei)
4160 {
4161         __le32 *magic = (void *)raw_inode +
4162                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4163         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4164                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4165                 ext4_find_inline_data_nolock(inode);
4166         } else
4167                 EXT4_I(inode)->i_inline_off = 0;
4168 }
4169
4170 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4171 {
4172         struct ext4_iloc iloc;
4173         struct ext4_inode *raw_inode;
4174         struct ext4_inode_info *ei;
4175         struct inode *inode;
4176         journal_t *journal = EXT4_SB(sb)->s_journal;
4177         long ret;
4178         loff_t size;
4179         int block;
4180         uid_t i_uid;
4181         gid_t i_gid;
4182
4183         inode = iget_locked(sb, ino);
4184         if (!inode)
4185                 return ERR_PTR(-ENOMEM);
4186         if (!(inode->i_state & I_NEW))
4187                 return inode;
4188
4189         ei = EXT4_I(inode);
4190         iloc.bh = NULL;
4191
4192         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4193         if (ret < 0)
4194                 goto bad_inode;
4195         raw_inode = ext4_raw_inode(&iloc);
4196
4197         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4198                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4199                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4200                     EXT4_INODE_SIZE(inode->i_sb)) {
4201                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4202                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4203                                 EXT4_INODE_SIZE(inode->i_sb));
4204                         ret = -EFSCORRUPTED;
4205                         goto bad_inode;
4206                 }
4207         } else
4208                 ei->i_extra_isize = 0;
4209
4210         /* Precompute checksum seed for inode metadata */
4211         if (ext4_has_metadata_csum(sb)) {
4212                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4213                 __u32 csum;
4214                 __le32 inum = cpu_to_le32(inode->i_ino);
4215                 __le32 gen = raw_inode->i_generation;
4216                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4217                                    sizeof(inum));
4218                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4219                                               sizeof(gen));
4220         }
4221
4222         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4223                 EXT4_ERROR_INODE(inode, "checksum invalid");
4224                 ret = -EFSBADCRC;
4225                 goto bad_inode;
4226         }
4227
4228         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4229         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4230         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4231         if (!(test_opt(inode->i_sb, NO_UID32))) {
4232                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4233                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4234         }
4235         i_uid_write(inode, i_uid);
4236         i_gid_write(inode, i_gid);
4237         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4238
4239         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4240         ei->i_inline_off = 0;
4241         ei->i_dir_start_lookup = 0;
4242         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4243         /* We now have enough fields to check if the inode was active or not.
4244          * This is needed because nfsd might try to access dead inodes
4245          * the test is that same one that e2fsck uses
4246          * NeilBrown 1999oct15
4247          */
4248         if (inode->i_nlink == 0) {
4249                 if ((inode->i_mode == 0 ||
4250                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4251                     ino != EXT4_BOOT_LOADER_INO) {
4252                         /* this inode is deleted */
4253                         ret = -ESTALE;
4254                         goto bad_inode;
4255                 }
4256                 /* The only unlinked inodes we let through here have
4257                  * valid i_mode and are being read by the orphan
4258                  * recovery code: that's fine, we're about to complete
4259                  * the process of deleting those.
4260                  * OR it is the EXT4_BOOT_LOADER_INO which is
4261                  * not initialized on a new filesystem. */
4262         }
4263         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4264         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4265         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4266         if (ext4_has_feature_64bit(sb))
4267                 ei->i_file_acl |=
4268                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4269         inode->i_size = ext4_isize(raw_inode);
4270         if ((size = i_size_read(inode)) < 0) {
4271                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4272                 ret = -EFSCORRUPTED;
4273                 goto bad_inode;
4274         }
4275         ei->i_disksize = inode->i_size;
4276 #ifdef CONFIG_QUOTA
4277         ei->i_reserved_quota = 0;
4278 #endif
4279         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4280         ei->i_block_group = iloc.block_group;
4281         ei->i_last_alloc_group = ~0;
4282         /*
4283          * NOTE! The in-memory inode i_data array is in little-endian order
4284          * even on big-endian machines: we do NOT byteswap the block numbers!
4285          */
4286         for (block = 0; block < EXT4_N_BLOCKS; block++)
4287                 ei->i_data[block] = raw_inode->i_block[block];
4288         INIT_LIST_HEAD(&ei->i_orphan);
4289
4290         /*
4291          * Set transaction id's of transactions that have to be committed
4292          * to finish f[data]sync. We set them to currently running transaction
4293          * as we cannot be sure that the inode or some of its metadata isn't
4294          * part of the transaction - the inode could have been reclaimed and
4295          * now it is reread from disk.
4296          */
4297         if (journal) {
4298                 transaction_t *transaction;
4299                 tid_t tid;
4300
4301                 read_lock(&journal->j_state_lock);
4302                 if (journal->j_running_transaction)
4303                         transaction = journal->j_running_transaction;
4304                 else
4305                         transaction = journal->j_committing_transaction;
4306                 if (transaction)
4307                         tid = transaction->t_tid;
4308                 else
4309                         tid = journal->j_commit_sequence;
4310                 read_unlock(&journal->j_state_lock);
4311                 ei->i_sync_tid = tid;
4312                 ei->i_datasync_tid = tid;
4313         }
4314
4315         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4316                 if (ei->i_extra_isize == 0) {
4317                         /* The extra space is currently unused. Use it. */
4318                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4319                                             EXT4_GOOD_OLD_INODE_SIZE;
4320                 } else {
4321                         ext4_iget_extra_inode(inode, raw_inode, ei);
4322                 }
4323         }
4324
4325         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4326         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4327         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4328         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4329
4330         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4331                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4332                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4333                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334                                 inode->i_version |=
4335                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4336                 }
4337         }
4338
4339         ret = 0;
4340         if (ei->i_file_acl &&
4341             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4342                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4343                                  ei->i_file_acl);
4344                 ret = -EFSCORRUPTED;
4345                 goto bad_inode;
4346         } else if (!ext4_has_inline_data(inode)) {
4347                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4348                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4349                             (S_ISLNK(inode->i_mode) &&
4350                              !ext4_inode_is_fast_symlink(inode))))
4351                                 /* Validate extent which is part of inode */
4352                                 ret = ext4_ext_check_inode(inode);
4353                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4354                            (S_ISLNK(inode->i_mode) &&
4355                             !ext4_inode_is_fast_symlink(inode))) {
4356                         /* Validate block references which are part of inode */
4357                         ret = ext4_ind_check_inode(inode);
4358                 }
4359         }
4360         if (ret)
4361                 goto bad_inode;
4362
4363         if (S_ISREG(inode->i_mode)) {
4364                 inode->i_op = &ext4_file_inode_operations;
4365                 inode->i_fop = &ext4_file_operations;
4366                 ext4_set_aops(inode);
4367         } else if (S_ISDIR(inode->i_mode)) {
4368                 inode->i_op = &ext4_dir_inode_operations;
4369                 inode->i_fop = &ext4_dir_operations;
4370         } else if (S_ISLNK(inode->i_mode)) {
4371                 if (ext4_encrypted_inode(inode)) {
4372                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4373                         ext4_set_aops(inode);
4374                 } else if (ext4_inode_is_fast_symlink(inode)) {
4375                         inode->i_link = (char *)ei->i_data;
4376                         inode->i_op = &ext4_fast_symlink_inode_operations;
4377                         nd_terminate_link(ei->i_data, inode->i_size,
4378                                 sizeof(ei->i_data) - 1);
4379                 } else {
4380                         inode->i_op = &ext4_symlink_inode_operations;
4381                         ext4_set_aops(inode);
4382                 }
4383         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4384               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4385                 inode->i_op = &ext4_special_inode_operations;
4386                 if (raw_inode->i_block[0])
4387                         init_special_inode(inode, inode->i_mode,
4388                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4389                 else
4390                         init_special_inode(inode, inode->i_mode,
4391                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4392         } else if (ino == EXT4_BOOT_LOADER_INO) {
4393                 make_bad_inode(inode);
4394         } else {
4395                 ret = -EFSCORRUPTED;
4396                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4397                 goto bad_inode;
4398         }
4399         brelse(iloc.bh);
4400         ext4_set_inode_flags(inode);
4401         unlock_new_inode(inode);
4402         return inode;
4403
4404 bad_inode:
4405         brelse(iloc.bh);
4406         iget_failed(inode);
4407         return ERR_PTR(ret);
4408 }
4409
4410 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4411 {
4412         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4413                 return ERR_PTR(-EFSCORRUPTED);
4414         return ext4_iget(sb, ino);
4415 }
4416
4417 static int ext4_inode_blocks_set(handle_t *handle,
4418                                 struct ext4_inode *raw_inode,
4419                                 struct ext4_inode_info *ei)
4420 {
4421         struct inode *inode = &(ei->vfs_inode);
4422         u64 i_blocks = inode->i_blocks;
4423         struct super_block *sb = inode->i_sb;
4424
4425         if (i_blocks <= ~0U) {
4426                 /*
4427                  * i_blocks can be represented in a 32 bit variable
4428                  * as multiple of 512 bytes
4429                  */
4430                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4431                 raw_inode->i_blocks_high = 0;
4432                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4433                 return 0;
4434         }
4435         if (!ext4_has_feature_huge_file(sb))
4436                 return -EFBIG;
4437
4438         if (i_blocks <= 0xffffffffffffULL) {
4439                 /*
4440                  * i_blocks can be represented in a 48 bit variable
4441                  * as multiple of 512 bytes
4442                  */
4443                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4444                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4445                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4446         } else {
4447                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4448                 /* i_block is stored in file system block size */
4449                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4450                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4451                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4452         }
4453         return 0;
4454 }
4455
4456 struct other_inode {
4457         unsigned long           orig_ino;
4458         struct ext4_inode       *raw_inode;
4459 };
4460
4461 static int other_inode_match(struct inode * inode, unsigned long ino,
4462                              void *data)
4463 {
4464         struct other_inode *oi = (struct other_inode *) data;
4465
4466         if ((inode->i_ino != ino) ||
4467             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4468                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4469             ((inode->i_state & I_DIRTY_TIME) == 0))
4470                 return 0;
4471         spin_lock(&inode->i_lock);
4472         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4473                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4474             (inode->i_state & I_DIRTY_TIME)) {
4475                 struct ext4_inode_info  *ei = EXT4_I(inode);
4476
4477                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4478                 spin_unlock(&inode->i_lock);
4479
4480                 spin_lock(&ei->i_raw_lock);
4481                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4482                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4483                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4484                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4485                 spin_unlock(&ei->i_raw_lock);
4486                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4487                 return -1;
4488         }
4489         spin_unlock(&inode->i_lock);
4490         return -1;
4491 }
4492
4493 /*
4494  * Opportunistically update the other time fields for other inodes in
4495  * the same inode table block.
4496  */
4497 static void ext4_update_other_inodes_time(struct super_block *sb,
4498                                           unsigned long orig_ino, char *buf)
4499 {
4500         struct other_inode oi;
4501         unsigned long ino;
4502         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4503         int inode_size = EXT4_INODE_SIZE(sb);
4504
4505         oi.orig_ino = orig_ino;
4506         /*
4507          * Calculate the first inode in the inode table block.  Inode
4508          * numbers are one-based.  That is, the first inode in a block
4509          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4510          */
4511         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4512         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4513                 if (ino == orig_ino)
4514                         continue;
4515                 oi.raw_inode = (struct ext4_inode *) buf;
4516                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4517         }
4518 }
4519
4520 /*
4521  * Post the struct inode info into an on-disk inode location in the
4522  * buffer-cache.  This gobbles the caller's reference to the
4523  * buffer_head in the inode location struct.
4524  *
4525  * The caller must have write access to iloc->bh.
4526  */
4527 static int ext4_do_update_inode(handle_t *handle,
4528                                 struct inode *inode,
4529                                 struct ext4_iloc *iloc)
4530 {
4531         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4532         struct ext4_inode_info *ei = EXT4_I(inode);
4533         struct buffer_head *bh = iloc->bh;
4534         struct super_block *sb = inode->i_sb;
4535         int err = 0, rc, block;
4536         int need_datasync = 0, set_large_file = 0;
4537         uid_t i_uid;
4538         gid_t i_gid;
4539
4540         spin_lock(&ei->i_raw_lock);
4541
4542         /* For fields not tracked in the in-memory inode,
4543          * initialise them to zero for new inodes. */
4544         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4545                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4546
4547         ext4_get_inode_flags(ei);
4548         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4549         i_uid = i_uid_read(inode);
4550         i_gid = i_gid_read(inode);
4551         if (!(test_opt(inode->i_sb, NO_UID32))) {
4552                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4553                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4554 /*
4555  * Fix up interoperability with old kernels. Otherwise, old inodes get
4556  * re-used with the upper 16 bits of the uid/gid intact
4557  */
4558                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4559                         raw_inode->i_uid_high = 0;
4560                         raw_inode->i_gid_high = 0;
4561                 } else {
4562                         raw_inode->i_uid_high =
4563                                 cpu_to_le16(high_16_bits(i_uid));
4564                         raw_inode->i_gid_high =
4565                                 cpu_to_le16(high_16_bits(i_gid));
4566                 }
4567         } else {
4568                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4569                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4570                 raw_inode->i_uid_high = 0;
4571                 raw_inode->i_gid_high = 0;
4572         }
4573         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4574
4575         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4576         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4577         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4578         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4579
4580         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4581         if (err) {
4582                 spin_unlock(&ei->i_raw_lock);
4583                 goto out_brelse;
4584         }
4585         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4586         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4587         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4588                 raw_inode->i_file_acl_high =
4589                         cpu_to_le16(ei->i_file_acl >> 32);
4590         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4591         if (ei->i_disksize != ext4_isize(raw_inode)) {
4592                 ext4_isize_set(raw_inode, ei->i_disksize);
4593                 need_datasync = 1;
4594         }
4595         if (ei->i_disksize > 0x7fffffffULL) {
4596                 if (!ext4_has_feature_large_file(sb) ||
4597                                 EXT4_SB(sb)->s_es->s_rev_level ==
4598                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4599                         set_large_file = 1;
4600         }
4601         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4602         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4603                 if (old_valid_dev(inode->i_rdev)) {
4604                         raw_inode->i_block[0] =
4605                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4606                         raw_inode->i_block[1] = 0;
4607                 } else {
4608                         raw_inode->i_block[0] = 0;
4609                         raw_inode->i_block[1] =
4610                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4611                         raw_inode->i_block[2] = 0;
4612                 }
4613         } else if (!ext4_has_inline_data(inode)) {
4614                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4615                         raw_inode->i_block[block] = ei->i_data[block];
4616         }
4617
4618         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4619                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4620                 if (ei->i_extra_isize) {
4621                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4622                                 raw_inode->i_version_hi =
4623                                         cpu_to_le32(inode->i_version >> 32);
4624                         raw_inode->i_extra_isize =
4625                                 cpu_to_le16(ei->i_extra_isize);
4626                 }
4627         }
4628         ext4_inode_csum_set(inode, raw_inode, ei);
4629         spin_unlock(&ei->i_raw_lock);
4630         if (inode->i_sb->s_flags & MS_LAZYTIME)
4631                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4632                                               bh->b_data);
4633
4634         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4635         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4636         if (!err)
4637                 err = rc;
4638         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4639         if (set_large_file) {
4640                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4641                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4642                 if (err)
4643                         goto out_brelse;
4644                 ext4_update_dynamic_rev(sb);
4645                 ext4_set_feature_large_file(sb);
4646                 ext4_handle_sync(handle);
4647                 err = ext4_handle_dirty_super(handle, sb);
4648         }
4649         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4650 out_brelse:
4651         brelse(bh);
4652         ext4_std_error(inode->i_sb, err);
4653         return err;
4654 }
4655
4656 /*
4657  * ext4_write_inode()
4658  *
4659  * We are called from a few places:
4660  *
4661  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4662  *   Here, there will be no transaction running. We wait for any running
4663  *   transaction to commit.
4664  *
4665  * - Within flush work (sys_sync(), kupdate and such).
4666  *   We wait on commit, if told to.
4667  *
4668  * - Within iput_final() -> write_inode_now()
4669  *   We wait on commit, if told to.
4670  *
4671  * In all cases it is actually safe for us to return without doing anything,
4672  * because the inode has been copied into a raw inode buffer in
4673  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4674  * writeback.
4675  *
4676  * Note that we are absolutely dependent upon all inode dirtiers doing the
4677  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4678  * which we are interested.
4679  *
4680  * It would be a bug for them to not do this.  The code:
4681  *
4682  *      mark_inode_dirty(inode)
4683  *      stuff();
4684  *      inode->i_size = expr;
4685  *
4686  * is in error because write_inode() could occur while `stuff()' is running,
4687  * and the new i_size will be lost.  Plus the inode will no longer be on the
4688  * superblock's dirty inode list.
4689  */
4690 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4691 {
4692         int err;
4693
4694         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4695                 return 0;
4696
4697         if (EXT4_SB(inode->i_sb)->s_journal) {
4698                 if (ext4_journal_current_handle()) {
4699                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4700                         dump_stack();
4701                         return -EIO;
4702                 }
4703
4704                 /*
4705                  * No need to force transaction in WB_SYNC_NONE mode. Also
4706                  * ext4_sync_fs() will force the commit after everything is
4707                  * written.
4708                  */
4709                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4710                         return 0;
4711
4712                 err = ext4_force_commit(inode->i_sb);
4713         } else {
4714                 struct ext4_iloc iloc;
4715
4716                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4717                 if (err)
4718                         return err;
4719                 /*
4720                  * sync(2) will flush the whole buffer cache. No need to do
4721                  * it here separately for each inode.
4722                  */
4723                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4724                         sync_dirty_buffer(iloc.bh);
4725                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4726                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4727                                          "IO error syncing inode");
4728                         err = -EIO;
4729                 }
4730                 brelse(iloc.bh);
4731         }
4732         return err;
4733 }
4734
4735 /*
4736  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4737  * buffers that are attached to a page stradding i_size and are undergoing
4738  * commit. In that case we have to wait for commit to finish and try again.
4739  */
4740 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4741 {
4742         struct page *page;
4743         unsigned offset;
4744         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4745         tid_t commit_tid = 0;
4746         int ret;
4747
4748         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4749         /*
4750          * All buffers in the last page remain valid? Then there's nothing to
4751          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4752          * blocksize case
4753          */
4754         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4755                 return;
4756         while (1) {
4757                 page = find_lock_page(inode->i_mapping,
4758                                       inode->i_size >> PAGE_CACHE_SHIFT);
4759                 if (!page)
4760                         return;
4761                 ret = __ext4_journalled_invalidatepage(page, offset,
4762                                                 PAGE_CACHE_SIZE - offset);
4763                 unlock_page(page);
4764                 page_cache_release(page);
4765                 if (ret != -EBUSY)
4766                         return;
4767                 commit_tid = 0;
4768                 read_lock(&journal->j_state_lock);
4769                 if (journal->j_committing_transaction)
4770                         commit_tid = journal->j_committing_transaction->t_tid;
4771                 read_unlock(&journal->j_state_lock);
4772                 if (commit_tid)
4773                         jbd2_log_wait_commit(journal, commit_tid);
4774         }
4775 }
4776
4777 /*
4778  * ext4_setattr()
4779  *
4780  * Called from notify_change.
4781  *
4782  * We want to trap VFS attempts to truncate the file as soon as
4783  * possible.  In particular, we want to make sure that when the VFS
4784  * shrinks i_size, we put the inode on the orphan list and modify
4785  * i_disksize immediately, so that during the subsequent flushing of
4786  * dirty pages and freeing of disk blocks, we can guarantee that any
4787  * commit will leave the blocks being flushed in an unused state on
4788  * disk.  (On recovery, the inode will get truncated and the blocks will
4789  * be freed, so we have a strong guarantee that no future commit will
4790  * leave these blocks visible to the user.)
4791  *
4792  * Another thing we have to assure is that if we are in ordered mode
4793  * and inode is still attached to the committing transaction, we must
4794  * we start writeout of all the dirty pages which are being truncated.
4795  * This way we are sure that all the data written in the previous
4796  * transaction are already on disk (truncate waits for pages under
4797  * writeback).
4798  *
4799  * Called with inode->i_mutex down.
4800  */
4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 {
4803         struct inode *inode = d_inode(dentry);
4804         int error, rc = 0;
4805         int orphan = 0;
4806         const unsigned int ia_valid = attr->ia_valid;
4807
4808         error = inode_change_ok(inode, attr);
4809         if (error)
4810                 return error;
4811
4812         if (is_quota_modification(inode, attr)) {
4813                 error = dquot_initialize(inode);
4814                 if (error)
4815                         return error;
4816         }
4817         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4818             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4819                 handle_t *handle;
4820
4821                 /* (user+group)*(old+new) structure, inode write (sb,
4822                  * inode block, ? - but truncate inode update has it) */
4823                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4824                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4825                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4826                 if (IS_ERR(handle)) {
4827                         error = PTR_ERR(handle);
4828                         goto err_out;
4829                 }
4830                 error = dquot_transfer(inode, attr);
4831                 if (error) {
4832                         ext4_journal_stop(handle);
4833                         return error;
4834                 }
4835                 /* Update corresponding info in inode so that everything is in
4836                  * one transaction */
4837                 if (attr->ia_valid & ATTR_UID)
4838                         inode->i_uid = attr->ia_uid;
4839                 if (attr->ia_valid & ATTR_GID)
4840                         inode->i_gid = attr->ia_gid;
4841                 error = ext4_mark_inode_dirty(handle, inode);
4842                 ext4_journal_stop(handle);
4843         }
4844
4845         if (attr->ia_valid & ATTR_SIZE) {
4846                 handle_t *handle;
4847                 loff_t oldsize = inode->i_size;
4848                 int shrink = (attr->ia_size <= inode->i_size);
4849
4850                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4851                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4852
4853                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4854                                 return -EFBIG;
4855                 }
4856                 if (!S_ISREG(inode->i_mode))
4857                         return -EINVAL;
4858
4859                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4860                         inode_inc_iversion(inode);
4861
4862                 if (ext4_should_order_data(inode) &&
4863                     (attr->ia_size < inode->i_size)) {
4864                         error = ext4_begin_ordered_truncate(inode,
4865                                                             attr->ia_size);
4866                         if (error)
4867                                 goto err_out;
4868                 }
4869                 if (attr->ia_size != inode->i_size) {
4870                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4871                         if (IS_ERR(handle)) {
4872                                 error = PTR_ERR(handle);
4873                                 goto err_out;
4874                         }
4875                         if (ext4_handle_valid(handle) && shrink) {
4876                                 error = ext4_orphan_add(handle, inode);
4877                                 orphan = 1;
4878                         }
4879                         /*
4880                          * Update c/mtime on truncate up, ext4_truncate() will
4881                          * update c/mtime in shrink case below
4882                          */
4883                         if (!shrink) {
4884                                 inode->i_mtime = ext4_current_time(inode);
4885                                 inode->i_ctime = inode->i_mtime;
4886                         }
4887                         down_write(&EXT4_I(inode)->i_data_sem);
4888                         EXT4_I(inode)->i_disksize = attr->ia_size;
4889                         rc = ext4_mark_inode_dirty(handle, inode);
4890                         if (!error)
4891                                 error = rc;
4892                         /*
4893                          * We have to update i_size under i_data_sem together
4894                          * with i_disksize to avoid races with writeback code
4895                          * running ext4_wb_update_i_disksize().
4896                          */
4897                         if (!error)
4898                                 i_size_write(inode, attr->ia_size);
4899                         up_write(&EXT4_I(inode)->i_data_sem);
4900                         ext4_journal_stop(handle);
4901                         if (error) {
4902                                 if (orphan)
4903                                         ext4_orphan_del(NULL, inode);
4904                                 goto err_out;
4905                         }
4906                 }
4907                 if (!shrink)
4908                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4909
4910                 /*
4911                  * Blocks are going to be removed from the inode. Wait
4912                  * for dio in flight.  Temporarily disable
4913                  * dioread_nolock to prevent livelock.
4914                  */
4915                 if (orphan) {
4916                         if (!ext4_should_journal_data(inode)) {
4917                                 ext4_inode_block_unlocked_dio(inode);
4918                                 inode_dio_wait(inode);
4919                                 ext4_inode_resume_unlocked_dio(inode);
4920                         } else
4921                                 ext4_wait_for_tail_page_commit(inode);
4922                 }
4923                 down_write(&EXT4_I(inode)->i_mmap_sem);
4924                 /*
4925                  * Truncate pagecache after we've waited for commit
4926                  * in data=journal mode to make pages freeable.
4927                  */
4928                 truncate_pagecache(inode, inode->i_size);
4929                 if (shrink)
4930                         ext4_truncate(inode);
4931                 up_write(&EXT4_I(inode)->i_mmap_sem);
4932         }
4933
4934         if (!rc) {
4935                 setattr_copy(inode, attr);
4936                 mark_inode_dirty(inode);
4937         }
4938
4939         /*
4940          * If the call to ext4_truncate failed to get a transaction handle at
4941          * all, we need to clean up the in-core orphan list manually.
4942          */
4943         if (orphan && inode->i_nlink)
4944                 ext4_orphan_del(NULL, inode);
4945
4946         if (!rc && (ia_valid & ATTR_MODE))
4947                 rc = posix_acl_chmod(inode, inode->i_mode);
4948
4949 err_out:
4950         ext4_std_error(inode->i_sb, error);
4951         if (!error)
4952                 error = rc;
4953         return error;
4954 }
4955
4956 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4957                  struct kstat *stat)
4958 {
4959         struct inode *inode;
4960         unsigned long long delalloc_blocks;
4961
4962         inode = d_inode(dentry);
4963         generic_fillattr(inode, stat);
4964
4965         /*
4966          * If there is inline data in the inode, the inode will normally not
4967          * have data blocks allocated (it may have an external xattr block).
4968          * Report at least one sector for such files, so tools like tar, rsync,
4969          * others doen't incorrectly think the file is completely sparse.
4970          */
4971         if (unlikely(ext4_has_inline_data(inode)))
4972                 stat->blocks += (stat->size + 511) >> 9;
4973
4974         /*
4975          * We can't update i_blocks if the block allocation is delayed
4976          * otherwise in the case of system crash before the real block
4977          * allocation is done, we will have i_blocks inconsistent with
4978          * on-disk file blocks.
4979          * We always keep i_blocks updated together with real
4980          * allocation. But to not confuse with user, stat
4981          * will return the blocks that include the delayed allocation
4982          * blocks for this file.
4983          */
4984         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4985                                    EXT4_I(inode)->i_reserved_data_blocks);
4986         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4987         return 0;
4988 }
4989
4990 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4991                                    int pextents)
4992 {
4993         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4994                 return ext4_ind_trans_blocks(inode, lblocks);
4995         return ext4_ext_index_trans_blocks(inode, pextents);
4996 }
4997
4998 /*
4999  * Account for index blocks, block groups bitmaps and block group
5000  * descriptor blocks if modify datablocks and index blocks
5001  * worse case, the indexs blocks spread over different block groups
5002  *
5003  * If datablocks are discontiguous, they are possible to spread over
5004  * different block groups too. If they are contiguous, with flexbg,
5005  * they could still across block group boundary.
5006  *
5007  * Also account for superblock, inode, quota and xattr blocks
5008  */
5009 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5010                                   int pextents)
5011 {
5012         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5013         int gdpblocks;
5014         int idxblocks;
5015         int ret = 0;
5016
5017         /*
5018          * How many index blocks need to touch to map @lblocks logical blocks
5019          * to @pextents physical extents?
5020          */
5021         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5022
5023         ret = idxblocks;
5024
5025         /*
5026          * Now let's see how many group bitmaps and group descriptors need
5027          * to account
5028          */
5029         groups = idxblocks + pextents;
5030         gdpblocks = groups;
5031         if (groups > ngroups)
5032                 groups = ngroups;
5033         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5034                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5035
5036         /* bitmaps and block group descriptor blocks */
5037         ret += groups + gdpblocks;
5038
5039         /* Blocks for super block, inode, quota and xattr blocks */
5040         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5041
5042         return ret;
5043 }
5044
5045 /*
5046  * Calculate the total number of credits to reserve to fit
5047  * the modification of a single pages into a single transaction,
5048  * which may include multiple chunks of block allocations.
5049  *
5050  * This could be called via ext4_write_begin()
5051  *
5052  * We need to consider the worse case, when
5053  * one new block per extent.
5054  */
5055 int ext4_writepage_trans_blocks(struct inode *inode)
5056 {
5057         int bpp = ext4_journal_blocks_per_page(inode);
5058         int ret;
5059
5060         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5061
5062         /* Account for data blocks for journalled mode */
5063         if (ext4_should_journal_data(inode))
5064                 ret += bpp;
5065         return ret;
5066 }
5067
5068 /*
5069  * Calculate the journal credits for a chunk of data modification.
5070  *
5071  * This is called from DIO, fallocate or whoever calling
5072  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5073  *
5074  * journal buffers for data blocks are not included here, as DIO
5075  * and fallocate do no need to journal data buffers.
5076  */
5077 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5078 {
5079         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5080 }
5081
5082 /*
5083  * The caller must have previously called ext4_reserve_inode_write().
5084  * Give this, we know that the caller already has write access to iloc->bh.
5085  */
5086 int ext4_mark_iloc_dirty(handle_t *handle,
5087                          struct inode *inode, struct ext4_iloc *iloc)
5088 {
5089         int err = 0;
5090
5091         if (IS_I_VERSION(inode))
5092                 inode_inc_iversion(inode);
5093
5094         /* the do_update_inode consumes one bh->b_count */
5095         get_bh(iloc->bh);
5096
5097         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5098         err = ext4_do_update_inode(handle, inode, iloc);
5099         put_bh(iloc->bh);
5100         return err;
5101 }
5102
5103 /*
5104  * On success, We end up with an outstanding reference count against
5105  * iloc->bh.  This _must_ be cleaned up later.
5106  */
5107
5108 int
5109 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5110                          struct ext4_iloc *iloc)
5111 {
5112         int err;
5113
5114         err = ext4_get_inode_loc(inode, iloc);
5115         if (!err) {
5116                 BUFFER_TRACE(iloc->bh, "get_write_access");
5117                 err = ext4_journal_get_write_access(handle, iloc->bh);
5118                 if (err) {
5119                         brelse(iloc->bh);
5120                         iloc->bh = NULL;
5121                 }
5122         }
5123         ext4_std_error(inode->i_sb, err);
5124         return err;
5125 }
5126
5127 /*
5128  * Expand an inode by new_extra_isize bytes.
5129  * Returns 0 on success or negative error number on failure.
5130  */
5131 static int ext4_expand_extra_isize(struct inode *inode,
5132                                    unsigned int new_extra_isize,
5133                                    struct ext4_iloc iloc,
5134                                    handle_t *handle)
5135 {
5136         struct ext4_inode *raw_inode;
5137         struct ext4_xattr_ibody_header *header;
5138
5139         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5140                 return 0;
5141
5142         raw_inode = ext4_raw_inode(&iloc);
5143
5144         header = IHDR(inode, raw_inode);
5145
5146         /* No extended attributes present */
5147         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5148             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5149                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5150                         new_extra_isize);
5151                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5152                 return 0;
5153         }
5154
5155         /* try to expand with EAs present */
5156         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5157                                           raw_inode, handle);
5158 }
5159
5160 /*
5161  * What we do here is to mark the in-core inode as clean with respect to inode
5162  * dirtiness (it may still be data-dirty).
5163  * This means that the in-core inode may be reaped by prune_icache
5164  * without having to perform any I/O.  This is a very good thing,
5165  * because *any* task may call prune_icache - even ones which
5166  * have a transaction open against a different journal.
5167  *
5168  * Is this cheating?  Not really.  Sure, we haven't written the
5169  * inode out, but prune_icache isn't a user-visible syncing function.
5170  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5171  * we start and wait on commits.
5172  */
5173 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5174 {
5175         struct ext4_iloc iloc;
5176         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5177         static unsigned int mnt_count;
5178         int err, ret;
5179
5180         might_sleep();
5181         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5182         err = ext4_reserve_inode_write(handle, inode, &iloc);
5183         if (err)
5184                 return err;
5185         if (ext4_handle_valid(handle) &&
5186             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5187             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5188                 /*
5189                  * We need extra buffer credits since we may write into EA block
5190                  * with this same handle. If journal_extend fails, then it will
5191                  * only result in a minor loss of functionality for that inode.
5192                  * If this is felt to be critical, then e2fsck should be run to
5193                  * force a large enough s_min_extra_isize.
5194                  */
5195                 if ((jbd2_journal_extend(handle,
5196                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5197                         ret = ext4_expand_extra_isize(inode,
5198                                                       sbi->s_want_extra_isize,
5199                                                       iloc, handle);
5200                         if (ret) {
5201                                 if (mnt_count !=
5202                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5203                                         ext4_warning(inode->i_sb,
5204                                         "Unable to expand inode %lu. Delete"
5205                                         " some EAs or run e2fsck.",
5206                                         inode->i_ino);
5207                                         mnt_count =
5208                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5209                                 }
5210                         }
5211                 }
5212         }
5213         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5214 }
5215
5216 /*
5217  * ext4_dirty_inode() is called from __mark_inode_dirty()
5218  *
5219  * We're really interested in the case where a file is being extended.
5220  * i_size has been changed by generic_commit_write() and we thus need
5221  * to include the updated inode in the current transaction.
5222  *
5223  * Also, dquot_alloc_block() will always dirty the inode when blocks
5224  * are allocated to the file.
5225  *
5226  * If the inode is marked synchronous, we don't honour that here - doing
5227  * so would cause a commit on atime updates, which we don't bother doing.
5228  * We handle synchronous inodes at the highest possible level.
5229  *
5230  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5231  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5232  * to copy into the on-disk inode structure are the timestamp files.
5233  */
5234 void ext4_dirty_inode(struct inode *inode, int flags)
5235 {
5236         handle_t *handle;
5237
5238         if (flags == I_DIRTY_TIME)
5239                 return;
5240         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5241         if (IS_ERR(handle))
5242                 goto out;
5243
5244         ext4_mark_inode_dirty(handle, inode);
5245
5246         ext4_journal_stop(handle);
5247 out:
5248         return;
5249 }
5250
5251 #if 0
5252 /*
5253  * Bind an inode's backing buffer_head into this transaction, to prevent
5254  * it from being flushed to disk early.  Unlike
5255  * ext4_reserve_inode_write, this leaves behind no bh reference and
5256  * returns no iloc structure, so the caller needs to repeat the iloc
5257  * lookup to mark the inode dirty later.
5258  */
5259 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5260 {
5261         struct ext4_iloc iloc;
5262
5263         int err = 0;
5264         if (handle) {
5265                 err = ext4_get_inode_loc(inode, &iloc);
5266                 if (!err) {
5267                         BUFFER_TRACE(iloc.bh, "get_write_access");
5268                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5269                         if (!err)
5270                                 err = ext4_handle_dirty_metadata(handle,
5271                                                                  NULL,
5272                                                                  iloc.bh);
5273                         brelse(iloc.bh);
5274                 }
5275         }
5276         ext4_std_error(inode->i_sb, err);
5277         return err;
5278 }
5279 #endif
5280
5281 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5282 {
5283         journal_t *journal;
5284         handle_t *handle;
5285         int err;
5286
5287         /*
5288          * We have to be very careful here: changing a data block's
5289          * journaling status dynamically is dangerous.  If we write a
5290          * data block to the journal, change the status and then delete
5291          * that block, we risk forgetting to revoke the old log record
5292          * from the journal and so a subsequent replay can corrupt data.
5293          * So, first we make sure that the journal is empty and that
5294          * nobody is changing anything.
5295          */
5296
5297         journal = EXT4_JOURNAL(inode);
5298         if (!journal)
5299                 return 0;
5300         if (is_journal_aborted(journal))
5301                 return -EROFS;
5302         /* We have to allocate physical blocks for delalloc blocks
5303          * before flushing journal. otherwise delalloc blocks can not
5304          * be allocated any more. even more truncate on delalloc blocks
5305          * could trigger BUG by flushing delalloc blocks in journal.
5306          * There is no delalloc block in non-journal data mode.
5307          */
5308         if (val && test_opt(inode->i_sb, DELALLOC)) {
5309                 err = ext4_alloc_da_blocks(inode);
5310                 if (err < 0)
5311                         return err;
5312         }
5313
5314         /* Wait for all existing dio workers */
5315         ext4_inode_block_unlocked_dio(inode);
5316         inode_dio_wait(inode);
5317
5318         jbd2_journal_lock_updates(journal);
5319
5320         /*
5321          * OK, there are no updates running now, and all cached data is
5322          * synced to disk.  We are now in a completely consistent state
5323          * which doesn't have anything in the journal, and we know that
5324          * no filesystem updates are running, so it is safe to modify
5325          * the inode's in-core data-journaling state flag now.
5326          */
5327
5328         if (val)
5329                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5330         else {
5331                 err = jbd2_journal_flush(journal);
5332                 if (err < 0) {
5333                         jbd2_journal_unlock_updates(journal);
5334                         ext4_inode_resume_unlocked_dio(inode);
5335                         return err;
5336                 }
5337                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5338         }
5339         ext4_set_aops(inode);
5340
5341         jbd2_journal_unlock_updates(journal);
5342         ext4_inode_resume_unlocked_dio(inode);
5343
5344         /* Finally we can mark the inode as dirty. */
5345
5346         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5347         if (IS_ERR(handle))
5348                 return PTR_ERR(handle);
5349
5350         err = ext4_mark_inode_dirty(handle, inode);
5351         ext4_handle_sync(handle);
5352         ext4_journal_stop(handle);
5353         ext4_std_error(inode->i_sb, err);
5354
5355         return err;
5356 }
5357
5358 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5359 {
5360         return !buffer_mapped(bh);
5361 }
5362
5363 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5364 {
5365         struct page *page = vmf->page;
5366         loff_t size;
5367         unsigned long len;
5368         int ret;
5369         struct file *file = vma->vm_file;
5370         struct inode *inode = file_inode(file);
5371         struct address_space *mapping = inode->i_mapping;
5372         handle_t *handle;
5373         get_block_t *get_block;
5374         int retries = 0;
5375
5376         sb_start_pagefault(inode->i_sb);
5377         file_update_time(vma->vm_file);
5378
5379         down_read(&EXT4_I(inode)->i_mmap_sem);
5380         /* Delalloc case is easy... */
5381         if (test_opt(inode->i_sb, DELALLOC) &&
5382             !ext4_should_journal_data(inode) &&
5383             !ext4_nonda_switch(inode->i_sb)) {
5384                 do {
5385                         ret = block_page_mkwrite(vma, vmf,
5386                                                    ext4_da_get_block_prep);
5387                 } while (ret == -ENOSPC &&
5388                        ext4_should_retry_alloc(inode->i_sb, &retries));
5389                 goto out_ret;
5390         }
5391
5392         lock_page(page);
5393         size = i_size_read(inode);
5394         /* Page got truncated from under us? */
5395         if (page->mapping != mapping || page_offset(page) > size) {
5396                 unlock_page(page);
5397                 ret = VM_FAULT_NOPAGE;
5398                 goto out;
5399         }
5400
5401         if (page->index == size >> PAGE_CACHE_SHIFT)
5402                 len = size & ~PAGE_CACHE_MASK;
5403         else
5404                 len = PAGE_CACHE_SIZE;
5405         /*
5406          * Return if we have all the buffers mapped. This avoids the need to do
5407          * journal_start/journal_stop which can block and take a long time
5408          */
5409         if (page_has_buffers(page)) {
5410                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5411                                             0, len, NULL,
5412                                             ext4_bh_unmapped)) {
5413                         /* Wait so that we don't change page under IO */
5414                         wait_for_stable_page(page);
5415                         ret = VM_FAULT_LOCKED;
5416                         goto out;
5417                 }
5418         }
5419         unlock_page(page);
5420         /* OK, we need to fill the hole... */
5421         if (ext4_should_dioread_nolock(inode))
5422                 get_block = ext4_get_block_write;
5423         else
5424                 get_block = ext4_get_block;
5425 retry_alloc:
5426         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5427                                     ext4_writepage_trans_blocks(inode));
5428         if (IS_ERR(handle)) {
5429                 ret = VM_FAULT_SIGBUS;
5430                 goto out;
5431         }
5432         ret = block_page_mkwrite(vma, vmf, get_block);
5433         if (!ret && ext4_should_journal_data(inode)) {
5434                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5435                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5436                         unlock_page(page);
5437                         ret = VM_FAULT_SIGBUS;
5438                         ext4_journal_stop(handle);
5439                         goto out;
5440                 }
5441                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5442         }
5443         ext4_journal_stop(handle);
5444         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5445                 goto retry_alloc;
5446 out_ret:
5447         ret = block_page_mkwrite_return(ret);
5448 out:
5449         up_read(&EXT4_I(inode)->i_mmap_sem);
5450         sb_end_pagefault(inode->i_sb);
5451         return ret;
5452 }
5453
5454 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5455 {
5456         struct inode *inode = file_inode(vma->vm_file);
5457         int err;
5458
5459         down_read(&EXT4_I(inode)->i_mmap_sem);
5460         err = filemap_fault(vma, vmf);
5461         up_read(&EXT4_I(inode)->i_mmap_sem);
5462
5463         return err;
5464 }