Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include <linux/uio.h>
26
27 #include <trace/events/ext4.h>
28
29 typedef struct {
30         __le32  *p;
31         __le32  key;
32         struct buffer_head *bh;
33 } Indirect;
34
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37         p->key = *(p->p = v);
38         p->bh = bh;
39 }
40
41 /**
42  *      ext4_block_to_path - parse the block number into array of offsets
43  *      @inode: inode in question (we are only interested in its superblock)
44  *      @i_block: block number to be parsed
45  *      @offsets: array to store the offsets in
46  *      @boundary: set this non-zero if the referred-to block is likely to be
47  *             followed (on disk) by an indirect block.
48  *
49  *      To store the locations of file's data ext4 uses a data structure common
50  *      for UNIX filesystems - tree of pointers anchored in the inode, with
51  *      data blocks at leaves and indirect blocks in intermediate nodes.
52  *      This function translates the block number into path in that tree -
53  *      return value is the path length and @offsets[n] is the offset of
54  *      pointer to (n+1)th node in the nth one. If @block is out of range
55  *      (negative or too large) warning is printed and zero returned.
56  *
57  *      Note: function doesn't find node addresses, so no IO is needed. All
58  *      we need to know is the capacity of indirect blocks (taken from the
59  *      inode->i_sb).
60  */
61
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71
72 static int ext4_block_to_path(struct inode *inode,
73                               ext4_lblk_t i_block,
74                               ext4_lblk_t offsets[4], int *boundary)
75 {
76         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78         const long direct_blocks = EXT4_NDIR_BLOCKS,
79                 indirect_blocks = ptrs,
80                 double_blocks = (1 << (ptrs_bits * 2));
81         int n = 0;
82         int final = 0;
83
84         if (i_block < direct_blocks) {
85                 offsets[n++] = i_block;
86                 final = direct_blocks;
87         } else if ((i_block -= direct_blocks) < indirect_blocks) {
88                 offsets[n++] = EXT4_IND_BLOCK;
89                 offsets[n++] = i_block;
90                 final = ptrs;
91         } else if ((i_block -= indirect_blocks) < double_blocks) {
92                 offsets[n++] = EXT4_DIND_BLOCK;
93                 offsets[n++] = i_block >> ptrs_bits;
94                 offsets[n++] = i_block & (ptrs - 1);
95                 final = ptrs;
96         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97                 offsets[n++] = EXT4_TIND_BLOCK;
98                 offsets[n++] = i_block >> (ptrs_bits * 2);
99                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100                 offsets[n++] = i_block & (ptrs - 1);
101                 final = ptrs;
102         } else {
103                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104                              i_block + direct_blocks +
105                              indirect_blocks + double_blocks, inode->i_ino);
106         }
107         if (boundary)
108                 *boundary = final - 1 - (i_block & (ptrs - 1));
109         return n;
110 }
111
112 /**
113  *      ext4_get_branch - read the chain of indirect blocks leading to data
114  *      @inode: inode in question
115  *      @depth: depth of the chain (1 - direct pointer, etc.)
116  *      @offsets: offsets of pointers in inode/indirect blocks
117  *      @chain: place to store the result
118  *      @err: here we store the error value
119  *
120  *      Function fills the array of triples <key, p, bh> and returns %NULL
121  *      if everything went OK or the pointer to the last filled triple
122  *      (incomplete one) otherwise. Upon the return chain[i].key contains
123  *      the number of (i+1)-th block in the chain (as it is stored in memory,
124  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *      number (it points into struct inode for i==0 and into the bh->b_data
126  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *      block for i>0 and NULL for i==0. In other words, it holds the block
128  *      numbers of the chain, addresses they were taken from (and where we can
129  *      verify that chain did not change) and buffer_heads hosting these
130  *      numbers.
131  *
132  *      Function stops when it stumbles upon zero pointer (absent block)
133  *              (pointer to last triple returned, *@err == 0)
134  *      or when it gets an IO error reading an indirect block
135  *              (ditto, *@err == -EIO)
136  *      or when it reads all @depth-1 indirect blocks successfully and finds
137  *      the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143                                  ext4_lblk_t  *offsets,
144                                  Indirect chain[4], int *err)
145 {
146         struct super_block *sb = inode->i_sb;
147         Indirect *p = chain;
148         struct buffer_head *bh;
149         int ret = -EIO;
150
151         *err = 0;
152         /* i_data is not going away, no lock needed */
153         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154         if (!p->key)
155                 goto no_block;
156         while (--depth) {
157                 bh = sb_getblk(sb, le32_to_cpu(p->key));
158                 if (unlikely(!bh)) {
159                         ret = -ENOMEM;
160                         goto failure;
161                 }
162
163                 if (!bh_uptodate_or_lock(bh)) {
164                         if (bh_submit_read(bh) < 0) {
165                                 put_bh(bh);
166                                 goto failure;
167                         }
168                         /* validate block references */
169                         if (ext4_check_indirect_blockref(inode, bh)) {
170                                 put_bh(bh);
171                                 goto failure;
172                         }
173                 }
174
175                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176                 /* Reader: end */
177                 if (!p->key)
178                         goto no_block;
179         }
180         return NULL;
181
182 failure:
183         *err = ret;
184 no_block:
185         return p;
186 }
187
188 /**
189  *      ext4_find_near - find a place for allocation with sufficient locality
190  *      @inode: owner
191  *      @ind: descriptor of indirect block.
192  *
193  *      This function returns the preferred place for block allocation.
194  *      It is used when heuristic for sequential allocation fails.
195  *      Rules are:
196  *        + if there is a block to the left of our position - allocate near it.
197  *        + if pointer will live in indirect block - allocate near that block.
198  *        + if pointer will live in inode - allocate in the same
199  *          cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *      Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210         struct ext4_inode_info *ei = EXT4_I(inode);
211         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212         __le32 *p;
213
214         /* Try to find previous block */
215         for (p = ind->p - 1; p >= start; p--) {
216                 if (*p)
217                         return le32_to_cpu(*p);
218         }
219
220         /* No such thing, so let's try location of indirect block */
221         if (ind->bh)
222                 return ind->bh->b_blocknr;
223
224         /*
225          * It is going to be referred to from the inode itself? OK, just put it
226          * into the same cylinder group then.
227          */
228         return ext4_inode_to_goal_block(inode);
229 }
230
231 /**
232  *      ext4_find_goal - find a preferred place for allocation.
233  *      @inode: owner
234  *      @block:  block we want
235  *      @partial: pointer to the last triple within a chain
236  *
237  *      Normally this function find the preferred place for block allocation,
238  *      returns it.
239  *      Because this is only used for non-extent files, we limit the block nr
240  *      to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243                                    Indirect *partial)
244 {
245         ext4_fsblk_t goal;
246
247         /*
248          * XXX need to get goal block from mballoc's data structures
249          */
250
251         goal = ext4_find_near(inode, partial);
252         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253         return goal;
254 }
255
256 /**
257  *      ext4_blks_to_allocate - Look up the block map and count the number
258  *      of direct blocks need to be allocated for the given branch.
259  *
260  *      @branch: chain of indirect blocks
261  *      @k: number of blocks need for indirect blocks
262  *      @blks: number of data blocks to be mapped.
263  *      @blocks_to_boundary:  the offset in the indirect block
264  *
265  *      return the total number of blocks to be allocate, including the
266  *      direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269                                  int blocks_to_boundary)
270 {
271         unsigned int count = 0;
272
273         /*
274          * Simple case, [t,d]Indirect block(s) has not allocated yet
275          * then it's clear blocks on that path have not allocated
276          */
277         if (k > 0) {
278                 /* right now we don't handle cross boundary allocation */
279                 if (blks < blocks_to_boundary + 1)
280                         count += blks;
281                 else
282                         count += blocks_to_boundary + 1;
283                 return count;
284         }
285
286         count++;
287         while (count < blks && count <= blocks_to_boundary &&
288                 le32_to_cpu(*(branch[0].p + count)) == 0) {
289                 count++;
290         }
291         return count;
292 }
293
294 /**
295  *      ext4_alloc_branch - allocate and set up a chain of blocks.
296  *      @handle: handle for this transaction
297  *      @inode: owner
298  *      @indirect_blks: number of allocated indirect blocks
299  *      @blks: number of allocated direct blocks
300  *      @goal: preferred place for allocation
301  *      @offsets: offsets (in the blocks) to store the pointers to next.
302  *      @branch: place to store the chain in.
303  *
304  *      This function allocates blocks, zeroes out all but the last one,
305  *      links them into chain and (if we are synchronous) writes them to disk.
306  *      In other words, it prepares a branch that can be spliced onto the
307  *      inode. It stores the information about that chain in the branch[], in
308  *      the same format as ext4_get_branch() would do. We are calling it after
309  *      we had read the existing part of chain and partial points to the last
310  *      triple of that (one with zero ->key). Upon the exit we have the same
311  *      picture as after the successful ext4_get_block(), except that in one
312  *      place chain is disconnected - *branch->p is still zero (we did not
313  *      set the last link), but branch->key contains the number that should
314  *      be placed into *branch->p to fill that gap.
315  *
316  *      If allocation fails we free all blocks we've allocated (and forget
317  *      their buffer_heads) and return the error value the from failed
318  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *      as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle,
322                              struct ext4_allocation_request *ar,
323                              int indirect_blks, ext4_lblk_t *offsets,
324                              Indirect *branch)
325 {
326         struct buffer_head *            bh;
327         ext4_fsblk_t                    b, new_blocks[4];
328         __le32                          *p;
329         int                             i, j, err, len = 1;
330
331         for (i = 0; i <= indirect_blks; i++) {
332                 if (i == indirect_blks) {
333                         new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334                 } else
335                         ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336                                         ar->inode, ar->goal,
337                                         ar->flags & EXT4_MB_DELALLOC_RESERVED,
338                                         NULL, &err);
339                 if (err) {
340                         i--;
341                         goto failed;
342                 }
343                 branch[i].key = cpu_to_le32(new_blocks[i]);
344                 if (i == 0)
345                         continue;
346
347                 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
348                 if (unlikely(!bh)) {
349                         err = -ENOMEM;
350                         goto failed;
351                 }
352                 lock_buffer(bh);
353                 BUFFER_TRACE(bh, "call get_create_access");
354                 err = ext4_journal_get_create_access(handle, bh);
355                 if (err) {
356                         unlock_buffer(bh);
357                         goto failed;
358                 }
359
360                 memset(bh->b_data, 0, bh->b_size);
361                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
362                 b = new_blocks[i];
363
364                 if (i == indirect_blks)
365                         len = ar->len;
366                 for (j = 0; j < len; j++)
367                         *p++ = cpu_to_le32(b++);
368
369                 BUFFER_TRACE(bh, "marking uptodate");
370                 set_buffer_uptodate(bh);
371                 unlock_buffer(bh);
372
373                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
374                 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
375                 if (err)
376                         goto failed;
377         }
378         return 0;
379 failed:
380         for (; i >= 0; i--) {
381                 /*
382                  * We want to ext4_forget() only freshly allocated indirect
383                  * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
384                  * buffer at branch[0].bh is indirect block / inode already
385                  * existing before ext4_alloc_branch() was called.
386                  */
387                 if (i > 0 && i != indirect_blks && branch[i].bh)
388                         ext4_forget(handle, 1, ar->inode, branch[i].bh,
389                                     branch[i].bh->b_blocknr);
390                 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
391                                  (i == indirect_blks) ? ar->len : 1, 0);
392         }
393         return err;
394 }
395
396 /**
397  * ext4_splice_branch - splice the allocated branch onto inode.
398  * @handle: handle for this transaction
399  * @inode: owner
400  * @block: (logical) number of block we are adding
401  * @chain: chain of indirect blocks (with a missing link - see
402  *      ext4_alloc_branch)
403  * @where: location of missing link
404  * @num:   number of indirect blocks we are adding
405  * @blks:  number of direct blocks we are adding
406  *
407  * This function fills the missing link and does all housekeeping needed in
408  * inode (->i_blocks, etc.). In case of success we end up with the full
409  * chain to new block and return 0.
410  */
411 static int ext4_splice_branch(handle_t *handle,
412                               struct ext4_allocation_request *ar,
413                               Indirect *where, int num)
414 {
415         int i;
416         int err = 0;
417         ext4_fsblk_t current_block;
418
419         /*
420          * If we're splicing into a [td]indirect block (as opposed to the
421          * inode) then we need to get write access to the [td]indirect block
422          * before the splice.
423          */
424         if (where->bh) {
425                 BUFFER_TRACE(where->bh, "get_write_access");
426                 err = ext4_journal_get_write_access(handle, where->bh);
427                 if (err)
428                         goto err_out;
429         }
430         /* That's it */
431
432         *where->p = where->key;
433
434         /*
435          * Update the host buffer_head or inode to point to more just allocated
436          * direct blocks blocks
437          */
438         if (num == 0 && ar->len > 1) {
439                 current_block = le32_to_cpu(where->key) + 1;
440                 for (i = 1; i < ar->len; i++)
441                         *(where->p + i) = cpu_to_le32(current_block++);
442         }
443
444         /* We are done with atomic stuff, now do the rest of housekeeping */
445         /* had we spliced it onto indirect block? */
446         if (where->bh) {
447                 /*
448                  * If we spliced it onto an indirect block, we haven't
449                  * altered the inode.  Note however that if it is being spliced
450                  * onto an indirect block at the very end of the file (the
451                  * file is growing) then we *will* alter the inode to reflect
452                  * the new i_size.  But that is not done here - it is done in
453                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
454                  */
455                 jbd_debug(5, "splicing indirect only\n");
456                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
457                 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
458                 if (err)
459                         goto err_out;
460         } else {
461                 /*
462                  * OK, we spliced it into the inode itself on a direct block.
463                  */
464                 ext4_mark_inode_dirty(handle, ar->inode);
465                 jbd_debug(5, "splicing direct\n");
466         }
467         return err;
468
469 err_out:
470         for (i = 1; i <= num; i++) {
471                 /*
472                  * branch[i].bh is newly allocated, so there is no
473                  * need to revoke the block, which is why we don't
474                  * need to set EXT4_FREE_BLOCKS_METADATA.
475                  */
476                 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
477                                  EXT4_FREE_BLOCKS_FORGET);
478         }
479         ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
480                          ar->len, 0);
481
482         return err;
483 }
484
485 /*
486  * The ext4_ind_map_blocks() function handles non-extents inodes
487  * (i.e., using the traditional indirect/double-indirect i_blocks
488  * scheme) for ext4_map_blocks().
489  *
490  * Allocation strategy is simple: if we have to allocate something, we will
491  * have to go the whole way to leaf. So let's do it before attaching anything
492  * to tree, set linkage between the newborn blocks, write them if sync is
493  * required, recheck the path, free and repeat if check fails, otherwise
494  * set the last missing link (that will protect us from any truncate-generated
495  * removals - all blocks on the path are immune now) and possibly force the
496  * write on the parent block.
497  * That has a nice additional property: no special recovery from the failed
498  * allocations is needed - we simply release blocks and do not touch anything
499  * reachable from inode.
500  *
501  * `handle' can be NULL if create == 0.
502  *
503  * return > 0, # of blocks mapped or allocated.
504  * return = 0, if plain lookup failed.
505  * return < 0, error case.
506  *
507  * The ext4_ind_get_blocks() function should be called with
508  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
509  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
510  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
511  * blocks.
512  */
513 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
514                         struct ext4_map_blocks *map,
515                         int flags)
516 {
517         struct ext4_allocation_request ar;
518         int err = -EIO;
519         ext4_lblk_t offsets[4];
520         Indirect chain[4];
521         Indirect *partial;
522         int indirect_blks;
523         int blocks_to_boundary = 0;
524         int depth;
525         int count = 0;
526         ext4_fsblk_t first_block = 0;
527
528         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
529         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
530         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
531         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
532                                    &blocks_to_boundary);
533
534         if (depth == 0)
535                 goto out;
536
537         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
538
539         /* Simplest case - block found, no allocation needed */
540         if (!partial) {
541                 first_block = le32_to_cpu(chain[depth - 1].key);
542                 count++;
543                 /*map more blocks*/
544                 while (count < map->m_len && count <= blocks_to_boundary) {
545                         ext4_fsblk_t blk;
546
547                         blk = le32_to_cpu(*(chain[depth-1].p + count));
548
549                         if (blk == first_block + count)
550                                 count++;
551                         else
552                                 break;
553                 }
554                 goto got_it;
555         }
556
557         /* Next simple case - plain lookup or failed read of indirect block */
558         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
559                 goto cleanup;
560
561         /*
562          * Okay, we need to do block allocation.
563         */
564         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
565                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
566                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
567                                  "non-extent mapped inodes with bigalloc");
568                 return -EUCLEAN;
569         }
570
571         /* Set up for the direct block allocation */
572         memset(&ar, 0, sizeof(ar));
573         ar.inode = inode;
574         ar.logical = map->m_lblk;
575         if (S_ISREG(inode->i_mode))
576                 ar.flags = EXT4_MB_HINT_DATA;
577         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
578                 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
579
580         ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
581
582         /* the number of blocks need to allocate for [d,t]indirect blocks */
583         indirect_blks = (chain + depth) - partial - 1;
584
585         /*
586          * Next look up the indirect map to count the totoal number of
587          * direct blocks to allocate for this branch.
588          */
589         ar.len = ext4_blks_to_allocate(partial, indirect_blks,
590                                        map->m_len, blocks_to_boundary);
591
592         /*
593          * Block out ext4_truncate while we alter the tree
594          */
595         err = ext4_alloc_branch(handle, &ar, indirect_blks,
596                                 offsets + (partial - chain), partial);
597
598         /*
599          * The ext4_splice_branch call will free and forget any buffers
600          * on the new chain if there is a failure, but that risks using
601          * up transaction credits, especially for bitmaps where the
602          * credits cannot be returned.  Can we handle this somehow?  We
603          * may need to return -EAGAIN upwards in the worst case.  --sct
604          */
605         if (!err)
606                 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
607         if (err)
608                 goto cleanup;
609
610         map->m_flags |= EXT4_MAP_NEW;
611
612         ext4_update_inode_fsync_trans(handle, inode, 1);
613         count = ar.len;
614 got_it:
615         map->m_flags |= EXT4_MAP_MAPPED;
616         map->m_pblk = le32_to_cpu(chain[depth-1].key);
617         map->m_len = count;
618         if (count > blocks_to_boundary)
619                 map->m_flags |= EXT4_MAP_BOUNDARY;
620         err = count;
621         /* Clean up and exit */
622         partial = chain + depth - 1;    /* the whole chain */
623 cleanup:
624         while (partial > chain) {
625                 BUFFER_TRACE(partial->bh, "call brelse");
626                 brelse(partial->bh);
627                 partial--;
628         }
629 out:
630         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
631         return err;
632 }
633
634 /*
635  * O_DIRECT for ext3 (or indirect map) based files
636  *
637  * If the O_DIRECT write will extend the file then add this inode to the
638  * orphan list.  So recovery will truncate it back to the original size
639  * if the machine crashes during the write.
640  *
641  * If the O_DIRECT write is intantiating holes inside i_size and the machine
642  * crashes then stale disk data _may_ be exposed inside the file. But current
643  * VFS code falls back into buffered path in that case so we are safe.
644  */
645 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
646                            loff_t offset)
647 {
648         struct file *file = iocb->ki_filp;
649         struct inode *inode = file->f_mapping->host;
650         struct ext4_inode_info *ei = EXT4_I(inode);
651         handle_t *handle;
652         ssize_t ret;
653         int orphan = 0;
654         size_t count = iov_iter_count(iter);
655         int retries = 0;
656
657         if (iov_iter_rw(iter) == WRITE) {
658                 loff_t final_size = offset + count;
659
660                 if (final_size > inode->i_size) {
661                         /* Credits for sb + inode write */
662                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
663                         if (IS_ERR(handle)) {
664                                 ret = PTR_ERR(handle);
665                                 goto out;
666                         }
667                         ret = ext4_orphan_add(handle, inode);
668                         if (ret) {
669                                 ext4_journal_stop(handle);
670                                 goto out;
671                         }
672                         orphan = 1;
673                         ei->i_disksize = inode->i_size;
674                         ext4_journal_stop(handle);
675                 }
676         }
677
678 retry:
679         if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
680                 /*
681                  * Nolock dioread optimization may be dynamically disabled
682                  * via ext4_inode_block_unlocked_dio(). Check inode's state
683                  * while holding extra i_dio_count ref.
684                  */
685                 inode_dio_begin(inode);
686                 smp_mb();
687                 if (unlikely(ext4_test_inode_state(inode,
688                                                     EXT4_STATE_DIOREAD_LOCK))) {
689                         inode_dio_end(inode);
690                         goto locked;
691                 }
692                 if (IS_DAX(inode))
693                         ret = dax_do_io(iocb, inode, iter, offset,
694                                         ext4_get_block, NULL, 0);
695                 else
696                         ret = __blockdev_direct_IO(iocb, inode,
697                                                    inode->i_sb->s_bdev, iter,
698                                                    offset, ext4_get_block, NULL,
699                                                    NULL, 0);
700                 inode_dio_end(inode);
701         } else {
702 locked:
703                 if (IS_DAX(inode))
704                         ret = dax_do_io(iocb, inode, iter, offset,
705                                         ext4_get_block, NULL, DIO_LOCKING);
706                 else
707                         ret = blockdev_direct_IO(iocb, inode, iter, offset,
708                                                  ext4_get_block);
709
710                 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
711                         loff_t isize = i_size_read(inode);
712                         loff_t end = offset + count;
713
714                         if (end > isize)
715                                 ext4_truncate_failed_write(inode);
716                 }
717         }
718         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
719                 goto retry;
720
721         if (orphan) {
722                 int err;
723
724                 /* Credits for sb + inode write */
725                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
726                 if (IS_ERR(handle)) {
727                         /* This is really bad luck. We've written the data
728                          * but cannot extend i_size. Bail out and pretend
729                          * the write failed... */
730                         ret = PTR_ERR(handle);
731                         if (inode->i_nlink)
732                                 ext4_orphan_del(NULL, inode);
733
734                         goto out;
735                 }
736                 if (inode->i_nlink)
737                         ext4_orphan_del(handle, inode);
738                 if (ret > 0) {
739                         loff_t end = offset + ret;
740                         if (end > inode->i_size) {
741                                 ei->i_disksize = end;
742                                 i_size_write(inode, end);
743                                 /*
744                                  * We're going to return a positive `ret'
745                                  * here due to non-zero-length I/O, so there's
746                                  * no way of reporting error returns from
747                                  * ext4_mark_inode_dirty() to userspace.  So
748                                  * ignore it.
749                                  */
750                                 ext4_mark_inode_dirty(handle, inode);
751                         }
752                 }
753                 err = ext4_journal_stop(handle);
754                 if (ret == 0)
755                         ret = err;
756         }
757 out:
758         return ret;
759 }
760
761 /*
762  * Calculate the number of metadata blocks need to reserve
763  * to allocate a new block at @lblocks for non extent file based file
764  */
765 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
766 {
767         struct ext4_inode_info *ei = EXT4_I(inode);
768         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
769         int blk_bits;
770
771         if (lblock < EXT4_NDIR_BLOCKS)
772                 return 0;
773
774         lblock -= EXT4_NDIR_BLOCKS;
775
776         if (ei->i_da_metadata_calc_len &&
777             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
778                 ei->i_da_metadata_calc_len++;
779                 return 0;
780         }
781         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
782         ei->i_da_metadata_calc_len = 1;
783         blk_bits = order_base_2(lblock);
784         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
785 }
786
787 /*
788  * Calculate number of indirect blocks touched by mapping @nrblocks logically
789  * contiguous blocks
790  */
791 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
792 {
793         /*
794          * With N contiguous data blocks, we need at most
795          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
796          * 2 dindirect blocks, and 1 tindirect block
797          */
798         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
799 }
800
801 /*
802  * Truncate transactions can be complex and absolutely huge.  So we need to
803  * be able to restart the transaction at a conventient checkpoint to make
804  * sure we don't overflow the journal.
805  *
806  * Try to extend this transaction for the purposes of truncation.  If
807  * extend fails, we need to propagate the failure up and restart the
808  * transaction in the top-level truncate loop. --sct
809  *
810  * Returns 0 if we managed to create more room.  If we can't create more
811  * room, and the transaction must be restarted we return 1.
812  */
813 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
814 {
815         if (!ext4_handle_valid(handle))
816                 return 0;
817         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
818                 return 0;
819         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
820                 return 0;
821         return 1;
822 }
823
824 /*
825  * Probably it should be a library function... search for first non-zero word
826  * or memcmp with zero_page, whatever is better for particular architecture.
827  * Linus?
828  */
829 static inline int all_zeroes(__le32 *p, __le32 *q)
830 {
831         while (p < q)
832                 if (*p++)
833                         return 0;
834         return 1;
835 }
836
837 /**
838  *      ext4_find_shared - find the indirect blocks for partial truncation.
839  *      @inode:   inode in question
840  *      @depth:   depth of the affected branch
841  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
842  *      @chain:   place to store the pointers to partial indirect blocks
843  *      @top:     place to the (detached) top of branch
844  *
845  *      This is a helper function used by ext4_truncate().
846  *
847  *      When we do truncate() we may have to clean the ends of several
848  *      indirect blocks but leave the blocks themselves alive. Block is
849  *      partially truncated if some data below the new i_size is referred
850  *      from it (and it is on the path to the first completely truncated
851  *      data block, indeed).  We have to free the top of that path along
852  *      with everything to the right of the path. Since no allocation
853  *      past the truncation point is possible until ext4_truncate()
854  *      finishes, we may safely do the latter, but top of branch may
855  *      require special attention - pageout below the truncation point
856  *      might try to populate it.
857  *
858  *      We atomically detach the top of branch from the tree, store the
859  *      block number of its root in *@top, pointers to buffer_heads of
860  *      partially truncated blocks - in @chain[].bh and pointers to
861  *      their last elements that should not be removed - in
862  *      @chain[].p. Return value is the pointer to last filled element
863  *      of @chain.
864  *
865  *      The work left to caller to do the actual freeing of subtrees:
866  *              a) free the subtree starting from *@top
867  *              b) free the subtrees whose roots are stored in
868  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
869  *              c) free the subtrees growing from the inode past the @chain[0].
870  *                      (no partially truncated stuff there).  */
871
872 static Indirect *ext4_find_shared(struct inode *inode, int depth,
873                                   ext4_lblk_t offsets[4], Indirect chain[4],
874                                   __le32 *top)
875 {
876         Indirect *partial, *p;
877         int k, err;
878
879         *top = 0;
880         /* Make k index the deepest non-null offset + 1 */
881         for (k = depth; k > 1 && !offsets[k-1]; k--)
882                 ;
883         partial = ext4_get_branch(inode, k, offsets, chain, &err);
884         /* Writer: pointers */
885         if (!partial)
886                 partial = chain + k-1;
887         /*
888          * If the branch acquired continuation since we've looked at it -
889          * fine, it should all survive and (new) top doesn't belong to us.
890          */
891         if (!partial->key && *partial->p)
892                 /* Writer: end */
893                 goto no_top;
894         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
895                 ;
896         /*
897          * OK, we've found the last block that must survive. The rest of our
898          * branch should be detached before unlocking. However, if that rest
899          * of branch is all ours and does not grow immediately from the inode
900          * it's easier to cheat and just decrement partial->p.
901          */
902         if (p == chain + k - 1 && p > chain) {
903                 p->p--;
904         } else {
905                 *top = *p->p;
906                 /* Nope, don't do this in ext4.  Must leave the tree intact */
907 #if 0
908                 *p->p = 0;
909 #endif
910         }
911         /* Writer: end */
912
913         while (partial > p) {
914                 brelse(partial->bh);
915                 partial--;
916         }
917 no_top:
918         return partial;
919 }
920
921 /*
922  * Zero a number of block pointers in either an inode or an indirect block.
923  * If we restart the transaction we must again get write access to the
924  * indirect block for further modification.
925  *
926  * We release `count' blocks on disk, but (last - first) may be greater
927  * than `count' because there can be holes in there.
928  *
929  * Return 0 on success, 1 on invalid block range
930  * and < 0 on fatal error.
931  */
932 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
933                              struct buffer_head *bh,
934                              ext4_fsblk_t block_to_free,
935                              unsigned long count, __le32 *first,
936                              __le32 *last)
937 {
938         __le32 *p;
939         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
940         int     err;
941
942         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
943                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
944         else if (ext4_should_journal_data(inode))
945                 flags |= EXT4_FREE_BLOCKS_FORGET;
946
947         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
948                                    count)) {
949                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
950                                  "blocks %llu len %lu",
951                                  (unsigned long long) block_to_free, count);
952                 return 1;
953         }
954
955         if (try_to_extend_transaction(handle, inode)) {
956                 if (bh) {
957                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
958                         err = ext4_handle_dirty_metadata(handle, inode, bh);
959                         if (unlikely(err))
960                                 goto out_err;
961                 }
962                 err = ext4_mark_inode_dirty(handle, inode);
963                 if (unlikely(err))
964                         goto out_err;
965                 err = ext4_truncate_restart_trans(handle, inode,
966                                         ext4_blocks_for_truncate(inode));
967                 if (unlikely(err))
968                         goto out_err;
969                 if (bh) {
970                         BUFFER_TRACE(bh, "retaking write access");
971                         err = ext4_journal_get_write_access(handle, bh);
972                         if (unlikely(err))
973                                 goto out_err;
974                 }
975         }
976
977         for (p = first; p < last; p++)
978                 *p = 0;
979
980         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
981         return 0;
982 out_err:
983         ext4_std_error(inode->i_sb, err);
984         return err;
985 }
986
987 /**
988  * ext4_free_data - free a list of data blocks
989  * @handle:     handle for this transaction
990  * @inode:      inode we are dealing with
991  * @this_bh:    indirect buffer_head which contains *@first and *@last
992  * @first:      array of block numbers
993  * @last:       points immediately past the end of array
994  *
995  * We are freeing all blocks referred from that array (numbers are stored as
996  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
997  *
998  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
999  * blocks are contiguous then releasing them at one time will only affect one
1000  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1001  * actually use a lot of journal space.
1002  *
1003  * @this_bh will be %NULL if @first and @last point into the inode's direct
1004  * block pointers.
1005  */
1006 static void ext4_free_data(handle_t *handle, struct inode *inode,
1007                            struct buffer_head *this_bh,
1008                            __le32 *first, __le32 *last)
1009 {
1010         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1011         unsigned long count = 0;            /* Number of blocks in the run */
1012         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1013                                                corresponding to
1014                                                block_to_free */
1015         ext4_fsblk_t nr;                    /* Current block # */
1016         __le32 *p;                          /* Pointer into inode/ind
1017                                                for current block */
1018         int err = 0;
1019
1020         if (this_bh) {                          /* For indirect block */
1021                 BUFFER_TRACE(this_bh, "get_write_access");
1022                 err = ext4_journal_get_write_access(handle, this_bh);
1023                 /* Important: if we can't update the indirect pointers
1024                  * to the blocks, we can't free them. */
1025                 if (err)
1026                         return;
1027         }
1028
1029         for (p = first; p < last; p++) {
1030                 nr = le32_to_cpu(*p);
1031                 if (nr) {
1032                         /* accumulate blocks to free if they're contiguous */
1033                         if (count == 0) {
1034                                 block_to_free = nr;
1035                                 block_to_free_p = p;
1036                                 count = 1;
1037                         } else if (nr == block_to_free + count) {
1038                                 count++;
1039                         } else {
1040                                 err = ext4_clear_blocks(handle, inode, this_bh,
1041                                                         block_to_free, count,
1042                                                         block_to_free_p, p);
1043                                 if (err)
1044                                         break;
1045                                 block_to_free = nr;
1046                                 block_to_free_p = p;
1047                                 count = 1;
1048                         }
1049                 }
1050         }
1051
1052         if (!err && count > 0)
1053                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1054                                         count, block_to_free_p, p);
1055         if (err < 0)
1056                 /* fatal error */
1057                 return;
1058
1059         if (this_bh) {
1060                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1061
1062                 /*
1063                  * The buffer head should have an attached journal head at this
1064                  * point. However, if the data is corrupted and an indirect
1065                  * block pointed to itself, it would have been detached when
1066                  * the block was cleared. Check for this instead of OOPSing.
1067                  */
1068                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1069                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1070                 else
1071                         EXT4_ERROR_INODE(inode,
1072                                          "circular indirect block detected at "
1073                                          "block %llu",
1074                                 (unsigned long long) this_bh->b_blocknr);
1075         }
1076 }
1077
1078 /**
1079  *      ext4_free_branches - free an array of branches
1080  *      @handle: JBD handle for this transaction
1081  *      @inode: inode we are dealing with
1082  *      @parent_bh: the buffer_head which contains *@first and *@last
1083  *      @first: array of block numbers
1084  *      @last:  pointer immediately past the end of array
1085  *      @depth: depth of the branches to free
1086  *
1087  *      We are freeing all blocks referred from these branches (numbers are
1088  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1089  *      appropriately.
1090  */
1091 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1092                                struct buffer_head *parent_bh,
1093                                __le32 *first, __le32 *last, int depth)
1094 {
1095         ext4_fsblk_t nr;
1096         __le32 *p;
1097
1098         if (ext4_handle_is_aborted(handle))
1099                 return;
1100
1101         if (depth--) {
1102                 struct buffer_head *bh;
1103                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1104                 p = last;
1105                 while (--p >= first) {
1106                         nr = le32_to_cpu(*p);
1107                         if (!nr)
1108                                 continue;               /* A hole */
1109
1110                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1111                                                    nr, 1)) {
1112                                 EXT4_ERROR_INODE(inode,
1113                                                  "invalid indirect mapped "
1114                                                  "block %lu (level %d)",
1115                                                  (unsigned long) nr, depth);
1116                                 break;
1117                         }
1118
1119                         /* Go read the buffer for the next level down */
1120                         bh = sb_bread(inode->i_sb, nr);
1121
1122                         /*
1123                          * A read failure? Report error and clear slot
1124                          * (should be rare).
1125                          */
1126                         if (!bh) {
1127                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1128                                                        "Read failure");
1129                                 continue;
1130                         }
1131
1132                         /* This zaps the entire block.  Bottom up. */
1133                         BUFFER_TRACE(bh, "free child branches");
1134                         ext4_free_branches(handle, inode, bh,
1135                                         (__le32 *) bh->b_data,
1136                                         (__le32 *) bh->b_data + addr_per_block,
1137                                         depth);
1138                         brelse(bh);
1139
1140                         /*
1141                          * Everything below this this pointer has been
1142                          * released.  Now let this top-of-subtree go.
1143                          *
1144                          * We want the freeing of this indirect block to be
1145                          * atomic in the journal with the updating of the
1146                          * bitmap block which owns it.  So make some room in
1147                          * the journal.
1148                          *
1149                          * We zero the parent pointer *after* freeing its
1150                          * pointee in the bitmaps, so if extend_transaction()
1151                          * for some reason fails to put the bitmap changes and
1152                          * the release into the same transaction, recovery
1153                          * will merely complain about releasing a free block,
1154                          * rather than leaking blocks.
1155                          */
1156                         if (ext4_handle_is_aborted(handle))
1157                                 return;
1158                         if (try_to_extend_transaction(handle, inode)) {
1159                                 ext4_mark_inode_dirty(handle, inode);
1160                                 ext4_truncate_restart_trans(handle, inode,
1161                                             ext4_blocks_for_truncate(inode));
1162                         }
1163
1164                         /*
1165                          * The forget flag here is critical because if
1166                          * we are journaling (and not doing data
1167                          * journaling), we have to make sure a revoke
1168                          * record is written to prevent the journal
1169                          * replay from overwriting the (former)
1170                          * indirect block if it gets reallocated as a
1171                          * data block.  This must happen in the same
1172                          * transaction where the data blocks are
1173                          * actually freed.
1174                          */
1175                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1176                                          EXT4_FREE_BLOCKS_METADATA|
1177                                          EXT4_FREE_BLOCKS_FORGET);
1178
1179                         if (parent_bh) {
1180                                 /*
1181                                  * The block which we have just freed is
1182                                  * pointed to by an indirect block: journal it
1183                                  */
1184                                 BUFFER_TRACE(parent_bh, "get_write_access");
1185                                 if (!ext4_journal_get_write_access(handle,
1186                                                                    parent_bh)){
1187                                         *p = 0;
1188                                         BUFFER_TRACE(parent_bh,
1189                                         "call ext4_handle_dirty_metadata");
1190                                         ext4_handle_dirty_metadata(handle,
1191                                                                    inode,
1192                                                                    parent_bh);
1193                                 }
1194                         }
1195                 }
1196         } else {
1197                 /* We have reached the bottom of the tree. */
1198                 BUFFER_TRACE(parent_bh, "free data blocks");
1199                 ext4_free_data(handle, inode, parent_bh, first, last);
1200         }
1201 }
1202
1203 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1204 {
1205         struct ext4_inode_info *ei = EXT4_I(inode);
1206         __le32 *i_data = ei->i_data;
1207         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1208         ext4_lblk_t offsets[4];
1209         Indirect chain[4];
1210         Indirect *partial;
1211         __le32 nr = 0;
1212         int n = 0;
1213         ext4_lblk_t last_block, max_block;
1214         unsigned blocksize = inode->i_sb->s_blocksize;
1215
1216         last_block = (inode->i_size + blocksize-1)
1217                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1218         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1219                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1220
1221         if (last_block != max_block) {
1222                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1223                 if (n == 0)
1224                         return;
1225         }
1226
1227         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1228
1229         /*
1230          * The orphan list entry will now protect us from any crash which
1231          * occurs before the truncate completes, so it is now safe to propagate
1232          * the new, shorter inode size (held for now in i_size) into the
1233          * on-disk inode. We do this via i_disksize, which is the value which
1234          * ext4 *really* writes onto the disk inode.
1235          */
1236         ei->i_disksize = inode->i_size;
1237
1238         if (last_block == max_block) {
1239                 /*
1240                  * It is unnecessary to free any data blocks if last_block is
1241                  * equal to the indirect block limit.
1242                  */
1243                 return;
1244         } else if (n == 1) {            /* direct blocks */
1245                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1246                                i_data + EXT4_NDIR_BLOCKS);
1247                 goto do_indirects;
1248         }
1249
1250         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1251         /* Kill the top of shared branch (not detached) */
1252         if (nr) {
1253                 if (partial == chain) {
1254                         /* Shared branch grows from the inode */
1255                         ext4_free_branches(handle, inode, NULL,
1256                                            &nr, &nr+1, (chain+n-1) - partial);
1257                         *partial->p = 0;
1258                         /*
1259                          * We mark the inode dirty prior to restart,
1260                          * and prior to stop.  No need for it here.
1261                          */
1262                 } else {
1263                         /* Shared branch grows from an indirect block */
1264                         BUFFER_TRACE(partial->bh, "get_write_access");
1265                         ext4_free_branches(handle, inode, partial->bh,
1266                                         partial->p,
1267                                         partial->p+1, (chain+n-1) - partial);
1268                 }
1269         }
1270         /* Clear the ends of indirect blocks on the shared branch */
1271         while (partial > chain) {
1272                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1273                                    (__le32*)partial->bh->b_data+addr_per_block,
1274                                    (chain+n-1) - partial);
1275                 BUFFER_TRACE(partial->bh, "call brelse");
1276                 brelse(partial->bh);
1277                 partial--;
1278         }
1279 do_indirects:
1280         /* Kill the remaining (whole) subtrees */
1281         switch (offsets[0]) {
1282         default:
1283                 nr = i_data[EXT4_IND_BLOCK];
1284                 if (nr) {
1285                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1286                         i_data[EXT4_IND_BLOCK] = 0;
1287                 }
1288         case EXT4_IND_BLOCK:
1289                 nr = i_data[EXT4_DIND_BLOCK];
1290                 if (nr) {
1291                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1292                         i_data[EXT4_DIND_BLOCK] = 0;
1293                 }
1294         case EXT4_DIND_BLOCK:
1295                 nr = i_data[EXT4_TIND_BLOCK];
1296                 if (nr) {
1297                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1298                         i_data[EXT4_TIND_BLOCK] = 0;
1299                 }
1300         case EXT4_TIND_BLOCK:
1301                 ;
1302         }
1303 }
1304
1305 /**
1306  *      ext4_ind_remove_space - remove space from the range
1307  *      @handle: JBD handle for this transaction
1308  *      @inode: inode we are dealing with
1309  *      @start: First block to remove
1310  *      @end:   One block after the last block to remove (exclusive)
1311  *
1312  *      Free the blocks in the defined range (end is exclusive endpoint of
1313  *      range). This is used by ext4_punch_hole().
1314  */
1315 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1316                           ext4_lblk_t start, ext4_lblk_t end)
1317 {
1318         struct ext4_inode_info *ei = EXT4_I(inode);
1319         __le32 *i_data = ei->i_data;
1320         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1321         ext4_lblk_t offsets[4], offsets2[4];
1322         Indirect chain[4], chain2[4];
1323         Indirect *partial, *partial2;
1324         ext4_lblk_t max_block;
1325         __le32 nr = 0, nr2 = 0;
1326         int n = 0, n2 = 0;
1327         unsigned blocksize = inode->i_sb->s_blocksize;
1328
1329         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1330                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1331         if (end >= max_block)
1332                 end = max_block;
1333         if ((start >= end) || (start > max_block))
1334                 return 0;
1335
1336         n = ext4_block_to_path(inode, start, offsets, NULL);
1337         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1338
1339         BUG_ON(n > n2);
1340
1341         if ((n == 1) && (n == n2)) {
1342                 /* We're punching only within direct block range */
1343                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1344                                i_data + offsets2[0]);
1345                 return 0;
1346         } else if (n2 > n) {
1347                 /*
1348                  * Start and end are on a different levels so we're going to
1349                  * free partial block at start, and partial block at end of
1350                  * the range. If there are some levels in between then
1351                  * do_indirects label will take care of that.
1352                  */
1353
1354                 if (n == 1) {
1355                         /*
1356                          * Start is at the direct block level, free
1357                          * everything to the end of the level.
1358                          */
1359                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1360                                        i_data + EXT4_NDIR_BLOCKS);
1361                         goto end_range;
1362                 }
1363
1364
1365                 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1366                 if (nr) {
1367                         if (partial == chain) {
1368                                 /* Shared branch grows from the inode */
1369                                 ext4_free_branches(handle, inode, NULL,
1370                                            &nr, &nr+1, (chain+n-1) - partial);
1371                                 *partial->p = 0;
1372                         } else {
1373                                 /* Shared branch grows from an indirect block */
1374                                 BUFFER_TRACE(partial->bh, "get_write_access");
1375                                 ext4_free_branches(handle, inode, partial->bh,
1376                                         partial->p,
1377                                         partial->p+1, (chain+n-1) - partial);
1378                         }
1379                 }
1380
1381                 /*
1382                  * Clear the ends of indirect blocks on the shared branch
1383                  * at the start of the range
1384                  */
1385                 while (partial > chain) {
1386                         ext4_free_branches(handle, inode, partial->bh,
1387                                 partial->p + 1,
1388                                 (__le32 *)partial->bh->b_data+addr_per_block,
1389                                 (chain+n-1) - partial);
1390                         BUFFER_TRACE(partial->bh, "call brelse");
1391                         brelse(partial->bh);
1392                         partial--;
1393                 }
1394
1395 end_range:
1396                 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1397                 if (nr2) {
1398                         if (partial2 == chain2) {
1399                                 /*
1400                                  * Remember, end is exclusive so here we're at
1401                                  * the start of the next level we're not going
1402                                  * to free. Everything was covered by the start
1403                                  * of the range.
1404                                  */
1405                                 goto do_indirects;
1406                         }
1407                 } else {
1408                         /*
1409                          * ext4_find_shared returns Indirect structure which
1410                          * points to the last element which should not be
1411                          * removed by truncate. But this is end of the range
1412                          * in punch_hole so we need to point to the next element
1413                          */
1414                         partial2->p++;
1415                 }
1416
1417                 /*
1418                  * Clear the ends of indirect blocks on the shared branch
1419                  * at the end of the range
1420                  */
1421                 while (partial2 > chain2) {
1422                         ext4_free_branches(handle, inode, partial2->bh,
1423                                            (__le32 *)partial2->bh->b_data,
1424                                            partial2->p,
1425                                            (chain2+n2-1) - partial2);
1426                         BUFFER_TRACE(partial2->bh, "call brelse");
1427                         brelse(partial2->bh);
1428                         partial2--;
1429                 }
1430                 goto do_indirects;
1431         }
1432
1433         /* Punch happened within the same level (n == n2) */
1434         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1435         partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1436
1437         /* Free top, but only if partial2 isn't its subtree. */
1438         if (nr) {
1439                 int level = min(partial - chain, partial2 - chain2);
1440                 int i;
1441                 int subtree = 1;
1442
1443                 for (i = 0; i <= level; i++) {
1444                         if (offsets[i] != offsets2[i]) {
1445                                 subtree = 0;
1446                                 break;
1447                         }
1448                 }
1449
1450                 if (!subtree) {
1451                         if (partial == chain) {
1452                                 /* Shared branch grows from the inode */
1453                                 ext4_free_branches(handle, inode, NULL,
1454                                                    &nr, &nr+1,
1455                                                    (chain+n-1) - partial);
1456                                 *partial->p = 0;
1457                         } else {
1458                                 /* Shared branch grows from an indirect block */
1459                                 BUFFER_TRACE(partial->bh, "get_write_access");
1460                                 ext4_free_branches(handle, inode, partial->bh,
1461                                                    partial->p,
1462                                                    partial->p+1,
1463                                                    (chain+n-1) - partial);
1464                         }
1465                 }
1466         }
1467
1468         if (!nr2) {
1469                 /*
1470                  * ext4_find_shared returns Indirect structure which
1471                  * points to the last element which should not be
1472                  * removed by truncate. But this is end of the range
1473                  * in punch_hole so we need to point to the next element
1474                  */
1475                 partial2->p++;
1476         }
1477
1478         while (partial > chain || partial2 > chain2) {
1479                 int depth = (chain+n-1) - partial;
1480                 int depth2 = (chain2+n2-1) - partial2;
1481
1482                 if (partial > chain && partial2 > chain2 &&
1483                     partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1484                         /*
1485                          * We've converged on the same block. Clear the range,
1486                          * then we're done.
1487                          */
1488                         ext4_free_branches(handle, inode, partial->bh,
1489                                            partial->p + 1,
1490                                            partial2->p,
1491                                            (chain+n-1) - partial);
1492                         BUFFER_TRACE(partial->bh, "call brelse");
1493                         brelse(partial->bh);
1494                         BUFFER_TRACE(partial2->bh, "call brelse");
1495                         brelse(partial2->bh);
1496                         return 0;
1497                 }
1498
1499                 /*
1500                  * The start and end partial branches may not be at the same
1501                  * level even though the punch happened within one level. So, we
1502                  * give them a chance to arrive at the same level, then walk
1503                  * them in step with each other until we converge on the same
1504                  * block.
1505                  */
1506                 if (partial > chain && depth <= depth2) {
1507                         ext4_free_branches(handle, inode, partial->bh,
1508                                            partial->p + 1,
1509                                            (__le32 *)partial->bh->b_data+addr_per_block,
1510                                            (chain+n-1) - partial);
1511                         BUFFER_TRACE(partial->bh, "call brelse");
1512                         brelse(partial->bh);
1513                         partial--;
1514                 }
1515                 if (partial2 > chain2 && depth2 <= depth) {
1516                         ext4_free_branches(handle, inode, partial2->bh,
1517                                            (__le32 *)partial2->bh->b_data,
1518                                            partial2->p,
1519                                            (chain2+n2-1) - partial2);
1520                         BUFFER_TRACE(partial2->bh, "call brelse");
1521                         brelse(partial2->bh);
1522                         partial2--;
1523                 }
1524         }
1525         return 0;
1526
1527 do_indirects:
1528         /* Kill the remaining (whole) subtrees */
1529         switch (offsets[0]) {
1530         default:
1531                 if (++n >= n2)
1532                         return 0;
1533                 nr = i_data[EXT4_IND_BLOCK];
1534                 if (nr) {
1535                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1536                         i_data[EXT4_IND_BLOCK] = 0;
1537                 }
1538         case EXT4_IND_BLOCK:
1539                 if (++n >= n2)
1540                         return 0;
1541                 nr = i_data[EXT4_DIND_BLOCK];
1542                 if (nr) {
1543                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1544                         i_data[EXT4_DIND_BLOCK] = 0;
1545                 }
1546         case EXT4_DIND_BLOCK:
1547                 if (++n >= n2)
1548                         return 0;
1549                 nr = i_data[EXT4_TIND_BLOCK];
1550                 if (nr) {
1551                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1552                         i_data[EXT4_TIND_BLOCK] = 0;
1553                 }
1554         case EXT4_TIND_BLOCK:
1555                 ;
1556         }
1557         return 0;
1558 }