Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         if (WARN_ON(!fmt->load_binary))
78                 return;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct linux_binfmt *fmt;
111         struct file *file;
112         struct filename *tmp = getname(library);
113         int error = PTR_ERR(tmp);
114         static const struct open_flags uselib_flags = {
115                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117                 .intent = LOOKUP_OPEN,
118                 .lookup_flags = LOOKUP_FOLLOW,
119         };
120
121         if (IS_ERR(tmp))
122                 goto out;
123
124         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125         putname(tmp);
126         error = PTR_ERR(file);
127         if (IS_ERR(file))
128                 goto out;
129
130         error = -EINVAL;
131         if (!S_ISREG(file_inode(file)->i_mode))
132                 goto exit;
133
134         error = -EACCES;
135         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136                 goto exit;
137
138         fsnotify_open(file);
139
140         error = -ENOEXEC;
141
142         read_lock(&binfmt_lock);
143         list_for_each_entry(fmt, &formats, lh) {
144                 if (!fmt->load_shlib)
145                         continue;
146                 if (!try_module_get(fmt->module))
147                         continue;
148                 read_unlock(&binfmt_lock);
149                 error = fmt->load_shlib(file);
150                 read_lock(&binfmt_lock);
151                 put_binfmt(fmt);
152                 if (error != -ENOEXEC)
153                         break;
154         }
155         read_unlock(&binfmt_lock);
156 exit:
157         fput(file);
158 out:
159         return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172         struct mm_struct *mm = current->mm;
173         long diff = (long)(pages - bprm->vma_pages);
174
175         if (!mm || !diff)
176                 return;
177
178         bprm->vma_pages = pages;
179         add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183                 int write)
184 {
185         struct page *page;
186         int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189         if (write) {
190                 ret = expand_downwards(bprm->vma, pos);
191                 if (ret < 0)
192                         return NULL;
193         }
194 #endif
195         ret = get_user_pages(current, bprm->mm, pos,
196                         1, write, 1, &page, NULL);
197         if (ret <= 0)
198                 return NULL;
199
200         if (write) {
201                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202                 struct rlimit *rlim;
203
204                 acct_arg_size(bprm, size / PAGE_SIZE);
205
206                 /*
207                  * We've historically supported up to 32 pages (ARG_MAX)
208                  * of argument strings even with small stacks
209                  */
210                 if (size <= ARG_MAX)
211                         return page;
212
213                 /*
214                  * Limit to 1/4-th the stack size for the argv+env strings.
215                  * This ensures that:
216                  *  - the remaining binfmt code will not run out of stack space,
217                  *  - the program will have a reasonable amount of stack left
218                  *    to work from.
219                  */
220                 rlim = current->signal->rlim;
221                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222                         put_page(page);
223                         return NULL;
224                 }
225         }
226
227         return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232         put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256         if (!vma)
257                 return -ENOMEM;
258
259         down_write(&mm->mmap_sem);
260         vma->vm_mm = mm;
261
262         /*
263          * Place the stack at the largest stack address the architecture
264          * supports. Later, we'll move this to an appropriate place. We don't
265          * use STACK_TOP because that can depend on attributes which aren't
266          * configured yet.
267          */
268         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269         vma->vm_end = STACK_TOP_MAX;
270         vma->vm_start = vma->vm_end - PAGE_SIZE;
271         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273         INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278
279         mm->stack_vm = mm->total_vm = 1;
280         arch_bprm_mm_init(mm, vma);
281         up_write(&mm->mmap_sem);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         up_write(&mm->mmap_sem);
286         bprm->vma = NULL;
287         kmem_cache_free(vm_area_cachep, vma);
288         return err;
289 }
290
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293         return len <= MAX_ARG_STRLEN;
294 }
295
296 #else
297
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303                 int write)
304 {
305         struct page *page;
306
307         page = bprm->page[pos / PAGE_SIZE];
308         if (!page && write) {
309                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310                 if (!page)
311                         return NULL;
312                 bprm->page[pos / PAGE_SIZE] = page;
313         }
314
315         return page;
316 }
317
318 static void put_arg_page(struct page *page)
319 {
320 }
321
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324         if (bprm->page[i]) {
325                 __free_page(bprm->page[i]);
326                 bprm->page[i] = NULL;
327         }
328 }
329
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332         int i;
333
334         for (i = 0; i < MAX_ARG_PAGES; i++)
335                 free_arg_page(bprm, i);
336 }
337
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339                 struct page *page)
340 {
341 }
342
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346         return 0;
347 }
348
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351         return len <= bprm->p;
352 }
353
354 #endif /* CONFIG_MMU */
355
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364         int err;
365         struct mm_struct *mm = NULL;
366
367         bprm->mm = mm = mm_alloc();
368         err = -ENOMEM;
369         if (!mm)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length, false))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, old_start, old_end);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626         }
627         tlb_finish_mmu(&tlb, old_start, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > STACK_SIZE_MAX)
660                 stack_base = STACK_SIZE_MAX;
661
662         /* Add space for stack randomization. */
663         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
664
665         /* Make sure we didn't let the argument array grow too large. */
666         if (vma->vm_end - vma->vm_start > stack_base)
667                 return -ENOMEM;
668
669         stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671         stack_shift = vma->vm_start - stack_base;
672         mm->arg_start = bprm->p - stack_shift;
673         bprm->p = vma->vm_end - stack_shift;
674 #else
675         stack_top = arch_align_stack(stack_top);
676         stack_top = PAGE_ALIGN(stack_top);
677
678         if (unlikely(stack_top < mmap_min_addr) ||
679             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680                 return -ENOMEM;
681
682         stack_shift = vma->vm_end - stack_top;
683
684         bprm->p -= stack_shift;
685         mm->arg_start = bprm->p;
686 #endif
687
688         if (bprm->loader)
689                 bprm->loader -= stack_shift;
690         bprm->exec -= stack_shift;
691
692         down_write(&mm->mmap_sem);
693         vm_flags = VM_STACK_FLAGS;
694
695         /*
696          * Adjust stack execute permissions; explicitly enable for
697          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698          * (arch default) otherwise.
699          */
700         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701                 vm_flags |= VM_EXEC;
702         else if (executable_stack == EXSTACK_DISABLE_X)
703                 vm_flags &= ~VM_EXEC;
704         vm_flags |= mm->def_flags;
705         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708                         vm_flags);
709         if (ret)
710                 goto out_unlock;
711         BUG_ON(prev != vma);
712
713         /* Move stack pages down in memory. */
714         if (stack_shift) {
715                 ret = shift_arg_pages(vma, stack_shift);
716                 if (ret)
717                         goto out_unlock;
718         }
719
720         /* mprotect_fixup is overkill to remove the temporary stack flags */
721         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724         stack_size = vma->vm_end - vma->vm_start;
725         /*
726          * Align this down to a page boundary as expand_stack
727          * will align it up.
728          */
729         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731         if (stack_size + stack_expand > rlim_stack)
732                 stack_base = vma->vm_start + rlim_stack;
733         else
734                 stack_base = vma->vm_end + stack_expand;
735 #else
736         if (stack_size + stack_expand > rlim_stack)
737                 stack_base = vma->vm_end - rlim_stack;
738         else
739                 stack_base = vma->vm_start - stack_expand;
740 #endif
741         current->mm->start_stack = bprm->p;
742         ret = expand_stack(vma, stack_base);
743         if (ret)
744                 ret = -EFAULT;
745
746 out_unlock:
747         up_write(&mm->mmap_sem);
748         return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751
752 #endif /* CONFIG_MMU */
753
754 static struct file *do_open_execat(int fd, struct filename *name, int flags)
755 {
756         struct file *file;
757         int err;
758         struct open_flags open_exec_flags = {
759                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760                 .acc_mode = MAY_EXEC | MAY_OPEN,
761                 .intent = LOOKUP_OPEN,
762                 .lookup_flags = LOOKUP_FOLLOW,
763         };
764
765         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
766                 return ERR_PTR(-EINVAL);
767         if (flags & AT_SYMLINK_NOFOLLOW)
768                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
769         if (flags & AT_EMPTY_PATH)
770                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
771
772         file = do_filp_open(fd, name, &open_exec_flags);
773         if (IS_ERR(file))
774                 goto out;
775
776         err = -EACCES;
777         if (!S_ISREG(file_inode(file)->i_mode))
778                 goto exit;
779
780         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781                 goto exit;
782
783         err = deny_write_access(file);
784         if (err)
785                 goto exit;
786
787         if (name->name[0] != '\0')
788                 fsnotify_open(file);
789
790 out:
791         return file;
792
793 exit:
794         fput(file);
795         return ERR_PTR(err);
796 }
797
798 struct file *open_exec(const char *name)
799 {
800         struct filename *filename = getname_kernel(name);
801         struct file *f = ERR_CAST(filename);
802
803         if (!IS_ERR(filename)) {
804                 f = do_open_execat(AT_FDCWD, filename, 0);
805                 putname(filename);
806         }
807         return f;
808 }
809 EXPORT_SYMBOL(open_exec);
810
811 int kernel_read(struct file *file, loff_t offset,
812                 char *addr, unsigned long count)
813 {
814         mm_segment_t old_fs;
815         loff_t pos = offset;
816         int result;
817
818         old_fs = get_fs();
819         set_fs(get_ds());
820         /* The cast to a user pointer is valid due to the set_fs() */
821         result = vfs_read(file, (void __user *)addr, count, &pos);
822         set_fs(old_fs);
823         return result;
824 }
825
826 EXPORT_SYMBOL(kernel_read);
827
828 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
829 {
830         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
831         if (res > 0)
832                 flush_icache_range(addr, addr + len);
833         return res;
834 }
835 EXPORT_SYMBOL(read_code);
836
837 static int exec_mmap(struct mm_struct *mm)
838 {
839         struct task_struct *tsk;
840         struct mm_struct *old_mm, *active_mm;
841
842         /* Notify parent that we're no longer interested in the old VM */
843         tsk = current;
844         old_mm = current->mm;
845         mm_release(tsk, old_mm);
846
847         if (old_mm) {
848                 sync_mm_rss(old_mm);
849                 /*
850                  * Make sure that if there is a core dump in progress
851                  * for the old mm, we get out and die instead of going
852                  * through with the exec.  We must hold mmap_sem around
853                  * checking core_state and changing tsk->mm.
854                  */
855                 down_read(&old_mm->mmap_sem);
856                 if (unlikely(old_mm->core_state)) {
857                         up_read(&old_mm->mmap_sem);
858                         return -EINTR;
859                 }
860         }
861         task_lock(tsk);
862         preempt_disable_rt();
863         active_mm = tsk->active_mm;
864         tsk->mm = mm;
865         tsk->active_mm = mm;
866         activate_mm(active_mm, mm);
867         tsk->mm->vmacache_seqnum = 0;
868         vmacache_flush(tsk);
869         preempt_enable_rt();
870         task_unlock(tsk);
871         if (old_mm) {
872                 up_read(&old_mm->mmap_sem);
873                 BUG_ON(active_mm != old_mm);
874                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
875                 mm_update_next_owner(old_mm);
876                 mmput(old_mm);
877                 return 0;
878         }
879         mmdrop(active_mm);
880         return 0;
881 }
882
883 /*
884  * This function makes sure the current process has its own signal table,
885  * so that flush_signal_handlers can later reset the handlers without
886  * disturbing other processes.  (Other processes might share the signal
887  * table via the CLONE_SIGHAND option to clone().)
888  */
889 static int de_thread(struct task_struct *tsk)
890 {
891         struct signal_struct *sig = tsk->signal;
892         struct sighand_struct *oldsighand = tsk->sighand;
893         spinlock_t *lock = &oldsighand->siglock;
894
895         if (thread_group_empty(tsk))
896                 goto no_thread_group;
897
898         /*
899          * Kill all other threads in the thread group.
900          */
901         spin_lock_irq(lock);
902         if (signal_group_exit(sig)) {
903                 /*
904                  * Another group action in progress, just
905                  * return so that the signal is processed.
906                  */
907                 spin_unlock_irq(lock);
908                 return -EAGAIN;
909         }
910
911         sig->group_exit_task = tsk;
912         sig->notify_count = zap_other_threads(tsk);
913         if (!thread_group_leader(tsk))
914                 sig->notify_count--;
915
916         while (sig->notify_count) {
917                 __set_current_state(TASK_KILLABLE);
918                 spin_unlock_irq(lock);
919                 schedule();
920                 if (unlikely(__fatal_signal_pending(tsk)))
921                         goto killed;
922                 spin_lock_irq(lock);
923         }
924         spin_unlock_irq(lock);
925
926         /*
927          * At this point all other threads have exited, all we have to
928          * do is to wait for the thread group leader to become inactive,
929          * and to assume its PID:
930          */
931         if (!thread_group_leader(tsk)) {
932                 struct task_struct *leader = tsk->group_leader;
933
934                 for (;;) {
935                         threadgroup_change_begin(tsk);
936                         write_lock_irq(&tasklist_lock);
937                         /*
938                          * Do this under tasklist_lock to ensure that
939                          * exit_notify() can't miss ->group_exit_task
940                          */
941                         sig->notify_count = -1;
942                         if (likely(leader->exit_state))
943                                 break;
944                         __set_current_state(TASK_KILLABLE);
945                         write_unlock_irq(&tasklist_lock);
946                         threadgroup_change_end(tsk);
947                         schedule();
948                         if (unlikely(__fatal_signal_pending(tsk)))
949                                 goto killed;
950                 }
951
952                 /*
953                  * The only record we have of the real-time age of a
954                  * process, regardless of execs it's done, is start_time.
955                  * All the past CPU time is accumulated in signal_struct
956                  * from sister threads now dead.  But in this non-leader
957                  * exec, nothing survives from the original leader thread,
958                  * whose birth marks the true age of this process now.
959                  * When we take on its identity by switching to its PID, we
960                  * also take its birthdate (always earlier than our own).
961                  */
962                 tsk->start_time = leader->start_time;
963                 tsk->real_start_time = leader->real_start_time;
964
965                 BUG_ON(!same_thread_group(leader, tsk));
966                 BUG_ON(has_group_leader_pid(tsk));
967                 /*
968                  * An exec() starts a new thread group with the
969                  * TGID of the previous thread group. Rehash the
970                  * two threads with a switched PID, and release
971                  * the former thread group leader:
972                  */
973
974                 /* Become a process group leader with the old leader's pid.
975                  * The old leader becomes a thread of the this thread group.
976                  * Note: The old leader also uses this pid until release_task
977                  *       is called.  Odd but simple and correct.
978                  */
979                 tsk->pid = leader->pid;
980                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
981                 transfer_pid(leader, tsk, PIDTYPE_PGID);
982                 transfer_pid(leader, tsk, PIDTYPE_SID);
983
984                 list_replace_rcu(&leader->tasks, &tsk->tasks);
985                 list_replace_init(&leader->sibling, &tsk->sibling);
986
987                 tsk->group_leader = tsk;
988                 leader->group_leader = tsk;
989
990                 tsk->exit_signal = SIGCHLD;
991                 leader->exit_signal = -1;
992
993                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
994                 leader->exit_state = EXIT_DEAD;
995
996                 /*
997                  * We are going to release_task()->ptrace_unlink() silently,
998                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
999                  * the tracer wont't block again waiting for this thread.
1000                  */
1001                 if (unlikely(leader->ptrace))
1002                         __wake_up_parent(leader, leader->parent);
1003                 write_unlock_irq(&tasklist_lock);
1004                 threadgroup_change_end(tsk);
1005
1006                 release_task(leader);
1007         }
1008
1009         sig->group_exit_task = NULL;
1010         sig->notify_count = 0;
1011
1012 no_thread_group:
1013         /* we have changed execution domain */
1014         tsk->exit_signal = SIGCHLD;
1015
1016         exit_itimers(sig);
1017         flush_itimer_signals();
1018
1019         if (atomic_read(&oldsighand->count) != 1) {
1020                 struct sighand_struct *newsighand;
1021                 /*
1022                  * This ->sighand is shared with the CLONE_SIGHAND
1023                  * but not CLONE_THREAD task, switch to the new one.
1024                  */
1025                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1026                 if (!newsighand)
1027                         return -ENOMEM;
1028
1029                 atomic_set(&newsighand->count, 1);
1030                 memcpy(newsighand->action, oldsighand->action,
1031                        sizeof(newsighand->action));
1032
1033                 write_lock_irq(&tasklist_lock);
1034                 spin_lock(&oldsighand->siglock);
1035                 rcu_assign_pointer(tsk->sighand, newsighand);
1036                 spin_unlock(&oldsighand->siglock);
1037                 write_unlock_irq(&tasklist_lock);
1038
1039                 __cleanup_sighand(oldsighand);
1040         }
1041
1042         BUG_ON(!thread_group_leader(tsk));
1043         return 0;
1044
1045 killed:
1046         /* protects against exit_notify() and __exit_signal() */
1047         read_lock(&tasklist_lock);
1048         sig->group_exit_task = NULL;
1049         sig->notify_count = 0;
1050         read_unlock(&tasklist_lock);
1051         return -EAGAIN;
1052 }
1053
1054 char *get_task_comm(char *buf, struct task_struct *tsk)
1055 {
1056         /* buf must be at least sizeof(tsk->comm) in size */
1057         task_lock(tsk);
1058         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1059         task_unlock(tsk);
1060         return buf;
1061 }
1062 EXPORT_SYMBOL_GPL(get_task_comm);
1063
1064 /*
1065  * These functions flushes out all traces of the currently running executable
1066  * so that a new one can be started
1067  */
1068
1069 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1070 {
1071         task_lock(tsk);
1072         trace_task_rename(tsk, buf);
1073         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1074         task_unlock(tsk);
1075         perf_event_comm(tsk, exec);
1076 }
1077
1078 int flush_old_exec(struct linux_binprm * bprm)
1079 {
1080         int retval;
1081
1082         /*
1083          * Make sure we have a private signal table and that
1084          * we are unassociated from the previous thread group.
1085          */
1086         retval = de_thread(current);
1087         if (retval)
1088                 goto out;
1089
1090         /*
1091          * Must be called _before_ exec_mmap() as bprm->mm is
1092          * not visibile until then. This also enables the update
1093          * to be lockless.
1094          */
1095         set_mm_exe_file(bprm->mm, bprm->file);
1096
1097         /*
1098          * Release all of the old mmap stuff
1099          */
1100         acct_arg_size(bprm, 0);
1101         retval = exec_mmap(bprm->mm);
1102         if (retval)
1103                 goto out;
1104
1105         bprm->mm = NULL;                /* We're using it now */
1106
1107         set_fs(USER_DS);
1108         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1109                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1110         flush_thread();
1111         current->personality &= ~bprm->per_clear;
1112
1113         return 0;
1114
1115 out:
1116         return retval;
1117 }
1118 EXPORT_SYMBOL(flush_old_exec);
1119
1120 void would_dump(struct linux_binprm *bprm, struct file *file)
1121 {
1122         if (inode_permission(file_inode(file), MAY_READ) < 0)
1123                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1124 }
1125 EXPORT_SYMBOL(would_dump);
1126
1127 void setup_new_exec(struct linux_binprm * bprm)
1128 {
1129         arch_pick_mmap_layout(current->mm);
1130
1131         /* This is the point of no return */
1132         current->sas_ss_sp = current->sas_ss_size = 0;
1133
1134         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1135                 set_dumpable(current->mm, SUID_DUMP_USER);
1136         else
1137                 set_dumpable(current->mm, suid_dumpable);
1138
1139         perf_event_exec();
1140         __set_task_comm(current, kbasename(bprm->filename), true);
1141
1142         /* Set the new mm task size. We have to do that late because it may
1143          * depend on TIF_32BIT which is only updated in flush_thread() on
1144          * some architectures like powerpc
1145          */
1146         current->mm->task_size = TASK_SIZE;
1147
1148         /* install the new credentials */
1149         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1150             !gid_eq(bprm->cred->gid, current_egid())) {
1151                 current->pdeath_signal = 0;
1152         } else {
1153                 would_dump(bprm, bprm->file);
1154                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1155                         set_dumpable(current->mm, suid_dumpable);
1156         }
1157
1158         /* An exec changes our domain. We are no longer part of the thread
1159            group */
1160         current->self_exec_id++;
1161         flush_signal_handlers(current, 0);
1162         do_close_on_exec(current->files);
1163 }
1164 EXPORT_SYMBOL(setup_new_exec);
1165
1166 /*
1167  * Prepare credentials and lock ->cred_guard_mutex.
1168  * install_exec_creds() commits the new creds and drops the lock.
1169  * Or, if exec fails before, free_bprm() should release ->cred and
1170  * and unlock.
1171  */
1172 int prepare_bprm_creds(struct linux_binprm *bprm)
1173 {
1174         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1175                 return -ERESTARTNOINTR;
1176
1177         bprm->cred = prepare_exec_creds();
1178         if (likely(bprm->cred))
1179                 return 0;
1180
1181         mutex_unlock(&current->signal->cred_guard_mutex);
1182         return -ENOMEM;
1183 }
1184
1185 static void free_bprm(struct linux_binprm *bprm)
1186 {
1187         free_arg_pages(bprm);
1188         if (bprm->cred) {
1189                 mutex_unlock(&current->signal->cred_guard_mutex);
1190                 abort_creds(bprm->cred);
1191         }
1192         if (bprm->file) {
1193                 allow_write_access(bprm->file);
1194                 fput(bprm->file);
1195         }
1196         /* If a binfmt changed the interp, free it. */
1197         if (bprm->interp != bprm->filename)
1198                 kfree(bprm->interp);
1199         kfree(bprm);
1200 }
1201
1202 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1203 {
1204         /* If a binfmt changed the interp, free it first. */
1205         if (bprm->interp != bprm->filename)
1206                 kfree(bprm->interp);
1207         bprm->interp = kstrdup(interp, GFP_KERNEL);
1208         if (!bprm->interp)
1209                 return -ENOMEM;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL(bprm_change_interp);
1213
1214 /*
1215  * install the new credentials for this executable
1216  */
1217 void install_exec_creds(struct linux_binprm *bprm)
1218 {
1219         security_bprm_committing_creds(bprm);
1220
1221         commit_creds(bprm->cred);
1222         bprm->cred = NULL;
1223
1224         /*
1225          * Disable monitoring for regular users
1226          * when executing setuid binaries. Must
1227          * wait until new credentials are committed
1228          * by commit_creds() above
1229          */
1230         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1231                 perf_event_exit_task(current);
1232         /*
1233          * cred_guard_mutex must be held at least to this point to prevent
1234          * ptrace_attach() from altering our determination of the task's
1235          * credentials; any time after this it may be unlocked.
1236          */
1237         security_bprm_committed_creds(bprm);
1238         mutex_unlock(&current->signal->cred_guard_mutex);
1239 }
1240 EXPORT_SYMBOL(install_exec_creds);
1241
1242 /*
1243  * determine how safe it is to execute the proposed program
1244  * - the caller must hold ->cred_guard_mutex to protect against
1245  *   PTRACE_ATTACH or seccomp thread-sync
1246  */
1247 static void check_unsafe_exec(struct linux_binprm *bprm)
1248 {
1249         struct task_struct *p = current, *t;
1250         unsigned n_fs;
1251
1252         if (p->ptrace) {
1253                 if (p->ptrace & PT_PTRACE_CAP)
1254                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1255                 else
1256                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1257         }
1258
1259         /*
1260          * This isn't strictly necessary, but it makes it harder for LSMs to
1261          * mess up.
1262          */
1263         if (task_no_new_privs(current))
1264                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1265
1266         t = p;
1267         n_fs = 1;
1268         spin_lock(&p->fs->lock);
1269         rcu_read_lock();
1270         while_each_thread(p, t) {
1271                 if (t->fs == p->fs)
1272                         n_fs++;
1273         }
1274         rcu_read_unlock();
1275
1276         if (p->fs->users > n_fs)
1277                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1278         else
1279                 p->fs->in_exec = 1;
1280         spin_unlock(&p->fs->lock);
1281 }
1282
1283 static void bprm_fill_uid(struct linux_binprm *bprm)
1284 {
1285         struct inode *inode;
1286         unsigned int mode;
1287         kuid_t uid;
1288         kgid_t gid;
1289
1290         /* clear any previous set[ug]id data from a previous binary */
1291         bprm->cred->euid = current_euid();
1292         bprm->cred->egid = current_egid();
1293
1294         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1295                 return;
1296
1297         if (task_no_new_privs(current))
1298                 return;
1299
1300         inode = file_inode(bprm->file);
1301         mode = READ_ONCE(inode->i_mode);
1302         if (!(mode & (S_ISUID|S_ISGID)))
1303                 return;
1304
1305         /* Be careful if suid/sgid is set */
1306         mutex_lock(&inode->i_mutex);
1307
1308         /* reload atomically mode/uid/gid now that lock held */
1309         mode = inode->i_mode;
1310         uid = inode->i_uid;
1311         gid = inode->i_gid;
1312         mutex_unlock(&inode->i_mutex);
1313
1314         /* We ignore suid/sgid if there are no mappings for them in the ns */
1315         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1316                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1317                 return;
1318
1319         if (mode & S_ISUID) {
1320                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1321                 bprm->cred->euid = uid;
1322         }
1323
1324         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1325                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1326                 bprm->cred->egid = gid;
1327         }
1328 }
1329
1330 /*
1331  * Fill the binprm structure from the inode.
1332  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1333  *
1334  * This may be called multiple times for binary chains (scripts for example).
1335  */
1336 int prepare_binprm(struct linux_binprm *bprm)
1337 {
1338         int retval;
1339
1340         bprm_fill_uid(bprm);
1341
1342         /* fill in binprm security blob */
1343         retval = security_bprm_set_creds(bprm);
1344         if (retval)
1345                 return retval;
1346         bprm->cred_prepared = 1;
1347
1348         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1349         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1350 }
1351
1352 EXPORT_SYMBOL(prepare_binprm);
1353
1354 /*
1355  * Arguments are '\0' separated strings found at the location bprm->p
1356  * points to; chop off the first by relocating brpm->p to right after
1357  * the first '\0' encountered.
1358  */
1359 int remove_arg_zero(struct linux_binprm *bprm)
1360 {
1361         int ret = 0;
1362         unsigned long offset;
1363         char *kaddr;
1364         struct page *page;
1365
1366         if (!bprm->argc)
1367                 return 0;
1368
1369         do {
1370                 offset = bprm->p & ~PAGE_MASK;
1371                 page = get_arg_page(bprm, bprm->p, 0);
1372                 if (!page) {
1373                         ret = -EFAULT;
1374                         goto out;
1375                 }
1376                 kaddr = kmap_atomic(page);
1377
1378                 for (; offset < PAGE_SIZE && kaddr[offset];
1379                                 offset++, bprm->p++)
1380                         ;
1381
1382                 kunmap_atomic(kaddr);
1383                 put_arg_page(page);
1384
1385                 if (offset == PAGE_SIZE)
1386                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1387         } while (offset == PAGE_SIZE);
1388
1389         bprm->p++;
1390         bprm->argc--;
1391         ret = 0;
1392
1393 out:
1394         return ret;
1395 }
1396 EXPORT_SYMBOL(remove_arg_zero);
1397
1398 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1399 /*
1400  * cycle the list of binary formats handler, until one recognizes the image
1401  */
1402 int search_binary_handler(struct linux_binprm *bprm)
1403 {
1404         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1405         struct linux_binfmt *fmt;
1406         int retval;
1407
1408         /* This allows 4 levels of binfmt rewrites before failing hard. */
1409         if (bprm->recursion_depth > 5)
1410                 return -ELOOP;
1411
1412         retval = security_bprm_check(bprm);
1413         if (retval)
1414                 return retval;
1415
1416         retval = -ENOENT;
1417  retry:
1418         read_lock(&binfmt_lock);
1419         list_for_each_entry(fmt, &formats, lh) {
1420                 if (!try_module_get(fmt->module))
1421                         continue;
1422                 read_unlock(&binfmt_lock);
1423                 bprm->recursion_depth++;
1424                 retval = fmt->load_binary(bprm);
1425                 read_lock(&binfmt_lock);
1426                 put_binfmt(fmt);
1427                 bprm->recursion_depth--;
1428                 if (retval < 0 && !bprm->mm) {
1429                         /* we got to flush_old_exec() and failed after it */
1430                         read_unlock(&binfmt_lock);
1431                         force_sigsegv(SIGSEGV, current);
1432                         return retval;
1433                 }
1434                 if (retval != -ENOEXEC || !bprm->file) {
1435                         read_unlock(&binfmt_lock);
1436                         return retval;
1437                 }
1438         }
1439         read_unlock(&binfmt_lock);
1440
1441         if (need_retry) {
1442                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1443                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1444                         return retval;
1445                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1446                         return retval;
1447                 need_retry = false;
1448                 goto retry;
1449         }
1450
1451         return retval;
1452 }
1453 EXPORT_SYMBOL(search_binary_handler);
1454
1455 static int exec_binprm(struct linux_binprm *bprm)
1456 {
1457         pid_t old_pid, old_vpid;
1458         int ret;
1459
1460         /* Need to fetch pid before load_binary changes it */
1461         old_pid = current->pid;
1462         rcu_read_lock();
1463         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1464         rcu_read_unlock();
1465
1466         ret = search_binary_handler(bprm);
1467         if (ret >= 0) {
1468                 audit_bprm(bprm);
1469                 trace_sched_process_exec(current, old_pid, bprm);
1470                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1471                 proc_exec_connector(current);
1472         }
1473
1474         return ret;
1475 }
1476
1477 /*
1478  * sys_execve() executes a new program.
1479  */
1480 static int do_execveat_common(int fd, struct filename *filename,
1481                               struct user_arg_ptr argv,
1482                               struct user_arg_ptr envp,
1483                               int flags)
1484 {
1485         char *pathbuf = NULL;
1486         struct linux_binprm *bprm;
1487         struct file *file;
1488         struct files_struct *displaced;
1489         int retval;
1490
1491         if (IS_ERR(filename))
1492                 return PTR_ERR(filename);
1493
1494         /*
1495          * We move the actual failure in case of RLIMIT_NPROC excess from
1496          * set*uid() to execve() because too many poorly written programs
1497          * don't check setuid() return code.  Here we additionally recheck
1498          * whether NPROC limit is still exceeded.
1499          */
1500         if ((current->flags & PF_NPROC_EXCEEDED) &&
1501             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1502                 retval = -EAGAIN;
1503                 goto out_ret;
1504         }
1505
1506         /* We're below the limit (still or again), so we don't want to make
1507          * further execve() calls fail. */
1508         current->flags &= ~PF_NPROC_EXCEEDED;
1509
1510         retval = unshare_files(&displaced);
1511         if (retval)
1512                 goto out_ret;
1513
1514         retval = -ENOMEM;
1515         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1516         if (!bprm)
1517                 goto out_files;
1518
1519         retval = prepare_bprm_creds(bprm);
1520         if (retval)
1521                 goto out_free;
1522
1523         check_unsafe_exec(bprm);
1524         current->in_execve = 1;
1525
1526         file = do_open_execat(fd, filename, flags);
1527         retval = PTR_ERR(file);
1528         if (IS_ERR(file))
1529                 goto out_unmark;
1530
1531         sched_exec();
1532
1533         bprm->file = file;
1534         if (fd == AT_FDCWD || filename->name[0] == '/') {
1535                 bprm->filename = filename->name;
1536         } else {
1537                 if (filename->name[0] == '\0')
1538                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1539                 else
1540                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1541                                             fd, filename->name);
1542                 if (!pathbuf) {
1543                         retval = -ENOMEM;
1544                         goto out_unmark;
1545                 }
1546                 /*
1547                  * Record that a name derived from an O_CLOEXEC fd will be
1548                  * inaccessible after exec. Relies on having exclusive access to
1549                  * current->files (due to unshare_files above).
1550                  */
1551                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1552                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1553                 bprm->filename = pathbuf;
1554         }
1555         bprm->interp = bprm->filename;
1556
1557         retval = bprm_mm_init(bprm);
1558         if (retval)
1559                 goto out_unmark;
1560
1561         bprm->argc = count(argv, MAX_ARG_STRINGS);
1562         if ((retval = bprm->argc) < 0)
1563                 goto out;
1564
1565         bprm->envc = count(envp, MAX_ARG_STRINGS);
1566         if ((retval = bprm->envc) < 0)
1567                 goto out;
1568
1569         retval = prepare_binprm(bprm);
1570         if (retval < 0)
1571                 goto out;
1572
1573         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1574         if (retval < 0)
1575                 goto out;
1576
1577         bprm->exec = bprm->p;
1578         retval = copy_strings(bprm->envc, envp, bprm);
1579         if (retval < 0)
1580                 goto out;
1581
1582         retval = copy_strings(bprm->argc, argv, bprm);
1583         if (retval < 0)
1584                 goto out;
1585
1586         retval = exec_binprm(bprm);
1587         if (retval < 0)
1588                 goto out;
1589
1590         /* execve succeeded */
1591         current->fs->in_exec = 0;
1592         current->in_execve = 0;
1593         acct_update_integrals(current);
1594         task_numa_free(current);
1595         free_bprm(bprm);
1596         kfree(pathbuf);
1597         putname(filename);
1598         if (displaced)
1599                 put_files_struct(displaced);
1600         return retval;
1601
1602 out:
1603         if (bprm->mm) {
1604                 acct_arg_size(bprm, 0);
1605                 mmput(bprm->mm);
1606         }
1607
1608 out_unmark:
1609         current->fs->in_exec = 0;
1610         current->in_execve = 0;
1611
1612 out_free:
1613         free_bprm(bprm);
1614         kfree(pathbuf);
1615
1616 out_files:
1617         if (displaced)
1618                 reset_files_struct(displaced);
1619 out_ret:
1620         putname(filename);
1621         return retval;
1622 }
1623
1624 int do_execve(struct filename *filename,
1625         const char __user *const __user *__argv,
1626         const char __user *const __user *__envp)
1627 {
1628         struct user_arg_ptr argv = { .ptr.native = __argv };
1629         struct user_arg_ptr envp = { .ptr.native = __envp };
1630         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1631 }
1632
1633 int do_execveat(int fd, struct filename *filename,
1634                 const char __user *const __user *__argv,
1635                 const char __user *const __user *__envp,
1636                 int flags)
1637 {
1638         struct user_arg_ptr argv = { .ptr.native = __argv };
1639         struct user_arg_ptr envp = { .ptr.native = __envp };
1640
1641         return do_execveat_common(fd, filename, argv, envp, flags);
1642 }
1643
1644 #ifdef CONFIG_COMPAT
1645 static int compat_do_execve(struct filename *filename,
1646         const compat_uptr_t __user *__argv,
1647         const compat_uptr_t __user *__envp)
1648 {
1649         struct user_arg_ptr argv = {
1650                 .is_compat = true,
1651                 .ptr.compat = __argv,
1652         };
1653         struct user_arg_ptr envp = {
1654                 .is_compat = true,
1655                 .ptr.compat = __envp,
1656         };
1657         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1658 }
1659
1660 static int compat_do_execveat(int fd, struct filename *filename,
1661                               const compat_uptr_t __user *__argv,
1662                               const compat_uptr_t __user *__envp,
1663                               int flags)
1664 {
1665         struct user_arg_ptr argv = {
1666                 .is_compat = true,
1667                 .ptr.compat = __argv,
1668         };
1669         struct user_arg_ptr envp = {
1670                 .is_compat = true,
1671                 .ptr.compat = __envp,
1672         };
1673         return do_execveat_common(fd, filename, argv, envp, flags);
1674 }
1675 #endif
1676
1677 void set_binfmt(struct linux_binfmt *new)
1678 {
1679         struct mm_struct *mm = current->mm;
1680
1681         if (mm->binfmt)
1682                 module_put(mm->binfmt->module);
1683
1684         mm->binfmt = new;
1685         if (new)
1686                 __module_get(new->module);
1687 }
1688 EXPORT_SYMBOL(set_binfmt);
1689
1690 /*
1691  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1692  */
1693 void set_dumpable(struct mm_struct *mm, int value)
1694 {
1695         unsigned long old, new;
1696
1697         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1698                 return;
1699
1700         do {
1701                 old = ACCESS_ONCE(mm->flags);
1702                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1703         } while (cmpxchg(&mm->flags, old, new) != old);
1704 }
1705
1706 SYSCALL_DEFINE3(execve,
1707                 const char __user *, filename,
1708                 const char __user *const __user *, argv,
1709                 const char __user *const __user *, envp)
1710 {
1711         return do_execve(getname(filename), argv, envp);
1712 }
1713
1714 SYSCALL_DEFINE5(execveat,
1715                 int, fd, const char __user *, filename,
1716                 const char __user *const __user *, argv,
1717                 const char __user *const __user *, envp,
1718                 int, flags)
1719 {
1720         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1721
1722         return do_execveat(fd,
1723                            getname_flags(filename, lookup_flags, NULL),
1724                            argv, envp, flags);
1725 }
1726
1727 #ifdef CONFIG_COMPAT
1728 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1729         const compat_uptr_t __user *, argv,
1730         const compat_uptr_t __user *, envp)
1731 {
1732         return compat_do_execve(getname(filename), argv, envp);
1733 }
1734
1735 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1736                        const char __user *, filename,
1737                        const compat_uptr_t __user *, argv,
1738                        const compat_uptr_t __user *, envp,
1739                        int,  flags)
1740 {
1741         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1742
1743         return compat_do_execveat(fd,
1744                                   getname_flags(filename, lookup_flags, NULL),
1745                                   argv, envp, flags);
1746 }
1747 #endif