These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include <linux/fs_struct.h>
36 #include <linux/hardirq.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rculist_bl.h>
39 #include <linux/prefetch.h>
40 #include <linux/ratelimit.h>
41 #include <linux/list_lru.h>
42 #include <linux/kasan.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /*
48  * Usage:
49  * dcache->d_inode->i_lock protects:
50  *   - i_dentry, d_u.d_alias, d_inode of aliases
51  * dcache_hash_bucket lock protects:
52  *   - the dcache hash table
53  * s_anon bl list spinlock protects:
54  *   - the s_anon list (see __d_drop)
55  * dentry->d_sb->s_dentry_lru_lock protects:
56  *   - the dcache lru lists and counters
57  * d_lock protects:
58  *   - d_flags
59  *   - d_name
60  *   - d_lru
61  *   - d_count
62  *   - d_unhashed()
63  *   - d_parent and d_subdirs
64  *   - childrens' d_child and d_parent
65  *   - d_u.d_alias, d_inode
66  *
67  * Ordering:
68  * dentry->d_inode->i_lock
69  *   dentry->d_lock
70  *     dentry->d_sb->s_dentry_lru_lock
71  *     dcache_hash_bucket lock
72  *     s_anon lock
73  *
74  * If there is an ancestor relationship:
75  * dentry->d_parent->...->d_parent->d_lock
76  *   ...
77  *     dentry->d_parent->d_lock
78  *       dentry->d_lock
79  *
80  * If no ancestor relationship:
81  * if (dentry1 < dentry2)
82  *   dentry1->d_lock
83  *     dentry2->d_lock
84  */
85 int sysctl_vfs_cache_pressure __read_mostly = 100;
86 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
87
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
89
90 EXPORT_SYMBOL(rename_lock);
91
92 static struct kmem_cache *dentry_cache __read_mostly;
93
94 /*
95  * This is the single most critical data structure when it comes
96  * to the dcache: the hashtable for lookups. Somebody should try
97  * to make this good - I've just made it work.
98  *
99  * This hash-function tries to avoid losing too many bits of hash
100  * information, yet avoid using a prime hash-size or similar.
101  */
102
103 static unsigned int d_hash_mask __read_mostly;
104 static unsigned int d_hash_shift __read_mostly;
105
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107
108 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
109                                         unsigned int hash)
110 {
111         hash += (unsigned long) parent / L1_CACHE_BYTES;
112         return dentry_hashtable + hash_32(hash, d_hash_shift);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = *(unsigned long *)cs;
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         const unsigned char *cs;
220         /*
221          * Be careful about RCU walk racing with rename:
222          * use ACCESS_ONCE to fetch the name pointer.
223          *
224          * NOTE! Even if a rename will mean that the length
225          * was not loaded atomically, we don't care. The
226          * RCU walk will check the sequence count eventually,
227          * and catch it. And we won't overrun the buffer,
228          * because we're reading the name pointer atomically,
229          * and a dentry name is guaranteed to be properly
230          * terminated with a NUL byte.
231          *
232          * End result: even if 'len' is wrong, we'll exit
233          * early because the data cannot match (there can
234          * be no NUL in the ct/tcount data)
235          */
236         cs = ACCESS_ONCE(dentry->d_name.name);
237         smp_read_barrier_depends();
238         return dentry_string_cmp(cs, ct, tcount);
239 }
240
241 struct external_name {
242         union {
243                 atomic_t count;
244                 struct rcu_head head;
245         } u;
246         unsigned char name[];
247 };
248
249 static inline struct external_name *external_name(struct dentry *dentry)
250 {
251         return container_of(dentry->d_name.name, struct external_name, name[0]);
252 }
253
254 static void __d_free(struct rcu_head *head)
255 {
256         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
257
258         kmem_cache_free(dentry_cache, dentry); 
259 }
260
261 static void __d_free_external(struct rcu_head *head)
262 {
263         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264         kfree(external_name(dentry));
265         kmem_cache_free(dentry_cache, dentry); 
266 }
267
268 static inline int dname_external(const struct dentry *dentry)
269 {
270         return dentry->d_name.name != dentry->d_iname;
271 }
272
273 static inline void __d_set_inode_and_type(struct dentry *dentry,
274                                           struct inode *inode,
275                                           unsigned type_flags)
276 {
277         unsigned flags;
278
279         dentry->d_inode = inode;
280         flags = READ_ONCE(dentry->d_flags);
281         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
282         flags |= type_flags;
283         WRITE_ONCE(dentry->d_flags, flags);
284 }
285
286 static inline void __d_clear_type_and_inode(struct dentry *dentry)
287 {
288         unsigned flags = READ_ONCE(dentry->d_flags);
289
290         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
291         WRITE_ONCE(dentry->d_flags, flags);
292         dentry->d_inode = NULL;
293 }
294
295 static void dentry_free(struct dentry *dentry)
296 {
297         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
298         if (unlikely(dname_external(dentry))) {
299                 struct external_name *p = external_name(dentry);
300                 if (likely(atomic_dec_and_test(&p->u.count))) {
301                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
302                         return;
303                 }
304         }
305         /* if dentry was never visible to RCU, immediate free is OK */
306         if (!(dentry->d_flags & DCACHE_RCUACCESS))
307                 __d_free(&dentry->d_u.d_rcu);
308         else
309                 call_rcu(&dentry->d_u.d_rcu, __d_free);
310 }
311
312 /**
313  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
314  * @dentry: the target dentry
315  * After this call, in-progress rcu-walk path lookup will fail. This
316  * should be called after unhashing, and after changing d_inode (if
317  * the dentry has not already been unhashed).
318  */
319 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
320 {
321         lockdep_assert_held(&dentry->d_lock);
322         /* Go through am invalidation barrier */
323         write_seqcount_invalidate(&dentry->d_seq);
324 }
325
326 /*
327  * Release the dentry's inode, using the filesystem
328  * d_iput() operation if defined. Dentry has no refcount
329  * and is unhashed.
330  */
331 static void dentry_iput(struct dentry * dentry)
332         __releases(dentry->d_lock)
333         __releases(dentry->d_inode->i_lock)
334 {
335         struct inode *inode = dentry->d_inode;
336         if (inode) {
337                 __d_clear_type_and_inode(dentry);
338                 hlist_del_init(&dentry->d_u.d_alias);
339                 spin_unlock(&dentry->d_lock);
340                 spin_unlock(&inode->i_lock);
341                 if (!inode->i_nlink)
342                         fsnotify_inoderemove(inode);
343                 if (dentry->d_op && dentry->d_op->d_iput)
344                         dentry->d_op->d_iput(dentry, inode);
345                 else
346                         iput(inode);
347         } else {
348                 spin_unlock(&dentry->d_lock);
349         }
350 }
351
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined. dentry remains in-use.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357         __releases(dentry->d_lock)
358         __releases(dentry->d_inode->i_lock)
359 {
360         struct inode *inode = dentry->d_inode;
361
362         raw_write_seqcount_begin(&dentry->d_seq);
363         __d_clear_type_and_inode(dentry);
364         hlist_del_init(&dentry->d_u.d_alias);
365         raw_write_seqcount_end(&dentry->d_seq);
366         spin_unlock(&dentry->d_lock);
367         spin_unlock(&inode->i_lock);
368         if (!inode->i_nlink)
369                 fsnotify_inoderemove(inode);
370         if (dentry->d_op && dentry->d_op->d_iput)
371                 dentry->d_op->d_iput(dentry, inode);
372         else
373                 iput(inode);
374 }
375
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * These helper functions make sure we always follow the
388  * rules. d_lock must be held by the caller.
389  */
390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391 static void d_lru_add(struct dentry *dentry)
392 {
393         D_FLAG_VERIFY(dentry, 0);
394         dentry->d_flags |= DCACHE_LRU_LIST;
395         this_cpu_inc(nr_dentry_unused);
396         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 }
398
399 static void d_lru_del(struct dentry *dentry)
400 {
401         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402         dentry->d_flags &= ~DCACHE_LRU_LIST;
403         this_cpu_dec(nr_dentry_unused);
404         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_shrink_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410         list_del_init(&dentry->d_lru);
411         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412         this_cpu_dec(nr_dentry_unused);
413 }
414
415 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416 {
417         D_FLAG_VERIFY(dentry, 0);
418         list_add(&dentry->d_lru, list);
419         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420         this_cpu_inc(nr_dentry_unused);
421 }
422
423 /*
424  * These can only be called under the global LRU lock, ie during the
425  * callback for freeing the LRU list. "isolate" removes it from the
426  * LRU lists entirely, while shrink_move moves it to the indicated
427  * private list.
428  */
429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
430 {
431         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432         dentry->d_flags &= ~DCACHE_LRU_LIST;
433         this_cpu_dec(nr_dentry_unused);
434         list_lru_isolate(lru, &dentry->d_lru);
435 }
436
437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438                               struct list_head *list)
439 {
440         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441         dentry->d_flags |= DCACHE_SHRINK_LIST;
442         list_lru_isolate_move(lru, &dentry->d_lru, list);
443 }
444
445 /*
446  * dentry_lru_(add|del)_list) must be called with d_lock held.
447  */
448 static void dentry_lru_add(struct dentry *dentry)
449 {
450         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
451                 d_lru_add(dentry);
452 }
453
454 /**
455  * d_drop - drop a dentry
456  * @dentry: dentry to drop
457  *
458  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459  * be found through a VFS lookup any more. Note that this is different from
460  * deleting the dentry - d_delete will try to mark the dentry negative if
461  * possible, giving a successful _negative_ lookup, while d_drop will
462  * just make the cache lookup fail.
463  *
464  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465  * reason (NFS timeouts or autofs deletes).
466  *
467  * __d_drop requires dentry->d_lock.
468  */
469 void __d_drop(struct dentry *dentry)
470 {
471         if (!d_unhashed(dentry)) {
472                 struct hlist_bl_head *b;
473                 /*
474                  * Hashed dentries are normally on the dentry hashtable,
475                  * with the exception of those newly allocated by
476                  * d_obtain_alias, which are always IS_ROOT:
477                  */
478                 if (unlikely(IS_ROOT(dentry)))
479                         b = &dentry->d_sb->s_anon;
480                 else
481                         b = d_hash(dentry->d_parent, dentry->d_name.hash);
482
483                 hlist_bl_lock(b);
484                 __hlist_bl_del(&dentry->d_hash);
485                 dentry->d_hash.pprev = NULL;
486                 hlist_bl_unlock(b);
487                 dentry_rcuwalk_invalidate(dentry);
488         }
489 }
490 EXPORT_SYMBOL(__d_drop);
491
492 void d_drop(struct dentry *dentry)
493 {
494         spin_lock(&dentry->d_lock);
495         __d_drop(dentry);
496         spin_unlock(&dentry->d_lock);
497 }
498 EXPORT_SYMBOL(d_drop);
499
500 static void __dentry_kill(struct dentry *dentry)
501 {
502         struct dentry *parent = NULL;
503         bool can_free = true;
504         if (!IS_ROOT(dentry))
505                 parent = dentry->d_parent;
506
507         /*
508          * The dentry is now unrecoverably dead to the world.
509          */
510         lockref_mark_dead(&dentry->d_lockref);
511
512         /*
513          * inform the fs via d_prune that this dentry is about to be
514          * unhashed and destroyed.
515          */
516         if (dentry->d_flags & DCACHE_OP_PRUNE)
517                 dentry->d_op->d_prune(dentry);
518
519         if (dentry->d_flags & DCACHE_LRU_LIST) {
520                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
521                         d_lru_del(dentry);
522         }
523         /* if it was on the hash then remove it */
524         __d_drop(dentry);
525         __list_del_entry(&dentry->d_child);
526         /*
527          * Inform d_walk() that we are no longer attached to the
528          * dentry tree
529          */
530         dentry->d_flags |= DCACHE_DENTRY_KILLED;
531         if (parent)
532                 spin_unlock(&parent->d_lock);
533         dentry_iput(dentry);
534         /*
535          * dentry_iput drops the locks, at which point nobody (except
536          * transient RCU lookups) can reach this dentry.
537          */
538         BUG_ON(dentry->d_lockref.count > 0);
539         this_cpu_dec(nr_dentry);
540         if (dentry->d_op && dentry->d_op->d_release)
541                 dentry->d_op->d_release(dentry);
542
543         spin_lock(&dentry->d_lock);
544         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
545                 dentry->d_flags |= DCACHE_MAY_FREE;
546                 can_free = false;
547         }
548         spin_unlock(&dentry->d_lock);
549         if (likely(can_free))
550                 dentry_free(dentry);
551 }
552
553 /*
554  * Finish off a dentry we've decided to kill.
555  * dentry->d_lock must be held, returns with it unlocked.
556  * If ref is non-zero, then decrement the refcount too.
557  * Returns dentry requiring refcount drop, or NULL if we're done.
558  */
559 static struct dentry *dentry_kill(struct dentry *dentry)
560         __releases(dentry->d_lock)
561 {
562         struct inode *inode = dentry->d_inode;
563         struct dentry *parent = NULL;
564
565         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
566                 goto failed;
567
568         if (!IS_ROOT(dentry)) {
569                 parent = dentry->d_parent;
570                 if (unlikely(!spin_trylock(&parent->d_lock))) {
571                         if (inode)
572                                 spin_unlock(&inode->i_lock);
573                         goto failed;
574                 }
575         }
576
577         __dentry_kill(dentry);
578         return parent;
579
580 failed:
581         spin_unlock(&dentry->d_lock);
582         cpu_chill();
583         return dentry; /* try again with same dentry */
584 }
585
586 static inline struct dentry *lock_parent(struct dentry *dentry)
587 {
588         struct dentry *parent = dentry->d_parent;
589         if (IS_ROOT(dentry))
590                 return NULL;
591         if (unlikely(dentry->d_lockref.count < 0))
592                 return NULL;
593         if (likely(spin_trylock(&parent->d_lock)))
594                 return parent;
595         rcu_read_lock();
596         spin_unlock(&dentry->d_lock);
597 again:
598         parent = ACCESS_ONCE(dentry->d_parent);
599         spin_lock(&parent->d_lock);
600         /*
601          * We can't blindly lock dentry until we are sure
602          * that we won't violate the locking order.
603          * Any changes of dentry->d_parent must have
604          * been done with parent->d_lock held, so
605          * spin_lock() above is enough of a barrier
606          * for checking if it's still our child.
607          */
608         if (unlikely(parent != dentry->d_parent)) {
609                 spin_unlock(&parent->d_lock);
610                 goto again;
611         }
612         rcu_read_unlock();
613         if (parent != dentry)
614                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
615         else
616                 parent = NULL;
617         return parent;
618 }
619
620 /*
621  * Try to do a lockless dput(), and return whether that was successful.
622  *
623  * If unsuccessful, we return false, having already taken the dentry lock.
624  *
625  * The caller needs to hold the RCU read lock, so that the dentry is
626  * guaranteed to stay around even if the refcount goes down to zero!
627  */
628 static inline bool fast_dput(struct dentry *dentry)
629 {
630         int ret;
631         unsigned int d_flags;
632
633         /*
634          * If we have a d_op->d_delete() operation, we sould not
635          * let the dentry count go to zero, so use "put_or_lock".
636          */
637         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
638                 return lockref_put_or_lock(&dentry->d_lockref);
639
640         /*
641          * .. otherwise, we can try to just decrement the
642          * lockref optimistically.
643          */
644         ret = lockref_put_return(&dentry->d_lockref);
645
646         /*
647          * If the lockref_put_return() failed due to the lock being held
648          * by somebody else, the fast path has failed. We will need to
649          * get the lock, and then check the count again.
650          */
651         if (unlikely(ret < 0)) {
652                 spin_lock(&dentry->d_lock);
653                 if (dentry->d_lockref.count > 1) {
654                         dentry->d_lockref.count--;
655                         spin_unlock(&dentry->d_lock);
656                         return 1;
657                 }
658                 return 0;
659         }
660
661         /*
662          * If we weren't the last ref, we're done.
663          */
664         if (ret)
665                 return 1;
666
667         /*
668          * Careful, careful. The reference count went down
669          * to zero, but we don't hold the dentry lock, so
670          * somebody else could get it again, and do another
671          * dput(), and we need to not race with that.
672          *
673          * However, there is a very special and common case
674          * where we don't care, because there is nothing to
675          * do: the dentry is still hashed, it does not have
676          * a 'delete' op, and it's referenced and already on
677          * the LRU list.
678          *
679          * NOTE! Since we aren't locked, these values are
680          * not "stable". However, it is sufficient that at
681          * some point after we dropped the reference the
682          * dentry was hashed and the flags had the proper
683          * value. Other dentry users may have re-gotten
684          * a reference to the dentry and change that, but
685          * our work is done - we can leave the dentry
686          * around with a zero refcount.
687          */
688         smp_rmb();
689         d_flags = ACCESS_ONCE(dentry->d_flags);
690         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
691
692         /* Nothing to do? Dropping the reference was all we needed? */
693         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
694                 return 1;
695
696         /*
697          * Not the fast normal case? Get the lock. We've already decremented
698          * the refcount, but we'll need to re-check the situation after
699          * getting the lock.
700          */
701         spin_lock(&dentry->d_lock);
702
703         /*
704          * Did somebody else grab a reference to it in the meantime, and
705          * we're no longer the last user after all? Alternatively, somebody
706          * else could have killed it and marked it dead. Either way, we
707          * don't need to do anything else.
708          */
709         if (dentry->d_lockref.count) {
710                 spin_unlock(&dentry->d_lock);
711                 return 1;
712         }
713
714         /*
715          * Re-get the reference we optimistically dropped. We hold the
716          * lock, and we just tested that it was zero, so we can just
717          * set it to 1.
718          */
719         dentry->d_lockref.count = 1;
720         return 0;
721 }
722
723
724 /* 
725  * This is dput
726  *
727  * This is complicated by the fact that we do not want to put
728  * dentries that are no longer on any hash chain on the unused
729  * list: we'd much rather just get rid of them immediately.
730  *
731  * However, that implies that we have to traverse the dentry
732  * tree upwards to the parents which might _also_ now be
733  * scheduled for deletion (it may have been only waiting for
734  * its last child to go away).
735  *
736  * This tail recursion is done by hand as we don't want to depend
737  * on the compiler to always get this right (gcc generally doesn't).
738  * Real recursion would eat up our stack space.
739  */
740
741 /*
742  * dput - release a dentry
743  * @dentry: dentry to release 
744  *
745  * Release a dentry. This will drop the usage count and if appropriate
746  * call the dentry unlink method as well as removing it from the queues and
747  * releasing its resources. If the parent dentries were scheduled for release
748  * they too may now get deleted.
749  */
750 void dput(struct dentry *dentry)
751 {
752         if (unlikely(!dentry))
753                 return;
754
755 repeat:
756         rcu_read_lock();
757         if (likely(fast_dput(dentry))) {
758                 rcu_read_unlock();
759                 return;
760         }
761
762         /* Slow case: now with the dentry lock held */
763         rcu_read_unlock();
764
765         /* Unreachable? Get rid of it */
766         if (unlikely(d_unhashed(dentry)))
767                 goto kill_it;
768
769         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
770                 goto kill_it;
771
772         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
773                 if (dentry->d_op->d_delete(dentry))
774                         goto kill_it;
775         }
776
777         if (!(dentry->d_flags & DCACHE_REFERENCED))
778                 dentry->d_flags |= DCACHE_REFERENCED;
779         dentry_lru_add(dentry);
780
781         dentry->d_lockref.count--;
782         spin_unlock(&dentry->d_lock);
783         return;
784
785 kill_it:
786         dentry = dentry_kill(dentry);
787         if (dentry)
788                 goto repeat;
789 }
790 EXPORT_SYMBOL(dput);
791
792
793 /* This must be called with d_lock held */
794 static inline void __dget_dlock(struct dentry *dentry)
795 {
796         dentry->d_lockref.count++;
797 }
798
799 static inline void __dget(struct dentry *dentry)
800 {
801         lockref_get(&dentry->d_lockref);
802 }
803
804 struct dentry *dget_parent(struct dentry *dentry)
805 {
806         int gotref;
807         struct dentry *ret;
808
809         /*
810          * Do optimistic parent lookup without any
811          * locking.
812          */
813         rcu_read_lock();
814         ret = ACCESS_ONCE(dentry->d_parent);
815         gotref = lockref_get_not_zero(&ret->d_lockref);
816         rcu_read_unlock();
817         if (likely(gotref)) {
818                 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
819                         return ret;
820                 dput(ret);
821         }
822
823 repeat:
824         /*
825          * Don't need rcu_dereference because we re-check it was correct under
826          * the lock.
827          */
828         rcu_read_lock();
829         ret = dentry->d_parent;
830         spin_lock(&ret->d_lock);
831         if (unlikely(ret != dentry->d_parent)) {
832                 spin_unlock(&ret->d_lock);
833                 rcu_read_unlock();
834                 goto repeat;
835         }
836         rcu_read_unlock();
837         BUG_ON(!ret->d_lockref.count);
838         ret->d_lockref.count++;
839         spin_unlock(&ret->d_lock);
840         return ret;
841 }
842 EXPORT_SYMBOL(dget_parent);
843
844 /**
845  * d_find_alias - grab a hashed alias of inode
846  * @inode: inode in question
847  *
848  * If inode has a hashed alias, or is a directory and has any alias,
849  * acquire the reference to alias and return it. Otherwise return NULL.
850  * Notice that if inode is a directory there can be only one alias and
851  * it can be unhashed only if it has no children, or if it is the root
852  * of a filesystem, or if the directory was renamed and d_revalidate
853  * was the first vfs operation to notice.
854  *
855  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
856  * any other hashed alias over that one.
857  */
858 static struct dentry *__d_find_alias(struct inode *inode)
859 {
860         struct dentry *alias, *discon_alias;
861
862 again:
863         discon_alias = NULL;
864         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
865                 spin_lock(&alias->d_lock);
866                 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
867                         if (IS_ROOT(alias) &&
868                             (alias->d_flags & DCACHE_DISCONNECTED)) {
869                                 discon_alias = alias;
870                         } else {
871                                 __dget_dlock(alias);
872                                 spin_unlock(&alias->d_lock);
873                                 return alias;
874                         }
875                 }
876                 spin_unlock(&alias->d_lock);
877         }
878         if (discon_alias) {
879                 alias = discon_alias;
880                 spin_lock(&alias->d_lock);
881                 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
882                         __dget_dlock(alias);
883                         spin_unlock(&alias->d_lock);
884                         return alias;
885                 }
886                 spin_unlock(&alias->d_lock);
887                 goto again;
888         }
889         return NULL;
890 }
891
892 struct dentry *d_find_alias(struct inode *inode)
893 {
894         struct dentry *de = NULL;
895
896         if (!hlist_empty(&inode->i_dentry)) {
897                 spin_lock(&inode->i_lock);
898                 de = __d_find_alias(inode);
899                 spin_unlock(&inode->i_lock);
900         }
901         return de;
902 }
903 EXPORT_SYMBOL(d_find_alias);
904
905 /*
906  *      Try to kill dentries associated with this inode.
907  * WARNING: you must own a reference to inode.
908  */
909 void d_prune_aliases(struct inode *inode)
910 {
911         struct dentry *dentry;
912 restart:
913         spin_lock(&inode->i_lock);
914         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
915                 spin_lock(&dentry->d_lock);
916                 if (!dentry->d_lockref.count) {
917                         struct dentry *parent = lock_parent(dentry);
918                         if (likely(!dentry->d_lockref.count)) {
919                                 __dentry_kill(dentry);
920                                 dput(parent);
921                                 goto restart;
922                         }
923                         if (parent)
924                                 spin_unlock(&parent->d_lock);
925                 }
926                 spin_unlock(&dentry->d_lock);
927         }
928         spin_unlock(&inode->i_lock);
929 }
930 EXPORT_SYMBOL(d_prune_aliases);
931
932 static void shrink_dentry_list(struct list_head *list)
933 {
934         struct dentry *dentry, *parent;
935
936         while (!list_empty(list)) {
937                 struct inode *inode;
938                 dentry = list_entry(list->prev, struct dentry, d_lru);
939                 spin_lock(&dentry->d_lock);
940                 parent = lock_parent(dentry);
941
942                 /*
943                  * The dispose list is isolated and dentries are not accounted
944                  * to the LRU here, so we can simply remove it from the list
945                  * here regardless of whether it is referenced or not.
946                  */
947                 d_shrink_del(dentry);
948
949                 /*
950                  * We found an inuse dentry which was not removed from
951                  * the LRU because of laziness during lookup. Do not free it.
952                  */
953                 if (dentry->d_lockref.count > 0) {
954                         spin_unlock(&dentry->d_lock);
955                         if (parent)
956                                 spin_unlock(&parent->d_lock);
957                         continue;
958                 }
959
960
961                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
962                         bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
963                         spin_unlock(&dentry->d_lock);
964                         if (parent)
965                                 spin_unlock(&parent->d_lock);
966                         if (can_free)
967                                 dentry_free(dentry);
968                         continue;
969                 }
970
971                 inode = dentry->d_inode;
972                 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
973                         d_shrink_add(dentry, list);
974                         spin_unlock(&dentry->d_lock);
975                         if (parent)
976                                 spin_unlock(&parent->d_lock);
977                         continue;
978                 }
979
980                 __dentry_kill(dentry);
981
982                 /*
983                  * We need to prune ancestors too. This is necessary to prevent
984                  * quadratic behavior of shrink_dcache_parent(), but is also
985                  * expected to be beneficial in reducing dentry cache
986                  * fragmentation.
987                  */
988                 dentry = parent;
989                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
990                         parent = lock_parent(dentry);
991                         if (dentry->d_lockref.count != 1) {
992                                 dentry->d_lockref.count--;
993                                 spin_unlock(&dentry->d_lock);
994                                 if (parent)
995                                         spin_unlock(&parent->d_lock);
996                                 break;
997                         }
998                         inode = dentry->d_inode;        /* can't be NULL */
999                         if (unlikely(!spin_trylock(&inode->i_lock))) {
1000                                 spin_unlock(&dentry->d_lock);
1001                                 if (parent)
1002                                         spin_unlock(&parent->d_lock);
1003                                 cpu_relax();
1004                                 continue;
1005                         }
1006                         __dentry_kill(dentry);
1007                         dentry = parent;
1008                 }
1009         }
1010 }
1011
1012 static enum lru_status dentry_lru_isolate(struct list_head *item,
1013                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1014 {
1015         struct list_head *freeable = arg;
1016         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1017
1018
1019         /*
1020          * we are inverting the lru lock/dentry->d_lock here,
1021          * so use a trylock. If we fail to get the lock, just skip
1022          * it
1023          */
1024         if (!spin_trylock(&dentry->d_lock))
1025                 return LRU_SKIP;
1026
1027         /*
1028          * Referenced dentries are still in use. If they have active
1029          * counts, just remove them from the LRU. Otherwise give them
1030          * another pass through the LRU.
1031          */
1032         if (dentry->d_lockref.count) {
1033                 d_lru_isolate(lru, dentry);
1034                 spin_unlock(&dentry->d_lock);
1035                 return LRU_REMOVED;
1036         }
1037
1038         if (dentry->d_flags & DCACHE_REFERENCED) {
1039                 dentry->d_flags &= ~DCACHE_REFERENCED;
1040                 spin_unlock(&dentry->d_lock);
1041
1042                 /*
1043                  * The list move itself will be made by the common LRU code. At
1044                  * this point, we've dropped the dentry->d_lock but keep the
1045                  * lru lock. This is safe to do, since every list movement is
1046                  * protected by the lru lock even if both locks are held.
1047                  *
1048                  * This is guaranteed by the fact that all LRU management
1049                  * functions are intermediated by the LRU API calls like
1050                  * list_lru_add and list_lru_del. List movement in this file
1051                  * only ever occur through this functions or through callbacks
1052                  * like this one, that are called from the LRU API.
1053                  *
1054                  * The only exceptions to this are functions like
1055                  * shrink_dentry_list, and code that first checks for the
1056                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1057                  * operating only with stack provided lists after they are
1058                  * properly isolated from the main list.  It is thus, always a
1059                  * local access.
1060                  */
1061                 return LRU_ROTATE;
1062         }
1063
1064         d_lru_shrink_move(lru, dentry, freeable);
1065         spin_unlock(&dentry->d_lock);
1066
1067         return LRU_REMOVED;
1068 }
1069
1070 /**
1071  * prune_dcache_sb - shrink the dcache
1072  * @sb: superblock
1073  * @sc: shrink control, passed to list_lru_shrink_walk()
1074  *
1075  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1076  * is done when we need more memory and called from the superblock shrinker
1077  * function.
1078  *
1079  * This function may fail to free any resources if all the dentries are in
1080  * use.
1081  */
1082 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1083 {
1084         LIST_HEAD(dispose);
1085         long freed;
1086
1087         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1088                                      dentry_lru_isolate, &dispose);
1089         shrink_dentry_list(&dispose);
1090         return freed;
1091 }
1092
1093 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1094                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1095 {
1096         struct list_head *freeable = arg;
1097         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1098
1099         /*
1100          * we are inverting the lru lock/dentry->d_lock here,
1101          * so use a trylock. If we fail to get the lock, just skip
1102          * it
1103          */
1104         if (!spin_trylock(&dentry->d_lock))
1105                 return LRU_SKIP;
1106
1107         d_lru_shrink_move(lru, dentry, freeable);
1108         spin_unlock(&dentry->d_lock);
1109
1110         return LRU_REMOVED;
1111 }
1112
1113
1114 /**
1115  * shrink_dcache_sb - shrink dcache for a superblock
1116  * @sb: superblock
1117  *
1118  * Shrink the dcache for the specified super block. This is used to free
1119  * the dcache before unmounting a file system.
1120  */
1121 void shrink_dcache_sb(struct super_block *sb)
1122 {
1123         long freed;
1124
1125         do {
1126                 LIST_HEAD(dispose);
1127
1128                 freed = list_lru_walk(&sb->s_dentry_lru,
1129                         dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1130
1131                 this_cpu_sub(nr_dentry_unused, freed);
1132                 shrink_dentry_list(&dispose);
1133         } while (freed > 0);
1134 }
1135 EXPORT_SYMBOL(shrink_dcache_sb);
1136
1137 /**
1138  * enum d_walk_ret - action to talke during tree walk
1139  * @D_WALK_CONTINUE:    contrinue walk
1140  * @D_WALK_QUIT:        quit walk
1141  * @D_WALK_NORETRY:     quit when retry is needed
1142  * @D_WALK_SKIP:        skip this dentry and its children
1143  */
1144 enum d_walk_ret {
1145         D_WALK_CONTINUE,
1146         D_WALK_QUIT,
1147         D_WALK_NORETRY,
1148         D_WALK_SKIP,
1149 };
1150
1151 /**
1152  * d_walk - walk the dentry tree
1153  * @parent:     start of walk
1154  * @data:       data passed to @enter() and @finish()
1155  * @enter:      callback when first entering the dentry
1156  * @finish:     callback when successfully finished the walk
1157  *
1158  * The @enter() and @finish() callbacks are called with d_lock held.
1159  */
1160 static void d_walk(struct dentry *parent, void *data,
1161                    enum d_walk_ret (*enter)(void *, struct dentry *),
1162                    void (*finish)(void *))
1163 {
1164         struct dentry *this_parent;
1165         struct list_head *next;
1166         unsigned seq = 0;
1167         enum d_walk_ret ret;
1168         bool retry = true;
1169
1170 again:
1171         read_seqbegin_or_lock(&rename_lock, &seq);
1172         this_parent = parent;
1173         spin_lock(&this_parent->d_lock);
1174
1175         ret = enter(data, this_parent);
1176         switch (ret) {
1177         case D_WALK_CONTINUE:
1178                 break;
1179         case D_WALK_QUIT:
1180         case D_WALK_SKIP:
1181                 goto out_unlock;
1182         case D_WALK_NORETRY:
1183                 retry = false;
1184                 break;
1185         }
1186 repeat:
1187         next = this_parent->d_subdirs.next;
1188 resume:
1189         while (next != &this_parent->d_subdirs) {
1190                 struct list_head *tmp = next;
1191                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1192                 next = tmp->next;
1193
1194                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1195
1196                 ret = enter(data, dentry);
1197                 switch (ret) {
1198                 case D_WALK_CONTINUE:
1199                         break;
1200                 case D_WALK_QUIT:
1201                         spin_unlock(&dentry->d_lock);
1202                         goto out_unlock;
1203                 case D_WALK_NORETRY:
1204                         retry = false;
1205                         break;
1206                 case D_WALK_SKIP:
1207                         spin_unlock(&dentry->d_lock);
1208                         continue;
1209                 }
1210
1211                 if (!list_empty(&dentry->d_subdirs)) {
1212                         spin_unlock(&this_parent->d_lock);
1213                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1214                         this_parent = dentry;
1215                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1216                         goto repeat;
1217                 }
1218                 spin_unlock(&dentry->d_lock);
1219         }
1220         /*
1221          * All done at this level ... ascend and resume the search.
1222          */
1223         rcu_read_lock();
1224 ascend:
1225         if (this_parent != parent) {
1226                 struct dentry *child = this_parent;
1227                 this_parent = child->d_parent;
1228
1229                 spin_unlock(&child->d_lock);
1230                 spin_lock(&this_parent->d_lock);
1231
1232                 /* might go back up the wrong parent if we have had a rename. */
1233                 if (need_seqretry(&rename_lock, seq))
1234                         goto rename_retry;
1235                 /* go into the first sibling still alive */
1236                 do {
1237                         next = child->d_child.next;
1238                         if (next == &this_parent->d_subdirs)
1239                                 goto ascend;
1240                         child = list_entry(next, struct dentry, d_child);
1241                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1242                 rcu_read_unlock();
1243                 goto resume;
1244         }
1245         if (need_seqretry(&rename_lock, seq))
1246                 goto rename_retry;
1247         rcu_read_unlock();
1248         if (finish)
1249                 finish(data);
1250
1251 out_unlock:
1252         spin_unlock(&this_parent->d_lock);
1253         done_seqretry(&rename_lock, seq);
1254         return;
1255
1256 rename_retry:
1257         spin_unlock(&this_parent->d_lock);
1258         rcu_read_unlock();
1259         BUG_ON(seq & 1);
1260         if (!retry)
1261                 return;
1262         seq = 1;
1263         goto again;
1264 }
1265
1266 /*
1267  * Search for at least 1 mount point in the dentry's subdirs.
1268  * We descend to the next level whenever the d_subdirs
1269  * list is non-empty and continue searching.
1270  */
1271
1272 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1273 {
1274         int *ret = data;
1275         if (d_mountpoint(dentry)) {
1276                 *ret = 1;
1277                 return D_WALK_QUIT;
1278         }
1279         return D_WALK_CONTINUE;
1280 }
1281
1282 /**
1283  * have_submounts - check for mounts over a dentry
1284  * @parent: dentry to check.
1285  *
1286  * Return true if the parent or its subdirectories contain
1287  * a mount point
1288  */
1289 int have_submounts(struct dentry *parent)
1290 {
1291         int ret = 0;
1292
1293         d_walk(parent, &ret, check_mount, NULL);
1294
1295         return ret;
1296 }
1297 EXPORT_SYMBOL(have_submounts);
1298
1299 /*
1300  * Called by mount code to set a mountpoint and check if the mountpoint is
1301  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1302  * subtree can become unreachable).
1303  *
1304  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1305  * this reason take rename_lock and d_lock on dentry and ancestors.
1306  */
1307 int d_set_mounted(struct dentry *dentry)
1308 {
1309         struct dentry *p;
1310         int ret = -ENOENT;
1311         write_seqlock(&rename_lock);
1312         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1313                 /* Need exclusion wrt. d_invalidate() */
1314                 spin_lock(&p->d_lock);
1315                 if (unlikely(d_unhashed(p))) {
1316                         spin_unlock(&p->d_lock);
1317                         goto out;
1318                 }
1319                 spin_unlock(&p->d_lock);
1320         }
1321         spin_lock(&dentry->d_lock);
1322         if (!d_unlinked(dentry)) {
1323                 dentry->d_flags |= DCACHE_MOUNTED;
1324                 ret = 0;
1325         }
1326         spin_unlock(&dentry->d_lock);
1327 out:
1328         write_sequnlock(&rename_lock);
1329         return ret;
1330 }
1331
1332 /*
1333  * Search the dentry child list of the specified parent,
1334  * and move any unused dentries to the end of the unused
1335  * list for prune_dcache(). We descend to the next level
1336  * whenever the d_subdirs list is non-empty and continue
1337  * searching.
1338  *
1339  * It returns zero iff there are no unused children,
1340  * otherwise  it returns the number of children moved to
1341  * the end of the unused list. This may not be the total
1342  * number of unused children, because select_parent can
1343  * drop the lock and return early due to latency
1344  * constraints.
1345  */
1346
1347 struct select_data {
1348         struct dentry *start;
1349         struct list_head dispose;
1350         int found;
1351 };
1352
1353 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1354 {
1355         struct select_data *data = _data;
1356         enum d_walk_ret ret = D_WALK_CONTINUE;
1357
1358         if (data->start == dentry)
1359                 goto out;
1360
1361         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1362                 data->found++;
1363         } else {
1364                 if (dentry->d_flags & DCACHE_LRU_LIST)
1365                         d_lru_del(dentry);
1366                 if (!dentry->d_lockref.count) {
1367                         d_shrink_add(dentry, &data->dispose);
1368                         data->found++;
1369                 }
1370         }
1371         /*
1372          * We can return to the caller if we have found some (this
1373          * ensures forward progress). We'll be coming back to find
1374          * the rest.
1375          */
1376         if (!list_empty(&data->dispose))
1377                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1378 out:
1379         return ret;
1380 }
1381
1382 /**
1383  * shrink_dcache_parent - prune dcache
1384  * @parent: parent of entries to prune
1385  *
1386  * Prune the dcache to remove unused children of the parent dentry.
1387  */
1388 void shrink_dcache_parent(struct dentry *parent)
1389 {
1390         for (;;) {
1391                 struct select_data data;
1392
1393                 INIT_LIST_HEAD(&data.dispose);
1394                 data.start = parent;
1395                 data.found = 0;
1396
1397                 d_walk(parent, &data, select_collect, NULL);
1398                 if (!data.found)
1399                         break;
1400
1401                 shrink_dentry_list(&data.dispose);
1402                 cond_resched();
1403         }
1404 }
1405 EXPORT_SYMBOL(shrink_dcache_parent);
1406
1407 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1408 {
1409         /* it has busy descendents; complain about those instead */
1410         if (!list_empty(&dentry->d_subdirs))
1411                 return D_WALK_CONTINUE;
1412
1413         /* root with refcount 1 is fine */
1414         if (dentry == _data && dentry->d_lockref.count == 1)
1415                 return D_WALK_CONTINUE;
1416
1417         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1418                         " still in use (%d) [unmount of %s %s]\n",
1419                        dentry,
1420                        dentry->d_inode ?
1421                        dentry->d_inode->i_ino : 0UL,
1422                        dentry,
1423                        dentry->d_lockref.count,
1424                        dentry->d_sb->s_type->name,
1425                        dentry->d_sb->s_id);
1426         WARN_ON(1);
1427         return D_WALK_CONTINUE;
1428 }
1429
1430 static void do_one_tree(struct dentry *dentry)
1431 {
1432         shrink_dcache_parent(dentry);
1433         d_walk(dentry, dentry, umount_check, NULL);
1434         d_drop(dentry);
1435         dput(dentry);
1436 }
1437
1438 /*
1439  * destroy the dentries attached to a superblock on unmounting
1440  */
1441 void shrink_dcache_for_umount(struct super_block *sb)
1442 {
1443         struct dentry *dentry;
1444
1445         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1446
1447         dentry = sb->s_root;
1448         sb->s_root = NULL;
1449         do_one_tree(dentry);
1450
1451         while (!hlist_bl_empty(&sb->s_anon)) {
1452                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1453                 do_one_tree(dentry);
1454         }
1455 }
1456
1457 struct detach_data {
1458         struct select_data select;
1459         struct dentry *mountpoint;
1460 };
1461 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1462 {
1463         struct detach_data *data = _data;
1464
1465         if (d_mountpoint(dentry)) {
1466                 __dget_dlock(dentry);
1467                 data->mountpoint = dentry;
1468                 return D_WALK_QUIT;
1469         }
1470
1471         return select_collect(&data->select, dentry);
1472 }
1473
1474 static void check_and_drop(void *_data)
1475 {
1476         struct detach_data *data = _data;
1477
1478         if (!data->mountpoint && !data->select.found)
1479                 __d_drop(data->select.start);
1480 }
1481
1482 /**
1483  * d_invalidate - detach submounts, prune dcache, and drop
1484  * @dentry: dentry to invalidate (aka detach, prune and drop)
1485  *
1486  * no dcache lock.
1487  *
1488  * The final d_drop is done as an atomic operation relative to
1489  * rename_lock ensuring there are no races with d_set_mounted.  This
1490  * ensures there are no unhashed dentries on the path to a mountpoint.
1491  */
1492 void d_invalidate(struct dentry *dentry)
1493 {
1494         /*
1495          * If it's already been dropped, return OK.
1496          */
1497         spin_lock(&dentry->d_lock);
1498         if (d_unhashed(dentry)) {
1499                 spin_unlock(&dentry->d_lock);
1500                 return;
1501         }
1502         spin_unlock(&dentry->d_lock);
1503
1504         /* Negative dentries can be dropped without further checks */
1505         if (!dentry->d_inode) {
1506                 d_drop(dentry);
1507                 return;
1508         }
1509
1510         for (;;) {
1511                 struct detach_data data;
1512
1513                 data.mountpoint = NULL;
1514                 INIT_LIST_HEAD(&data.select.dispose);
1515                 data.select.start = dentry;
1516                 data.select.found = 0;
1517
1518                 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1519
1520                 if (data.select.found)
1521                         shrink_dentry_list(&data.select.dispose);
1522
1523                 if (data.mountpoint) {
1524                         detach_mounts(data.mountpoint);
1525                         dput(data.mountpoint);
1526                 }
1527
1528                 if (!data.mountpoint && !data.select.found)
1529                         break;
1530
1531                 cond_resched();
1532         }
1533 }
1534 EXPORT_SYMBOL(d_invalidate);
1535
1536 /**
1537  * __d_alloc    -       allocate a dcache entry
1538  * @sb: filesystem it will belong to
1539  * @name: qstr of the name
1540  *
1541  * Allocates a dentry. It returns %NULL if there is insufficient memory
1542  * available. On a success the dentry is returned. The name passed in is
1543  * copied and the copy passed in may be reused after this call.
1544  */
1545  
1546 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1547 {
1548         struct dentry *dentry;
1549         char *dname;
1550
1551         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1552         if (!dentry)
1553                 return NULL;
1554
1555         /*
1556          * We guarantee that the inline name is always NUL-terminated.
1557          * This way the memcpy() done by the name switching in rename
1558          * will still always have a NUL at the end, even if we might
1559          * be overwriting an internal NUL character
1560          */
1561         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1562         if (name->len > DNAME_INLINE_LEN-1) {
1563                 size_t size = offsetof(struct external_name, name[1]);
1564                 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1565                 if (!p) {
1566                         kmem_cache_free(dentry_cache, dentry); 
1567                         return NULL;
1568                 }
1569                 atomic_set(&p->u.count, 1);
1570                 dname = p->name;
1571                 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1572                         kasan_unpoison_shadow(dname,
1573                                 round_up(name->len + 1, sizeof(unsigned long)));
1574         } else  {
1575                 dname = dentry->d_iname;
1576         }       
1577
1578         dentry->d_name.len = name->len;
1579         dentry->d_name.hash = name->hash;
1580         memcpy(dname, name->name, name->len);
1581         dname[name->len] = 0;
1582
1583         /* Make sure we always see the terminating NUL character */
1584         smp_wmb();
1585         dentry->d_name.name = dname;
1586
1587         dentry->d_lockref.count = 1;
1588         dentry->d_flags = 0;
1589         spin_lock_init(&dentry->d_lock);
1590         seqcount_init(&dentry->d_seq);
1591         dentry->d_inode = NULL;
1592         dentry->d_parent = dentry;
1593         dentry->d_sb = sb;
1594         dentry->d_op = NULL;
1595         dentry->d_fsdata = NULL;
1596         INIT_HLIST_BL_NODE(&dentry->d_hash);
1597         INIT_LIST_HEAD(&dentry->d_lru);
1598         INIT_LIST_HEAD(&dentry->d_subdirs);
1599         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1600         INIT_LIST_HEAD(&dentry->d_child);
1601         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1602
1603         this_cpu_inc(nr_dentry);
1604
1605         return dentry;
1606 }
1607
1608 /**
1609  * d_alloc      -       allocate a dcache entry
1610  * @parent: parent of entry to allocate
1611  * @name: qstr of the name
1612  *
1613  * Allocates a dentry. It returns %NULL if there is insufficient memory
1614  * available. On a success the dentry is returned. The name passed in is
1615  * copied and the copy passed in may be reused after this call.
1616  */
1617 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1618 {
1619         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1620         if (!dentry)
1621                 return NULL;
1622
1623         spin_lock(&parent->d_lock);
1624         /*
1625          * don't need child lock because it is not subject
1626          * to concurrency here
1627          */
1628         __dget_dlock(parent);
1629         dentry->d_parent = parent;
1630         list_add(&dentry->d_child, &parent->d_subdirs);
1631         spin_unlock(&parent->d_lock);
1632
1633         return dentry;
1634 }
1635 EXPORT_SYMBOL(d_alloc);
1636
1637 /**
1638  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1639  * @sb: the superblock
1640  * @name: qstr of the name
1641  *
1642  * For a filesystem that just pins its dentries in memory and never
1643  * performs lookups at all, return an unhashed IS_ROOT dentry.
1644  */
1645 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1646 {
1647         return __d_alloc(sb, name);
1648 }
1649 EXPORT_SYMBOL(d_alloc_pseudo);
1650
1651 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1652 {
1653         struct qstr q;
1654
1655         q.name = name;
1656         q.len = strlen(name);
1657         q.hash = full_name_hash(q.name, q.len);
1658         return d_alloc(parent, &q);
1659 }
1660 EXPORT_SYMBOL(d_alloc_name);
1661
1662 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1663 {
1664         WARN_ON_ONCE(dentry->d_op);
1665         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1666                                 DCACHE_OP_COMPARE       |
1667                                 DCACHE_OP_REVALIDATE    |
1668                                 DCACHE_OP_WEAK_REVALIDATE       |
1669                                 DCACHE_OP_DELETE        |
1670                                 DCACHE_OP_SELECT_INODE));
1671         dentry->d_op = op;
1672         if (!op)
1673                 return;
1674         if (op->d_hash)
1675                 dentry->d_flags |= DCACHE_OP_HASH;
1676         if (op->d_compare)
1677                 dentry->d_flags |= DCACHE_OP_COMPARE;
1678         if (op->d_revalidate)
1679                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1680         if (op->d_weak_revalidate)
1681                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1682         if (op->d_delete)
1683                 dentry->d_flags |= DCACHE_OP_DELETE;
1684         if (op->d_prune)
1685                 dentry->d_flags |= DCACHE_OP_PRUNE;
1686         if (op->d_select_inode)
1687                 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1688
1689 }
1690 EXPORT_SYMBOL(d_set_d_op);
1691
1692
1693 /*
1694  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1695  * @dentry - The dentry to mark
1696  *
1697  * Mark a dentry as falling through to the lower layer (as set with
1698  * d_pin_lower()).  This flag may be recorded on the medium.
1699  */
1700 void d_set_fallthru(struct dentry *dentry)
1701 {
1702         spin_lock(&dentry->d_lock);
1703         dentry->d_flags |= DCACHE_FALLTHRU;
1704         spin_unlock(&dentry->d_lock);
1705 }
1706 EXPORT_SYMBOL(d_set_fallthru);
1707
1708 static unsigned d_flags_for_inode(struct inode *inode)
1709 {
1710         unsigned add_flags = DCACHE_REGULAR_TYPE;
1711
1712         if (!inode)
1713                 return DCACHE_MISS_TYPE;
1714
1715         if (S_ISDIR(inode->i_mode)) {
1716                 add_flags = DCACHE_DIRECTORY_TYPE;
1717                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1718                         if (unlikely(!inode->i_op->lookup))
1719                                 add_flags = DCACHE_AUTODIR_TYPE;
1720                         else
1721                                 inode->i_opflags |= IOP_LOOKUP;
1722                 }
1723                 goto type_determined;
1724         }
1725
1726         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1727                 if (unlikely(inode->i_op->follow_link)) {
1728                         add_flags = DCACHE_SYMLINK_TYPE;
1729                         goto type_determined;
1730                 }
1731                 inode->i_opflags |= IOP_NOFOLLOW;
1732         }
1733
1734         if (unlikely(!S_ISREG(inode->i_mode)))
1735                 add_flags = DCACHE_SPECIAL_TYPE;
1736
1737 type_determined:
1738         if (unlikely(IS_AUTOMOUNT(inode)))
1739                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1740         return add_flags;
1741 }
1742
1743 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1744 {
1745         unsigned add_flags = d_flags_for_inode(inode);
1746
1747         spin_lock(&dentry->d_lock);
1748         if (inode)
1749                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1750         raw_write_seqcount_begin(&dentry->d_seq);
1751         __d_set_inode_and_type(dentry, inode, add_flags);
1752         raw_write_seqcount_end(&dentry->d_seq);
1753         spin_unlock(&dentry->d_lock);
1754         fsnotify_d_instantiate(dentry, inode);
1755 }
1756
1757 /**
1758  * d_instantiate - fill in inode information for a dentry
1759  * @entry: dentry to complete
1760  * @inode: inode to attach to this dentry
1761  *
1762  * Fill in inode information in the entry.
1763  *
1764  * This turns negative dentries into productive full members
1765  * of society.
1766  *
1767  * NOTE! This assumes that the inode count has been incremented
1768  * (or otherwise set) by the caller to indicate that it is now
1769  * in use by the dcache.
1770  */
1771  
1772 void d_instantiate(struct dentry *entry, struct inode * inode)
1773 {
1774         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1775         if (inode)
1776                 spin_lock(&inode->i_lock);
1777         __d_instantiate(entry, inode);
1778         if (inode)
1779                 spin_unlock(&inode->i_lock);
1780         security_d_instantiate(entry, inode);
1781 }
1782 EXPORT_SYMBOL(d_instantiate);
1783
1784 /**
1785  * d_instantiate_unique - instantiate a non-aliased dentry
1786  * @entry: dentry to instantiate
1787  * @inode: inode to attach to this dentry
1788  *
1789  * Fill in inode information in the entry. On success, it returns NULL.
1790  * If an unhashed alias of "entry" already exists, then we return the
1791  * aliased dentry instead and drop one reference to inode.
1792  *
1793  * Note that in order to avoid conflicts with rename() etc, the caller
1794  * had better be holding the parent directory semaphore.
1795  *
1796  * This also assumes that the inode count has been incremented
1797  * (or otherwise set) by the caller to indicate that it is now
1798  * in use by the dcache.
1799  */
1800 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1801                                              struct inode *inode)
1802 {
1803         struct dentry *alias;
1804         int len = entry->d_name.len;
1805         const char *name = entry->d_name.name;
1806         unsigned int hash = entry->d_name.hash;
1807
1808         if (!inode) {
1809                 __d_instantiate(entry, NULL);
1810                 return NULL;
1811         }
1812
1813         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1814                 /*
1815                  * Don't need alias->d_lock here, because aliases with
1816                  * d_parent == entry->d_parent are not subject to name or
1817                  * parent changes, because the parent inode i_mutex is held.
1818                  */
1819                 if (alias->d_name.hash != hash)
1820                         continue;
1821                 if (alias->d_parent != entry->d_parent)
1822                         continue;
1823                 if (alias->d_name.len != len)
1824                         continue;
1825                 if (dentry_cmp(alias, name, len))
1826                         continue;
1827                 __dget(alias);
1828                 return alias;
1829         }
1830
1831         __d_instantiate(entry, inode);
1832         return NULL;
1833 }
1834
1835 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1836 {
1837         struct dentry *result;
1838
1839         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1840
1841         if (inode)
1842                 spin_lock(&inode->i_lock);
1843         result = __d_instantiate_unique(entry, inode);
1844         if (inode)
1845                 spin_unlock(&inode->i_lock);
1846
1847         if (!result) {
1848                 security_d_instantiate(entry, inode);
1849                 return NULL;
1850         }
1851
1852         BUG_ON(!d_unhashed(result));
1853         iput(inode);
1854         return result;
1855 }
1856
1857 EXPORT_SYMBOL(d_instantiate_unique);
1858
1859 /**
1860  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1861  * @entry: dentry to complete
1862  * @inode: inode to attach to this dentry
1863  *
1864  * Fill in inode information in the entry.  If a directory alias is found, then
1865  * return an error (and drop inode).  Together with d_materialise_unique() this
1866  * guarantees that a directory inode may never have more than one alias.
1867  */
1868 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1869 {
1870         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1871
1872         spin_lock(&inode->i_lock);
1873         if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1874                 spin_unlock(&inode->i_lock);
1875                 iput(inode);
1876                 return -EBUSY;
1877         }
1878         __d_instantiate(entry, inode);
1879         spin_unlock(&inode->i_lock);
1880         security_d_instantiate(entry, inode);
1881
1882         return 0;
1883 }
1884 EXPORT_SYMBOL(d_instantiate_no_diralias);
1885
1886 struct dentry *d_make_root(struct inode *root_inode)
1887 {
1888         struct dentry *res = NULL;
1889
1890         if (root_inode) {
1891                 static const struct qstr name = QSTR_INIT("/", 1);
1892
1893                 res = __d_alloc(root_inode->i_sb, &name);
1894                 if (res)
1895                         d_instantiate(res, root_inode);
1896                 else
1897                         iput(root_inode);
1898         }
1899         return res;
1900 }
1901 EXPORT_SYMBOL(d_make_root);
1902
1903 static struct dentry * __d_find_any_alias(struct inode *inode)
1904 {
1905         struct dentry *alias;
1906
1907         if (hlist_empty(&inode->i_dentry))
1908                 return NULL;
1909         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1910         __dget(alias);
1911         return alias;
1912 }
1913
1914 /**
1915  * d_find_any_alias - find any alias for a given inode
1916  * @inode: inode to find an alias for
1917  *
1918  * If any aliases exist for the given inode, take and return a
1919  * reference for one of them.  If no aliases exist, return %NULL.
1920  */
1921 struct dentry *d_find_any_alias(struct inode *inode)
1922 {
1923         struct dentry *de;
1924
1925         spin_lock(&inode->i_lock);
1926         de = __d_find_any_alias(inode);
1927         spin_unlock(&inode->i_lock);
1928         return de;
1929 }
1930 EXPORT_SYMBOL(d_find_any_alias);
1931
1932 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1933 {
1934         static const struct qstr anonstring = QSTR_INIT("/", 1);
1935         struct dentry *tmp;
1936         struct dentry *res;
1937         unsigned add_flags;
1938
1939         if (!inode)
1940                 return ERR_PTR(-ESTALE);
1941         if (IS_ERR(inode))
1942                 return ERR_CAST(inode);
1943
1944         res = d_find_any_alias(inode);
1945         if (res)
1946                 goto out_iput;
1947
1948         tmp = __d_alloc(inode->i_sb, &anonstring);
1949         if (!tmp) {
1950                 res = ERR_PTR(-ENOMEM);
1951                 goto out_iput;
1952         }
1953
1954         spin_lock(&inode->i_lock);
1955         res = __d_find_any_alias(inode);
1956         if (res) {
1957                 spin_unlock(&inode->i_lock);
1958                 dput(tmp);
1959                 goto out_iput;
1960         }
1961
1962         /* attach a disconnected dentry */
1963         add_flags = d_flags_for_inode(inode);
1964
1965         if (disconnected)
1966                 add_flags |= DCACHE_DISCONNECTED;
1967
1968         spin_lock(&tmp->d_lock);
1969         __d_set_inode_and_type(tmp, inode, add_flags);
1970         hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1971         hlist_bl_lock(&tmp->d_sb->s_anon);
1972         hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1973         hlist_bl_unlock(&tmp->d_sb->s_anon);
1974         spin_unlock(&tmp->d_lock);
1975         spin_unlock(&inode->i_lock);
1976         security_d_instantiate(tmp, inode);
1977
1978         return tmp;
1979
1980  out_iput:
1981         if (res && !IS_ERR(res))
1982                 security_d_instantiate(res, inode);
1983         iput(inode);
1984         return res;
1985 }
1986
1987 /**
1988  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1989  * @inode: inode to allocate the dentry for
1990  *
1991  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1992  * similar open by handle operations.  The returned dentry may be anonymous,
1993  * or may have a full name (if the inode was already in the cache).
1994  *
1995  * When called on a directory inode, we must ensure that the inode only ever
1996  * has one dentry.  If a dentry is found, that is returned instead of
1997  * allocating a new one.
1998  *
1999  * On successful return, the reference to the inode has been transferred
2000  * to the dentry.  In case of an error the reference on the inode is released.
2001  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2002  * be passed in and the error will be propagated to the return value,
2003  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2004  */
2005 struct dentry *d_obtain_alias(struct inode *inode)
2006 {
2007         return __d_obtain_alias(inode, 1);
2008 }
2009 EXPORT_SYMBOL(d_obtain_alias);
2010
2011 /**
2012  * d_obtain_root - find or allocate a dentry for a given inode
2013  * @inode: inode to allocate the dentry for
2014  *
2015  * Obtain an IS_ROOT dentry for the root of a filesystem.
2016  *
2017  * We must ensure that directory inodes only ever have one dentry.  If a
2018  * dentry is found, that is returned instead of allocating a new one.
2019  *
2020  * On successful return, the reference to the inode has been transferred
2021  * to the dentry.  In case of an error the reference on the inode is
2022  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2023  * error will be propagate to the return value, with a %NULL @inode
2024  * replaced by ERR_PTR(-ESTALE).
2025  */
2026 struct dentry *d_obtain_root(struct inode *inode)
2027 {
2028         return __d_obtain_alias(inode, 0);
2029 }
2030 EXPORT_SYMBOL(d_obtain_root);
2031
2032 /**
2033  * d_add_ci - lookup or allocate new dentry with case-exact name
2034  * @inode:  the inode case-insensitive lookup has found
2035  * @dentry: the negative dentry that was passed to the parent's lookup func
2036  * @name:   the case-exact name to be associated with the returned dentry
2037  *
2038  * This is to avoid filling the dcache with case-insensitive names to the
2039  * same inode, only the actual correct case is stored in the dcache for
2040  * case-insensitive filesystems.
2041  *
2042  * For a case-insensitive lookup match and if the the case-exact dentry
2043  * already exists in in the dcache, use it and return it.
2044  *
2045  * If no entry exists with the exact case name, allocate new dentry with
2046  * the exact case, and return the spliced entry.
2047  */
2048 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2049                         struct qstr *name)
2050 {
2051         struct dentry *found;
2052         struct dentry *new;
2053
2054         /*
2055          * First check if a dentry matching the name already exists,
2056          * if not go ahead and create it now.
2057          */
2058         found = d_hash_and_lookup(dentry->d_parent, name);
2059         if (!found) {
2060                 new = d_alloc(dentry->d_parent, name);
2061                 if (!new) {
2062                         found = ERR_PTR(-ENOMEM);
2063                 } else {
2064                         found = d_splice_alias(inode, new);
2065                         if (found) {
2066                                 dput(new);
2067                                 return found;
2068                         }
2069                         return new;
2070                 }
2071         }
2072         iput(inode);
2073         return found;
2074 }
2075 EXPORT_SYMBOL(d_add_ci);
2076
2077 /*
2078  * Do the slow-case of the dentry name compare.
2079  *
2080  * Unlike the dentry_cmp() function, we need to atomically
2081  * load the name and length information, so that the
2082  * filesystem can rely on them, and can use the 'name' and
2083  * 'len' information without worrying about walking off the
2084  * end of memory etc.
2085  *
2086  * Thus the read_seqcount_retry() and the "duplicate" info
2087  * in arguments (the low-level filesystem should not look
2088  * at the dentry inode or name contents directly, since
2089  * rename can change them while we're in RCU mode).
2090  */
2091 enum slow_d_compare {
2092         D_COMP_OK,
2093         D_COMP_NOMATCH,
2094         D_COMP_SEQRETRY,
2095 };
2096
2097 static noinline enum slow_d_compare slow_dentry_cmp(
2098                 const struct dentry *parent,
2099                 struct dentry *dentry,
2100                 unsigned int seq,
2101                 const struct qstr *name)
2102 {
2103         int tlen = dentry->d_name.len;
2104         const char *tname = dentry->d_name.name;
2105
2106         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2107                 cpu_relax();
2108                 return D_COMP_SEQRETRY;
2109         }
2110         if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2111                 return D_COMP_NOMATCH;
2112         return D_COMP_OK;
2113 }
2114
2115 /**
2116  * __d_lookup_rcu - search for a dentry (racy, store-free)
2117  * @parent: parent dentry
2118  * @name: qstr of name we wish to find
2119  * @seqp: returns d_seq value at the point where the dentry was found
2120  * Returns: dentry, or NULL
2121  *
2122  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2123  * resolution (store-free path walking) design described in
2124  * Documentation/filesystems/path-lookup.txt.
2125  *
2126  * This is not to be used outside core vfs.
2127  *
2128  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2129  * held, and rcu_read_lock held. The returned dentry must not be stored into
2130  * without taking d_lock and checking d_seq sequence count against @seq
2131  * returned here.
2132  *
2133  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2134  * function.
2135  *
2136  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2137  * the returned dentry, so long as its parent's seqlock is checked after the
2138  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2139  * is formed, giving integrity down the path walk.
2140  *
2141  * NOTE! The caller *has* to check the resulting dentry against the sequence
2142  * number we've returned before using any of the resulting dentry state!
2143  */
2144 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2145                                 const struct qstr *name,
2146                                 unsigned *seqp)
2147 {
2148         u64 hashlen = name->hash_len;
2149         const unsigned char *str = name->name;
2150         struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2151         struct hlist_bl_node *node;
2152         struct dentry *dentry;
2153
2154         /*
2155          * Note: There is significant duplication with __d_lookup_rcu which is
2156          * required to prevent single threaded performance regressions
2157          * especially on architectures where smp_rmb (in seqcounts) are costly.
2158          * Keep the two functions in sync.
2159          */
2160
2161         /*
2162          * The hash list is protected using RCU.
2163          *
2164          * Carefully use d_seq when comparing a candidate dentry, to avoid
2165          * races with d_move().
2166          *
2167          * It is possible that concurrent renames can mess up our list
2168          * walk here and result in missing our dentry, resulting in the
2169          * false-negative result. d_lookup() protects against concurrent
2170          * renames using rename_lock seqlock.
2171          *
2172          * See Documentation/filesystems/path-lookup.txt for more details.
2173          */
2174         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2175                 unsigned seq;
2176
2177 seqretry:
2178                 /*
2179                  * The dentry sequence count protects us from concurrent
2180                  * renames, and thus protects parent and name fields.
2181                  *
2182                  * The caller must perform a seqcount check in order
2183                  * to do anything useful with the returned dentry.
2184                  *
2185                  * NOTE! We do a "raw" seqcount_begin here. That means that
2186                  * we don't wait for the sequence count to stabilize if it
2187                  * is in the middle of a sequence change. If we do the slow
2188                  * dentry compare, we will do seqretries until it is stable,
2189                  * and if we end up with a successful lookup, we actually
2190                  * want to exit RCU lookup anyway.
2191                  */
2192                 seq = raw_seqcount_begin(&dentry->d_seq);
2193                 if (dentry->d_parent != parent)
2194                         continue;
2195                 if (d_unhashed(dentry))
2196                         continue;
2197
2198                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2199                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2200                                 continue;
2201                         *seqp = seq;
2202                         switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2203                         case D_COMP_OK:
2204                                 return dentry;
2205                         case D_COMP_NOMATCH:
2206                                 continue;
2207                         default:
2208                                 goto seqretry;
2209                         }
2210                 }
2211
2212                 if (dentry->d_name.hash_len != hashlen)
2213                         continue;
2214                 *seqp = seq;
2215                 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2216                         return dentry;
2217         }
2218         return NULL;
2219 }
2220
2221 /**
2222  * d_lookup - search for a dentry
2223  * @parent: parent dentry
2224  * @name: qstr of name we wish to find
2225  * Returns: dentry, or NULL
2226  *
2227  * d_lookup searches the children of the parent dentry for the name in
2228  * question. If the dentry is found its reference count is incremented and the
2229  * dentry is returned. The caller must use dput to free the entry when it has
2230  * finished using it. %NULL is returned if the dentry does not exist.
2231  */
2232 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2233 {
2234         struct dentry *dentry;
2235         unsigned seq;
2236
2237         do {
2238                 seq = read_seqbegin(&rename_lock);
2239                 dentry = __d_lookup(parent, name);
2240                 if (dentry)
2241                         break;
2242         } while (read_seqretry(&rename_lock, seq));
2243         return dentry;
2244 }
2245 EXPORT_SYMBOL(d_lookup);
2246
2247 /**
2248  * __d_lookup - search for a dentry (racy)
2249  * @parent: parent dentry
2250  * @name: qstr of name we wish to find
2251  * Returns: dentry, or NULL
2252  *
2253  * __d_lookup is like d_lookup, however it may (rarely) return a
2254  * false-negative result due to unrelated rename activity.
2255  *
2256  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2257  * however it must be used carefully, eg. with a following d_lookup in
2258  * the case of failure.
2259  *
2260  * __d_lookup callers must be commented.
2261  */
2262 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2263 {
2264         unsigned int len = name->len;
2265         unsigned int hash = name->hash;
2266         const unsigned char *str = name->name;
2267         struct hlist_bl_head *b = d_hash(parent, hash);
2268         struct hlist_bl_node *node;
2269         struct dentry *found = NULL;
2270         struct dentry *dentry;
2271
2272         /*
2273          * Note: There is significant duplication with __d_lookup_rcu which is
2274          * required to prevent single threaded performance regressions
2275          * especially on architectures where smp_rmb (in seqcounts) are costly.
2276          * Keep the two functions in sync.
2277          */
2278
2279         /*
2280          * The hash list is protected using RCU.
2281          *
2282          * Take d_lock when comparing a candidate dentry, to avoid races
2283          * with d_move().
2284          *
2285          * It is possible that concurrent renames can mess up our list
2286          * walk here and result in missing our dentry, resulting in the
2287          * false-negative result. d_lookup() protects against concurrent
2288          * renames using rename_lock seqlock.
2289          *
2290          * See Documentation/filesystems/path-lookup.txt for more details.
2291          */
2292         rcu_read_lock();
2293         
2294         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2295
2296                 if (dentry->d_name.hash != hash)
2297                         continue;
2298
2299                 spin_lock(&dentry->d_lock);
2300                 if (dentry->d_parent != parent)
2301                         goto next;
2302                 if (d_unhashed(dentry))
2303                         goto next;
2304
2305                 /*
2306                  * It is safe to compare names since d_move() cannot
2307                  * change the qstr (protected by d_lock).
2308                  */
2309                 if (parent->d_flags & DCACHE_OP_COMPARE) {
2310                         int tlen = dentry->d_name.len;
2311                         const char *tname = dentry->d_name.name;
2312                         if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2313                                 goto next;
2314                 } else {
2315                         if (dentry->d_name.len != len)
2316                                 goto next;
2317                         if (dentry_cmp(dentry, str, len))
2318                                 goto next;
2319                 }
2320
2321                 dentry->d_lockref.count++;
2322                 found = dentry;
2323                 spin_unlock(&dentry->d_lock);
2324                 break;
2325 next:
2326                 spin_unlock(&dentry->d_lock);
2327         }
2328         rcu_read_unlock();
2329
2330         return found;
2331 }
2332
2333 /**
2334  * d_hash_and_lookup - hash the qstr then search for a dentry
2335  * @dir: Directory to search in
2336  * @name: qstr of name we wish to find
2337  *
2338  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2339  */
2340 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341 {
2342         /*
2343          * Check for a fs-specific hash function. Note that we must
2344          * calculate the standard hash first, as the d_op->d_hash()
2345          * routine may choose to leave the hash value unchanged.
2346          */
2347         name->hash = full_name_hash(name->name, name->len);
2348         if (dir->d_flags & DCACHE_OP_HASH) {
2349                 int err = dir->d_op->d_hash(dir, name);
2350                 if (unlikely(err < 0))
2351                         return ERR_PTR(err);
2352         }
2353         return d_lookup(dir, name);
2354 }
2355 EXPORT_SYMBOL(d_hash_and_lookup);
2356
2357 /*
2358  * When a file is deleted, we have two options:
2359  * - turn this dentry into a negative dentry
2360  * - unhash this dentry and free it.
2361  *
2362  * Usually, we want to just turn this into
2363  * a negative dentry, but if anybody else is
2364  * currently using the dentry or the inode
2365  * we can't do that and we fall back on removing
2366  * it from the hash queues and waiting for
2367  * it to be deleted later when it has no users
2368  */
2369  
2370 /**
2371  * d_delete - delete a dentry
2372  * @dentry: The dentry to delete
2373  *
2374  * Turn the dentry into a negative dentry if possible, otherwise
2375  * remove it from the hash queues so it can be deleted later
2376  */
2377  
2378 void d_delete(struct dentry * dentry)
2379 {
2380         struct inode *inode;
2381         int isdir = 0;
2382         /*
2383          * Are we the only user?
2384          */
2385 again:
2386         spin_lock(&dentry->d_lock);
2387         inode = dentry->d_inode;
2388         isdir = S_ISDIR(inode->i_mode);
2389         if (dentry->d_lockref.count == 1) {
2390                 if (!spin_trylock(&inode->i_lock)) {
2391                         spin_unlock(&dentry->d_lock);
2392                         cpu_chill();
2393                         goto again;
2394                 }
2395                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2396                 dentry_unlink_inode(dentry);
2397                 fsnotify_nameremove(dentry, isdir);
2398                 return;
2399         }
2400
2401         if (!d_unhashed(dentry))
2402                 __d_drop(dentry);
2403
2404         spin_unlock(&dentry->d_lock);
2405
2406         fsnotify_nameremove(dentry, isdir);
2407 }
2408 EXPORT_SYMBOL(d_delete);
2409
2410 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2411 {
2412         BUG_ON(!d_unhashed(entry));
2413         hlist_bl_lock(b);
2414         entry->d_flags |= DCACHE_RCUACCESS;
2415         hlist_bl_add_head_rcu(&entry->d_hash, b);
2416         hlist_bl_unlock(b);
2417 }
2418
2419 static void _d_rehash(struct dentry * entry)
2420 {
2421         __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2422 }
2423
2424 /**
2425  * d_rehash     - add an entry back to the hash
2426  * @entry: dentry to add to the hash
2427  *
2428  * Adds a dentry to the hash according to its name.
2429  */
2430  
2431 void d_rehash(struct dentry * entry)
2432 {
2433         spin_lock(&entry->d_lock);
2434         _d_rehash(entry);
2435         spin_unlock(&entry->d_lock);
2436 }
2437 EXPORT_SYMBOL(d_rehash);
2438
2439 /**
2440  * dentry_update_name_case - update case insensitive dentry with a new name
2441  * @dentry: dentry to be updated
2442  * @name: new name
2443  *
2444  * Update a case insensitive dentry with new case of name.
2445  *
2446  * dentry must have been returned by d_lookup with name @name. Old and new
2447  * name lengths must match (ie. no d_compare which allows mismatched name
2448  * lengths).
2449  *
2450  * Parent inode i_mutex must be held over d_lookup and into this call (to
2451  * keep renames and concurrent inserts, and readdir(2) away).
2452  */
2453 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2454 {
2455         BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2456         BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2457
2458         spin_lock(&dentry->d_lock);
2459         write_seqcount_begin(&dentry->d_seq);
2460         memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2461         write_seqcount_end(&dentry->d_seq);
2462         spin_unlock(&dentry->d_lock);
2463 }
2464 EXPORT_SYMBOL(dentry_update_name_case);
2465
2466 static void swap_names(struct dentry *dentry, struct dentry *target)
2467 {
2468         if (unlikely(dname_external(target))) {
2469                 if (unlikely(dname_external(dentry))) {
2470                         /*
2471                          * Both external: swap the pointers
2472                          */
2473                         swap(target->d_name.name, dentry->d_name.name);
2474                 } else {
2475                         /*
2476                          * dentry:internal, target:external.  Steal target's
2477                          * storage and make target internal.
2478                          */
2479                         memcpy(target->d_iname, dentry->d_name.name,
2480                                         dentry->d_name.len + 1);
2481                         dentry->d_name.name = target->d_name.name;
2482                         target->d_name.name = target->d_iname;
2483                 }
2484         } else {
2485                 if (unlikely(dname_external(dentry))) {
2486                         /*
2487                          * dentry:external, target:internal.  Give dentry's
2488                          * storage to target and make dentry internal
2489                          */
2490                         memcpy(dentry->d_iname, target->d_name.name,
2491                                         target->d_name.len + 1);
2492                         target->d_name.name = dentry->d_name.name;
2493                         dentry->d_name.name = dentry->d_iname;
2494                 } else {
2495                         /*
2496                          * Both are internal.
2497                          */
2498                         unsigned int i;
2499                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2500                         kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2501                         kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2502                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2503                                 swap(((long *) &dentry->d_iname)[i],
2504                                      ((long *) &target->d_iname)[i]);
2505                         }
2506                 }
2507         }
2508         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2509 }
2510
2511 static void copy_name(struct dentry *dentry, struct dentry *target)
2512 {
2513         struct external_name *old_name = NULL;
2514         if (unlikely(dname_external(dentry)))
2515                 old_name = external_name(dentry);
2516         if (unlikely(dname_external(target))) {
2517                 atomic_inc(&external_name(target)->u.count);
2518                 dentry->d_name = target->d_name;
2519         } else {
2520                 memcpy(dentry->d_iname, target->d_name.name,
2521                                 target->d_name.len + 1);
2522                 dentry->d_name.name = dentry->d_iname;
2523                 dentry->d_name.hash_len = target->d_name.hash_len;
2524         }
2525         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2526                 kfree_rcu(old_name, u.head);
2527 }
2528
2529 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2530 {
2531         /*
2532          * XXXX: do we really need to take target->d_lock?
2533          */
2534         if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2535                 spin_lock(&target->d_parent->d_lock);
2536         else {
2537                 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2538                         spin_lock(&dentry->d_parent->d_lock);
2539                         spin_lock_nested(&target->d_parent->d_lock,
2540                                                 DENTRY_D_LOCK_NESTED);
2541                 } else {
2542                         spin_lock(&target->d_parent->d_lock);
2543                         spin_lock_nested(&dentry->d_parent->d_lock,
2544                                                 DENTRY_D_LOCK_NESTED);
2545                 }
2546         }
2547         if (target < dentry) {
2548                 spin_lock_nested(&target->d_lock, 2);
2549                 spin_lock_nested(&dentry->d_lock, 3);
2550         } else {
2551                 spin_lock_nested(&dentry->d_lock, 2);
2552                 spin_lock_nested(&target->d_lock, 3);
2553         }
2554 }
2555
2556 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2557 {
2558         if (target->d_parent != dentry->d_parent)
2559                 spin_unlock(&dentry->d_parent->d_lock);
2560         if (target->d_parent != target)
2561                 spin_unlock(&target->d_parent->d_lock);
2562         spin_unlock(&target->d_lock);
2563         spin_unlock(&dentry->d_lock);
2564 }
2565
2566 /*
2567  * When switching names, the actual string doesn't strictly have to
2568  * be preserved in the target - because we're dropping the target
2569  * anyway. As such, we can just do a simple memcpy() to copy over
2570  * the new name before we switch, unless we are going to rehash
2571  * it.  Note that if we *do* unhash the target, we are not allowed
2572  * to rehash it without giving it a new name/hash key - whether
2573  * we swap or overwrite the names here, resulting name won't match
2574  * the reality in filesystem; it's only there for d_path() purposes.
2575  * Note that all of this is happening under rename_lock, so the
2576  * any hash lookup seeing it in the middle of manipulations will
2577  * be discarded anyway.  So we do not care what happens to the hash
2578  * key in that case.
2579  */
2580 /*
2581  * __d_move - move a dentry
2582  * @dentry: entry to move
2583  * @target: new dentry
2584  * @exchange: exchange the two dentries
2585  *
2586  * Update the dcache to reflect the move of a file name. Negative
2587  * dcache entries should not be moved in this way. Caller must hold
2588  * rename_lock, the i_mutex of the source and target directories,
2589  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2590  */
2591 static void __d_move(struct dentry *dentry, struct dentry *target,
2592                      bool exchange)
2593 {
2594         if (!dentry->d_inode)
2595                 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2596
2597         BUG_ON(d_ancestor(dentry, target));
2598         BUG_ON(d_ancestor(target, dentry));
2599
2600         dentry_lock_for_move(dentry, target);
2601
2602         write_seqcount_begin(&dentry->d_seq);
2603         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2604
2605         /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2606
2607         /*
2608          * Move the dentry to the target hash queue. Don't bother checking
2609          * for the same hash queue because of how unlikely it is.
2610          */
2611         __d_drop(dentry);
2612         __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2613
2614         /*
2615          * Unhash the target (d_delete() is not usable here).  If exchanging
2616          * the two dentries, then rehash onto the other's hash queue.
2617          */
2618         __d_drop(target);
2619         if (exchange) {
2620                 __d_rehash(target,
2621                            d_hash(dentry->d_parent, dentry->d_name.hash));
2622         }
2623
2624         /* Switch the names.. */
2625         if (exchange)
2626                 swap_names(dentry, target);
2627         else
2628                 copy_name(dentry, target);
2629
2630         /* ... and switch them in the tree */
2631         if (IS_ROOT(dentry)) {
2632                 /* splicing a tree */
2633                 dentry->d_parent = target->d_parent;
2634                 target->d_parent = target;
2635                 list_del_init(&target->d_child);
2636                 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2637         } else {
2638                 /* swapping two dentries */
2639                 swap(dentry->d_parent, target->d_parent);
2640                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2641                 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2642                 if (exchange)
2643                         fsnotify_d_move(target);
2644                 fsnotify_d_move(dentry);
2645         }
2646
2647         write_seqcount_end(&target->d_seq);
2648         write_seqcount_end(&dentry->d_seq);
2649
2650         dentry_unlock_for_move(dentry, target);
2651 }
2652
2653 /*
2654  * d_move - move a dentry
2655  * @dentry: entry to move
2656  * @target: new dentry
2657  *
2658  * Update the dcache to reflect the move of a file name. Negative
2659  * dcache entries should not be moved in this way. See the locking
2660  * requirements for __d_move.
2661  */
2662 void d_move(struct dentry *dentry, struct dentry *target)
2663 {
2664         write_seqlock(&rename_lock);
2665         __d_move(dentry, target, false);
2666         write_sequnlock(&rename_lock);
2667 }
2668 EXPORT_SYMBOL(d_move);
2669
2670 /*
2671  * d_exchange - exchange two dentries
2672  * @dentry1: first dentry
2673  * @dentry2: second dentry
2674  */
2675 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2676 {
2677         write_seqlock(&rename_lock);
2678
2679         WARN_ON(!dentry1->d_inode);
2680         WARN_ON(!dentry2->d_inode);
2681         WARN_ON(IS_ROOT(dentry1));
2682         WARN_ON(IS_ROOT(dentry2));
2683
2684         __d_move(dentry1, dentry2, true);
2685
2686         write_sequnlock(&rename_lock);
2687 }
2688
2689 /**
2690  * d_ancestor - search for an ancestor
2691  * @p1: ancestor dentry
2692  * @p2: child dentry
2693  *
2694  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2695  * an ancestor of p2, else NULL.
2696  */
2697 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2698 {
2699         struct dentry *p;
2700
2701         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2702                 if (p->d_parent == p1)
2703                         return p;
2704         }
2705         return NULL;
2706 }
2707
2708 /*
2709  * This helper attempts to cope with remotely renamed directories
2710  *
2711  * It assumes that the caller is already holding
2712  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2713  *
2714  * Note: If ever the locking in lock_rename() changes, then please
2715  * remember to update this too...
2716  */
2717 static int __d_unalias(struct inode *inode,
2718                 struct dentry *dentry, struct dentry *alias)
2719 {
2720         struct mutex *m1 = NULL, *m2 = NULL;
2721         int ret = -ESTALE;
2722
2723         /* If alias and dentry share a parent, then no extra locks required */
2724         if (alias->d_parent == dentry->d_parent)
2725                 goto out_unalias;
2726
2727         /* See lock_rename() */
2728         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2729                 goto out_err;
2730         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2731         if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2732                 goto out_err;
2733         m2 = &alias->d_parent->d_inode->i_mutex;
2734 out_unalias:
2735         __d_move(alias, dentry, false);
2736         ret = 0;
2737 out_err:
2738         if (m2)
2739                 mutex_unlock(m2);
2740         if (m1)
2741                 mutex_unlock(m1);
2742         return ret;
2743 }
2744
2745 /**
2746  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2747  * @inode:  the inode which may have a disconnected dentry
2748  * @dentry: a negative dentry which we want to point to the inode.
2749  *
2750  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2751  * place of the given dentry and return it, else simply d_add the inode
2752  * to the dentry and return NULL.
2753  *
2754  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2755  * we should error out: directories can't have multiple aliases.
2756  *
2757  * This is needed in the lookup routine of any filesystem that is exportable
2758  * (via knfsd) so that we can build dcache paths to directories effectively.
2759  *
2760  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2761  * is returned.  This matches the expected return value of ->lookup.
2762  *
2763  * Cluster filesystems may call this function with a negative, hashed dentry.
2764  * In that case, we know that the inode will be a regular file, and also this
2765  * will only occur during atomic_open. So we need to check for the dentry
2766  * being already hashed only in the final case.
2767  */
2768 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2769 {
2770         if (IS_ERR(inode))
2771                 return ERR_CAST(inode);
2772
2773         BUG_ON(!d_unhashed(dentry));
2774
2775         if (!inode) {
2776                 __d_instantiate(dentry, NULL);
2777                 goto out;
2778         }
2779         spin_lock(&inode->i_lock);
2780         if (S_ISDIR(inode->i_mode)) {
2781                 struct dentry *new = __d_find_any_alias(inode);
2782                 if (unlikely(new)) {
2783                         /* The reference to new ensures it remains an alias */
2784                         spin_unlock(&inode->i_lock);
2785                         write_seqlock(&rename_lock);
2786                         if (unlikely(d_ancestor(new, dentry))) {
2787                                 write_sequnlock(&rename_lock);
2788                                 dput(new);
2789                                 new = ERR_PTR(-ELOOP);
2790                                 pr_warn_ratelimited(
2791                                         "VFS: Lookup of '%s' in %s %s"
2792                                         " would have caused loop\n",
2793                                         dentry->d_name.name,
2794                                         inode->i_sb->s_type->name,
2795                                         inode->i_sb->s_id);
2796                         } else if (!IS_ROOT(new)) {
2797                                 int err = __d_unalias(inode, dentry, new);
2798                                 write_sequnlock(&rename_lock);
2799                                 if (err) {
2800                                         dput(new);
2801                                         new = ERR_PTR(err);
2802                                 }
2803                         } else {
2804                                 __d_move(new, dentry, false);
2805                                 write_sequnlock(&rename_lock);
2806                                 security_d_instantiate(new, inode);
2807                         }
2808                         iput(inode);
2809                         return new;
2810                 }
2811         }
2812         /* already taking inode->i_lock, so d_add() by hand */
2813         __d_instantiate(dentry, inode);
2814         spin_unlock(&inode->i_lock);
2815 out:
2816         security_d_instantiate(dentry, inode);
2817         d_rehash(dentry);
2818         return NULL;
2819 }
2820 EXPORT_SYMBOL(d_splice_alias);
2821
2822 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2823 {
2824         *buflen -= namelen;
2825         if (*buflen < 0)
2826                 return -ENAMETOOLONG;
2827         *buffer -= namelen;
2828         memcpy(*buffer, str, namelen);
2829         return 0;
2830 }
2831
2832 /**
2833  * prepend_name - prepend a pathname in front of current buffer pointer
2834  * @buffer: buffer pointer
2835  * @buflen: allocated length of the buffer
2836  * @name:   name string and length qstr structure
2837  *
2838  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2839  * make sure that either the old or the new name pointer and length are
2840  * fetched. However, there may be mismatch between length and pointer.
2841  * The length cannot be trusted, we need to copy it byte-by-byte until
2842  * the length is reached or a null byte is found. It also prepends "/" at
2843  * the beginning of the name. The sequence number check at the caller will
2844  * retry it again when a d_move() does happen. So any garbage in the buffer
2845  * due to mismatched pointer and length will be discarded.
2846  *
2847  * Data dependency barrier is needed to make sure that we see that terminating
2848  * NUL.  Alpha strikes again, film at 11...
2849  */
2850 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2851 {
2852         const char *dname = ACCESS_ONCE(name->name);
2853         u32 dlen = ACCESS_ONCE(name->len);
2854         char *p;
2855
2856         smp_read_barrier_depends();
2857
2858         *buflen -= dlen + 1;
2859         if (*buflen < 0)
2860                 return -ENAMETOOLONG;
2861         p = *buffer -= dlen + 1;
2862         *p++ = '/';
2863         while (dlen--) {
2864                 char c = *dname++;
2865                 if (!c)
2866                         break;
2867                 *p++ = c;
2868         }
2869         return 0;
2870 }
2871
2872 /**
2873  * prepend_path - Prepend path string to a buffer
2874  * @path: the dentry/vfsmount to report
2875  * @root: root vfsmnt/dentry
2876  * @buffer: pointer to the end of the buffer
2877  * @buflen: pointer to buffer length
2878  *
2879  * The function will first try to write out the pathname without taking any
2880  * lock other than the RCU read lock to make sure that dentries won't go away.
2881  * It only checks the sequence number of the global rename_lock as any change
2882  * in the dentry's d_seq will be preceded by changes in the rename_lock
2883  * sequence number. If the sequence number had been changed, it will restart
2884  * the whole pathname back-tracing sequence again by taking the rename_lock.
2885  * In this case, there is no need to take the RCU read lock as the recursive
2886  * parent pointer references will keep the dentry chain alive as long as no
2887  * rename operation is performed.
2888  */
2889 static int prepend_path(const struct path *path,
2890                         const struct path *root,
2891                         char **buffer, int *buflen)
2892 {
2893         struct dentry *dentry;
2894         struct vfsmount *vfsmnt;
2895         struct mount *mnt;
2896         int error = 0;
2897         unsigned seq, m_seq = 0;
2898         char *bptr;
2899         int blen;
2900
2901         rcu_read_lock();
2902 restart_mnt:
2903         read_seqbegin_or_lock(&mount_lock, &m_seq);
2904         seq = 0;
2905         rcu_read_lock();
2906 restart:
2907         bptr = *buffer;
2908         blen = *buflen;
2909         error = 0;
2910         dentry = path->dentry;
2911         vfsmnt = path->mnt;
2912         mnt = real_mount(vfsmnt);
2913         read_seqbegin_or_lock(&rename_lock, &seq);
2914         while (dentry != root->dentry || vfsmnt != root->mnt) {
2915                 struct dentry * parent;
2916
2917                 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2918                         struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2919                         /* Escaped? */
2920                         if (dentry != vfsmnt->mnt_root) {
2921                                 bptr = *buffer;
2922                                 blen = *buflen;
2923                                 error = 3;
2924                                 break;
2925                         }
2926                         /* Global root? */
2927                         if (mnt != parent) {
2928                                 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2929                                 mnt = parent;
2930                                 vfsmnt = &mnt->mnt;
2931                                 continue;
2932                         }
2933                         if (!error)
2934                                 error = is_mounted(vfsmnt) ? 1 : 2;
2935                         break;
2936                 }
2937                 parent = dentry->d_parent;
2938                 prefetch(parent);
2939                 error = prepend_name(&bptr, &blen, &dentry->d_name);
2940                 if (error)
2941                         break;
2942
2943                 dentry = parent;
2944         }
2945         if (!(seq & 1))
2946                 rcu_read_unlock();
2947         if (need_seqretry(&rename_lock, seq)) {
2948                 seq = 1;
2949                 goto restart;
2950         }
2951         done_seqretry(&rename_lock, seq);
2952
2953         if (!(m_seq & 1))
2954                 rcu_read_unlock();
2955         if (need_seqretry(&mount_lock, m_seq)) {
2956                 m_seq = 1;
2957                 goto restart_mnt;
2958         }
2959         done_seqretry(&mount_lock, m_seq);
2960
2961         if (error >= 0 && bptr == *buffer) {
2962                 if (--blen < 0)
2963                         error = -ENAMETOOLONG;
2964                 else
2965                         *--bptr = '/';
2966         }
2967         *buffer = bptr;
2968         *buflen = blen;
2969         return error;
2970 }
2971
2972 /**
2973  * __d_path - return the path of a dentry
2974  * @path: the dentry/vfsmount to report
2975  * @root: root vfsmnt/dentry
2976  * @buf: buffer to return value in
2977  * @buflen: buffer length
2978  *
2979  * Convert a dentry into an ASCII path name.
2980  *
2981  * Returns a pointer into the buffer or an error code if the
2982  * path was too long.
2983  *
2984  * "buflen" should be positive.
2985  *
2986  * If the path is not reachable from the supplied root, return %NULL.
2987  */
2988 char *__d_path(const struct path *path,
2989                const struct path *root,
2990                char *buf, int buflen)
2991 {
2992         char *res = buf + buflen;
2993         int error;
2994
2995         prepend(&res, &buflen, "\0", 1);
2996         error = prepend_path(path, root, &res, &buflen);
2997
2998         if (error < 0)
2999                 return ERR_PTR(error);
3000         if (error > 0)
3001                 return NULL;
3002         return res;
3003 }
3004
3005 char *d_absolute_path(const struct path *path,
3006                char *buf, int buflen)
3007 {
3008         struct path root = {};
3009         char *res = buf + buflen;
3010         int error;
3011
3012         prepend(&res, &buflen, "\0", 1);
3013         error = prepend_path(path, &root, &res, &buflen);
3014
3015         if (error > 1)
3016                 error = -EINVAL;
3017         if (error < 0)
3018                 return ERR_PTR(error);
3019         return res;
3020 }
3021
3022 /*
3023  * same as __d_path but appends "(deleted)" for unlinked files.
3024  */
3025 static int path_with_deleted(const struct path *path,
3026                              const struct path *root,
3027                              char **buf, int *buflen)
3028 {
3029         prepend(buf, buflen, "\0", 1);
3030         if (d_unlinked(path->dentry)) {
3031                 int error = prepend(buf, buflen, " (deleted)", 10);
3032                 if (error)
3033                         return error;
3034         }
3035
3036         return prepend_path(path, root, buf, buflen);
3037 }
3038
3039 static int prepend_unreachable(char **buffer, int *buflen)
3040 {
3041         return prepend(buffer, buflen, "(unreachable)", 13);
3042 }
3043
3044 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3045 {
3046         unsigned seq;
3047
3048         do {
3049                 seq = read_seqcount_begin(&fs->seq);
3050                 *root = fs->root;
3051         } while (read_seqcount_retry(&fs->seq, seq));
3052 }
3053
3054 /**
3055  * d_path - return the path of a dentry
3056  * @path: path to report
3057  * @buf: buffer to return value in
3058  * @buflen: buffer length
3059  *
3060  * Convert a dentry into an ASCII path name. If the entry has been deleted
3061  * the string " (deleted)" is appended. Note that this is ambiguous.
3062  *
3063  * Returns a pointer into the buffer or an error code if the path was
3064  * too long. Note: Callers should use the returned pointer, not the passed
3065  * in buffer, to use the name! The implementation often starts at an offset
3066  * into the buffer, and may leave 0 bytes at the start.
3067  *
3068  * "buflen" should be positive.
3069  */
3070 char *d_path(const struct path *path, char *buf, int buflen)
3071 {
3072         char *res = buf + buflen;
3073         struct path root;
3074         int error;
3075
3076         /*
3077          * We have various synthetic filesystems that never get mounted.  On
3078          * these filesystems dentries are never used for lookup purposes, and
3079          * thus don't need to be hashed.  They also don't need a name until a
3080          * user wants to identify the object in /proc/pid/fd/.  The little hack
3081          * below allows us to generate a name for these objects on demand:
3082          *
3083          * Some pseudo inodes are mountable.  When they are mounted
3084          * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3085          * and instead have d_path return the mounted path.
3086          */
3087         if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3088             (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3089                 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3090
3091         rcu_read_lock();
3092         get_fs_root_rcu(current->fs, &root);
3093         error = path_with_deleted(path, &root, &res, &buflen);
3094         rcu_read_unlock();
3095
3096         if (error < 0)
3097                 res = ERR_PTR(error);
3098         return res;
3099 }
3100 EXPORT_SYMBOL(d_path);
3101
3102 /*
3103  * Helper function for dentry_operations.d_dname() members
3104  */
3105 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3106                         const char *fmt, ...)
3107 {
3108         va_list args;
3109         char temp[64];
3110         int sz;
3111
3112         va_start(args, fmt);
3113         sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3114         va_end(args);
3115
3116         if (sz > sizeof(temp) || sz > buflen)
3117                 return ERR_PTR(-ENAMETOOLONG);
3118
3119         buffer += buflen - sz;
3120         return memcpy(buffer, temp, sz);
3121 }
3122
3123 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3124 {
3125         char *end = buffer + buflen;
3126         /* these dentries are never renamed, so d_lock is not needed */
3127         if (prepend(&end, &buflen, " (deleted)", 11) ||
3128             prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3129             prepend(&end, &buflen, "/", 1))  
3130                 end = ERR_PTR(-ENAMETOOLONG);
3131         return end;
3132 }
3133 EXPORT_SYMBOL(simple_dname);
3134
3135 /*
3136  * Write full pathname from the root of the filesystem into the buffer.
3137  */
3138 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3139 {
3140         struct dentry *dentry;
3141         char *end, *retval;
3142         int len, seq = 0;
3143         int error = 0;
3144
3145         if (buflen < 2)
3146                 goto Elong;
3147
3148         rcu_read_lock();
3149 restart:
3150         dentry = d;
3151         end = buf + buflen;
3152         len = buflen;
3153         prepend(&end, &len, "\0", 1);
3154         /* Get '/' right */
3155         retval = end-1;
3156         *retval = '/';
3157         read_seqbegin_or_lock(&rename_lock, &seq);
3158         while (!IS_ROOT(dentry)) {
3159                 struct dentry *parent = dentry->d_parent;
3160
3161                 prefetch(parent);
3162                 error = prepend_name(&end, &len, &dentry->d_name);
3163                 if (error)
3164                         break;
3165
3166                 retval = end;
3167                 dentry = parent;
3168         }
3169         if (!(seq & 1))
3170                 rcu_read_unlock();
3171         if (need_seqretry(&rename_lock, seq)) {
3172                 seq = 1;
3173                 goto restart;
3174         }
3175         done_seqretry(&rename_lock, seq);
3176         if (error)
3177                 goto Elong;
3178         return retval;
3179 Elong:
3180         return ERR_PTR(-ENAMETOOLONG);
3181 }
3182
3183 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3184 {
3185         return __dentry_path(dentry, buf, buflen);
3186 }
3187 EXPORT_SYMBOL(dentry_path_raw);
3188
3189 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3190 {
3191         char *p = NULL;
3192         char *retval;
3193
3194         if (d_unlinked(dentry)) {
3195                 p = buf + buflen;
3196                 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3197                         goto Elong;
3198                 buflen++;
3199         }
3200         retval = __dentry_path(dentry, buf, buflen);
3201         if (!IS_ERR(retval) && p)
3202                 *p = '/';       /* restore '/' overriden with '\0' */
3203         return retval;
3204 Elong:
3205         return ERR_PTR(-ENAMETOOLONG);
3206 }
3207
3208 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3209                                     struct path *pwd)
3210 {
3211         unsigned seq;
3212
3213         do {
3214                 seq = read_seqcount_begin(&fs->seq);
3215                 *root = fs->root;
3216                 *pwd = fs->pwd;
3217         } while (read_seqcount_retry(&fs->seq, seq));
3218 }
3219
3220 /*
3221  * NOTE! The user-level library version returns a
3222  * character pointer. The kernel system call just
3223  * returns the length of the buffer filled (which
3224  * includes the ending '\0' character), or a negative
3225  * error value. So libc would do something like
3226  *
3227  *      char *getcwd(char * buf, size_t size)
3228  *      {
3229  *              int retval;
3230  *
3231  *              retval = sys_getcwd(buf, size);
3232  *              if (retval >= 0)
3233  *                      return buf;
3234  *              errno = -retval;
3235  *              return NULL;
3236  *      }
3237  */
3238 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3239 {
3240         int error;
3241         struct path pwd, root;
3242         char *page = __getname();
3243
3244         if (!page)
3245                 return -ENOMEM;
3246
3247         rcu_read_lock();
3248         get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3249
3250         error = -ENOENT;
3251         if (!d_unlinked(pwd.dentry)) {
3252                 unsigned long len;
3253                 char *cwd = page + PATH_MAX;
3254                 int buflen = PATH_MAX;
3255
3256                 prepend(&cwd, &buflen, "\0", 1);
3257                 error = prepend_path(&pwd, &root, &cwd, &buflen);
3258                 rcu_read_unlock();
3259
3260                 if (error < 0)
3261                         goto out;
3262
3263                 /* Unreachable from current root */
3264                 if (error > 0) {
3265                         error = prepend_unreachable(&cwd, &buflen);
3266                         if (error)
3267                                 goto out;
3268                 }
3269
3270                 error = -ERANGE;
3271                 len = PATH_MAX + page - cwd;
3272                 if (len <= size) {
3273                         error = len;
3274                         if (copy_to_user(buf, cwd, len))
3275                                 error = -EFAULT;
3276                 }
3277         } else {
3278                 rcu_read_unlock();
3279         }
3280
3281 out:
3282         __putname(page);
3283         return error;
3284 }
3285
3286 /*
3287  * Test whether new_dentry is a subdirectory of old_dentry.
3288  *
3289  * Trivially implemented using the dcache structure
3290  */
3291
3292 /**
3293  * is_subdir - is new dentry a subdirectory of old_dentry
3294  * @new_dentry: new dentry
3295  * @old_dentry: old dentry
3296  *
3297  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3298  * Returns 0 otherwise.
3299  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3300  */
3301   
3302 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3303 {
3304         int result;
3305         unsigned seq;
3306
3307         if (new_dentry == old_dentry)
3308                 return 1;
3309
3310         do {
3311                 /* for restarting inner loop in case of seq retry */
3312                 seq = read_seqbegin(&rename_lock);
3313                 /*
3314                  * Need rcu_readlock to protect against the d_parent trashing
3315                  * due to d_move
3316                  */
3317                 rcu_read_lock();
3318                 if (d_ancestor(old_dentry, new_dentry))
3319                         result = 1;
3320                 else
3321                         result = 0;
3322                 rcu_read_unlock();
3323         } while (read_seqretry(&rename_lock, seq));
3324
3325         return result;
3326 }
3327
3328 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3329 {
3330         struct dentry *root = data;
3331         if (dentry != root) {
3332                 if (d_unhashed(dentry) || !dentry->d_inode)
3333                         return D_WALK_SKIP;
3334
3335                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3336                         dentry->d_flags |= DCACHE_GENOCIDE;
3337                         dentry->d_lockref.count--;
3338                 }
3339         }
3340         return D_WALK_CONTINUE;
3341 }
3342
3343 void d_genocide(struct dentry *parent)
3344 {
3345         d_walk(parent, parent, d_genocide_kill, NULL);
3346 }
3347
3348 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3349 {
3350         inode_dec_link_count(inode);
3351         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3352                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3353                 !d_unlinked(dentry));
3354         spin_lock(&dentry->d_parent->d_lock);
3355         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3356         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3357                                 (unsigned long long)inode->i_ino);
3358         spin_unlock(&dentry->d_lock);
3359         spin_unlock(&dentry->d_parent->d_lock);
3360         d_instantiate(dentry, inode);
3361 }
3362 EXPORT_SYMBOL(d_tmpfile);
3363
3364 static __initdata unsigned long dhash_entries;
3365 static int __init set_dhash_entries(char *str)
3366 {
3367         if (!str)
3368                 return 0;
3369         dhash_entries = simple_strtoul(str, &str, 0);
3370         return 1;
3371 }
3372 __setup("dhash_entries=", set_dhash_entries);
3373
3374 static void __init dcache_init_early(void)
3375 {
3376         unsigned int loop;
3377
3378         /* If hashes are distributed across NUMA nodes, defer
3379          * hash allocation until vmalloc space is available.
3380          */
3381         if (hashdist)
3382                 return;
3383
3384         dentry_hashtable =
3385                 alloc_large_system_hash("Dentry cache",
3386                                         sizeof(struct hlist_bl_head),
3387                                         dhash_entries,
3388                                         13,
3389                                         HASH_EARLY,
3390                                         &d_hash_shift,
3391                                         &d_hash_mask,
3392                                         0,
3393                                         0);
3394
3395         for (loop = 0; loop < (1U << d_hash_shift); loop++)
3396                 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3397 }
3398
3399 static void __init dcache_init(void)
3400 {
3401         unsigned int loop;
3402
3403         /* 
3404          * A constructor could be added for stable state like the lists,
3405          * but it is probably not worth it because of the cache nature
3406          * of the dcache. 
3407          */
3408         dentry_cache = KMEM_CACHE(dentry,
3409                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3410
3411         /* Hash may have been set up in dcache_init_early */
3412         if (!hashdist)
3413                 return;
3414
3415         dentry_hashtable =
3416                 alloc_large_system_hash("Dentry cache",
3417                                         sizeof(struct hlist_bl_head),
3418                                         dhash_entries,
3419                                         13,
3420                                         0,
3421                                         &d_hash_shift,
3422                                         &d_hash_mask,
3423                                         0,
3424                                         0);
3425
3426         for (loop = 0; loop < (1U << d_hash_shift); loop++)
3427                 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3428 }
3429
3430 /* SLAB cache for __getname() consumers */
3431 struct kmem_cache *names_cachep __read_mostly;
3432 EXPORT_SYMBOL(names_cachep);
3433
3434 EXPORT_SYMBOL(d_genocide);
3435
3436 void __init vfs_caches_init_early(void)
3437 {
3438         dcache_init_early();
3439         inode_init_early();
3440 }
3441
3442 void __init vfs_caches_init(void)
3443 {
3444         names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3445                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3446
3447         dcache_init();
3448         inode_init();
3449         files_init();
3450         files_maxfiles_init();
3451         mnt_init();
3452         bdev_cache_init();
3453         chrdev_init();
3454 }