These changes are a raw update to a vanilla kernel 4.1.10, with the
[kvmfornfv.git] / kernel / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43
44 #include <trace/events/sched.h>
45
46 int core_uses_pid;
47 unsigned int core_pipe_limit;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 static int core_name_size = CORENAME_MAX_SIZE;
50
51 struct core_name {
52         char *corename;
53         int used, size;
54 };
55
56 /* The maximal length of core_pattern is also specified in sysctl.c */
57
58 static int expand_corename(struct core_name *cn, int size)
59 {
60         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
61
62         if (!corename)
63                 return -ENOMEM;
64
65         if (size > core_name_size) /* racy but harmless */
66                 core_name_size = size;
67
68         cn->size = ksize(corename);
69         cn->corename = corename;
70         return 0;
71 }
72
73 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
74 {
75         int free, need;
76         va_list arg_copy;
77
78 again:
79         free = cn->size - cn->used;
80
81         va_copy(arg_copy, arg);
82         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
83         va_end(arg_copy);
84
85         if (need < free) {
86                 cn->used += need;
87                 return 0;
88         }
89
90         if (!expand_corename(cn, cn->size + need - free + 1))
91                 goto again;
92
93         return -ENOMEM;
94 }
95
96 static int cn_printf(struct core_name *cn, const char *fmt, ...)
97 {
98         va_list arg;
99         int ret;
100
101         va_start(arg, fmt);
102         ret = cn_vprintf(cn, fmt, arg);
103         va_end(arg);
104
105         return ret;
106 }
107
108 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
109 {
110         int cur = cn->used;
111         va_list arg;
112         int ret;
113
114         va_start(arg, fmt);
115         ret = cn_vprintf(cn, fmt, arg);
116         va_end(arg);
117
118         for (; cur < cn->used; ++cur) {
119                 if (cn->corename[cur] == '/')
120                         cn->corename[cur] = '!';
121         }
122         return ret;
123 }
124
125 static int cn_print_exe_file(struct core_name *cn)
126 {
127         struct file *exe_file;
128         char *pathbuf, *path;
129         int ret;
130
131         exe_file = get_mm_exe_file(current->mm);
132         if (!exe_file)
133                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
134
135         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
136         if (!pathbuf) {
137                 ret = -ENOMEM;
138                 goto put_exe_file;
139         }
140
141         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
142         if (IS_ERR(path)) {
143                 ret = PTR_ERR(path);
144                 goto free_buf;
145         }
146
147         ret = cn_esc_printf(cn, "%s", path);
148
149 free_buf:
150         kfree(pathbuf);
151 put_exe_file:
152         fput(exe_file);
153         return ret;
154 }
155
156 /* format_corename will inspect the pattern parameter, and output a
157  * name into corename, which must have space for at least
158  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
159  */
160 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
161 {
162         const struct cred *cred = current_cred();
163         const char *pat_ptr = core_pattern;
164         int ispipe = (*pat_ptr == '|');
165         int pid_in_pattern = 0;
166         int err = 0;
167
168         cn->used = 0;
169         cn->corename = NULL;
170         if (expand_corename(cn, core_name_size))
171                 return -ENOMEM;
172         cn->corename[0] = '\0';
173
174         if (ispipe)
175                 ++pat_ptr;
176
177         /* Repeat as long as we have more pattern to process and more output
178            space */
179         while (*pat_ptr) {
180                 if (*pat_ptr != '%') {
181                         err = cn_printf(cn, "%c", *pat_ptr++);
182                 } else {
183                         switch (*++pat_ptr) {
184                         /* single % at the end, drop that */
185                         case 0:
186                                 goto out;
187                         /* Double percent, output one percent */
188                         case '%':
189                                 err = cn_printf(cn, "%c", '%');
190                                 break;
191                         /* pid */
192                         case 'p':
193                                 pid_in_pattern = 1;
194                                 err = cn_printf(cn, "%d",
195                                               task_tgid_vnr(current));
196                                 break;
197                         /* global pid */
198                         case 'P':
199                                 err = cn_printf(cn, "%d",
200                                               task_tgid_nr(current));
201                                 break;
202                         case 'i':
203                                 err = cn_printf(cn, "%d",
204                                               task_pid_vnr(current));
205                                 break;
206                         case 'I':
207                                 err = cn_printf(cn, "%d",
208                                               task_pid_nr(current));
209                                 break;
210                         /* uid */
211                         case 'u':
212                                 err = cn_printf(cn, "%d", cred->uid);
213                                 break;
214                         /* gid */
215                         case 'g':
216                                 err = cn_printf(cn, "%d", cred->gid);
217                                 break;
218                         case 'd':
219                                 err = cn_printf(cn, "%d",
220                                         __get_dumpable(cprm->mm_flags));
221                                 break;
222                         /* signal that caused the coredump */
223                         case 's':
224                                 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
225                                 break;
226                         /* UNIX time of coredump */
227                         case 't': {
228                                 struct timeval tv;
229                                 do_gettimeofday(&tv);
230                                 err = cn_printf(cn, "%lu", tv.tv_sec);
231                                 break;
232                         }
233                         /* hostname */
234                         case 'h':
235                                 down_read(&uts_sem);
236                                 err = cn_esc_printf(cn, "%s",
237                                               utsname()->nodename);
238                                 up_read(&uts_sem);
239                                 break;
240                         /* executable */
241                         case 'e':
242                                 err = cn_esc_printf(cn, "%s", current->comm);
243                                 break;
244                         case 'E':
245                                 err = cn_print_exe_file(cn);
246                                 break;
247                         /* core limit size */
248                         case 'c':
249                                 err = cn_printf(cn, "%lu",
250                                               rlimit(RLIMIT_CORE));
251                                 break;
252                         default:
253                                 break;
254                         }
255                         ++pat_ptr;
256                 }
257
258                 if (err)
259                         return err;
260         }
261
262 out:
263         /* Backward compatibility with core_uses_pid:
264          *
265          * If core_pattern does not include a %p (as is the default)
266          * and core_uses_pid is set, then .%pid will be appended to
267          * the filename. Do not do this for piped commands. */
268         if (!ispipe && !pid_in_pattern && core_uses_pid) {
269                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
270                 if (err)
271                         return err;
272         }
273         return ispipe;
274 }
275
276 static int zap_process(struct task_struct *start, int exit_code)
277 {
278         struct task_struct *t;
279         int nr = 0;
280
281         start->signal->group_exit_code = exit_code;
282         start->signal->group_stop_count = 0;
283
284         t = start;
285         do {
286                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
287                 if (t != current && t->mm) {
288                         sigaddset(&t->pending.signal, SIGKILL);
289                         signal_wake_up(t, 1);
290                         nr++;
291                 }
292         } while_each_thread(start, t);
293
294         return nr;
295 }
296
297 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
298                         struct core_state *core_state, int exit_code)
299 {
300         struct task_struct *g, *p;
301         unsigned long flags;
302         int nr = -EAGAIN;
303
304         spin_lock_irq(&tsk->sighand->siglock);
305         if (!signal_group_exit(tsk->signal)) {
306                 mm->core_state = core_state;
307                 nr = zap_process(tsk, exit_code);
308                 tsk->signal->group_exit_task = tsk;
309                 /* ignore all signals except SIGKILL, see prepare_signal() */
310                 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
311                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
312         }
313         spin_unlock_irq(&tsk->sighand->siglock);
314         if (unlikely(nr < 0))
315                 return nr;
316
317         tsk->flags |= PF_DUMPCORE;
318         if (atomic_read(&mm->mm_users) == nr + 1)
319                 goto done;
320         /*
321          * We should find and kill all tasks which use this mm, and we should
322          * count them correctly into ->nr_threads. We don't take tasklist
323          * lock, but this is safe wrt:
324          *
325          * fork:
326          *      None of sub-threads can fork after zap_process(leader). All
327          *      processes which were created before this point should be
328          *      visible to zap_threads() because copy_process() adds the new
329          *      process to the tail of init_task.tasks list, and lock/unlock
330          *      of ->siglock provides a memory barrier.
331          *
332          * do_exit:
333          *      The caller holds mm->mmap_sem. This means that the task which
334          *      uses this mm can't pass exit_mm(), so it can't exit or clear
335          *      its ->mm.
336          *
337          * de_thread:
338          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
339          *      we must see either old or new leader, this does not matter.
340          *      However, it can change p->sighand, so lock_task_sighand(p)
341          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
342          *      it can't fail.
343          *
344          *      Note also that "g" can be the old leader with ->mm == NULL
345          *      and already unhashed and thus removed from ->thread_group.
346          *      This is OK, __unhash_process()->list_del_rcu() does not
347          *      clear the ->next pointer, we will find the new leader via
348          *      next_thread().
349          */
350         rcu_read_lock();
351         for_each_process(g) {
352                 if (g == tsk->group_leader)
353                         continue;
354                 if (g->flags & PF_KTHREAD)
355                         continue;
356                 p = g;
357                 do {
358                         if (p->mm) {
359                                 if (unlikely(p->mm == mm)) {
360                                         lock_task_sighand(p, &flags);
361                                         nr += zap_process(p, exit_code);
362                                         p->signal->flags = SIGNAL_GROUP_EXIT;
363                                         unlock_task_sighand(p, &flags);
364                                 }
365                                 break;
366                         }
367                 } while_each_thread(g, p);
368         }
369         rcu_read_unlock();
370 done:
371         atomic_set(&core_state->nr_threads, nr);
372         return nr;
373 }
374
375 static int coredump_wait(int exit_code, struct core_state *core_state)
376 {
377         struct task_struct *tsk = current;
378         struct mm_struct *mm = tsk->mm;
379         int core_waiters = -EBUSY;
380
381         init_completion(&core_state->startup);
382         core_state->dumper.task = tsk;
383         core_state->dumper.next = NULL;
384
385         down_write(&mm->mmap_sem);
386         if (!mm->core_state)
387                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
388         up_write(&mm->mmap_sem);
389
390         if (core_waiters > 0) {
391                 struct core_thread *ptr;
392
393                 wait_for_completion(&core_state->startup);
394                 /*
395                  * Wait for all the threads to become inactive, so that
396                  * all the thread context (extended register state, like
397                  * fpu etc) gets copied to the memory.
398                  */
399                 ptr = core_state->dumper.next;
400                 while (ptr != NULL) {
401                         wait_task_inactive(ptr->task, 0);
402                         ptr = ptr->next;
403                 }
404         }
405
406         return core_waiters;
407 }
408
409 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
410 {
411         struct core_thread *curr, *next;
412         struct task_struct *task;
413
414         spin_lock_irq(&current->sighand->siglock);
415         if (core_dumped && !__fatal_signal_pending(current))
416                 current->signal->group_exit_code |= 0x80;
417         current->signal->group_exit_task = NULL;
418         current->signal->flags = SIGNAL_GROUP_EXIT;
419         spin_unlock_irq(&current->sighand->siglock);
420
421         next = mm->core_state->dumper.next;
422         while ((curr = next) != NULL) {
423                 next = curr->next;
424                 task = curr->task;
425                 /*
426                  * see exit_mm(), curr->task must not see
427                  * ->task == NULL before we read ->next.
428                  */
429                 smp_mb();
430                 curr->task = NULL;
431                 wake_up_process(task);
432         }
433
434         mm->core_state = NULL;
435 }
436
437 static bool dump_interrupted(void)
438 {
439         /*
440          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
441          * can do try_to_freeze() and check __fatal_signal_pending(),
442          * but then we need to teach dump_write() to restart and clear
443          * TIF_SIGPENDING.
444          */
445         return signal_pending(current);
446 }
447
448 static void wait_for_dump_helpers(struct file *file)
449 {
450         struct pipe_inode_info *pipe = file->private_data;
451
452         pipe_lock(pipe);
453         pipe->readers++;
454         pipe->writers--;
455         wake_up_interruptible_sync(&pipe->wait);
456         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
457         pipe_unlock(pipe);
458
459         /*
460          * We actually want wait_event_freezable() but then we need
461          * to clear TIF_SIGPENDING and improve dump_interrupted().
462          */
463         wait_event_interruptible(pipe->wait, pipe->readers == 1);
464
465         pipe_lock(pipe);
466         pipe->readers--;
467         pipe->writers++;
468         pipe_unlock(pipe);
469 }
470
471 /*
472  * umh_pipe_setup
473  * helper function to customize the process used
474  * to collect the core in userspace.  Specifically
475  * it sets up a pipe and installs it as fd 0 (stdin)
476  * for the process.  Returns 0 on success, or
477  * PTR_ERR on failure.
478  * Note that it also sets the core limit to 1.  This
479  * is a special value that we use to trap recursive
480  * core dumps
481  */
482 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
483 {
484         struct file *files[2];
485         struct coredump_params *cp = (struct coredump_params *)info->data;
486         int err = create_pipe_files(files, 0);
487         if (err)
488                 return err;
489
490         cp->file = files[1];
491
492         err = replace_fd(0, files[0], 0);
493         fput(files[0]);
494         /* and disallow core files too */
495         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
496
497         return err;
498 }
499
500 void do_coredump(const siginfo_t *siginfo)
501 {
502         struct core_state core_state;
503         struct core_name cn;
504         struct mm_struct *mm = current->mm;
505         struct linux_binfmt * binfmt;
506         const struct cred *old_cred;
507         struct cred *cred;
508         int retval = 0;
509         int ispipe;
510         struct files_struct *displaced;
511         /* require nonrelative corefile path and be extra careful */
512         bool need_suid_safe = false;
513         bool core_dumped = false;
514         static atomic_t core_dump_count = ATOMIC_INIT(0);
515         struct coredump_params cprm = {
516                 .siginfo = siginfo,
517                 .regs = signal_pt_regs(),
518                 .limit = rlimit(RLIMIT_CORE),
519                 /*
520                  * We must use the same mm->flags while dumping core to avoid
521                  * inconsistency of bit flags, since this flag is not protected
522                  * by any locks.
523                  */
524                 .mm_flags = mm->flags,
525         };
526
527         audit_core_dumps(siginfo->si_signo);
528
529         binfmt = mm->binfmt;
530         if (!binfmt || !binfmt->core_dump)
531                 goto fail;
532         if (!__get_dumpable(cprm.mm_flags))
533                 goto fail;
534
535         cred = prepare_creds();
536         if (!cred)
537                 goto fail;
538         /*
539          * We cannot trust fsuid as being the "true" uid of the process
540          * nor do we know its entire history. We only know it was tainted
541          * so we dump it as root in mode 2, and only into a controlled
542          * environment (pipe handler or fully qualified path).
543          */
544         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
545                 /* Setuid core dump mode */
546                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
547                 need_suid_safe = true;
548         }
549
550         retval = coredump_wait(siginfo->si_signo, &core_state);
551         if (retval < 0)
552                 goto fail_creds;
553
554         old_cred = override_creds(cred);
555
556         ispipe = format_corename(&cn, &cprm);
557
558         if (ispipe) {
559                 int dump_count;
560                 char **helper_argv;
561                 struct subprocess_info *sub_info;
562
563                 if (ispipe < 0) {
564                         printk(KERN_WARNING "format_corename failed\n");
565                         printk(KERN_WARNING "Aborting core\n");
566                         goto fail_unlock;
567                 }
568
569                 if (cprm.limit == 1) {
570                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
571                          *
572                          * Normally core limits are irrelevant to pipes, since
573                          * we're not writing to the file system, but we use
574                          * cprm.limit of 1 here as a special value, this is a
575                          * consistent way to catch recursive crashes.
576                          * We can still crash if the core_pattern binary sets
577                          * RLIM_CORE = !1, but it runs as root, and can do
578                          * lots of stupid things.
579                          *
580                          * Note that we use task_tgid_vnr here to grab the pid
581                          * of the process group leader.  That way we get the
582                          * right pid if a thread in a multi-threaded
583                          * core_pattern process dies.
584                          */
585                         printk(KERN_WARNING
586                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
587                                 task_tgid_vnr(current), current->comm);
588                         printk(KERN_WARNING "Aborting core\n");
589                         goto fail_unlock;
590                 }
591                 cprm.limit = RLIM_INFINITY;
592
593                 dump_count = atomic_inc_return(&core_dump_count);
594                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
595                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
596                                task_tgid_vnr(current), current->comm);
597                         printk(KERN_WARNING "Skipping core dump\n");
598                         goto fail_dropcount;
599                 }
600
601                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
602                 if (!helper_argv) {
603                         printk(KERN_WARNING "%s failed to allocate memory\n",
604                                __func__);
605                         goto fail_dropcount;
606                 }
607
608                 retval = -ENOMEM;
609                 sub_info = call_usermodehelper_setup(helper_argv[0],
610                                                 helper_argv, NULL, GFP_KERNEL,
611                                                 umh_pipe_setup, NULL, &cprm);
612                 if (sub_info)
613                         retval = call_usermodehelper_exec(sub_info,
614                                                           UMH_WAIT_EXEC);
615
616                 argv_free(helper_argv);
617                 if (retval) {
618                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
619                                cn.corename);
620                         goto close_fail;
621                 }
622         } else {
623                 struct inode *inode;
624
625                 if (cprm.limit < binfmt->min_coredump)
626                         goto fail_unlock;
627
628                 if (need_suid_safe && cn.corename[0] != '/') {
629                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
630                                 "to fully qualified path!\n",
631                                 task_tgid_vnr(current), current->comm);
632                         printk(KERN_WARNING "Skipping core dump\n");
633                         goto fail_unlock;
634                 }
635
636                 /*
637                  * Unlink the file if it exists unless this is a SUID
638                  * binary - in that case, we're running around with root
639                  * privs and don't want to unlink another user's coredump.
640                  */
641                 if (!need_suid_safe) {
642                         mm_segment_t old_fs;
643
644                         old_fs = get_fs();
645                         set_fs(KERNEL_DS);
646                         /*
647                          * If it doesn't exist, that's fine. If there's some
648                          * other problem, we'll catch it at the filp_open().
649                          */
650                         (void) sys_unlink((const char __user *)cn.corename);
651                         set_fs(old_fs);
652                 }
653
654                 /*
655                  * There is a race between unlinking and creating the
656                  * file, but if that causes an EEXIST here, that's
657                  * fine - another process raced with us while creating
658                  * the corefile, and the other process won. To userspace,
659                  * what matters is that at least one of the two processes
660                  * writes its coredump successfully, not which one.
661                  */
662                 cprm.file = filp_open(cn.corename,
663                                  O_CREAT | 2 | O_NOFOLLOW |
664                                  O_LARGEFILE | O_EXCL,
665                                  0600);
666                 if (IS_ERR(cprm.file))
667                         goto fail_unlock;
668
669                 inode = file_inode(cprm.file);
670                 if (inode->i_nlink > 1)
671                         goto close_fail;
672                 if (d_unhashed(cprm.file->f_path.dentry))
673                         goto close_fail;
674                 /*
675                  * AK: actually i see no reason to not allow this for named
676                  * pipes etc, but keep the previous behaviour for now.
677                  */
678                 if (!S_ISREG(inode->i_mode))
679                         goto close_fail;
680                 /*
681                  * Don't dump core if the filesystem changed owner or mode
682                  * of the file during file creation. This is an issue when
683                  * a process dumps core while its cwd is e.g. on a vfat
684                  * filesystem.
685                  */
686                 if (!uid_eq(inode->i_uid, current_fsuid()))
687                         goto close_fail;
688                 if ((inode->i_mode & 0677) != 0600)
689                         goto close_fail;
690                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
691                         goto close_fail;
692                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
693                         goto close_fail;
694         }
695
696         /* get us an unshared descriptor table; almost always a no-op */
697         retval = unshare_files(&displaced);
698         if (retval)
699                 goto close_fail;
700         if (displaced)
701                 put_files_struct(displaced);
702         if (!dump_interrupted()) {
703                 file_start_write(cprm.file);
704                 core_dumped = binfmt->core_dump(&cprm);
705                 file_end_write(cprm.file);
706         }
707         if (ispipe && core_pipe_limit)
708                 wait_for_dump_helpers(cprm.file);
709 close_fail:
710         if (cprm.file)
711                 filp_close(cprm.file, NULL);
712 fail_dropcount:
713         if (ispipe)
714                 atomic_dec(&core_dump_count);
715 fail_unlock:
716         kfree(cn.corename);
717         coredump_finish(mm, core_dumped);
718         revert_creds(old_cred);
719 fail_creds:
720         put_cred(cred);
721 fail:
722         return;
723 }
724
725 /*
726  * Core dumping helper functions.  These are the only things you should
727  * do on a core-file: use only these functions to write out all the
728  * necessary info.
729  */
730 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
731 {
732         struct file *file = cprm->file;
733         loff_t pos = file->f_pos;
734         ssize_t n;
735         if (cprm->written + nr > cprm->limit)
736                 return 0;
737         while (nr) {
738                 if (dump_interrupted())
739                         return 0;
740                 n = __kernel_write(file, addr, nr, &pos);
741                 if (n <= 0)
742                         return 0;
743                 file->f_pos = pos;
744                 cprm->written += n;
745                 nr -= n;
746         }
747         return 1;
748 }
749 EXPORT_SYMBOL(dump_emit);
750
751 int dump_skip(struct coredump_params *cprm, size_t nr)
752 {
753         static char zeroes[PAGE_SIZE];
754         struct file *file = cprm->file;
755         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
756                 if (cprm->written + nr > cprm->limit)
757                         return 0;
758                 if (dump_interrupted() ||
759                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
760                         return 0;
761                 cprm->written += nr;
762                 return 1;
763         } else {
764                 while (nr > PAGE_SIZE) {
765                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
766                                 return 0;
767                         nr -= PAGE_SIZE;
768                 }
769                 return dump_emit(cprm, zeroes, nr);
770         }
771 }
772 EXPORT_SYMBOL(dump_skip);
773
774 int dump_align(struct coredump_params *cprm, int align)
775 {
776         unsigned mod = cprm->written & (align - 1);
777         if (align & (align - 1))
778                 return 0;
779         return mod ? dump_skip(cprm, align - mod) : 1;
780 }
781 EXPORT_SYMBOL(dump_align);