These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135                                  struct extent_changeset *changeset,
136                                  int set)
137 {
138         int ret;
139
140         if (!changeset)
141                 return;
142         if (set && (state->state & bits) == bits)
143                 return;
144         if (!set && (state->state & bits) == 0)
145                 return;
146         changeset->bytes_changed += state->end - state->start + 1;
147         ret = ulist_add(changeset->range_changed, state->start, state->end,
148                         GFP_ATOMIC);
149         /* ENOMEM */
150         BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157         if (!tree->mapping)
158                 return NULL;
159         return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164         extent_state_cache = kmem_cache_create("btrfs_extent_state",
165                         sizeof(struct extent_state), 0,
166                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167         if (!extent_state_cache)
168                 return -ENOMEM;
169
170         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171                         sizeof(struct extent_buffer), 0,
172                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173         if (!extent_buffer_cache)
174                 goto free_state_cache;
175
176         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177                                      offsetof(struct btrfs_io_bio, bio));
178         if (!btrfs_bioset)
179                 goto free_buffer_cache;
180
181         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182                 goto free_bioset;
183
184         return 0;
185
186 free_bioset:
187         bioset_free(btrfs_bioset);
188         btrfs_bioset = NULL;
189
190 free_buffer_cache:
191         kmem_cache_destroy(extent_buffer_cache);
192         extent_buffer_cache = NULL;
193
194 free_state_cache:
195         kmem_cache_destroy(extent_state_cache);
196         extent_state_cache = NULL;
197         return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202         btrfs_leak_debug_check();
203
204         /*
205          * Make sure all delayed rcu free are flushed before we
206          * destroy caches.
207          */
208         rcu_barrier();
209         if (extent_state_cache)
210                 kmem_cache_destroy(extent_state_cache);
211         if (extent_buffer_cache)
212                 kmem_cache_destroy(extent_buffer_cache);
213         if (btrfs_bioset)
214                 bioset_free(btrfs_bioset);
215 }
216
217 void extent_io_tree_init(struct extent_io_tree *tree,
218                          struct address_space *mapping)
219 {
220         tree->state = RB_ROOT;
221         tree->ops = NULL;
222         tree->dirty_bytes = 0;
223         spin_lock_init(&tree->lock);
224         tree->mapping = mapping;
225 }
226
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229         struct extent_state *state;
230
231         state = kmem_cache_alloc(extent_state_cache, mask);
232         if (!state)
233                 return state;
234         state->state = 0;
235         state->private = 0;
236         RB_CLEAR_NODE(&state->rb_node);
237         btrfs_leak_debug_add(&state->leak_list, &states);
238         atomic_set(&state->refs, 1);
239         init_waitqueue_head(&state->wq);
240         trace_alloc_extent_state(state, mask, _RET_IP_);
241         return state;
242 }
243
244 void free_extent_state(struct extent_state *state)
245 {
246         if (!state)
247                 return;
248         if (atomic_dec_and_test(&state->refs)) {
249                 WARN_ON(extent_state_in_tree(state));
250                 btrfs_leak_debug_del(&state->leak_list);
251                 trace_free_extent_state(state, _RET_IP_);
252                 kmem_cache_free(extent_state_cache, state);
253         }
254 }
255
256 static struct rb_node *tree_insert(struct rb_root *root,
257                                    struct rb_node *search_start,
258                                    u64 offset,
259                                    struct rb_node *node,
260                                    struct rb_node ***p_in,
261                                    struct rb_node **parent_in)
262 {
263         struct rb_node **p;
264         struct rb_node *parent = NULL;
265         struct tree_entry *entry;
266
267         if (p_in && parent_in) {
268                 p = *p_in;
269                 parent = *parent_in;
270                 goto do_insert;
271         }
272
273         p = search_start ? &search_start : &root->rb_node;
274         while (*p) {
275                 parent = *p;
276                 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278                 if (offset < entry->start)
279                         p = &(*p)->rb_left;
280                 else if (offset > entry->end)
281                         p = &(*p)->rb_right;
282                 else
283                         return parent;
284         }
285
286 do_insert:
287         rb_link_node(node, parent, p);
288         rb_insert_color(node, root);
289         return NULL;
290 }
291
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293                                       struct rb_node **prev_ret,
294                                       struct rb_node **next_ret,
295                                       struct rb_node ***p_ret,
296                                       struct rb_node **parent_ret)
297 {
298         struct rb_root *root = &tree->state;
299         struct rb_node **n = &root->rb_node;
300         struct rb_node *prev = NULL;
301         struct rb_node *orig_prev = NULL;
302         struct tree_entry *entry;
303         struct tree_entry *prev_entry = NULL;
304
305         while (*n) {
306                 prev = *n;
307                 entry = rb_entry(prev, struct tree_entry, rb_node);
308                 prev_entry = entry;
309
310                 if (offset < entry->start)
311                         n = &(*n)->rb_left;
312                 else if (offset > entry->end)
313                         n = &(*n)->rb_right;
314                 else
315                         return *n;
316         }
317
318         if (p_ret)
319                 *p_ret = n;
320         if (parent_ret)
321                 *parent_ret = prev;
322
323         if (prev_ret) {
324                 orig_prev = prev;
325                 while (prev && offset > prev_entry->end) {
326                         prev = rb_next(prev);
327                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328                 }
329                 *prev_ret = prev;
330                 prev = orig_prev;
331         }
332
333         if (next_ret) {
334                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335                 while (prev && offset < prev_entry->start) {
336                         prev = rb_prev(prev);
337                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338                 }
339                 *next_ret = prev;
340         }
341         return NULL;
342 }
343
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346                        u64 offset,
347                        struct rb_node ***p_ret,
348                        struct rb_node **parent_ret)
349 {
350         struct rb_node *prev = NULL;
351         struct rb_node *ret;
352
353         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354         if (!ret)
355                 return prev;
356         return ret;
357 }
358
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360                                           u64 offset)
361 {
362         return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366                      struct extent_state *other)
367 {
368         if (tree->ops && tree->ops->merge_extent_hook)
369                 tree->ops->merge_extent_hook(tree->mapping->host, new,
370                                              other);
371 }
372
373 /*
374  * utility function to look for merge candidates inside a given range.
375  * Any extents with matching state are merged together into a single
376  * extent in the tree.  Extents with EXTENT_IO in their state field
377  * are not merged because the end_io handlers need to be able to do
378  * operations on them without sleeping (or doing allocations/splits).
379  *
380  * This should be called with the tree lock held.
381  */
382 static void merge_state(struct extent_io_tree *tree,
383                         struct extent_state *state)
384 {
385         struct extent_state *other;
386         struct rb_node *other_node;
387
388         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389                 return;
390
391         other_node = rb_prev(&state->rb_node);
392         if (other_node) {
393                 other = rb_entry(other_node, struct extent_state, rb_node);
394                 if (other->end == state->start - 1 &&
395                     other->state == state->state) {
396                         merge_cb(tree, state, other);
397                         state->start = other->start;
398                         rb_erase(&other->rb_node, &tree->state);
399                         RB_CLEAR_NODE(&other->rb_node);
400                         free_extent_state(other);
401                 }
402         }
403         other_node = rb_next(&state->rb_node);
404         if (other_node) {
405                 other = rb_entry(other_node, struct extent_state, rb_node);
406                 if (other->start == state->end + 1 &&
407                     other->state == state->state) {
408                         merge_cb(tree, state, other);
409                         state->end = other->end;
410                         rb_erase(&other->rb_node, &tree->state);
411                         RB_CLEAR_NODE(&other->rb_node);
412                         free_extent_state(other);
413                 }
414         }
415 }
416
417 static void set_state_cb(struct extent_io_tree *tree,
418                          struct extent_state *state, unsigned *bits)
419 {
420         if (tree->ops && tree->ops->set_bit_hook)
421                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
424 static void clear_state_cb(struct extent_io_tree *tree,
425                            struct extent_state *state, unsigned *bits)
426 {
427         if (tree->ops && tree->ops->clear_bit_hook)
428                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432                            struct extent_state *state, unsigned *bits,
433                            struct extent_changeset *changeset);
434
435 /*
436  * insert an extent_state struct into the tree.  'bits' are set on the
437  * struct before it is inserted.
438  *
439  * This may return -EEXIST if the extent is already there, in which case the
440  * state struct is freed.
441  *
442  * The tree lock is not taken internally.  This is a utility function and
443  * probably isn't what you want to call (see set/clear_extent_bit).
444  */
445 static int insert_state(struct extent_io_tree *tree,
446                         struct extent_state *state, u64 start, u64 end,
447                         struct rb_node ***p,
448                         struct rb_node **parent,
449                         unsigned *bits, struct extent_changeset *changeset)
450 {
451         struct rb_node *node;
452
453         if (end < start)
454                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455                        end, start);
456         state->start = start;
457         state->end = end;
458
459         set_state_bits(tree, state, bits, changeset);
460
461         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462         if (node) {
463                 struct extent_state *found;
464                 found = rb_entry(node, struct extent_state, rb_node);
465                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466                        "%llu %llu\n",
467                        found->start, found->end, start, end);
468                 return -EEXIST;
469         }
470         merge_state(tree, state);
471         return 0;
472 }
473
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475                      u64 split)
476 {
477         if (tree->ops && tree->ops->split_extent_hook)
478                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482  * split a given extent state struct in two, inserting the preallocated
483  * struct 'prealloc' as the newly created second half.  'split' indicates an
484  * offset inside 'orig' where it should be split.
485  *
486  * Before calling,
487  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
488  * are two extent state structs in the tree:
489  * prealloc: [orig->start, split - 1]
490  * orig: [ split, orig->end ]
491  *
492  * The tree locks are not taken by this function. They need to be held
493  * by the caller.
494  */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496                        struct extent_state *prealloc, u64 split)
497 {
498         struct rb_node *node;
499
500         split_cb(tree, orig, split);
501
502         prealloc->start = orig->start;
503         prealloc->end = split - 1;
504         prealloc->state = orig->state;
505         orig->start = split;
506
507         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508                            &prealloc->rb_node, NULL, NULL);
509         if (node) {
510                 free_extent_state(prealloc);
511                 return -EEXIST;
512         }
513         return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518         struct rb_node *next = rb_next(&state->rb_node);
519         if (next)
520                 return rb_entry(next, struct extent_state, rb_node);
521         else
522                 return NULL;
523 }
524
525 /*
526  * utility function to clear some bits in an extent state struct.
527  * it will optionally wake up any one waiting on this state (wake == 1).
528  *
529  * If no bits are set on the state struct after clearing things, the
530  * struct is freed and removed from the tree
531  */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533                                             struct extent_state *state,
534                                             unsigned *bits, int wake,
535                                             struct extent_changeset *changeset)
536 {
537         struct extent_state *next;
538         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541                 u64 range = state->end - state->start + 1;
542                 WARN_ON(range > tree->dirty_bytes);
543                 tree->dirty_bytes -= range;
544         }
545         clear_state_cb(tree, state, bits);
546         add_extent_changeset(state, bits_to_clear, changeset, 0);
547         state->state &= ~bits_to_clear;
548         if (wake)
549                 wake_up(&state->wq);
550         if (state->state == 0) {
551                 next = next_state(state);
552                 if (extent_state_in_tree(state)) {
553                         rb_erase(&state->rb_node, &tree->state);
554                         RB_CLEAR_NODE(&state->rb_node);
555                         free_extent_state(state);
556                 } else {
557                         WARN_ON(1);
558                 }
559         } else {
560                 merge_state(tree, state);
561                 next = next_state(state);
562         }
563         return next;
564 }
565
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569         if (!prealloc)
570                 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572         return prealloc;
573 }
574
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578                     "Extent tree was modified by another "
579                     "thread while locked.");
580 }
581
582 /*
583  * clear some bits on a range in the tree.  This may require splitting
584  * or inserting elements in the tree, so the gfp mask is used to
585  * indicate which allocations or sleeping are allowed.
586  *
587  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588  * the given range from the tree regardless of state (ie for truncate).
589  *
590  * the range [start, end] is inclusive.
591  *
592  * This takes the tree lock, and returns 0 on success and < 0 on error.
593  */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595                               unsigned bits, int wake, int delete,
596                               struct extent_state **cached_state,
597                               gfp_t mask, struct extent_changeset *changeset)
598 {
599         struct extent_state *state;
600         struct extent_state *cached;
601         struct extent_state *prealloc = NULL;
602         struct rb_node *node;
603         u64 last_end;
604         int err;
605         int clear = 0;
606
607         btrfs_debug_check_extent_io_range(tree, start, end);
608
609         if (bits & EXTENT_DELALLOC)
610                 bits |= EXTENT_NORESERVE;
611
612         if (delete)
613                 bits |= ~EXTENT_CTLBITS;
614         bits |= EXTENT_FIRST_DELALLOC;
615
616         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617                 clear = 1;
618 again:
619         if (!prealloc && gfpflags_allow_blocking(mask)) {
620                 /*
621                  * Don't care for allocation failure here because we might end
622                  * up not needing the pre-allocated extent state at all, which
623                  * is the case if we only have in the tree extent states that
624                  * cover our input range and don't cover too any other range.
625                  * If we end up needing a new extent state we allocate it later.
626                  */
627                 prealloc = alloc_extent_state(mask);
628         }
629
630         spin_lock(&tree->lock);
631         if (cached_state) {
632                 cached = *cached_state;
633
634                 if (clear) {
635                         *cached_state = NULL;
636                         cached_state = NULL;
637                 }
638
639                 if (cached && extent_state_in_tree(cached) &&
640                     cached->start <= start && cached->end > start) {
641                         if (clear)
642                                 atomic_dec(&cached->refs);
643                         state = cached;
644                         goto hit_next;
645                 }
646                 if (clear)
647                         free_extent_state(cached);
648         }
649         /*
650          * this search will find the extents that end after
651          * our range starts
652          */
653         node = tree_search(tree, start);
654         if (!node)
655                 goto out;
656         state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658         if (state->start > end)
659                 goto out;
660         WARN_ON(state->end < start);
661         last_end = state->end;
662
663         /* the state doesn't have the wanted bits, go ahead */
664         if (!(state->state & bits)) {
665                 state = next_state(state);
666                 goto next;
667         }
668
669         /*
670          *     | ---- desired range ---- |
671          *  | state | or
672          *  | ------------- state -------------- |
673          *
674          * We need to split the extent we found, and may flip
675          * bits on second half.
676          *
677          * If the extent we found extends past our range, we
678          * just split and search again.  It'll get split again
679          * the next time though.
680          *
681          * If the extent we found is inside our range, we clear
682          * the desired bit on it.
683          */
684
685         if (state->start < start) {
686                 prealloc = alloc_extent_state_atomic(prealloc);
687                 BUG_ON(!prealloc);
688                 err = split_state(tree, state, prealloc, start);
689                 if (err)
690                         extent_io_tree_panic(tree, err);
691
692                 prealloc = NULL;
693                 if (err)
694                         goto out;
695                 if (state->end <= end) {
696                         state = clear_state_bit(tree, state, &bits, wake,
697                                                 changeset);
698                         goto next;
699                 }
700                 goto search_again;
701         }
702         /*
703          * | ---- desired range ---- |
704          *                        | state |
705          * We need to split the extent, and clear the bit
706          * on the first half
707          */
708         if (state->start <= end && state->end > end) {
709                 prealloc = alloc_extent_state_atomic(prealloc);
710                 BUG_ON(!prealloc);
711                 err = split_state(tree, state, prealloc, end + 1);
712                 if (err)
713                         extent_io_tree_panic(tree, err);
714
715                 if (wake)
716                         wake_up(&state->wq);
717
718                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720                 prealloc = NULL;
721                 goto out;
722         }
723
724         state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726         if (last_end == (u64)-1)
727                 goto out;
728         start = last_end + 1;
729         if (start <= end && state && !need_resched())
730                 goto hit_next;
731         goto search_again;
732
733 out:
734         spin_unlock(&tree->lock);
735         if (prealloc)
736                 free_extent_state(prealloc);
737
738         return 0;
739
740 search_again:
741         if (start > end)
742                 goto out;
743         spin_unlock(&tree->lock);
744         if (gfpflags_allow_blocking(mask))
745                 cond_resched();
746         goto again;
747 }
748
749 static void wait_on_state(struct extent_io_tree *tree,
750                           struct extent_state *state)
751                 __releases(tree->lock)
752                 __acquires(tree->lock)
753 {
754         DEFINE_WAIT(wait);
755         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756         spin_unlock(&tree->lock);
757         schedule();
758         spin_lock(&tree->lock);
759         finish_wait(&state->wq, &wait);
760 }
761
762 /*
763  * waits for one or more bits to clear on a range in the state tree.
764  * The range [start, end] is inclusive.
765  * The tree lock is taken by this function
766  */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768                             unsigned long bits)
769 {
770         struct extent_state *state;
771         struct rb_node *node;
772
773         btrfs_debug_check_extent_io_range(tree, start, end);
774
775         spin_lock(&tree->lock);
776 again:
777         while (1) {
778                 /*
779                  * this search will find all the extents that end after
780                  * our range starts
781                  */
782                 node = tree_search(tree, start);
783 process_node:
784                 if (!node)
785                         break;
786
787                 state = rb_entry(node, struct extent_state, rb_node);
788
789                 if (state->start > end)
790                         goto out;
791
792                 if (state->state & bits) {
793                         start = state->start;
794                         atomic_inc(&state->refs);
795                         wait_on_state(tree, state);
796                         free_extent_state(state);
797                         goto again;
798                 }
799                 start = state->end + 1;
800
801                 if (start > end)
802                         break;
803
804                 if (!cond_resched_lock(&tree->lock)) {
805                         node = rb_next(node);
806                         goto process_node;
807                 }
808         }
809 out:
810         spin_unlock(&tree->lock);
811 }
812
813 static void set_state_bits(struct extent_io_tree *tree,
814                            struct extent_state *state,
815                            unsigned *bits, struct extent_changeset *changeset)
816 {
817         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819         set_state_cb(tree, state, bits);
820         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821                 u64 range = state->end - state->start + 1;
822                 tree->dirty_bytes += range;
823         }
824         add_extent_changeset(state, bits_to_set, changeset, 1);
825         state->state |= bits_to_set;
826 }
827
828 static void cache_state_if_flags(struct extent_state *state,
829                                  struct extent_state **cached_ptr,
830                                  unsigned flags)
831 {
832         if (cached_ptr && !(*cached_ptr)) {
833                 if (!flags || (state->state & flags)) {
834                         *cached_ptr = state;
835                         atomic_inc(&state->refs);
836                 }
837         }
838 }
839
840 static void cache_state(struct extent_state *state,
841                         struct extent_state **cached_ptr)
842 {
843         return cache_state_if_flags(state, cached_ptr,
844                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848  * set some bits on a range in the tree.  This may require allocations or
849  * sleeping, so the gfp mask is used to indicate what is allowed.
850  *
851  * If any of the exclusive bits are set, this will fail with -EEXIST if some
852  * part of the range already has the desired bits set.  The start of the
853  * existing range is returned in failed_start in this case.
854  *
855  * [start, end] is inclusive This takes the tree lock.
856  */
857
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860                  unsigned bits, unsigned exclusive_bits,
861                  u64 *failed_start, struct extent_state **cached_state,
862                  gfp_t mask, struct extent_changeset *changeset)
863 {
864         struct extent_state *state;
865         struct extent_state *prealloc = NULL;
866         struct rb_node *node;
867         struct rb_node **p;
868         struct rb_node *parent;
869         int err = 0;
870         u64 last_start;
871         u64 last_end;
872
873         btrfs_debug_check_extent_io_range(tree, start, end);
874
875         bits |= EXTENT_FIRST_DELALLOC;
876 again:
877         if (!prealloc && gfpflags_allow_blocking(mask)) {
878                 prealloc = alloc_extent_state(mask);
879                 BUG_ON(!prealloc);
880         }
881
882         spin_lock(&tree->lock);
883         if (cached_state && *cached_state) {
884                 state = *cached_state;
885                 if (state->start <= start && state->end > start &&
886                     extent_state_in_tree(state)) {
887                         node = &state->rb_node;
888                         goto hit_next;
889                 }
890         }
891         /*
892          * this search will find all the extents that end after
893          * our range starts.
894          */
895         node = tree_search_for_insert(tree, start, &p, &parent);
896         if (!node) {
897                 prealloc = alloc_extent_state_atomic(prealloc);
898                 BUG_ON(!prealloc);
899                 err = insert_state(tree, prealloc, start, end,
900                                    &p, &parent, &bits, changeset);
901                 if (err)
902                         extent_io_tree_panic(tree, err);
903
904                 cache_state(prealloc, cached_state);
905                 prealloc = NULL;
906                 goto out;
907         }
908         state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910         last_start = state->start;
911         last_end = state->end;
912
913         /*
914          * | ---- desired range ---- |
915          * | state |
916          *
917          * Just lock what we found and keep going
918          */
919         if (state->start == start && state->end <= end) {
920                 if (state->state & exclusive_bits) {
921                         *failed_start = state->start;
922                         err = -EEXIST;
923                         goto out;
924                 }
925
926                 set_state_bits(tree, state, &bits, changeset);
927                 cache_state(state, cached_state);
928                 merge_state(tree, state);
929                 if (last_end == (u64)-1)
930                         goto out;
931                 start = last_end + 1;
932                 state = next_state(state);
933                 if (start < end && state && state->start == start &&
934                     !need_resched())
935                         goto hit_next;
936                 goto search_again;
937         }
938
939         /*
940          *     | ---- desired range ---- |
941          * | state |
942          *   or
943          * | ------------- state -------------- |
944          *
945          * We need to split the extent we found, and may flip bits on
946          * second half.
947          *
948          * If the extent we found extends past our
949          * range, we just split and search again.  It'll get split
950          * again the next time though.
951          *
952          * If the extent we found is inside our range, we set the
953          * desired bit on it.
954          */
955         if (state->start < start) {
956                 if (state->state & exclusive_bits) {
957                         *failed_start = start;
958                         err = -EEXIST;
959                         goto out;
960                 }
961
962                 prealloc = alloc_extent_state_atomic(prealloc);
963                 BUG_ON(!prealloc);
964                 err = split_state(tree, state, prealloc, start);
965                 if (err)
966                         extent_io_tree_panic(tree, err);
967
968                 prealloc = NULL;
969                 if (err)
970                         goto out;
971                 if (state->end <= end) {
972                         set_state_bits(tree, state, &bits, changeset);
973                         cache_state(state, cached_state);
974                         merge_state(tree, state);
975                         if (last_end == (u64)-1)
976                                 goto out;
977                         start = last_end + 1;
978                         state = next_state(state);
979                         if (start < end && state && state->start == start &&
980                             !need_resched())
981                                 goto hit_next;
982                 }
983                 goto search_again;
984         }
985         /*
986          * | ---- desired range ---- |
987          *     | state | or               | state |
988          *
989          * There's a hole, we need to insert something in it and
990          * ignore the extent we found.
991          */
992         if (state->start > start) {
993                 u64 this_end;
994                 if (end < last_start)
995                         this_end = end;
996                 else
997                         this_end = last_start - 1;
998
999                 prealloc = alloc_extent_state_atomic(prealloc);
1000                 BUG_ON(!prealloc);
1001
1002                 /*
1003                  * Avoid to free 'prealloc' if it can be merged with
1004                  * the later extent.
1005                  */
1006                 err = insert_state(tree, prealloc, start, this_end,
1007                                    NULL, NULL, &bits, changeset);
1008                 if (err)
1009                         extent_io_tree_panic(tree, err);
1010
1011                 cache_state(prealloc, cached_state);
1012                 prealloc = NULL;
1013                 start = this_end + 1;
1014                 goto search_again;
1015         }
1016         /*
1017          * | ---- desired range ---- |
1018          *                        | state |
1019          * We need to split the extent, and set the bit
1020          * on the first half
1021          */
1022         if (state->start <= end && state->end > end) {
1023                 if (state->state & exclusive_bits) {
1024                         *failed_start = start;
1025                         err = -EEXIST;
1026                         goto out;
1027                 }
1028
1029                 prealloc = alloc_extent_state_atomic(prealloc);
1030                 BUG_ON(!prealloc);
1031                 err = split_state(tree, state, prealloc, end + 1);
1032                 if (err)
1033                         extent_io_tree_panic(tree, err);
1034
1035                 set_state_bits(tree, prealloc, &bits, changeset);
1036                 cache_state(prealloc, cached_state);
1037                 merge_state(tree, prealloc);
1038                 prealloc = NULL;
1039                 goto out;
1040         }
1041
1042         goto search_again;
1043
1044 out:
1045         spin_unlock(&tree->lock);
1046         if (prealloc)
1047                 free_extent_state(prealloc);
1048
1049         return err;
1050
1051 search_again:
1052         if (start > end)
1053                 goto out;
1054         spin_unlock(&tree->lock);
1055         if (gfpflags_allow_blocking(mask))
1056                 cond_resched();
1057         goto again;
1058 }
1059
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061                    unsigned bits, u64 * failed_start,
1062                    struct extent_state **cached_state, gfp_t mask)
1063 {
1064         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065                                 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070  * convert_extent_bit - convert all bits in a given range from one bit to
1071  *                      another
1072  * @tree:       the io tree to search
1073  * @start:      the start offset in bytes
1074  * @end:        the end offset in bytes (inclusive)
1075  * @bits:       the bits to set in this range
1076  * @clear_bits: the bits to clear in this range
1077  * @cached_state:       state that we're going to cache
1078  * @mask:       the allocation mask
1079  *
1080  * This will go through and set bits for the given range.  If any states exist
1081  * already in this range they are set with the given bit and cleared of the
1082  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084  * boundary bits like LOCK.
1085  */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087                        unsigned bits, unsigned clear_bits,
1088                        struct extent_state **cached_state, gfp_t mask)
1089 {
1090         struct extent_state *state;
1091         struct extent_state *prealloc = NULL;
1092         struct rb_node *node;
1093         struct rb_node **p;
1094         struct rb_node *parent;
1095         int err = 0;
1096         u64 last_start;
1097         u64 last_end;
1098         bool first_iteration = true;
1099
1100         btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103         if (!prealloc && gfpflags_allow_blocking(mask)) {
1104                 /*
1105                  * Best effort, don't worry if extent state allocation fails
1106                  * here for the first iteration. We might have a cached state
1107                  * that matches exactly the target range, in which case no
1108                  * extent state allocations are needed. We'll only know this
1109                  * after locking the tree.
1110                  */
1111                 prealloc = alloc_extent_state(mask);
1112                 if (!prealloc && !first_iteration)
1113                         return -ENOMEM;
1114         }
1115
1116         spin_lock(&tree->lock);
1117         if (cached_state && *cached_state) {
1118                 state = *cached_state;
1119                 if (state->start <= start && state->end > start &&
1120                     extent_state_in_tree(state)) {
1121                         node = &state->rb_node;
1122                         goto hit_next;
1123                 }
1124         }
1125
1126         /*
1127          * this search will find all the extents that end after
1128          * our range starts.
1129          */
1130         node = tree_search_for_insert(tree, start, &p, &parent);
1131         if (!node) {
1132                 prealloc = alloc_extent_state_atomic(prealloc);
1133                 if (!prealloc) {
1134                         err = -ENOMEM;
1135                         goto out;
1136                 }
1137                 err = insert_state(tree, prealloc, start, end,
1138                                    &p, &parent, &bits, NULL);
1139                 if (err)
1140                         extent_io_tree_panic(tree, err);
1141                 cache_state(prealloc, cached_state);
1142                 prealloc = NULL;
1143                 goto out;
1144         }
1145         state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147         last_start = state->start;
1148         last_end = state->end;
1149
1150         /*
1151          * | ---- desired range ---- |
1152          * | state |
1153          *
1154          * Just lock what we found and keep going
1155          */
1156         if (state->start == start && state->end <= end) {
1157                 set_state_bits(tree, state, &bits, NULL);
1158                 cache_state(state, cached_state);
1159                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160                 if (last_end == (u64)-1)
1161                         goto out;
1162                 start = last_end + 1;
1163                 if (start < end && state && state->start == start &&
1164                     !need_resched())
1165                         goto hit_next;
1166                 goto search_again;
1167         }
1168
1169         /*
1170          *     | ---- desired range ---- |
1171          * | state |
1172          *   or
1173          * | ------------- state -------------- |
1174          *
1175          * We need to split the extent we found, and may flip bits on
1176          * second half.
1177          *
1178          * If the extent we found extends past our
1179          * range, we just split and search again.  It'll get split
1180          * again the next time though.
1181          *
1182          * If the extent we found is inside our range, we set the
1183          * desired bit on it.
1184          */
1185         if (state->start < start) {
1186                 prealloc = alloc_extent_state_atomic(prealloc);
1187                 if (!prealloc) {
1188                         err = -ENOMEM;
1189                         goto out;
1190                 }
1191                 err = split_state(tree, state, prealloc, start);
1192                 if (err)
1193                         extent_io_tree_panic(tree, err);
1194                 prealloc = NULL;
1195                 if (err)
1196                         goto out;
1197                 if (state->end <= end) {
1198                         set_state_bits(tree, state, &bits, NULL);
1199                         cache_state(state, cached_state);
1200                         state = clear_state_bit(tree, state, &clear_bits, 0,
1201                                                 NULL);
1202                         if (last_end == (u64)-1)
1203                                 goto out;
1204                         start = last_end + 1;
1205                         if (start < end && state && state->start == start &&
1206                             !need_resched())
1207                                 goto hit_next;
1208                 }
1209                 goto search_again;
1210         }
1211         /*
1212          * | ---- desired range ---- |
1213          *     | state | or               | state |
1214          *
1215          * There's a hole, we need to insert something in it and
1216          * ignore the extent we found.
1217          */
1218         if (state->start > start) {
1219                 u64 this_end;
1220                 if (end < last_start)
1221                         this_end = end;
1222                 else
1223                         this_end = last_start - 1;
1224
1225                 prealloc = alloc_extent_state_atomic(prealloc);
1226                 if (!prealloc) {
1227                         err = -ENOMEM;
1228                         goto out;
1229                 }
1230
1231                 /*
1232                  * Avoid to free 'prealloc' if it can be merged with
1233                  * the later extent.
1234                  */
1235                 err = insert_state(tree, prealloc, start, this_end,
1236                                    NULL, NULL, &bits, NULL);
1237                 if (err)
1238                         extent_io_tree_panic(tree, err);
1239                 cache_state(prealloc, cached_state);
1240                 prealloc = NULL;
1241                 start = this_end + 1;
1242                 goto search_again;
1243         }
1244         /*
1245          * | ---- desired range ---- |
1246          *                        | state |
1247          * We need to split the extent, and set the bit
1248          * on the first half
1249          */
1250         if (state->start <= end && state->end > end) {
1251                 prealloc = alloc_extent_state_atomic(prealloc);
1252                 if (!prealloc) {
1253                         err = -ENOMEM;
1254                         goto out;
1255                 }
1256
1257                 err = split_state(tree, state, prealloc, end + 1);
1258                 if (err)
1259                         extent_io_tree_panic(tree, err);
1260
1261                 set_state_bits(tree, prealloc, &bits, NULL);
1262                 cache_state(prealloc, cached_state);
1263                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264                 prealloc = NULL;
1265                 goto out;
1266         }
1267
1268         goto search_again;
1269
1270 out:
1271         spin_unlock(&tree->lock);
1272         if (prealloc)
1273                 free_extent_state(prealloc);
1274
1275         return err;
1276
1277 search_again:
1278         if (start > end)
1279                 goto out;
1280         spin_unlock(&tree->lock);
1281         if (gfpflags_allow_blocking(mask))
1282                 cond_resched();
1283         first_iteration = false;
1284         goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289                      gfp_t mask)
1290 {
1291         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292                               NULL, mask);
1293 }
1294
1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296                     unsigned bits, gfp_t mask)
1297 {
1298         return set_extent_bit(tree, start, end, bits, NULL,
1299                               NULL, mask);
1300 }
1301
1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303                            unsigned bits, gfp_t mask,
1304                            struct extent_changeset *changeset)
1305 {
1306         /*
1307          * We don't support EXTENT_LOCKED yet, as current changeset will
1308          * record any bits changed, so for EXTENT_LOCKED case, it will
1309          * either fail with -EEXIST or changeset will record the whole
1310          * range.
1311          */
1312         BUG_ON(bits & EXTENT_LOCKED);
1313
1314         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315                                 changeset);
1316 }
1317
1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319                      unsigned bits, int wake, int delete,
1320                      struct extent_state **cached, gfp_t mask)
1321 {
1322         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323                                   cached, mask, NULL);
1324 }
1325
1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327                       unsigned bits, gfp_t mask)
1328 {
1329         int wake = 0;
1330
1331         if (bits & EXTENT_LOCKED)
1332                 wake = 1;
1333
1334         return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1335 }
1336
1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338                              unsigned bits, gfp_t mask,
1339                              struct extent_changeset *changeset)
1340 {
1341         /*
1342          * Don't support EXTENT_LOCKED case, same reason as
1343          * set_record_extent_bits().
1344          */
1345         BUG_ON(bits & EXTENT_LOCKED);
1346
1347         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348                                   changeset);
1349 }
1350
1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352                         struct extent_state **cached_state, gfp_t mask)
1353 {
1354         return set_extent_bit(tree, start, end,
1355                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1356                               NULL, cached_state, mask);
1357 }
1358
1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360                       struct extent_state **cached_state, gfp_t mask)
1361 {
1362         return set_extent_bit(tree, start, end,
1363                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364                               NULL, cached_state, mask);
1365 }
1366
1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368                        gfp_t mask)
1369 {
1370         return clear_extent_bit(tree, start, end,
1371                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1372                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1373 }
1374
1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376                      gfp_t mask)
1377 {
1378         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379                               NULL, mask);
1380 }
1381
1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383                         struct extent_state **cached_state, gfp_t mask)
1384 {
1385         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386                               cached_state, mask);
1387 }
1388
1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390                           struct extent_state **cached_state, gfp_t mask)
1391 {
1392         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393                                 cached_state, mask);
1394 }
1395
1396 /*
1397  * either insert or lock state struct between start and end use mask to tell
1398  * us if waiting is desired.
1399  */
1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401                      unsigned bits, struct extent_state **cached_state)
1402 {
1403         int err;
1404         u64 failed_start;
1405
1406         while (1) {
1407                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408                                        EXTENT_LOCKED, &failed_start,
1409                                        cached_state, GFP_NOFS, NULL);
1410                 if (err == -EEXIST) {
1411                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412                         start = failed_start;
1413                 } else
1414                         break;
1415                 WARN_ON(start > end);
1416         }
1417         return err;
1418 }
1419
1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1421 {
1422         return lock_extent_bits(tree, start, end, 0, NULL);
1423 }
1424
1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1426 {
1427         int err;
1428         u64 failed_start;
1429
1430         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431                                &failed_start, NULL, GFP_NOFS, NULL);
1432         if (err == -EEXIST) {
1433                 if (failed_start > start)
1434                         clear_extent_bit(tree, start, failed_start - 1,
1435                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436                 return 0;
1437         }
1438         return 1;
1439 }
1440
1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442                          struct extent_state **cached, gfp_t mask)
1443 {
1444         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445                                 mask);
1446 }
1447
1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451                                 GFP_NOFS);
1452 }
1453
1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456         unsigned long index = start >> PAGE_CACHE_SHIFT;
1457         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458         struct page *page;
1459
1460         while (index <= end_index) {
1461                 page = find_get_page(inode->i_mapping, index);
1462                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463                 clear_page_dirty_for_io(page);
1464                 page_cache_release(page);
1465                 index++;
1466         }
1467         return 0;
1468 }
1469
1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1471 {
1472         unsigned long index = start >> PAGE_CACHE_SHIFT;
1473         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474         struct page *page;
1475
1476         while (index <= end_index) {
1477                 page = find_get_page(inode->i_mapping, index);
1478                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1479                 __set_page_dirty_nobuffers(page);
1480                 account_page_redirty(page);
1481                 page_cache_release(page);
1482                 index++;
1483         }
1484         return 0;
1485 }
1486
1487 /*
1488  * helper function to set both pages and extents in the tree writeback
1489  */
1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1491 {
1492         unsigned long index = start >> PAGE_CACHE_SHIFT;
1493         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494         struct page *page;
1495
1496         while (index <= end_index) {
1497                 page = find_get_page(tree->mapping, index);
1498                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1499                 set_page_writeback(page);
1500                 page_cache_release(page);
1501                 index++;
1502         }
1503         return 0;
1504 }
1505
1506 /* find the first state struct with 'bits' set after 'start', and
1507  * return it.  tree->lock must be held.  NULL will returned if
1508  * nothing was found after 'start'
1509  */
1510 static struct extent_state *
1511 find_first_extent_bit_state(struct extent_io_tree *tree,
1512                             u64 start, unsigned bits)
1513 {
1514         struct rb_node *node;
1515         struct extent_state *state;
1516
1517         /*
1518          * this search will find all the extents that end after
1519          * our range starts.
1520          */
1521         node = tree_search(tree, start);
1522         if (!node)
1523                 goto out;
1524
1525         while (1) {
1526                 state = rb_entry(node, struct extent_state, rb_node);
1527                 if (state->end >= start && (state->state & bits))
1528                         return state;
1529
1530                 node = rb_next(node);
1531                 if (!node)
1532                         break;
1533         }
1534 out:
1535         return NULL;
1536 }
1537
1538 /*
1539  * find the first offset in the io tree with 'bits' set. zero is
1540  * returned if we find something, and *start_ret and *end_ret are
1541  * set to reflect the state struct that was found.
1542  *
1543  * If nothing was found, 1 is returned. If found something, return 0.
1544  */
1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1546                           u64 *start_ret, u64 *end_ret, unsigned bits,
1547                           struct extent_state **cached_state)
1548 {
1549         struct extent_state *state;
1550         struct rb_node *n;
1551         int ret = 1;
1552
1553         spin_lock(&tree->lock);
1554         if (cached_state && *cached_state) {
1555                 state = *cached_state;
1556                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1557                         n = rb_next(&state->rb_node);
1558                         while (n) {
1559                                 state = rb_entry(n, struct extent_state,
1560                                                  rb_node);
1561                                 if (state->state & bits)
1562                                         goto got_it;
1563                                 n = rb_next(n);
1564                         }
1565                         free_extent_state(*cached_state);
1566                         *cached_state = NULL;
1567                         goto out;
1568                 }
1569                 free_extent_state(*cached_state);
1570                 *cached_state = NULL;
1571         }
1572
1573         state = find_first_extent_bit_state(tree, start, bits);
1574 got_it:
1575         if (state) {
1576                 cache_state_if_flags(state, cached_state, 0);
1577                 *start_ret = state->start;
1578                 *end_ret = state->end;
1579                 ret = 0;
1580         }
1581 out:
1582         spin_unlock(&tree->lock);
1583         return ret;
1584 }
1585
1586 /*
1587  * find a contiguous range of bytes in the file marked as delalloc, not
1588  * more than 'max_bytes'.  start and end are used to return the range,
1589  *
1590  * 1 is returned if we find something, 0 if nothing was in the tree
1591  */
1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1593                                         u64 *start, u64 *end, u64 max_bytes,
1594                                         struct extent_state **cached_state)
1595 {
1596         struct rb_node *node;
1597         struct extent_state *state;
1598         u64 cur_start = *start;
1599         u64 found = 0;
1600         u64 total_bytes = 0;
1601
1602         spin_lock(&tree->lock);
1603
1604         /*
1605          * this search will find all the extents that end after
1606          * our range starts.
1607          */
1608         node = tree_search(tree, cur_start);
1609         if (!node) {
1610                 if (!found)
1611                         *end = (u64)-1;
1612                 goto out;
1613         }
1614
1615         while (1) {
1616                 state = rb_entry(node, struct extent_state, rb_node);
1617                 if (found && (state->start != cur_start ||
1618                               (state->state & EXTENT_BOUNDARY))) {
1619                         goto out;
1620                 }
1621                 if (!(state->state & EXTENT_DELALLOC)) {
1622                         if (!found)
1623                                 *end = state->end;
1624                         goto out;
1625                 }
1626                 if (!found) {
1627                         *start = state->start;
1628                         *cached_state = state;
1629                         atomic_inc(&state->refs);
1630                 }
1631                 found++;
1632                 *end = state->end;
1633                 cur_start = state->end + 1;
1634                 node = rb_next(node);
1635                 total_bytes += state->end - state->start + 1;
1636                 if (total_bytes >= max_bytes)
1637                         break;
1638                 if (!node)
1639                         break;
1640         }
1641 out:
1642         spin_unlock(&tree->lock);
1643         return found;
1644 }
1645
1646 static noinline void __unlock_for_delalloc(struct inode *inode,
1647                                            struct page *locked_page,
1648                                            u64 start, u64 end)
1649 {
1650         int ret;
1651         struct page *pages[16];
1652         unsigned long index = start >> PAGE_CACHE_SHIFT;
1653         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654         unsigned long nr_pages = end_index - index + 1;
1655         int i;
1656
1657         if (index == locked_page->index && end_index == index)
1658                 return;
1659
1660         while (nr_pages > 0) {
1661                 ret = find_get_pages_contig(inode->i_mapping, index,
1662                                      min_t(unsigned long, nr_pages,
1663                                      ARRAY_SIZE(pages)), pages);
1664                 for (i = 0; i < ret; i++) {
1665                         if (pages[i] != locked_page)
1666                                 unlock_page(pages[i]);
1667                         page_cache_release(pages[i]);
1668                 }
1669                 nr_pages -= ret;
1670                 index += ret;
1671                 cond_resched();
1672         }
1673 }
1674
1675 static noinline int lock_delalloc_pages(struct inode *inode,
1676                                         struct page *locked_page,
1677                                         u64 delalloc_start,
1678                                         u64 delalloc_end)
1679 {
1680         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681         unsigned long start_index = index;
1682         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683         unsigned long pages_locked = 0;
1684         struct page *pages[16];
1685         unsigned long nrpages;
1686         int ret;
1687         int i;
1688
1689         /* the caller is responsible for locking the start index */
1690         if (index == locked_page->index && index == end_index)
1691                 return 0;
1692
1693         /* skip the page at the start index */
1694         nrpages = end_index - index + 1;
1695         while (nrpages > 0) {
1696                 ret = find_get_pages_contig(inode->i_mapping, index,
1697                                      min_t(unsigned long,
1698                                      nrpages, ARRAY_SIZE(pages)), pages);
1699                 if (ret == 0) {
1700                         ret = -EAGAIN;
1701                         goto done;
1702                 }
1703                 /* now we have an array of pages, lock them all */
1704                 for (i = 0; i < ret; i++) {
1705                         /*
1706                          * the caller is taking responsibility for
1707                          * locked_page
1708                          */
1709                         if (pages[i] != locked_page) {
1710                                 lock_page(pages[i]);
1711                                 if (!PageDirty(pages[i]) ||
1712                                     pages[i]->mapping != inode->i_mapping) {
1713                                         ret = -EAGAIN;
1714                                         unlock_page(pages[i]);
1715                                         page_cache_release(pages[i]);
1716                                         goto done;
1717                                 }
1718                         }
1719                         page_cache_release(pages[i]);
1720                         pages_locked++;
1721                 }
1722                 nrpages -= ret;
1723                 index += ret;
1724                 cond_resched();
1725         }
1726         ret = 0;
1727 done:
1728         if (ret && pages_locked) {
1729                 __unlock_for_delalloc(inode, locked_page,
1730                               delalloc_start,
1731                               ((u64)(start_index + pages_locked - 1)) <<
1732                               PAGE_CACHE_SHIFT);
1733         }
1734         return ret;
1735 }
1736
1737 /*
1738  * find a contiguous range of bytes in the file marked as delalloc, not
1739  * more than 'max_bytes'.  start and end are used to return the range,
1740  *
1741  * 1 is returned if we find something, 0 if nothing was in the tree
1742  */
1743 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744                                     struct extent_io_tree *tree,
1745                                     struct page *locked_page, u64 *start,
1746                                     u64 *end, u64 max_bytes)
1747 {
1748         u64 delalloc_start;
1749         u64 delalloc_end;
1750         u64 found;
1751         struct extent_state *cached_state = NULL;
1752         int ret;
1753         int loops = 0;
1754
1755 again:
1756         /* step one, find a bunch of delalloc bytes starting at start */
1757         delalloc_start = *start;
1758         delalloc_end = 0;
1759         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1760                                     max_bytes, &cached_state);
1761         if (!found || delalloc_end <= *start) {
1762                 *start = delalloc_start;
1763                 *end = delalloc_end;
1764                 free_extent_state(cached_state);
1765                 return 0;
1766         }
1767
1768         /*
1769          * start comes from the offset of locked_page.  We have to lock
1770          * pages in order, so we can't process delalloc bytes before
1771          * locked_page
1772          */
1773         if (delalloc_start < *start)
1774                 delalloc_start = *start;
1775
1776         /*
1777          * make sure to limit the number of pages we try to lock down
1778          */
1779         if (delalloc_end + 1 - delalloc_start > max_bytes)
1780                 delalloc_end = delalloc_start + max_bytes - 1;
1781
1782         /* step two, lock all the pages after the page that has start */
1783         ret = lock_delalloc_pages(inode, locked_page,
1784                                   delalloc_start, delalloc_end);
1785         if (ret == -EAGAIN) {
1786                 /* some of the pages are gone, lets avoid looping by
1787                  * shortening the size of the delalloc range we're searching
1788                  */
1789                 free_extent_state(cached_state);
1790                 cached_state = NULL;
1791                 if (!loops) {
1792                         max_bytes = PAGE_CACHE_SIZE;
1793                         loops = 1;
1794                         goto again;
1795                 } else {
1796                         found = 0;
1797                         goto out_failed;
1798                 }
1799         }
1800         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1801
1802         /* step three, lock the state bits for the whole range */
1803         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1804
1805         /* then test to make sure it is all still delalloc */
1806         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1807                              EXTENT_DELALLOC, 1, cached_state);
1808         if (!ret) {
1809                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810                                      &cached_state, GFP_NOFS);
1811                 __unlock_for_delalloc(inode, locked_page,
1812                               delalloc_start, delalloc_end);
1813                 cond_resched();
1814                 goto again;
1815         }
1816         free_extent_state(cached_state);
1817         *start = delalloc_start;
1818         *end = delalloc_end;
1819 out_failed:
1820         return found;
1821 }
1822
1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824                                  struct page *locked_page,
1825                                  unsigned clear_bits,
1826                                  unsigned long page_ops)
1827 {
1828         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1829         int ret;
1830         struct page *pages[16];
1831         unsigned long index = start >> PAGE_CACHE_SHIFT;
1832         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833         unsigned long nr_pages = end_index - index + 1;
1834         int i;
1835
1836         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1837         if (page_ops == 0)
1838                 return 0;
1839
1840         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841                 mapping_set_error(inode->i_mapping, -EIO);
1842
1843         while (nr_pages > 0) {
1844                 ret = find_get_pages_contig(inode->i_mapping, index,
1845                                      min_t(unsigned long,
1846                                      nr_pages, ARRAY_SIZE(pages)), pages);
1847                 for (i = 0; i < ret; i++) {
1848
1849                         if (page_ops & PAGE_SET_PRIVATE2)
1850                                 SetPagePrivate2(pages[i]);
1851
1852                         if (pages[i] == locked_page) {
1853                                 page_cache_release(pages[i]);
1854                                 continue;
1855                         }
1856                         if (page_ops & PAGE_CLEAR_DIRTY)
1857                                 clear_page_dirty_for_io(pages[i]);
1858                         if (page_ops & PAGE_SET_WRITEBACK)
1859                                 set_page_writeback(pages[i]);
1860                         if (page_ops & PAGE_SET_ERROR)
1861                                 SetPageError(pages[i]);
1862                         if (page_ops & PAGE_END_WRITEBACK)
1863                                 end_page_writeback(pages[i]);
1864                         if (page_ops & PAGE_UNLOCK)
1865                                 unlock_page(pages[i]);
1866                         page_cache_release(pages[i]);
1867                 }
1868                 nr_pages -= ret;
1869                 index += ret;
1870                 cond_resched();
1871         }
1872         return 0;
1873 }
1874
1875 /*
1876  * count the number of bytes in the tree that have a given bit(s)
1877  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1878  * cached.  The total number found is returned.
1879  */
1880 u64 count_range_bits(struct extent_io_tree *tree,
1881                      u64 *start, u64 search_end, u64 max_bytes,
1882                      unsigned bits, int contig)
1883 {
1884         struct rb_node *node;
1885         struct extent_state *state;
1886         u64 cur_start = *start;
1887         u64 total_bytes = 0;
1888         u64 last = 0;
1889         int found = 0;
1890
1891         if (WARN_ON(search_end <= cur_start))
1892                 return 0;
1893
1894         spin_lock(&tree->lock);
1895         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896                 total_bytes = tree->dirty_bytes;
1897                 goto out;
1898         }
1899         /*
1900          * this search will find all the extents that end after
1901          * our range starts.
1902          */
1903         node = tree_search(tree, cur_start);
1904         if (!node)
1905                 goto out;
1906
1907         while (1) {
1908                 state = rb_entry(node, struct extent_state, rb_node);
1909                 if (state->start > search_end)
1910                         break;
1911                 if (contig && found && state->start > last + 1)
1912                         break;
1913                 if (state->end >= cur_start && (state->state & bits) == bits) {
1914                         total_bytes += min(search_end, state->end) + 1 -
1915                                        max(cur_start, state->start);
1916                         if (total_bytes >= max_bytes)
1917                                 break;
1918                         if (!found) {
1919                                 *start = max(cur_start, state->start);
1920                                 found = 1;
1921                         }
1922                         last = state->end;
1923                 } else if (contig && found) {
1924                         break;
1925                 }
1926                 node = rb_next(node);
1927                 if (!node)
1928                         break;
1929         }
1930 out:
1931         spin_unlock(&tree->lock);
1932         return total_bytes;
1933 }
1934
1935 /*
1936  * set the private field for a given byte offset in the tree.  If there isn't
1937  * an extent_state there already, this does nothing.
1938  */
1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1940 {
1941         struct rb_node *node;
1942         struct extent_state *state;
1943         int ret = 0;
1944
1945         spin_lock(&tree->lock);
1946         /*
1947          * this search will find all the extents that end after
1948          * our range starts.
1949          */
1950         node = tree_search(tree, start);
1951         if (!node) {
1952                 ret = -ENOENT;
1953                 goto out;
1954         }
1955         state = rb_entry(node, struct extent_state, rb_node);
1956         if (state->start != start) {
1957                 ret = -ENOENT;
1958                 goto out;
1959         }
1960         state->private = private;
1961 out:
1962         spin_unlock(&tree->lock);
1963         return ret;
1964 }
1965
1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1967 {
1968         struct rb_node *node;
1969         struct extent_state *state;
1970         int ret = 0;
1971
1972         spin_lock(&tree->lock);
1973         /*
1974          * this search will find all the extents that end after
1975          * our range starts.
1976          */
1977         node = tree_search(tree, start);
1978         if (!node) {
1979                 ret = -ENOENT;
1980                 goto out;
1981         }
1982         state = rb_entry(node, struct extent_state, rb_node);
1983         if (state->start != start) {
1984                 ret = -ENOENT;
1985                 goto out;
1986         }
1987         *private = state->private;
1988 out:
1989         spin_unlock(&tree->lock);
1990         return ret;
1991 }
1992
1993 /*
1994  * searches a range in the state tree for a given mask.
1995  * If 'filled' == 1, this returns 1 only if every extent in the tree
1996  * has the bits set.  Otherwise, 1 is returned if any bit in the
1997  * range is found set.
1998  */
1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2000                    unsigned bits, int filled, struct extent_state *cached)
2001 {
2002         struct extent_state *state = NULL;
2003         struct rb_node *node;
2004         int bitset = 0;
2005
2006         spin_lock(&tree->lock);
2007         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2008             cached->end > start)
2009                 node = &cached->rb_node;
2010         else
2011                 node = tree_search(tree, start);
2012         while (node && start <= end) {
2013                 state = rb_entry(node, struct extent_state, rb_node);
2014
2015                 if (filled && state->start > start) {
2016                         bitset = 0;
2017                         break;
2018                 }
2019
2020                 if (state->start > end)
2021                         break;
2022
2023                 if (state->state & bits) {
2024                         bitset = 1;
2025                         if (!filled)
2026                                 break;
2027                 } else if (filled) {
2028                         bitset = 0;
2029                         break;
2030                 }
2031
2032                 if (state->end == (u64)-1)
2033                         break;
2034
2035                 start = state->end + 1;
2036                 if (start > end)
2037                         break;
2038                 node = rb_next(node);
2039                 if (!node) {
2040                         if (filled)
2041                                 bitset = 0;
2042                         break;
2043                 }
2044         }
2045         spin_unlock(&tree->lock);
2046         return bitset;
2047 }
2048
2049 /*
2050  * helper function to set a given page up to date if all the
2051  * extents in the tree for that page are up to date
2052  */
2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2054 {
2055         u64 start = page_offset(page);
2056         u64 end = start + PAGE_CACHE_SIZE - 1;
2057         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2058                 SetPageUptodate(page);
2059 }
2060
2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2062 {
2063         int ret;
2064         int err = 0;
2065         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2066
2067         set_state_private(failure_tree, rec->start, 0);
2068         ret = clear_extent_bits(failure_tree, rec->start,
2069                                 rec->start + rec->len - 1,
2070                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2071         if (ret)
2072                 err = ret;
2073
2074         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075                                 rec->start + rec->len - 1,
2076                                 EXTENT_DAMAGED, GFP_NOFS);
2077         if (ret && !err)
2078                 err = ret;
2079
2080         kfree(rec);
2081         return err;
2082 }
2083
2084 /*
2085  * this bypasses the standard btrfs submit functions deliberately, as
2086  * the standard behavior is to write all copies in a raid setup. here we only
2087  * want to write the one bad copy. so we do the mapping for ourselves and issue
2088  * submit_bio directly.
2089  * to avoid any synchronization issues, wait for the data after writing, which
2090  * actually prevents the read that triggered the error from finishing.
2091  * currently, there can be no more than two copies of every data bit. thus,
2092  * exactly one rewrite is required.
2093  */
2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095                       struct page *page, unsigned int pg_offset, int mirror_num)
2096 {
2097         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2098         struct bio *bio;
2099         struct btrfs_device *dev;
2100         u64 map_length = 0;
2101         u64 sector;
2102         struct btrfs_bio *bbio = NULL;
2103         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2104         int ret;
2105
2106         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2107         BUG_ON(!mirror_num);
2108
2109         /* we can't repair anything in raid56 yet */
2110         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2111                 return 0;
2112
2113         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2114         if (!bio)
2115                 return -EIO;
2116         bio->bi_iter.bi_size = 0;
2117         map_length = length;
2118
2119         ret = btrfs_map_block(fs_info, WRITE, logical,
2120                               &map_length, &bbio, mirror_num);
2121         if (ret) {
2122                 bio_put(bio);
2123                 return -EIO;
2124         }
2125         BUG_ON(mirror_num != bbio->mirror_num);
2126         sector = bbio->stripes[mirror_num-1].physical >> 9;
2127         bio->bi_iter.bi_sector = sector;
2128         dev = bbio->stripes[mirror_num-1].dev;
2129         btrfs_put_bbio(bbio);
2130         if (!dev || !dev->bdev || !dev->writeable) {
2131                 bio_put(bio);
2132                 return -EIO;
2133         }
2134         bio->bi_bdev = dev->bdev;
2135         bio_add_page(bio, page, length, pg_offset);
2136
2137         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2138                 /* try to remap that extent elsewhere? */
2139                 bio_put(bio);
2140                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2141                 return -EIO;
2142         }
2143
2144         btrfs_info_rl_in_rcu(fs_info,
2145                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146                                   btrfs_ino(inode), start,
2147                                   rcu_str_deref(dev->name), sector);
2148         bio_put(bio);
2149         return 0;
2150 }
2151
2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2153                          int mirror_num)
2154 {
2155         u64 start = eb->start;
2156         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2157         int ret = 0;
2158
2159         if (root->fs_info->sb->s_flags & MS_RDONLY)
2160                 return -EROFS;
2161
2162         for (i = 0; i < num_pages; i++) {
2163                 struct page *p = eb->pages[i];
2164
2165                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2166                                         PAGE_CACHE_SIZE, start, p,
2167                                         start - page_offset(p), mirror_num);
2168                 if (ret)
2169                         break;
2170                 start += PAGE_CACHE_SIZE;
2171         }
2172
2173         return ret;
2174 }
2175
2176 /*
2177  * each time an IO finishes, we do a fast check in the IO failure tree
2178  * to see if we need to process or clean up an io_failure_record
2179  */
2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181                      unsigned int pg_offset)
2182 {
2183         u64 private;
2184         u64 private_failure;
2185         struct io_failure_record *failrec;
2186         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2187         struct extent_state *state;
2188         int num_copies;
2189         int ret;
2190
2191         private = 0;
2192         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2194         if (!ret)
2195                 return 0;
2196
2197         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2198                                 &private_failure);
2199         if (ret)
2200                 return 0;
2201
2202         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203         BUG_ON(!failrec->this_mirror);
2204
2205         if (failrec->in_validation) {
2206                 /* there was no real error, just free the record */
2207                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2208                          failrec->start);
2209                 goto out;
2210         }
2211         if (fs_info->sb->s_flags & MS_RDONLY)
2212                 goto out;
2213
2214         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2216                                             failrec->start,
2217                                             EXTENT_LOCKED);
2218         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2219
2220         if (state && state->start <= failrec->start &&
2221             state->end >= failrec->start + failrec->len - 1) {
2222                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2223                                               failrec->len);
2224                 if (num_copies > 1)  {
2225                         repair_io_failure(inode, start, failrec->len,
2226                                           failrec->logical, page,
2227                                           pg_offset, failrec->failed_mirror);
2228                 }
2229         }
2230
2231 out:
2232         free_io_failure(inode, failrec);
2233
2234         return 0;
2235 }
2236
2237 /*
2238  * Can be called when
2239  * - hold extent lock
2240  * - under ordered extent
2241  * - the inode is freeing
2242  */
2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2244 {
2245         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246         struct io_failure_record *failrec;
2247         struct extent_state *state, *next;
2248
2249         if (RB_EMPTY_ROOT(&failure_tree->state))
2250                 return;
2251
2252         spin_lock(&failure_tree->lock);
2253         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2254         while (state) {
2255                 if (state->start > end)
2256                         break;
2257
2258                 ASSERT(state->end <= end);
2259
2260                 next = next_state(state);
2261
2262                 failrec = (struct io_failure_record *)(unsigned long)state->private;
2263                 free_extent_state(state);
2264                 kfree(failrec);
2265
2266                 state = next;
2267         }
2268         spin_unlock(&failure_tree->lock);
2269 }
2270
2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272                                 struct io_failure_record **failrec_ret)
2273 {
2274         struct io_failure_record *failrec;
2275         u64 private;
2276         struct extent_map *em;
2277         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2280         int ret;
2281         u64 logical;
2282
2283         ret = get_state_private(failure_tree, start, &private);
2284         if (ret) {
2285                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2286                 if (!failrec)
2287                         return -ENOMEM;
2288
2289                 failrec->start = start;
2290                 failrec->len = end - start + 1;
2291                 failrec->this_mirror = 0;
2292                 failrec->bio_flags = 0;
2293                 failrec->in_validation = 0;
2294
2295                 read_lock(&em_tree->lock);
2296                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2297                 if (!em) {
2298                         read_unlock(&em_tree->lock);
2299                         kfree(failrec);
2300                         return -EIO;
2301                 }
2302
2303                 if (em->start > start || em->start + em->len <= start) {
2304                         free_extent_map(em);
2305                         em = NULL;
2306                 }
2307                 read_unlock(&em_tree->lock);
2308                 if (!em) {
2309                         kfree(failrec);
2310                         return -EIO;
2311                 }
2312
2313                 logical = start - em->start;
2314                 logical = em->block_start + logical;
2315                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316                         logical = em->block_start;
2317                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318                         extent_set_compress_type(&failrec->bio_flags,
2319                                                  em->compress_type);
2320                 }
2321
2322                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323                          logical, start, failrec->len);
2324
2325                 failrec->logical = logical;
2326                 free_extent_map(em);
2327
2328                 /* set the bits in the private failure tree */
2329                 ret = set_extent_bits(failure_tree, start, end,
2330                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2331                 if (ret >= 0)
2332                         ret = set_state_private(failure_tree, start,
2333                                                 (u64)(unsigned long)failrec);
2334                 /* set the bits in the inode's tree */
2335                 if (ret >= 0)
2336                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2337                                                 GFP_NOFS);
2338                 if (ret < 0) {
2339                         kfree(failrec);
2340                         return ret;
2341                 }
2342         } else {
2343                 failrec = (struct io_failure_record *)(unsigned long)private;
2344                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345                          failrec->logical, failrec->start, failrec->len,
2346                          failrec->in_validation);
2347                 /*
2348                  * when data can be on disk more than twice, add to failrec here
2349                  * (e.g. with a list for failed_mirror) to make
2350                  * clean_io_failure() clean all those errors at once.
2351                  */
2352         }
2353
2354         *failrec_ret = failrec;
2355
2356         return 0;
2357 }
2358
2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360                            struct io_failure_record *failrec, int failed_mirror)
2361 {
2362         int num_copies;
2363
2364         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365                                       failrec->logical, failrec->len);
2366         if (num_copies == 1) {
2367                 /*
2368                  * we only have a single copy of the data, so don't bother with
2369                  * all the retry and error correction code that follows. no
2370                  * matter what the error is, it is very likely to persist.
2371                  */
2372                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373                          num_copies, failrec->this_mirror, failed_mirror);
2374                 return 0;
2375         }
2376
2377         /*
2378          * there are two premises:
2379          *      a) deliver good data to the caller
2380          *      b) correct the bad sectors on disk
2381          */
2382         if (failed_bio->bi_vcnt > 1) {
2383                 /*
2384                  * to fulfill b), we need to know the exact failing sectors, as
2385                  * we don't want to rewrite any more than the failed ones. thus,
2386                  * we need separate read requests for the failed bio
2387                  *
2388                  * if the following BUG_ON triggers, our validation request got
2389                  * merged. we need separate requests for our algorithm to work.
2390                  */
2391                 BUG_ON(failrec->in_validation);
2392                 failrec->in_validation = 1;
2393                 failrec->this_mirror = failed_mirror;
2394         } else {
2395                 /*
2396                  * we're ready to fulfill a) and b) alongside. get a good copy
2397                  * of the failed sector and if we succeed, we have setup
2398                  * everything for repair_io_failure to do the rest for us.
2399                  */
2400                 if (failrec->in_validation) {
2401                         BUG_ON(failrec->this_mirror != failed_mirror);
2402                         failrec->in_validation = 0;
2403                         failrec->this_mirror = 0;
2404                 }
2405                 failrec->failed_mirror = failed_mirror;
2406                 failrec->this_mirror++;
2407                 if (failrec->this_mirror == failed_mirror)
2408                         failrec->this_mirror++;
2409         }
2410
2411         if (failrec->this_mirror > num_copies) {
2412                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413                          num_copies, failrec->this_mirror, failed_mirror);
2414                 return 0;
2415         }
2416
2417         return 1;
2418 }
2419
2420
2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422                                     struct io_failure_record *failrec,
2423                                     struct page *page, int pg_offset, int icsum,
2424                                     bio_end_io_t *endio_func, void *data)
2425 {
2426         struct bio *bio;
2427         struct btrfs_io_bio *btrfs_failed_bio;
2428         struct btrfs_io_bio *btrfs_bio;
2429
2430         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2431         if (!bio)
2432                 return NULL;
2433
2434         bio->bi_end_io = endio_func;
2435         bio->bi_iter.bi_sector = failrec->logical >> 9;
2436         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2437         bio->bi_iter.bi_size = 0;
2438         bio->bi_private = data;
2439
2440         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441         if (btrfs_failed_bio->csum) {
2442                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2444
2445                 btrfs_bio = btrfs_io_bio(bio);
2446                 btrfs_bio->csum = btrfs_bio->csum_inline;
2447                 icsum *= csum_size;
2448                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2449                        csum_size);
2450         }
2451
2452         bio_add_page(bio, page, failrec->len, pg_offset);
2453
2454         return bio;
2455 }
2456
2457 /*
2458  * this is a generic handler for readpage errors (default
2459  * readpage_io_failed_hook). if other copies exist, read those and write back
2460  * good data to the failed position. does not investigate in remapping the
2461  * failed extent elsewhere, hoping the device will be smart enough to do this as
2462  * needed
2463  */
2464
2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466                               struct page *page, u64 start, u64 end,
2467                               int failed_mirror)
2468 {
2469         struct io_failure_record *failrec;
2470         struct inode *inode = page->mapping->host;
2471         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2472         struct bio *bio;
2473         int read_mode;
2474         int ret;
2475
2476         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2477
2478         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2479         if (ret)
2480                 return ret;
2481
2482         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2483         if (!ret) {
2484                 free_io_failure(inode, failrec);
2485                 return -EIO;
2486         }
2487
2488         if (failed_bio->bi_vcnt > 1)
2489                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2490         else
2491                 read_mode = READ_SYNC;
2492
2493         phy_offset >>= inode->i_sb->s_blocksize_bits;
2494         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495                                       start - page_offset(page),
2496                                       (int)phy_offset, failed_bio->bi_end_io,
2497                                       NULL);
2498         if (!bio) {
2499                 free_io_failure(inode, failrec);
2500                 return -EIO;
2501         }
2502
2503         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504                  read_mode, failrec->this_mirror, failrec->in_validation);
2505
2506         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507                                          failrec->this_mirror,
2508                                          failrec->bio_flags, 0);
2509         if (ret) {
2510                 free_io_failure(inode, failrec);
2511                 bio_put(bio);
2512         }
2513
2514         return ret;
2515 }
2516
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2518
2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2520 {
2521         int uptodate = (err == 0);
2522         struct extent_io_tree *tree;
2523         int ret = 0;
2524
2525         tree = &BTRFS_I(page->mapping->host)->io_tree;
2526
2527         if (tree->ops && tree->ops->writepage_end_io_hook) {
2528                 ret = tree->ops->writepage_end_io_hook(page, start,
2529                                                end, NULL, uptodate);
2530                 if (ret)
2531                         uptodate = 0;
2532         }
2533
2534         if (!uptodate) {
2535                 ClearPageUptodate(page);
2536                 SetPageError(page);
2537                 ret = ret < 0 ? ret : -EIO;
2538                 mapping_set_error(page->mapping, ret);
2539         }
2540         return 0;
2541 }
2542
2543 /*
2544  * after a writepage IO is done, we need to:
2545  * clear the uptodate bits on error
2546  * clear the writeback bits in the extent tree for this IO
2547  * end_page_writeback if the page has no more pending IO
2548  *
2549  * Scheduling is not allowed, so the extent state tree is expected
2550  * to have one and only one object corresponding to this IO.
2551  */
2552 static void end_bio_extent_writepage(struct bio *bio)
2553 {
2554         struct bio_vec *bvec;
2555         u64 start;
2556         u64 end;
2557         int i;
2558
2559         bio_for_each_segment_all(bvec, bio, i) {
2560                 struct page *page = bvec->bv_page;
2561
2562                 /* We always issue full-page reads, but if some block
2563                  * in a page fails to read, blk_update_request() will
2564                  * advance bv_offset and adjust bv_len to compensate.
2565                  * Print a warning for nonzero offsets, and an error
2566                  * if they don't add up to a full page.  */
2567                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570                                    "partial page write in btrfs with offset %u and length %u",
2571                                         bvec->bv_offset, bvec->bv_len);
2572                         else
2573                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574                                    "incomplete page write in btrfs with offset %u and "
2575                                    "length %u",
2576                                         bvec->bv_offset, bvec->bv_len);
2577                 }
2578
2579                 start = page_offset(page);
2580                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2581
2582                 if (end_extent_writepage(page, bio->bi_error, start, end))
2583                         continue;
2584
2585                 end_page_writeback(page);
2586         }
2587
2588         bio_put(bio);
2589 }
2590
2591 static void
2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2593                               int uptodate)
2594 {
2595         struct extent_state *cached = NULL;
2596         u64 end = start + len - 1;
2597
2598         if (uptodate && tree->track_uptodate)
2599                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2601 }
2602
2603 /*
2604  * after a readpage IO is done, we need to:
2605  * clear the uptodate bits on error
2606  * set the uptodate bits if things worked
2607  * set the page up to date if all extents in the tree are uptodate
2608  * clear the lock bit in the extent tree
2609  * unlock the page if there are no other extents locked for it
2610  *
2611  * Scheduling is not allowed, so the extent state tree is expected
2612  * to have one and only one object corresponding to this IO.
2613  */
2614 static void end_bio_extent_readpage(struct bio *bio)
2615 {
2616         struct bio_vec *bvec;
2617         int uptodate = !bio->bi_error;
2618         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2619         struct extent_io_tree *tree;
2620         u64 offset = 0;
2621         u64 start;
2622         u64 end;
2623         u64 len;
2624         u64 extent_start = 0;
2625         u64 extent_len = 0;
2626         int mirror;
2627         int ret;
2628         int i;
2629
2630         bio_for_each_segment_all(bvec, bio, i) {
2631                 struct page *page = bvec->bv_page;
2632                 struct inode *inode = page->mapping->host;
2633
2634                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636                          bio->bi_error, io_bio->mirror_num);
2637                 tree = &BTRFS_I(inode)->io_tree;
2638
2639                 /* We always issue full-page reads, but if some block
2640                  * in a page fails to read, blk_update_request() will
2641                  * advance bv_offset and adjust bv_len to compensate.
2642                  * Print a warning for nonzero offsets, and an error
2643                  * if they don't add up to a full page.  */
2644                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647                                    "partial page read in btrfs with offset %u and length %u",
2648                                         bvec->bv_offset, bvec->bv_len);
2649                         else
2650                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651                                    "incomplete page read in btrfs with offset %u and "
2652                                    "length %u",
2653                                         bvec->bv_offset, bvec->bv_len);
2654                 }
2655
2656                 start = page_offset(page);
2657                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2658                 len = bvec->bv_len;
2659
2660                 mirror = io_bio->mirror_num;
2661                 if (likely(uptodate && tree->ops &&
2662                            tree->ops->readpage_end_io_hook)) {
2663                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2664                                                               page, start, end,
2665                                                               mirror);
2666                         if (ret)
2667                                 uptodate = 0;
2668                         else
2669                                 clean_io_failure(inode, start, page, 0);
2670                 }
2671
2672                 if (likely(uptodate))
2673                         goto readpage_ok;
2674
2675                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2676                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2677                         if (!ret && !bio->bi_error)
2678                                 uptodate = 1;
2679                 } else {
2680                         /*
2681                          * The generic bio_readpage_error handles errors the
2682                          * following way: If possible, new read requests are
2683                          * created and submitted and will end up in
2684                          * end_bio_extent_readpage as well (if we're lucky, not
2685                          * in the !uptodate case). In that case it returns 0 and
2686                          * we just go on with the next page in our bio. If it
2687                          * can't handle the error it will return -EIO and we
2688                          * remain responsible for that page.
2689                          */
2690                         ret = bio_readpage_error(bio, offset, page, start, end,
2691                                                  mirror);
2692                         if (ret == 0) {
2693                                 uptodate = !bio->bi_error;
2694                                 offset += len;
2695                                 continue;
2696                         }
2697                 }
2698 readpage_ok:
2699                 if (likely(uptodate)) {
2700                         loff_t i_size = i_size_read(inode);
2701                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2702                         unsigned off;
2703
2704                         /* Zero out the end if this page straddles i_size */
2705                         off = i_size & (PAGE_CACHE_SIZE-1);
2706                         if (page->index == end_index && off)
2707                                 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2708                         SetPageUptodate(page);
2709                 } else {
2710                         ClearPageUptodate(page);
2711                         SetPageError(page);
2712                 }
2713                 unlock_page(page);
2714                 offset += len;
2715
2716                 if (unlikely(!uptodate)) {
2717                         if (extent_len) {
2718                                 endio_readpage_release_extent(tree,
2719                                                               extent_start,
2720                                                               extent_len, 1);
2721                                 extent_start = 0;
2722                                 extent_len = 0;
2723                         }
2724                         endio_readpage_release_extent(tree, start,
2725                                                       end - start + 1, 0);
2726                 } else if (!extent_len) {
2727                         extent_start = start;
2728                         extent_len = end + 1 - start;
2729                 } else if (extent_start + extent_len == start) {
2730                         extent_len += end + 1 - start;
2731                 } else {
2732                         endio_readpage_release_extent(tree, extent_start,
2733                                                       extent_len, uptodate);
2734                         extent_start = start;
2735                         extent_len = end + 1 - start;
2736                 }
2737         }
2738
2739         if (extent_len)
2740                 endio_readpage_release_extent(tree, extent_start, extent_len,
2741                                               uptodate);
2742         if (io_bio->end_io)
2743                 io_bio->end_io(io_bio, bio->bi_error);
2744         bio_put(bio);
2745 }
2746
2747 /*
2748  * this allocates from the btrfs_bioset.  We're returning a bio right now
2749  * but you can call btrfs_io_bio for the appropriate container_of magic
2750  */
2751 struct bio *
2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2753                 gfp_t gfp_flags)
2754 {
2755         struct btrfs_io_bio *btrfs_bio;
2756         struct bio *bio;
2757
2758         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2759
2760         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2761                 while (!bio && (nr_vecs /= 2)) {
2762                         bio = bio_alloc_bioset(gfp_flags,
2763                                                nr_vecs, btrfs_bioset);
2764                 }
2765         }
2766
2767         if (bio) {
2768                 bio->bi_bdev = bdev;
2769                 bio->bi_iter.bi_sector = first_sector;
2770                 btrfs_bio = btrfs_io_bio(bio);
2771                 btrfs_bio->csum = NULL;
2772                 btrfs_bio->csum_allocated = NULL;
2773                 btrfs_bio->end_io = NULL;
2774         }
2775         return bio;
2776 }
2777
2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2779 {
2780         struct btrfs_io_bio *btrfs_bio;
2781         struct bio *new;
2782
2783         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2784         if (new) {
2785                 btrfs_bio = btrfs_io_bio(new);
2786                 btrfs_bio->csum = NULL;
2787                 btrfs_bio->csum_allocated = NULL;
2788                 btrfs_bio->end_io = NULL;
2789
2790 #ifdef CONFIG_BLK_CGROUP
2791                 /* FIXME, put this into bio_clone_bioset */
2792                 if (bio->bi_css)
2793                         bio_associate_blkcg(new, bio->bi_css);
2794 #endif
2795         }
2796         return new;
2797 }
2798
2799 /* this also allocates from the btrfs_bioset */
2800 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2801 {
2802         struct btrfs_io_bio *btrfs_bio;
2803         struct bio *bio;
2804
2805         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2806         if (bio) {
2807                 btrfs_bio = btrfs_io_bio(bio);
2808                 btrfs_bio->csum = NULL;
2809                 btrfs_bio->csum_allocated = NULL;
2810                 btrfs_bio->end_io = NULL;
2811         }
2812         return bio;
2813 }
2814
2815
2816 static int __must_check submit_one_bio(int rw, struct bio *bio,
2817                                        int mirror_num, unsigned long bio_flags)
2818 {
2819         int ret = 0;
2820         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2821         struct page *page = bvec->bv_page;
2822         struct extent_io_tree *tree = bio->bi_private;
2823         u64 start;
2824
2825         start = page_offset(page) + bvec->bv_offset;
2826
2827         bio->bi_private = NULL;
2828
2829         bio_get(bio);
2830
2831         if (tree->ops && tree->ops->submit_bio_hook)
2832                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2833                                            mirror_num, bio_flags, start);
2834         else
2835                 btrfsic_submit_bio(rw, bio);
2836
2837         bio_put(bio);
2838         return ret;
2839 }
2840
2841 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2842                      unsigned long offset, size_t size, struct bio *bio,
2843                      unsigned long bio_flags)
2844 {
2845         int ret = 0;
2846         if (tree->ops && tree->ops->merge_bio_hook)
2847                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2848                                                 bio_flags);
2849         BUG_ON(ret < 0);
2850         return ret;
2851
2852 }
2853
2854 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2855                               struct writeback_control *wbc,
2856                               struct page *page, sector_t sector,
2857                               size_t size, unsigned long offset,
2858                               struct block_device *bdev,
2859                               struct bio **bio_ret,
2860                               unsigned long max_pages,
2861                               bio_end_io_t end_io_func,
2862                               int mirror_num,
2863                               unsigned long prev_bio_flags,
2864                               unsigned long bio_flags,
2865                               bool force_bio_submit)
2866 {
2867         int ret = 0;
2868         struct bio *bio;
2869         int contig = 0;
2870         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2871         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2872
2873         if (bio_ret && *bio_ret) {
2874                 bio = *bio_ret;
2875                 if (old_compressed)
2876                         contig = bio->bi_iter.bi_sector == sector;
2877                 else
2878                         contig = bio_end_sector(bio) == sector;
2879
2880                 if (prev_bio_flags != bio_flags || !contig ||
2881                     force_bio_submit ||
2882                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2883                     bio_add_page(bio, page, page_size, offset) < page_size) {
2884                         ret = submit_one_bio(rw, bio, mirror_num,
2885                                              prev_bio_flags);
2886                         if (ret < 0) {
2887                                 *bio_ret = NULL;
2888                                 return ret;
2889                         }
2890                         bio = NULL;
2891                 } else {
2892                         if (wbc)
2893                                 wbc_account_io(wbc, page, page_size);
2894                         return 0;
2895                 }
2896         }
2897
2898         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2899                         GFP_NOFS | __GFP_HIGH);
2900         if (!bio)
2901                 return -ENOMEM;
2902
2903         bio_add_page(bio, page, page_size, offset);
2904         bio->bi_end_io = end_io_func;
2905         bio->bi_private = tree;
2906         if (wbc) {
2907                 wbc_init_bio(wbc, bio);
2908                 wbc_account_io(wbc, page, page_size);
2909         }
2910
2911         if (bio_ret)
2912                 *bio_ret = bio;
2913         else
2914                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2915
2916         return ret;
2917 }
2918
2919 static void attach_extent_buffer_page(struct extent_buffer *eb,
2920                                       struct page *page)
2921 {
2922         if (!PagePrivate(page)) {
2923                 SetPagePrivate(page);
2924                 page_cache_get(page);
2925                 set_page_private(page, (unsigned long)eb);
2926         } else {
2927                 WARN_ON(page->private != (unsigned long)eb);
2928         }
2929 }
2930
2931 void set_page_extent_mapped(struct page *page)
2932 {
2933         if (!PagePrivate(page)) {
2934                 SetPagePrivate(page);
2935                 page_cache_get(page);
2936                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2937         }
2938 }
2939
2940 static struct extent_map *
2941 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2942                  u64 start, u64 len, get_extent_t *get_extent,
2943                  struct extent_map **em_cached)
2944 {
2945         struct extent_map *em;
2946
2947         if (em_cached && *em_cached) {
2948                 em = *em_cached;
2949                 if (extent_map_in_tree(em) && start >= em->start &&
2950                     start < extent_map_end(em)) {
2951                         atomic_inc(&em->refs);
2952                         return em;
2953                 }
2954
2955                 free_extent_map(em);
2956                 *em_cached = NULL;
2957         }
2958
2959         em = get_extent(inode, page, pg_offset, start, len, 0);
2960         if (em_cached && !IS_ERR_OR_NULL(em)) {
2961                 BUG_ON(*em_cached);
2962                 atomic_inc(&em->refs);
2963                 *em_cached = em;
2964         }
2965         return em;
2966 }
2967 /*
2968  * basic readpage implementation.  Locked extent state structs are inserted
2969  * into the tree that are removed when the IO is done (by the end_io
2970  * handlers)
2971  * XXX JDM: This needs looking at to ensure proper page locking
2972  */
2973 static int __do_readpage(struct extent_io_tree *tree,
2974                          struct page *page,
2975                          get_extent_t *get_extent,
2976                          struct extent_map **em_cached,
2977                          struct bio **bio, int mirror_num,
2978                          unsigned long *bio_flags, int rw,
2979                          u64 *prev_em_start)
2980 {
2981         struct inode *inode = page->mapping->host;
2982         u64 start = page_offset(page);
2983         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2984         u64 end;
2985         u64 cur = start;
2986         u64 extent_offset;
2987         u64 last_byte = i_size_read(inode);
2988         u64 block_start;
2989         u64 cur_end;
2990         sector_t sector;
2991         struct extent_map *em;
2992         struct block_device *bdev;
2993         int ret;
2994         int nr = 0;
2995         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2996         size_t pg_offset = 0;
2997         size_t iosize;
2998         size_t disk_io_size;
2999         size_t blocksize = inode->i_sb->s_blocksize;
3000         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
3001
3002         set_page_extent_mapped(page);
3003
3004         end = page_end;
3005         if (!PageUptodate(page)) {
3006                 if (cleancache_get_page(page) == 0) {
3007                         BUG_ON(blocksize != PAGE_SIZE);
3008                         unlock_extent(tree, start, end);
3009                         goto out;
3010                 }
3011         }
3012
3013         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3014                 char *userpage;
3015                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3016
3017                 if (zero_offset) {
3018                         iosize = PAGE_CACHE_SIZE - zero_offset;
3019                         userpage = kmap_atomic(page);
3020                         memset(userpage + zero_offset, 0, iosize);
3021                         flush_dcache_page(page);
3022                         kunmap_atomic(userpage);
3023                 }
3024         }
3025         while (cur <= end) {
3026                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3027                 bool force_bio_submit = false;
3028
3029                 if (cur >= last_byte) {
3030                         char *userpage;
3031                         struct extent_state *cached = NULL;
3032
3033                         iosize = PAGE_CACHE_SIZE - pg_offset;
3034                         userpage = kmap_atomic(page);
3035                         memset(userpage + pg_offset, 0, iosize);
3036                         flush_dcache_page(page);
3037                         kunmap_atomic(userpage);
3038                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3039                                             &cached, GFP_NOFS);
3040                         if (!parent_locked)
3041                                 unlock_extent_cached(tree, cur,
3042                                                      cur + iosize - 1,
3043                                                      &cached, GFP_NOFS);
3044                         break;
3045                 }
3046                 em = __get_extent_map(inode, page, pg_offset, cur,
3047                                       end - cur + 1, get_extent, em_cached);
3048                 if (IS_ERR_OR_NULL(em)) {
3049                         SetPageError(page);
3050                         if (!parent_locked)
3051                                 unlock_extent(tree, cur, end);
3052                         break;
3053                 }
3054                 extent_offset = cur - em->start;
3055                 BUG_ON(extent_map_end(em) <= cur);
3056                 BUG_ON(end < cur);
3057
3058                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3059                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3060                         extent_set_compress_type(&this_bio_flag,
3061                                                  em->compress_type);
3062                 }
3063
3064                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3065                 cur_end = min(extent_map_end(em) - 1, end);
3066                 iosize = ALIGN(iosize, blocksize);
3067                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3068                         disk_io_size = em->block_len;
3069                         sector = em->block_start >> 9;
3070                 } else {
3071                         sector = (em->block_start + extent_offset) >> 9;
3072                         disk_io_size = iosize;
3073                 }
3074                 bdev = em->bdev;
3075                 block_start = em->block_start;
3076                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3077                         block_start = EXTENT_MAP_HOLE;
3078
3079                 /*
3080                  * If we have a file range that points to a compressed extent
3081                  * and it's followed by a consecutive file range that points to
3082                  * to the same compressed extent (possibly with a different
3083                  * offset and/or length, so it either points to the whole extent
3084                  * or only part of it), we must make sure we do not submit a
3085                  * single bio to populate the pages for the 2 ranges because
3086                  * this makes the compressed extent read zero out the pages
3087                  * belonging to the 2nd range. Imagine the following scenario:
3088                  *
3089                  *  File layout
3090                  *  [0 - 8K]                     [8K - 24K]
3091                  *    |                               |
3092                  *    |                               |
3093                  * points to extent X,         points to extent X,
3094                  * offset 4K, length of 8K     offset 0, length 16K
3095                  *
3096                  * [extent X, compressed length = 4K uncompressed length = 16K]
3097                  *
3098                  * If the bio to read the compressed extent covers both ranges,
3099                  * it will decompress extent X into the pages belonging to the
3100                  * first range and then it will stop, zeroing out the remaining
3101                  * pages that belong to the other range that points to extent X.
3102                  * So here we make sure we submit 2 bios, one for the first
3103                  * range and another one for the third range. Both will target
3104                  * the same physical extent from disk, but we can't currently
3105                  * make the compressed bio endio callback populate the pages
3106                  * for both ranges because each compressed bio is tightly
3107                  * coupled with a single extent map, and each range can have
3108                  * an extent map with a different offset value relative to the
3109                  * uncompressed data of our extent and different lengths. This
3110                  * is a corner case so we prioritize correctness over
3111                  * non-optimal behavior (submitting 2 bios for the same extent).
3112                  */
3113                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3114                     prev_em_start && *prev_em_start != (u64)-1 &&
3115                     *prev_em_start != em->orig_start)
3116                         force_bio_submit = true;
3117
3118                 if (prev_em_start)
3119                         *prev_em_start = em->orig_start;
3120
3121                 free_extent_map(em);
3122                 em = NULL;
3123
3124                 /* we've found a hole, just zero and go on */
3125                 if (block_start == EXTENT_MAP_HOLE) {
3126                         char *userpage;
3127                         struct extent_state *cached = NULL;
3128
3129                         userpage = kmap_atomic(page);
3130                         memset(userpage + pg_offset, 0, iosize);
3131                         flush_dcache_page(page);
3132                         kunmap_atomic(userpage);
3133
3134                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3135                                             &cached, GFP_NOFS);
3136                         if (parent_locked)
3137                                 free_extent_state(cached);
3138                         else
3139                                 unlock_extent_cached(tree, cur,
3140                                                      cur + iosize - 1,
3141                                                      &cached, GFP_NOFS);
3142                         cur = cur + iosize;
3143                         pg_offset += iosize;
3144                         continue;
3145                 }
3146                 /* the get_extent function already copied into the page */
3147                 if (test_range_bit(tree, cur, cur_end,
3148                                    EXTENT_UPTODATE, 1, NULL)) {
3149                         check_page_uptodate(tree, page);
3150                         if (!parent_locked)
3151                                 unlock_extent(tree, cur, cur + iosize - 1);
3152                         cur = cur + iosize;
3153                         pg_offset += iosize;
3154                         continue;
3155                 }
3156                 /* we have an inline extent but it didn't get marked up
3157                  * to date.  Error out
3158                  */
3159                 if (block_start == EXTENT_MAP_INLINE) {
3160                         SetPageError(page);
3161                         if (!parent_locked)
3162                                 unlock_extent(tree, cur, cur + iosize - 1);
3163                         cur = cur + iosize;
3164                         pg_offset += iosize;
3165                         continue;
3166                 }
3167
3168                 pnr -= page->index;
3169                 ret = submit_extent_page(rw, tree, NULL, page,
3170                                          sector, disk_io_size, pg_offset,
3171                                          bdev, bio, pnr,
3172                                          end_bio_extent_readpage, mirror_num,
3173                                          *bio_flags,
3174                                          this_bio_flag,
3175                                          force_bio_submit);
3176                 if (!ret) {
3177                         nr++;
3178                         *bio_flags = this_bio_flag;
3179                 } else {
3180                         SetPageError(page);
3181                         if (!parent_locked)
3182                                 unlock_extent(tree, cur, cur + iosize - 1);
3183                 }
3184                 cur = cur + iosize;
3185                 pg_offset += iosize;
3186         }
3187 out:
3188         if (!nr) {
3189                 if (!PageError(page))
3190                         SetPageUptodate(page);
3191                 unlock_page(page);
3192         }
3193         return 0;
3194 }
3195
3196 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3197                                              struct page *pages[], int nr_pages,
3198                                              u64 start, u64 end,
3199                                              get_extent_t *get_extent,
3200                                              struct extent_map **em_cached,
3201                                              struct bio **bio, int mirror_num,
3202                                              unsigned long *bio_flags, int rw,
3203                                              u64 *prev_em_start)
3204 {
3205         struct inode *inode;
3206         struct btrfs_ordered_extent *ordered;
3207         int index;
3208
3209         inode = pages[0]->mapping->host;
3210         while (1) {
3211                 lock_extent(tree, start, end);
3212                 ordered = btrfs_lookup_ordered_range(inode, start,
3213                                                      end - start + 1);
3214                 if (!ordered)
3215                         break;
3216                 unlock_extent(tree, start, end);
3217                 btrfs_start_ordered_extent(inode, ordered, 1);
3218                 btrfs_put_ordered_extent(ordered);
3219         }
3220
3221         for (index = 0; index < nr_pages; index++) {
3222                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3223                               mirror_num, bio_flags, rw, prev_em_start);
3224                 page_cache_release(pages[index]);
3225         }
3226 }
3227
3228 static void __extent_readpages(struct extent_io_tree *tree,
3229                                struct page *pages[],
3230                                int nr_pages, get_extent_t *get_extent,
3231                                struct extent_map **em_cached,
3232                                struct bio **bio, int mirror_num,
3233                                unsigned long *bio_flags, int rw,
3234                                u64 *prev_em_start)
3235 {
3236         u64 start = 0;
3237         u64 end = 0;
3238         u64 page_start;
3239         int index;
3240         int first_index = 0;
3241
3242         for (index = 0; index < nr_pages; index++) {
3243                 page_start = page_offset(pages[index]);
3244                 if (!end) {
3245                         start = page_start;
3246                         end = start + PAGE_CACHE_SIZE - 1;
3247                         first_index = index;
3248                 } else if (end + 1 == page_start) {
3249                         end += PAGE_CACHE_SIZE;
3250                 } else {
3251                         __do_contiguous_readpages(tree, &pages[first_index],
3252                                                   index - first_index, start,
3253                                                   end, get_extent, em_cached,
3254                                                   bio, mirror_num, bio_flags,
3255                                                   rw, prev_em_start);
3256                         start = page_start;
3257                         end = start + PAGE_CACHE_SIZE - 1;
3258                         first_index = index;
3259                 }
3260         }
3261
3262         if (end)
3263                 __do_contiguous_readpages(tree, &pages[first_index],
3264                                           index - first_index, start,
3265                                           end, get_extent, em_cached, bio,
3266                                           mirror_num, bio_flags, rw,
3267                                           prev_em_start);
3268 }
3269
3270 static int __extent_read_full_page(struct extent_io_tree *tree,
3271                                    struct page *page,
3272                                    get_extent_t *get_extent,
3273                                    struct bio **bio, int mirror_num,
3274                                    unsigned long *bio_flags, int rw)
3275 {
3276         struct inode *inode = page->mapping->host;
3277         struct btrfs_ordered_extent *ordered;
3278         u64 start = page_offset(page);
3279         u64 end = start + PAGE_CACHE_SIZE - 1;
3280         int ret;
3281
3282         while (1) {
3283                 lock_extent(tree, start, end);
3284                 ordered = btrfs_lookup_ordered_extent(inode, start);
3285                 if (!ordered)
3286                         break;
3287                 unlock_extent(tree, start, end);
3288                 btrfs_start_ordered_extent(inode, ordered, 1);
3289                 btrfs_put_ordered_extent(ordered);
3290         }
3291
3292         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3293                             bio_flags, rw, NULL);
3294         return ret;
3295 }
3296
3297 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3298                             get_extent_t *get_extent, int mirror_num)
3299 {
3300         struct bio *bio = NULL;
3301         unsigned long bio_flags = 0;
3302         int ret;
3303
3304         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3305                                       &bio_flags, READ);
3306         if (bio)
3307                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3308         return ret;
3309 }
3310
3311 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3312                                  get_extent_t *get_extent, int mirror_num)
3313 {
3314         struct bio *bio = NULL;
3315         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3316         int ret;
3317
3318         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3319                             &bio_flags, READ, NULL);
3320         if (bio)
3321                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3322         return ret;
3323 }
3324
3325 static noinline void update_nr_written(struct page *page,
3326                                       struct writeback_control *wbc,
3327                                       unsigned long nr_written)
3328 {
3329         wbc->nr_to_write -= nr_written;
3330         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3331             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3332                 page->mapping->writeback_index = page->index + nr_written;
3333 }
3334
3335 /*
3336  * helper for __extent_writepage, doing all of the delayed allocation setup.
3337  *
3338  * This returns 1 if our fill_delalloc function did all the work required
3339  * to write the page (copy into inline extent).  In this case the IO has
3340  * been started and the page is already unlocked.
3341  *
3342  * This returns 0 if all went well (page still locked)
3343  * This returns < 0 if there were errors (page still locked)
3344  */
3345 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3346                               struct page *page, struct writeback_control *wbc,
3347                               struct extent_page_data *epd,
3348                               u64 delalloc_start,
3349                               unsigned long *nr_written)
3350 {
3351         struct extent_io_tree *tree = epd->tree;
3352         u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3353         u64 nr_delalloc;
3354         u64 delalloc_to_write = 0;
3355         u64 delalloc_end = 0;
3356         int ret;
3357         int page_started = 0;
3358
3359         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3360                 return 0;
3361
3362         while (delalloc_end < page_end) {
3363                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3364                                                page,
3365                                                &delalloc_start,
3366                                                &delalloc_end,
3367                                                BTRFS_MAX_EXTENT_SIZE);
3368                 if (nr_delalloc == 0) {
3369                         delalloc_start = delalloc_end + 1;
3370                         continue;
3371                 }
3372                 ret = tree->ops->fill_delalloc(inode, page,
3373                                                delalloc_start,
3374                                                delalloc_end,
3375                                                &page_started,
3376                                                nr_written);
3377                 /* File system has been set read-only */
3378                 if (ret) {
3379                         SetPageError(page);
3380                         /* fill_delalloc should be return < 0 for error
3381                          * but just in case, we use > 0 here meaning the
3382                          * IO is started, so we don't want to return > 0
3383                          * unless things are going well.
3384                          */
3385                         ret = ret < 0 ? ret : -EIO;
3386                         goto done;
3387                 }
3388                 /*
3389                  * delalloc_end is already one less than the total
3390                  * length, so we don't subtract one from
3391                  * PAGE_CACHE_SIZE
3392                  */
3393                 delalloc_to_write += (delalloc_end - delalloc_start +
3394                                       PAGE_CACHE_SIZE) >>
3395                                       PAGE_CACHE_SHIFT;
3396                 delalloc_start = delalloc_end + 1;
3397         }
3398         if (wbc->nr_to_write < delalloc_to_write) {
3399                 int thresh = 8192;
3400
3401                 if (delalloc_to_write < thresh * 2)
3402                         thresh = delalloc_to_write;
3403                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3404                                          thresh);
3405         }
3406
3407         /* did the fill delalloc function already unlock and start
3408          * the IO?
3409          */
3410         if (page_started) {
3411                 /*
3412                  * we've unlocked the page, so we can't update
3413                  * the mapping's writeback index, just update
3414                  * nr_to_write.
3415                  */
3416                 wbc->nr_to_write -= *nr_written;
3417                 return 1;
3418         }
3419
3420         ret = 0;
3421
3422 done:
3423         return ret;
3424 }
3425
3426 /*
3427  * helper for __extent_writepage.  This calls the writepage start hooks,
3428  * and does the loop to map the page into extents and bios.
3429  *
3430  * We return 1 if the IO is started and the page is unlocked,
3431  * 0 if all went well (page still locked)
3432  * < 0 if there were errors (page still locked)
3433  */
3434 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3435                                  struct page *page,
3436                                  struct writeback_control *wbc,
3437                                  struct extent_page_data *epd,
3438                                  loff_t i_size,
3439                                  unsigned long nr_written,
3440                                  int write_flags, int *nr_ret)
3441 {
3442         struct extent_io_tree *tree = epd->tree;
3443         u64 start = page_offset(page);
3444         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3445         u64 end;
3446         u64 cur = start;
3447         u64 extent_offset;
3448         u64 block_start;
3449         u64 iosize;
3450         sector_t sector;
3451         struct extent_state *cached_state = NULL;
3452         struct extent_map *em;
3453         struct block_device *bdev;
3454         size_t pg_offset = 0;
3455         size_t blocksize;
3456         int ret = 0;
3457         int nr = 0;
3458         bool compressed;
3459
3460         if (tree->ops && tree->ops->writepage_start_hook) {
3461                 ret = tree->ops->writepage_start_hook(page, start,
3462                                                       page_end);
3463                 if (ret) {
3464                         /* Fixup worker will requeue */
3465                         if (ret == -EBUSY)
3466                                 wbc->pages_skipped++;
3467                         else
3468                                 redirty_page_for_writepage(wbc, page);
3469
3470                         update_nr_written(page, wbc, nr_written);
3471                         unlock_page(page);
3472                         ret = 1;
3473                         goto done_unlocked;
3474                 }
3475         }
3476
3477         /*
3478          * we don't want to touch the inode after unlocking the page,
3479          * so we update the mapping writeback index now
3480          */
3481         update_nr_written(page, wbc, nr_written + 1);
3482
3483         end = page_end;
3484         if (i_size <= start) {
3485                 if (tree->ops && tree->ops->writepage_end_io_hook)
3486                         tree->ops->writepage_end_io_hook(page, start,
3487                                                          page_end, NULL, 1);
3488                 goto done;
3489         }
3490
3491         blocksize = inode->i_sb->s_blocksize;
3492
3493         while (cur <= end) {
3494                 u64 em_end;
3495                 if (cur >= i_size) {
3496                         if (tree->ops && tree->ops->writepage_end_io_hook)
3497                                 tree->ops->writepage_end_io_hook(page, cur,
3498                                                          page_end, NULL, 1);
3499                         break;
3500                 }
3501                 em = epd->get_extent(inode, page, pg_offset, cur,
3502                                      end - cur + 1, 1);
3503                 if (IS_ERR_OR_NULL(em)) {
3504                         SetPageError(page);
3505                         ret = PTR_ERR_OR_ZERO(em);
3506                         break;
3507                 }
3508
3509                 extent_offset = cur - em->start;
3510                 em_end = extent_map_end(em);
3511                 BUG_ON(em_end <= cur);
3512                 BUG_ON(end < cur);
3513                 iosize = min(em_end - cur, end - cur + 1);
3514                 iosize = ALIGN(iosize, blocksize);
3515                 sector = (em->block_start + extent_offset) >> 9;
3516                 bdev = em->bdev;
3517                 block_start = em->block_start;
3518                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3519                 free_extent_map(em);
3520                 em = NULL;
3521
3522                 /*
3523                  * compressed and inline extents are written through other
3524                  * paths in the FS
3525                  */
3526                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3527                     block_start == EXTENT_MAP_INLINE) {
3528                         /*
3529                          * end_io notification does not happen here for
3530                          * compressed extents
3531                          */
3532                         if (!compressed && tree->ops &&
3533                             tree->ops->writepage_end_io_hook)
3534                                 tree->ops->writepage_end_io_hook(page, cur,
3535                                                          cur + iosize - 1,
3536                                                          NULL, 1);
3537                         else if (compressed) {
3538                                 /* we don't want to end_page_writeback on
3539                                  * a compressed extent.  this happens
3540                                  * elsewhere
3541                                  */
3542                                 nr++;
3543                         }
3544
3545                         cur += iosize;
3546                         pg_offset += iosize;
3547                         continue;
3548                 }
3549
3550                 if (tree->ops && tree->ops->writepage_io_hook) {
3551                         ret = tree->ops->writepage_io_hook(page, cur,
3552                                                 cur + iosize - 1);
3553                 } else {
3554                         ret = 0;
3555                 }
3556                 if (ret) {
3557                         SetPageError(page);
3558                 } else {
3559                         unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3560
3561                         set_range_writeback(tree, cur, cur + iosize - 1);
3562                         if (!PageWriteback(page)) {
3563                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3564                                            "page %lu not writeback, cur %llu end %llu",
3565                                        page->index, cur, end);
3566                         }
3567
3568                         ret = submit_extent_page(write_flags, tree, wbc, page,
3569                                                  sector, iosize, pg_offset,
3570                                                  bdev, &epd->bio, max_nr,
3571                                                  end_bio_extent_writepage,
3572                                                  0, 0, 0, false);
3573                         if (ret)
3574                                 SetPageError(page);
3575                 }
3576                 cur = cur + iosize;
3577                 pg_offset += iosize;
3578                 nr++;
3579         }
3580 done:
3581         *nr_ret = nr;
3582
3583 done_unlocked:
3584
3585         /* drop our reference on any cached states */
3586         free_extent_state(cached_state);
3587         return ret;
3588 }
3589
3590 /*
3591  * the writepage semantics are similar to regular writepage.  extent
3592  * records are inserted to lock ranges in the tree, and as dirty areas
3593  * are found, they are marked writeback.  Then the lock bits are removed
3594  * and the end_io handler clears the writeback ranges
3595  */
3596 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3597                               void *data)
3598 {
3599         struct inode *inode = page->mapping->host;
3600         struct extent_page_data *epd = data;
3601         u64 start = page_offset(page);
3602         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3603         int ret;
3604         int nr = 0;
3605         size_t pg_offset = 0;
3606         loff_t i_size = i_size_read(inode);
3607         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3608         int write_flags;
3609         unsigned long nr_written = 0;
3610
3611         if (wbc->sync_mode == WB_SYNC_ALL)
3612                 write_flags = WRITE_SYNC;
3613         else
3614                 write_flags = WRITE;
3615
3616         trace___extent_writepage(page, inode, wbc);
3617
3618         WARN_ON(!PageLocked(page));
3619
3620         ClearPageError(page);
3621
3622         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3623         if (page->index > end_index ||
3624            (page->index == end_index && !pg_offset)) {
3625                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3626                 unlock_page(page);
3627                 return 0;
3628         }
3629
3630         if (page->index == end_index) {
3631                 char *userpage;
3632
3633                 userpage = kmap_atomic(page);
3634                 memset(userpage + pg_offset, 0,
3635                        PAGE_CACHE_SIZE - pg_offset);
3636                 kunmap_atomic(userpage);
3637                 flush_dcache_page(page);
3638         }
3639
3640         pg_offset = 0;
3641
3642         set_page_extent_mapped(page);
3643
3644         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3645         if (ret == 1)
3646                 goto done_unlocked;
3647         if (ret)
3648                 goto done;
3649
3650         ret = __extent_writepage_io(inode, page, wbc, epd,
3651                                     i_size, nr_written, write_flags, &nr);
3652         if (ret == 1)
3653                 goto done_unlocked;
3654
3655 done:
3656         if (nr == 0) {
3657                 /* make sure the mapping tag for page dirty gets cleared */
3658                 set_page_writeback(page);
3659                 end_page_writeback(page);
3660         }
3661         if (PageError(page)) {
3662                 ret = ret < 0 ? ret : -EIO;
3663                 end_extent_writepage(page, ret, start, page_end);
3664         }
3665         unlock_page(page);
3666         return ret;
3667
3668 done_unlocked:
3669         return 0;
3670 }
3671
3672 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3673 {
3674         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3675                        TASK_UNINTERRUPTIBLE);
3676 }
3677
3678 static noinline_for_stack int
3679 lock_extent_buffer_for_io(struct extent_buffer *eb,
3680                           struct btrfs_fs_info *fs_info,
3681                           struct extent_page_data *epd)
3682 {
3683         unsigned long i, num_pages;
3684         int flush = 0;
3685         int ret = 0;
3686
3687         if (!btrfs_try_tree_write_lock(eb)) {
3688                 flush = 1;
3689                 flush_write_bio(epd);
3690                 btrfs_tree_lock(eb);
3691         }
3692
3693         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3694                 btrfs_tree_unlock(eb);
3695                 if (!epd->sync_io)
3696                         return 0;
3697                 if (!flush) {
3698                         flush_write_bio(epd);
3699                         flush = 1;
3700                 }
3701                 while (1) {
3702                         wait_on_extent_buffer_writeback(eb);
3703                         btrfs_tree_lock(eb);
3704                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3705                                 break;
3706                         btrfs_tree_unlock(eb);
3707                 }
3708         }
3709
3710         /*
3711          * We need to do this to prevent races in people who check if the eb is
3712          * under IO since we can end up having no IO bits set for a short period
3713          * of time.
3714          */
3715         spin_lock(&eb->refs_lock);
3716         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3717                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3718                 spin_unlock(&eb->refs_lock);
3719                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3720                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3721                                      -eb->len,
3722                                      fs_info->dirty_metadata_batch);
3723                 ret = 1;
3724         } else {
3725                 spin_unlock(&eb->refs_lock);
3726         }
3727
3728         btrfs_tree_unlock(eb);
3729
3730         if (!ret)
3731                 return ret;
3732
3733         num_pages = num_extent_pages(eb->start, eb->len);
3734         for (i = 0; i < num_pages; i++) {
3735                 struct page *p = eb->pages[i];
3736
3737                 if (!trylock_page(p)) {
3738                         if (!flush) {
3739                                 flush_write_bio(epd);
3740                                 flush = 1;
3741                         }
3742                         lock_page(p);
3743                 }
3744         }
3745
3746         return ret;
3747 }
3748
3749 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3750 {
3751         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3752         smp_mb__after_atomic();
3753         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3754 }
3755
3756 static void set_btree_ioerr(struct page *page)
3757 {
3758         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3759         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3760
3761         SetPageError(page);
3762         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3763                 return;
3764
3765         /*
3766          * If writeback for a btree extent that doesn't belong to a log tree
3767          * failed, increment the counter transaction->eb_write_errors.
3768          * We do this because while the transaction is running and before it's
3769          * committing (when we call filemap_fdata[write|wait]_range against
3770          * the btree inode), we might have
3771          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3772          * returns an error or an error happens during writeback, when we're
3773          * committing the transaction we wouldn't know about it, since the pages
3774          * can be no longer dirty nor marked anymore for writeback (if a
3775          * subsequent modification to the extent buffer didn't happen before the
3776          * transaction commit), which makes filemap_fdata[write|wait]_range not
3777          * able to find the pages tagged with SetPageError at transaction
3778          * commit time. So if this happens we must abort the transaction,
3779          * otherwise we commit a super block with btree roots that point to
3780          * btree nodes/leafs whose content on disk is invalid - either garbage
3781          * or the content of some node/leaf from a past generation that got
3782          * cowed or deleted and is no longer valid.
3783          *
3784          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3785          * not be enough - we need to distinguish between log tree extents vs
3786          * non-log tree extents, and the next filemap_fdatawait_range() call
3787          * will catch and clear such errors in the mapping - and that call might
3788          * be from a log sync and not from a transaction commit. Also, checking
3789          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3790          * not done and would not be reliable - the eb might have been released
3791          * from memory and reading it back again means that flag would not be
3792          * set (since it's a runtime flag, not persisted on disk).
3793          *
3794          * Using the flags below in the btree inode also makes us achieve the
3795          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3796          * writeback for all dirty pages and before filemap_fdatawait_range()
3797          * is called, the writeback for all dirty pages had already finished
3798          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3799          * filemap_fdatawait_range() would return success, as it could not know
3800          * that writeback errors happened (the pages were no longer tagged for
3801          * writeback).
3802          */
3803         switch (eb->log_index) {
3804         case -1:
3805                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3806                 break;
3807         case 0:
3808                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3809                 break;
3810         case 1:
3811                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3812                 break;
3813         default:
3814                 BUG(); /* unexpected, logic error */
3815         }
3816 }
3817
3818 static void end_bio_extent_buffer_writepage(struct bio *bio)
3819 {
3820         struct bio_vec *bvec;
3821         struct extent_buffer *eb;
3822         int i, done;
3823
3824         bio_for_each_segment_all(bvec, bio, i) {
3825                 struct page *page = bvec->bv_page;
3826
3827                 eb = (struct extent_buffer *)page->private;
3828                 BUG_ON(!eb);
3829                 done = atomic_dec_and_test(&eb->io_pages);
3830
3831                 if (bio->bi_error ||
3832                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3833                         ClearPageUptodate(page);
3834                         set_btree_ioerr(page);
3835                 }
3836
3837                 end_page_writeback(page);
3838
3839                 if (!done)
3840                         continue;
3841
3842                 end_extent_buffer_writeback(eb);
3843         }
3844
3845         bio_put(bio);
3846 }
3847
3848 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3849                         struct btrfs_fs_info *fs_info,
3850                         struct writeback_control *wbc,
3851                         struct extent_page_data *epd)
3852 {
3853         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3854         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3855         u64 offset = eb->start;
3856         unsigned long i, num_pages;
3857         unsigned long bio_flags = 0;
3858         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3859         int ret = 0;
3860
3861         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862         num_pages = num_extent_pages(eb->start, eb->len);
3863         atomic_set(&eb->io_pages, num_pages);
3864         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3865                 bio_flags = EXTENT_BIO_TREE_LOG;
3866
3867         for (i = 0; i < num_pages; i++) {
3868                 struct page *p = eb->pages[i];
3869
3870                 clear_page_dirty_for_io(p);
3871                 set_page_writeback(p);
3872                 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3873                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3874                                          -1, end_bio_extent_buffer_writepage,
3875                                          0, epd->bio_flags, bio_flags, false);
3876                 epd->bio_flags = bio_flags;
3877                 if (ret) {
3878                         set_btree_ioerr(p);
3879                         end_page_writeback(p);
3880                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3881                                 end_extent_buffer_writeback(eb);
3882                         ret = -EIO;
3883                         break;
3884                 }
3885                 offset += PAGE_CACHE_SIZE;
3886                 update_nr_written(p, wbc, 1);
3887                 unlock_page(p);
3888         }
3889
3890         if (unlikely(ret)) {
3891                 for (; i < num_pages; i++) {
3892                         struct page *p = eb->pages[i];
3893                         clear_page_dirty_for_io(p);
3894                         unlock_page(p);
3895                 }
3896         }
3897
3898         return ret;
3899 }
3900
3901 int btree_write_cache_pages(struct address_space *mapping,
3902                                    struct writeback_control *wbc)
3903 {
3904         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3905         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3906         struct extent_buffer *eb, *prev_eb = NULL;
3907         struct extent_page_data epd = {
3908                 .bio = NULL,
3909                 .tree = tree,
3910                 .extent_locked = 0,
3911                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3912                 .bio_flags = 0,
3913         };
3914         int ret = 0;
3915         int done = 0;
3916         int nr_to_write_done = 0;
3917         struct pagevec pvec;
3918         int nr_pages;
3919         pgoff_t index;
3920         pgoff_t end;            /* Inclusive */
3921         int scanned = 0;
3922         int tag;
3923
3924         pagevec_init(&pvec, 0);
3925         if (wbc->range_cyclic) {
3926                 index = mapping->writeback_index; /* Start from prev offset */
3927                 end = -1;
3928         } else {
3929                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3930                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3931                 scanned = 1;
3932         }
3933         if (wbc->sync_mode == WB_SYNC_ALL)
3934                 tag = PAGECACHE_TAG_TOWRITE;
3935         else
3936                 tag = PAGECACHE_TAG_DIRTY;
3937 retry:
3938         if (wbc->sync_mode == WB_SYNC_ALL)
3939                 tag_pages_for_writeback(mapping, index, end);
3940         while (!done && !nr_to_write_done && (index <= end) &&
3941                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3942                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3943                 unsigned i;
3944
3945                 scanned = 1;
3946                 for (i = 0; i < nr_pages; i++) {
3947                         struct page *page = pvec.pages[i];
3948
3949                         if (!PagePrivate(page))
3950                                 continue;
3951
3952                         if (!wbc->range_cyclic && page->index > end) {
3953                                 done = 1;
3954                                 break;
3955                         }
3956
3957                         spin_lock(&mapping->private_lock);
3958                         if (!PagePrivate(page)) {
3959                                 spin_unlock(&mapping->private_lock);
3960                                 continue;
3961                         }
3962
3963                         eb = (struct extent_buffer *)page->private;
3964
3965                         /*
3966                          * Shouldn't happen and normally this would be a BUG_ON
3967                          * but no sense in crashing the users box for something
3968                          * we can survive anyway.
3969                          */
3970                         if (WARN_ON(!eb)) {
3971                                 spin_unlock(&mapping->private_lock);
3972                                 continue;
3973                         }
3974
3975                         if (eb == prev_eb) {
3976                                 spin_unlock(&mapping->private_lock);
3977                                 continue;
3978                         }
3979
3980                         ret = atomic_inc_not_zero(&eb->refs);
3981                         spin_unlock(&mapping->private_lock);
3982                         if (!ret)
3983                                 continue;
3984
3985                         prev_eb = eb;
3986                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3987                         if (!ret) {
3988                                 free_extent_buffer(eb);
3989                                 continue;
3990                         }
3991
3992                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3993                         if (ret) {
3994                                 done = 1;
3995                                 free_extent_buffer(eb);
3996                                 break;
3997                         }
3998                         free_extent_buffer(eb);
3999
4000                         /*
4001                          * the filesystem may choose to bump up nr_to_write.
4002                          * We have to make sure to honor the new nr_to_write
4003                          * at any time
4004                          */
4005                         nr_to_write_done = wbc->nr_to_write <= 0;
4006                 }
4007                 pagevec_release(&pvec);
4008                 cond_resched();
4009         }
4010         if (!scanned && !done) {
4011                 /*
4012                  * We hit the last page and there is more work to be done: wrap
4013                  * back to the start of the file
4014                  */
4015                 scanned = 1;
4016                 index = 0;
4017                 goto retry;
4018         }
4019         flush_write_bio(&epd);
4020         return ret;
4021 }
4022
4023 /**
4024  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4025  * @mapping: address space structure to write
4026  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4027  * @writepage: function called for each page
4028  * @data: data passed to writepage function
4029  *
4030  * If a page is already under I/O, write_cache_pages() skips it, even
4031  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4032  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4033  * and msync() need to guarantee that all the data which was dirty at the time
4034  * the call was made get new I/O started against them.  If wbc->sync_mode is
4035  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4036  * existing IO to complete.
4037  */
4038 static int extent_write_cache_pages(struct extent_io_tree *tree,
4039                              struct address_space *mapping,
4040                              struct writeback_control *wbc,
4041                              writepage_t writepage, void *data,
4042                              void (*flush_fn)(void *))
4043 {
4044         struct inode *inode = mapping->host;
4045         int ret = 0;
4046         int done = 0;
4047         int err = 0;
4048         int nr_to_write_done = 0;
4049         struct pagevec pvec;
4050         int nr_pages;
4051         pgoff_t index;
4052         pgoff_t end;            /* Inclusive */
4053         int scanned = 0;
4054         int tag;
4055
4056         /*
4057          * We have to hold onto the inode so that ordered extents can do their
4058          * work when the IO finishes.  The alternative to this is failing to add
4059          * an ordered extent if the igrab() fails there and that is a huge pain
4060          * to deal with, so instead just hold onto the inode throughout the
4061          * writepages operation.  If it fails here we are freeing up the inode
4062          * anyway and we'd rather not waste our time writing out stuff that is
4063          * going to be truncated anyway.
4064          */
4065         if (!igrab(inode))
4066                 return 0;
4067
4068         pagevec_init(&pvec, 0);
4069         if (wbc->range_cyclic) {
4070                 index = mapping->writeback_index; /* Start from prev offset */
4071                 end = -1;
4072         } else {
4073                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4074                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4075                 scanned = 1;
4076         }
4077         if (wbc->sync_mode == WB_SYNC_ALL)
4078                 tag = PAGECACHE_TAG_TOWRITE;
4079         else
4080                 tag = PAGECACHE_TAG_DIRTY;
4081 retry:
4082         if (wbc->sync_mode == WB_SYNC_ALL)
4083                 tag_pages_for_writeback(mapping, index, end);
4084         while (!done && !nr_to_write_done && (index <= end) &&
4085                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4086                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4087                 unsigned i;
4088
4089                 scanned = 1;
4090                 for (i = 0; i < nr_pages; i++) {
4091                         struct page *page = pvec.pages[i];
4092
4093                         /*
4094                          * At this point we hold neither mapping->tree_lock nor
4095                          * lock on the page itself: the page may be truncated or
4096                          * invalidated (changing page->mapping to NULL), or even
4097                          * swizzled back from swapper_space to tmpfs file
4098                          * mapping
4099                          */
4100                         if (!trylock_page(page)) {
4101                                 flush_fn(data);
4102                                 lock_page(page);
4103                         }
4104
4105                         if (unlikely(page->mapping != mapping)) {
4106                                 unlock_page(page);
4107                                 continue;
4108                         }
4109
4110                         if (!wbc->range_cyclic && page->index > end) {
4111                                 done = 1;
4112                                 unlock_page(page);
4113                                 continue;
4114                         }
4115
4116                         if (wbc->sync_mode != WB_SYNC_NONE) {
4117                                 if (PageWriteback(page))
4118                                         flush_fn(data);
4119                                 wait_on_page_writeback(page);
4120                         }
4121
4122                         if (PageWriteback(page) ||
4123                             !clear_page_dirty_for_io(page)) {
4124                                 unlock_page(page);
4125                                 continue;
4126                         }
4127
4128                         ret = (*writepage)(page, wbc, data);
4129
4130                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4131                                 unlock_page(page);
4132                                 ret = 0;
4133                         }
4134                         if (!err && ret < 0)
4135                                 err = ret;
4136
4137                         /*
4138                          * the filesystem may choose to bump up nr_to_write.
4139                          * We have to make sure to honor the new nr_to_write
4140                          * at any time
4141                          */
4142                         nr_to_write_done = wbc->nr_to_write <= 0;
4143                 }
4144                 pagevec_release(&pvec);
4145                 cond_resched();
4146         }
4147         if (!scanned && !done && !err) {
4148                 /*
4149                  * We hit the last page and there is more work to be done: wrap
4150                  * back to the start of the file
4151                  */
4152                 scanned = 1;
4153                 index = 0;
4154                 goto retry;
4155         }
4156         btrfs_add_delayed_iput(inode);
4157         return err;
4158 }
4159
4160 static void flush_epd_write_bio(struct extent_page_data *epd)
4161 {
4162         if (epd->bio) {
4163                 int rw = WRITE;
4164                 int ret;
4165
4166                 if (epd->sync_io)
4167                         rw = WRITE_SYNC;
4168
4169                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4170                 BUG_ON(ret < 0); /* -ENOMEM */
4171                 epd->bio = NULL;
4172         }
4173 }
4174
4175 static noinline void flush_write_bio(void *data)
4176 {
4177         struct extent_page_data *epd = data;
4178         flush_epd_write_bio(epd);
4179 }
4180
4181 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4182                           get_extent_t *get_extent,
4183                           struct writeback_control *wbc)
4184 {
4185         int ret;
4186         struct extent_page_data epd = {
4187                 .bio = NULL,
4188                 .tree = tree,
4189                 .get_extent = get_extent,
4190                 .extent_locked = 0,
4191                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4192                 .bio_flags = 0,
4193         };
4194
4195         ret = __extent_writepage(page, wbc, &epd);
4196
4197         flush_epd_write_bio(&epd);
4198         return ret;
4199 }
4200
4201 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4202                               u64 start, u64 end, get_extent_t *get_extent,
4203                               int mode)
4204 {
4205         int ret = 0;
4206         struct address_space *mapping = inode->i_mapping;
4207         struct page *page;
4208         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4209                 PAGE_CACHE_SHIFT;
4210
4211         struct extent_page_data epd = {
4212                 .bio = NULL,
4213                 .tree = tree,
4214                 .get_extent = get_extent,
4215                 .extent_locked = 1,
4216                 .sync_io = mode == WB_SYNC_ALL,
4217                 .bio_flags = 0,
4218         };
4219         struct writeback_control wbc_writepages = {
4220                 .sync_mode      = mode,
4221                 .nr_to_write    = nr_pages * 2,
4222                 .range_start    = start,
4223                 .range_end      = end + 1,
4224         };
4225
4226         while (start <= end) {
4227                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4228                 if (clear_page_dirty_for_io(page))
4229                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4230                 else {
4231                         if (tree->ops && tree->ops->writepage_end_io_hook)
4232                                 tree->ops->writepage_end_io_hook(page, start,
4233                                                  start + PAGE_CACHE_SIZE - 1,
4234                                                  NULL, 1);
4235                         unlock_page(page);
4236                 }
4237                 page_cache_release(page);
4238                 start += PAGE_CACHE_SIZE;
4239         }
4240
4241         flush_epd_write_bio(&epd);
4242         return ret;
4243 }
4244
4245 int extent_writepages(struct extent_io_tree *tree,
4246                       struct address_space *mapping,
4247                       get_extent_t *get_extent,
4248                       struct writeback_control *wbc)
4249 {
4250         int ret = 0;
4251         struct extent_page_data epd = {
4252                 .bio = NULL,
4253                 .tree = tree,
4254                 .get_extent = get_extent,
4255                 .extent_locked = 0,
4256                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4257                 .bio_flags = 0,
4258         };
4259
4260         ret = extent_write_cache_pages(tree, mapping, wbc,
4261                                        __extent_writepage, &epd,
4262                                        flush_write_bio);
4263         flush_epd_write_bio(&epd);
4264         return ret;
4265 }
4266
4267 int extent_readpages(struct extent_io_tree *tree,
4268                      struct address_space *mapping,
4269                      struct list_head *pages, unsigned nr_pages,
4270                      get_extent_t get_extent)
4271 {
4272         struct bio *bio = NULL;
4273         unsigned page_idx;
4274         unsigned long bio_flags = 0;
4275         struct page *pagepool[16];
4276         struct page *page;
4277         struct extent_map *em_cached = NULL;
4278         int nr = 0;
4279         u64 prev_em_start = (u64)-1;
4280
4281         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4282                 page = list_entry(pages->prev, struct page, lru);
4283
4284                 prefetchw(&page->flags);
4285                 list_del(&page->lru);
4286                 if (add_to_page_cache_lru(page, mapping,
4287                                         page->index, GFP_NOFS)) {
4288                         page_cache_release(page);
4289                         continue;
4290                 }
4291
4292                 pagepool[nr++] = page;
4293                 if (nr < ARRAY_SIZE(pagepool))
4294                         continue;
4295                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4296                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4297                 nr = 0;
4298         }
4299         if (nr)
4300                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4301                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4302
4303         if (em_cached)
4304                 free_extent_map(em_cached);
4305
4306         BUG_ON(!list_empty(pages));
4307         if (bio)
4308                 return submit_one_bio(READ, bio, 0, bio_flags);
4309         return 0;
4310 }
4311
4312 /*
4313  * basic invalidatepage code, this waits on any locked or writeback
4314  * ranges corresponding to the page, and then deletes any extent state
4315  * records from the tree
4316  */
4317 int extent_invalidatepage(struct extent_io_tree *tree,
4318                           struct page *page, unsigned long offset)
4319 {
4320         struct extent_state *cached_state = NULL;
4321         u64 start = page_offset(page);
4322         u64 end = start + PAGE_CACHE_SIZE - 1;
4323         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4324
4325         start += ALIGN(offset, blocksize);
4326         if (start > end)
4327                 return 0;
4328
4329         lock_extent_bits(tree, start, end, 0, &cached_state);
4330         wait_on_page_writeback(page);
4331         clear_extent_bit(tree, start, end,
4332                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4333                          EXTENT_DO_ACCOUNTING,
4334                          1, 1, &cached_state, GFP_NOFS);
4335         return 0;
4336 }
4337
4338 /*
4339  * a helper for releasepage, this tests for areas of the page that
4340  * are locked or under IO and drops the related state bits if it is safe
4341  * to drop the page.
4342  */
4343 static int try_release_extent_state(struct extent_map_tree *map,
4344                                     struct extent_io_tree *tree,
4345                                     struct page *page, gfp_t mask)
4346 {
4347         u64 start = page_offset(page);
4348         u64 end = start + PAGE_CACHE_SIZE - 1;
4349         int ret = 1;
4350
4351         if (test_range_bit(tree, start, end,
4352                            EXTENT_IOBITS, 0, NULL))
4353                 ret = 0;
4354         else {
4355                 if ((mask & GFP_NOFS) == GFP_NOFS)
4356                         mask = GFP_NOFS;
4357                 /*
4358                  * at this point we can safely clear everything except the
4359                  * locked bit and the nodatasum bit
4360                  */
4361                 ret = clear_extent_bit(tree, start, end,
4362                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4363                                  0, 0, NULL, mask);
4364
4365                 /* if clear_extent_bit failed for enomem reasons,
4366                  * we can't allow the release to continue.
4367                  */
4368                 if (ret < 0)
4369                         ret = 0;
4370                 else
4371                         ret = 1;
4372         }
4373         return ret;
4374 }
4375
4376 /*
4377  * a helper for releasepage.  As long as there are no locked extents
4378  * in the range corresponding to the page, both state records and extent
4379  * map records are removed
4380  */
4381 int try_release_extent_mapping(struct extent_map_tree *map,
4382                                struct extent_io_tree *tree, struct page *page,
4383                                gfp_t mask)
4384 {
4385         struct extent_map *em;
4386         u64 start = page_offset(page);
4387         u64 end = start + PAGE_CACHE_SIZE - 1;
4388
4389         if (gfpflags_allow_blocking(mask) &&
4390             page->mapping->host->i_size > 16 * 1024 * 1024) {
4391                 u64 len;
4392                 while (start <= end) {
4393                         len = end - start + 1;
4394                         write_lock(&map->lock);
4395                         em = lookup_extent_mapping(map, start, len);
4396                         if (!em) {
4397                                 write_unlock(&map->lock);
4398                                 break;
4399                         }
4400                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4401                             em->start != start) {
4402                                 write_unlock(&map->lock);
4403                                 free_extent_map(em);
4404                                 break;
4405                         }
4406                         if (!test_range_bit(tree, em->start,
4407                                             extent_map_end(em) - 1,
4408                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4409                                             0, NULL)) {
4410                                 remove_extent_mapping(map, em);
4411                                 /* once for the rb tree */
4412                                 free_extent_map(em);
4413                         }
4414                         start = extent_map_end(em);
4415                         write_unlock(&map->lock);
4416
4417                         /* once for us */
4418                         free_extent_map(em);
4419                 }
4420         }
4421         return try_release_extent_state(map, tree, page, mask);
4422 }
4423
4424 /*
4425  * helper function for fiemap, which doesn't want to see any holes.
4426  * This maps until we find something past 'last'
4427  */
4428 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4429                                                 u64 offset,
4430                                                 u64 last,
4431                                                 get_extent_t *get_extent)
4432 {
4433         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4434         struct extent_map *em;
4435         u64 len;
4436
4437         if (offset >= last)
4438                 return NULL;
4439
4440         while (1) {
4441                 len = last - offset;
4442                 if (len == 0)
4443                         break;
4444                 len = ALIGN(len, sectorsize);
4445                 em = get_extent(inode, NULL, 0, offset, len, 0);
4446                 if (IS_ERR_OR_NULL(em))
4447                         return em;
4448
4449                 /* if this isn't a hole return it */
4450                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4451                     em->block_start != EXTENT_MAP_HOLE) {
4452                         return em;
4453                 }
4454
4455                 /* this is a hole, advance to the next extent */
4456                 offset = extent_map_end(em);
4457                 free_extent_map(em);
4458                 if (offset >= last)
4459                         break;
4460         }
4461         return NULL;
4462 }
4463
4464 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4465                 __u64 start, __u64 len, get_extent_t *get_extent)
4466 {
4467         int ret = 0;
4468         u64 off = start;
4469         u64 max = start + len;
4470         u32 flags = 0;
4471         u32 found_type;
4472         u64 last;
4473         u64 last_for_get_extent = 0;
4474         u64 disko = 0;
4475         u64 isize = i_size_read(inode);
4476         struct btrfs_key found_key;
4477         struct extent_map *em = NULL;
4478         struct extent_state *cached_state = NULL;
4479         struct btrfs_path *path;
4480         struct btrfs_root *root = BTRFS_I(inode)->root;
4481         int end = 0;
4482         u64 em_start = 0;
4483         u64 em_len = 0;
4484         u64 em_end = 0;
4485
4486         if (len == 0)
4487                 return -EINVAL;
4488
4489         path = btrfs_alloc_path();
4490         if (!path)
4491                 return -ENOMEM;
4492         path->leave_spinning = 1;
4493
4494         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4495         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4496
4497         /*
4498          * lookup the last file extent.  We're not using i_size here
4499          * because there might be preallocation past i_size
4500          */
4501         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4502                                        0);
4503         if (ret < 0) {
4504                 btrfs_free_path(path);
4505                 return ret;
4506         }
4507         WARN_ON(!ret);
4508         path->slots[0]--;
4509         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4510         found_type = found_key.type;
4511
4512         /* No extents, but there might be delalloc bits */
4513         if (found_key.objectid != btrfs_ino(inode) ||
4514             found_type != BTRFS_EXTENT_DATA_KEY) {
4515                 /* have to trust i_size as the end */
4516                 last = (u64)-1;
4517                 last_for_get_extent = isize;
4518         } else {
4519                 /*
4520                  * remember the start of the last extent.  There are a
4521                  * bunch of different factors that go into the length of the
4522                  * extent, so its much less complex to remember where it started
4523                  */
4524                 last = found_key.offset;
4525                 last_for_get_extent = last + 1;
4526         }
4527         btrfs_release_path(path);
4528
4529         /*
4530          * we might have some extents allocated but more delalloc past those
4531          * extents.  so, we trust isize unless the start of the last extent is
4532          * beyond isize
4533          */
4534         if (last < isize) {
4535                 last = (u64)-1;
4536                 last_for_get_extent = isize;
4537         }
4538
4539         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4540                          &cached_state);
4541
4542         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4543                                    get_extent);
4544         if (!em)
4545                 goto out;
4546         if (IS_ERR(em)) {
4547                 ret = PTR_ERR(em);
4548                 goto out;
4549         }
4550
4551         while (!end) {
4552                 u64 offset_in_extent = 0;
4553
4554                 /* break if the extent we found is outside the range */
4555                 if (em->start >= max || extent_map_end(em) < off)
4556                         break;
4557
4558                 /*
4559                  * get_extent may return an extent that starts before our
4560                  * requested range.  We have to make sure the ranges
4561                  * we return to fiemap always move forward and don't
4562                  * overlap, so adjust the offsets here
4563                  */
4564                 em_start = max(em->start, off);
4565
4566                 /*
4567                  * record the offset from the start of the extent
4568                  * for adjusting the disk offset below.  Only do this if the
4569                  * extent isn't compressed since our in ram offset may be past
4570                  * what we have actually allocated on disk.
4571                  */
4572                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4573                         offset_in_extent = em_start - em->start;
4574                 em_end = extent_map_end(em);
4575                 em_len = em_end - em_start;
4576                 disko = 0;
4577                 flags = 0;
4578
4579                 /*
4580                  * bump off for our next call to get_extent
4581                  */
4582                 off = extent_map_end(em);
4583                 if (off >= max)
4584                         end = 1;
4585
4586                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4587                         end = 1;
4588                         flags |= FIEMAP_EXTENT_LAST;
4589                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4590                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4591                                   FIEMAP_EXTENT_NOT_ALIGNED);
4592                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4593                         flags |= (FIEMAP_EXTENT_DELALLOC |
4594                                   FIEMAP_EXTENT_UNKNOWN);
4595                 } else if (fieinfo->fi_extents_max) {
4596                         u64 bytenr = em->block_start -
4597                                 (em->start - em->orig_start);
4598
4599                         disko = em->block_start + offset_in_extent;
4600
4601                         /*
4602                          * As btrfs supports shared space, this information
4603                          * can be exported to userspace tools via
4604                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4605                          * then we're just getting a count and we can skip the
4606                          * lookup stuff.
4607                          */
4608                         ret = btrfs_check_shared(NULL, root->fs_info,
4609                                                  root->objectid,
4610                                                  btrfs_ino(inode), bytenr);
4611                         if (ret < 0)
4612                                 goto out_free;
4613                         if (ret)
4614                                 flags |= FIEMAP_EXTENT_SHARED;
4615                         ret = 0;
4616                 }
4617                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4618                         flags |= FIEMAP_EXTENT_ENCODED;
4619                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4620                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4621
4622                 free_extent_map(em);
4623                 em = NULL;
4624                 if ((em_start >= last) || em_len == (u64)-1 ||
4625                    (last == (u64)-1 && isize <= em_end)) {
4626                         flags |= FIEMAP_EXTENT_LAST;
4627                         end = 1;
4628                 }
4629
4630                 /* now scan forward to see if this is really the last extent. */
4631                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4632                                            get_extent);
4633                 if (IS_ERR(em)) {
4634                         ret = PTR_ERR(em);
4635                         goto out;
4636                 }
4637                 if (!em) {
4638                         flags |= FIEMAP_EXTENT_LAST;
4639                         end = 1;
4640                 }
4641                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4642                                               em_len, flags);
4643                 if (ret) {
4644                         if (ret == 1)
4645                                 ret = 0;
4646                         goto out_free;
4647                 }
4648         }
4649 out_free:
4650         free_extent_map(em);
4651 out:
4652         btrfs_free_path(path);
4653         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4654                              &cached_state, GFP_NOFS);
4655         return ret;
4656 }
4657
4658 static void __free_extent_buffer(struct extent_buffer *eb)
4659 {
4660         btrfs_leak_debug_del(&eb->leak_list);
4661         kmem_cache_free(extent_buffer_cache, eb);
4662 }
4663
4664 int extent_buffer_under_io(struct extent_buffer *eb)
4665 {
4666         return (atomic_read(&eb->io_pages) ||
4667                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4668                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4669 }
4670
4671 /*
4672  * Helper for releasing extent buffer page.
4673  */
4674 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4675 {
4676         unsigned long index;
4677         struct page *page;
4678         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4679
4680         BUG_ON(extent_buffer_under_io(eb));
4681
4682         index = num_extent_pages(eb->start, eb->len);
4683         if (index == 0)
4684                 return;
4685
4686         do {
4687                 index--;
4688                 page = eb->pages[index];
4689                 if (!page)
4690                         continue;
4691                 if (mapped)
4692                         spin_lock(&page->mapping->private_lock);
4693                 /*
4694                  * We do this since we'll remove the pages after we've
4695                  * removed the eb from the radix tree, so we could race
4696                  * and have this page now attached to the new eb.  So
4697                  * only clear page_private if it's still connected to
4698                  * this eb.
4699                  */
4700                 if (PagePrivate(page) &&
4701                     page->private == (unsigned long)eb) {
4702                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4703                         BUG_ON(PageDirty(page));
4704                         BUG_ON(PageWriteback(page));
4705                         /*
4706                          * We need to make sure we haven't be attached
4707                          * to a new eb.
4708                          */
4709                         ClearPagePrivate(page);
4710                         set_page_private(page, 0);
4711                         /* One for the page private */
4712                         page_cache_release(page);
4713                 }
4714
4715                 if (mapped)
4716                         spin_unlock(&page->mapping->private_lock);
4717
4718                 /* One for when we alloced the page */
4719                 page_cache_release(page);
4720         } while (index != 0);
4721 }
4722
4723 /*
4724  * Helper for releasing the extent buffer.
4725  */
4726 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4727 {
4728         btrfs_release_extent_buffer_page(eb);
4729         __free_extent_buffer(eb);
4730 }
4731
4732 static struct extent_buffer *
4733 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4734                       unsigned long len)
4735 {
4736         struct extent_buffer *eb = NULL;
4737
4738         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4739         eb->start = start;
4740         eb->len = len;
4741         eb->fs_info = fs_info;
4742         eb->bflags = 0;
4743         rwlock_init(&eb->lock);
4744         atomic_set(&eb->write_locks, 0);
4745         atomic_set(&eb->read_locks, 0);
4746         atomic_set(&eb->blocking_readers, 0);
4747         atomic_set(&eb->blocking_writers, 0);
4748         atomic_set(&eb->spinning_readers, 0);
4749         atomic_set(&eb->spinning_writers, 0);
4750         eb->lock_nested = 0;
4751         init_waitqueue_head(&eb->write_lock_wq);
4752         init_waitqueue_head(&eb->read_lock_wq);
4753
4754         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4755
4756         spin_lock_init(&eb->refs_lock);
4757         atomic_set(&eb->refs, 1);
4758         atomic_set(&eb->io_pages, 0);
4759
4760         /*
4761          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4762          */
4763         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4764                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4765         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4766
4767         return eb;
4768 }
4769
4770 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4771 {
4772         unsigned long i;
4773         struct page *p;
4774         struct extent_buffer *new;
4775         unsigned long num_pages = num_extent_pages(src->start, src->len);
4776
4777         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4778         if (new == NULL)
4779                 return NULL;
4780
4781         for (i = 0; i < num_pages; i++) {
4782                 p = alloc_page(GFP_NOFS);
4783                 if (!p) {
4784                         btrfs_release_extent_buffer(new);
4785                         return NULL;
4786                 }
4787                 attach_extent_buffer_page(new, p);
4788                 WARN_ON(PageDirty(p));
4789                 SetPageUptodate(p);
4790                 new->pages[i] = p;
4791         }
4792
4793         copy_extent_buffer(new, src, 0, 0, src->len);
4794         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4795         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4796
4797         return new;
4798 }
4799
4800 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4801                                                 u64 start)
4802 {
4803         struct extent_buffer *eb;
4804         unsigned long len;
4805         unsigned long num_pages;
4806         unsigned long i;
4807
4808         if (!fs_info) {
4809                 /*
4810                  * Called only from tests that don't always have a fs_info
4811                  * available, but we know that nodesize is 4096
4812                  */
4813                 len = 4096;
4814         } else {
4815                 len = fs_info->tree_root->nodesize;
4816         }
4817         num_pages = num_extent_pages(0, len);
4818
4819         eb = __alloc_extent_buffer(fs_info, start, len);
4820         if (!eb)
4821                 return NULL;
4822
4823         for (i = 0; i < num_pages; i++) {
4824                 eb->pages[i] = alloc_page(GFP_NOFS);
4825                 if (!eb->pages[i])
4826                         goto err;
4827         }
4828         set_extent_buffer_uptodate(eb);
4829         btrfs_set_header_nritems(eb, 0);
4830         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4831
4832         return eb;
4833 err:
4834         for (; i > 0; i--)
4835                 __free_page(eb->pages[i - 1]);
4836         __free_extent_buffer(eb);
4837         return NULL;
4838 }
4839
4840 static void check_buffer_tree_ref(struct extent_buffer *eb)
4841 {
4842         int refs;
4843         /* the ref bit is tricky.  We have to make sure it is set
4844          * if we have the buffer dirty.   Otherwise the
4845          * code to free a buffer can end up dropping a dirty
4846          * page
4847          *
4848          * Once the ref bit is set, it won't go away while the
4849          * buffer is dirty or in writeback, and it also won't
4850          * go away while we have the reference count on the
4851          * eb bumped.
4852          *
4853          * We can't just set the ref bit without bumping the
4854          * ref on the eb because free_extent_buffer might
4855          * see the ref bit and try to clear it.  If this happens
4856          * free_extent_buffer might end up dropping our original
4857          * ref by mistake and freeing the page before we are able
4858          * to add one more ref.
4859          *
4860          * So bump the ref count first, then set the bit.  If someone
4861          * beat us to it, drop the ref we added.
4862          */
4863         refs = atomic_read(&eb->refs);
4864         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4865                 return;
4866
4867         spin_lock(&eb->refs_lock);
4868         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4869                 atomic_inc(&eb->refs);
4870         spin_unlock(&eb->refs_lock);
4871 }
4872
4873 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4874                 struct page *accessed)
4875 {
4876         unsigned long num_pages, i;
4877
4878         check_buffer_tree_ref(eb);
4879
4880         num_pages = num_extent_pages(eb->start, eb->len);
4881         for (i = 0; i < num_pages; i++) {
4882                 struct page *p = eb->pages[i];
4883
4884                 if (p != accessed)
4885                         mark_page_accessed(p);
4886         }
4887 }
4888
4889 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4890                                          u64 start)
4891 {
4892         struct extent_buffer *eb;
4893
4894         rcu_read_lock();
4895         eb = radix_tree_lookup(&fs_info->buffer_radix,
4896                                start >> PAGE_CACHE_SHIFT);
4897         if (eb && atomic_inc_not_zero(&eb->refs)) {
4898                 rcu_read_unlock();
4899                 /*
4900                  * Lock our eb's refs_lock to avoid races with
4901                  * free_extent_buffer. When we get our eb it might be flagged
4902                  * with EXTENT_BUFFER_STALE and another task running
4903                  * free_extent_buffer might have seen that flag set,
4904                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4905                  * writeback flags not set) and it's still in the tree (flag
4906                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4907                  * of decrementing the extent buffer's reference count twice.
4908                  * So here we could race and increment the eb's reference count,
4909                  * clear its stale flag, mark it as dirty and drop our reference
4910                  * before the other task finishes executing free_extent_buffer,
4911                  * which would later result in an attempt to free an extent
4912                  * buffer that is dirty.
4913                  */
4914                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4915                         spin_lock(&eb->refs_lock);
4916                         spin_unlock(&eb->refs_lock);
4917                 }
4918                 mark_extent_buffer_accessed(eb, NULL);
4919                 return eb;
4920         }
4921         rcu_read_unlock();
4922
4923         return NULL;
4924 }
4925
4926 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4927 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4928                                                u64 start)
4929 {
4930         struct extent_buffer *eb, *exists = NULL;
4931         int ret;
4932
4933         eb = find_extent_buffer(fs_info, start);
4934         if (eb)
4935                 return eb;
4936         eb = alloc_dummy_extent_buffer(fs_info, start);
4937         if (!eb)
4938                 return NULL;
4939         eb->fs_info = fs_info;
4940 again:
4941         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4942         if (ret)
4943                 goto free_eb;
4944         spin_lock(&fs_info->buffer_lock);
4945         ret = radix_tree_insert(&fs_info->buffer_radix,
4946                                 start >> PAGE_CACHE_SHIFT, eb);
4947         spin_unlock(&fs_info->buffer_lock);
4948         radix_tree_preload_end();
4949         if (ret == -EEXIST) {
4950                 exists = find_extent_buffer(fs_info, start);
4951                 if (exists)
4952                         goto free_eb;
4953                 else
4954                         goto again;
4955         }
4956         check_buffer_tree_ref(eb);
4957         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4958
4959         /*
4960          * We will free dummy extent buffer's if they come into
4961          * free_extent_buffer with a ref count of 2, but if we are using this we
4962          * want the buffers to stay in memory until we're done with them, so
4963          * bump the ref count again.
4964          */
4965         atomic_inc(&eb->refs);
4966         return eb;
4967 free_eb:
4968         btrfs_release_extent_buffer(eb);
4969         return exists;
4970 }
4971 #endif
4972
4973 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4974                                           u64 start)
4975 {
4976         unsigned long len = fs_info->tree_root->nodesize;
4977         unsigned long num_pages = num_extent_pages(start, len);
4978         unsigned long i;
4979         unsigned long index = start >> PAGE_CACHE_SHIFT;
4980         struct extent_buffer *eb;
4981         struct extent_buffer *exists = NULL;
4982         struct page *p;
4983         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4984         int uptodate = 1;
4985         int ret;
4986
4987         eb = find_extent_buffer(fs_info, start);
4988         if (eb)
4989                 return eb;
4990
4991         eb = __alloc_extent_buffer(fs_info, start, len);
4992         if (!eb)
4993                 return NULL;
4994
4995         for (i = 0; i < num_pages; i++, index++) {
4996                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4997                 if (!p)
4998                         goto free_eb;
4999
5000                 spin_lock(&mapping->private_lock);
5001                 if (PagePrivate(p)) {
5002                         /*
5003                          * We could have already allocated an eb for this page
5004                          * and attached one so lets see if we can get a ref on
5005                          * the existing eb, and if we can we know it's good and
5006                          * we can just return that one, else we know we can just
5007                          * overwrite page->private.
5008                          */
5009                         exists = (struct extent_buffer *)p->private;
5010                         if (atomic_inc_not_zero(&exists->refs)) {
5011                                 spin_unlock(&mapping->private_lock);
5012                                 unlock_page(p);
5013                                 page_cache_release(p);
5014                                 mark_extent_buffer_accessed(exists, p);
5015                                 goto free_eb;
5016                         }
5017                         exists = NULL;
5018
5019                         /*
5020                          * Do this so attach doesn't complain and we need to
5021                          * drop the ref the old guy had.
5022                          */
5023                         ClearPagePrivate(p);
5024                         WARN_ON(PageDirty(p));
5025                         page_cache_release(p);
5026                 }
5027                 attach_extent_buffer_page(eb, p);
5028                 spin_unlock(&mapping->private_lock);
5029                 WARN_ON(PageDirty(p));
5030                 eb->pages[i] = p;
5031                 if (!PageUptodate(p))
5032                         uptodate = 0;
5033
5034                 /*
5035                  * see below about how we avoid a nasty race with release page
5036                  * and why we unlock later
5037                  */
5038         }
5039         if (uptodate)
5040                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5041 again:
5042         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5043         if (ret)
5044                 goto free_eb;
5045
5046         spin_lock(&fs_info->buffer_lock);
5047         ret = radix_tree_insert(&fs_info->buffer_radix,
5048                                 start >> PAGE_CACHE_SHIFT, eb);
5049         spin_unlock(&fs_info->buffer_lock);
5050         radix_tree_preload_end();
5051         if (ret == -EEXIST) {
5052                 exists = find_extent_buffer(fs_info, start);
5053                 if (exists)
5054                         goto free_eb;
5055                 else
5056                         goto again;
5057         }
5058         /* add one reference for the tree */
5059         check_buffer_tree_ref(eb);
5060         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5061
5062         /*
5063          * there is a race where release page may have
5064          * tried to find this extent buffer in the radix
5065          * but failed.  It will tell the VM it is safe to
5066          * reclaim the, and it will clear the page private bit.
5067          * We must make sure to set the page private bit properly
5068          * after the extent buffer is in the radix tree so
5069          * it doesn't get lost
5070          */
5071         SetPageChecked(eb->pages[0]);
5072         for (i = 1; i < num_pages; i++) {
5073                 p = eb->pages[i];
5074                 ClearPageChecked(p);
5075                 unlock_page(p);
5076         }
5077         unlock_page(eb->pages[0]);
5078         return eb;
5079
5080 free_eb:
5081         WARN_ON(!atomic_dec_and_test(&eb->refs));
5082         for (i = 0; i < num_pages; i++) {
5083                 if (eb->pages[i])
5084                         unlock_page(eb->pages[i]);
5085         }
5086
5087         btrfs_release_extent_buffer(eb);
5088         return exists;
5089 }
5090
5091 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5092 {
5093         struct extent_buffer *eb =
5094                         container_of(head, struct extent_buffer, rcu_head);
5095
5096         __free_extent_buffer(eb);
5097 }
5098
5099 /* Expects to have eb->eb_lock already held */
5100 static int release_extent_buffer(struct extent_buffer *eb)
5101 {
5102         WARN_ON(atomic_read(&eb->refs) == 0);
5103         if (atomic_dec_and_test(&eb->refs)) {
5104                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5105                         struct btrfs_fs_info *fs_info = eb->fs_info;
5106
5107                         spin_unlock(&eb->refs_lock);
5108
5109                         spin_lock(&fs_info->buffer_lock);
5110                         radix_tree_delete(&fs_info->buffer_radix,
5111                                           eb->start >> PAGE_CACHE_SHIFT);
5112                         spin_unlock(&fs_info->buffer_lock);
5113                 } else {
5114                         spin_unlock(&eb->refs_lock);
5115                 }
5116
5117                 /* Should be safe to release our pages at this point */
5118                 btrfs_release_extent_buffer_page(eb);
5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5120                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5121                         __free_extent_buffer(eb);
5122                         return 1;
5123                 }
5124 #endif
5125                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5126                 return 1;
5127         }
5128         spin_unlock(&eb->refs_lock);
5129
5130         return 0;
5131 }
5132
5133 void free_extent_buffer(struct extent_buffer *eb)
5134 {
5135         int refs;
5136         int old;
5137         if (!eb)
5138                 return;
5139
5140         while (1) {
5141                 refs = atomic_read(&eb->refs);
5142                 if (refs <= 3)
5143                         break;
5144                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5145                 if (old == refs)
5146                         return;
5147         }
5148
5149         spin_lock(&eb->refs_lock);
5150         if (atomic_read(&eb->refs) == 2 &&
5151             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5152                 atomic_dec(&eb->refs);
5153
5154         if (atomic_read(&eb->refs) == 2 &&
5155             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5156             !extent_buffer_under_io(eb) &&
5157             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5158                 atomic_dec(&eb->refs);
5159
5160         /*
5161          * I know this is terrible, but it's temporary until we stop tracking
5162          * the uptodate bits and such for the extent buffers.
5163          */
5164         release_extent_buffer(eb);
5165 }
5166
5167 void free_extent_buffer_stale(struct extent_buffer *eb)
5168 {
5169         if (!eb)
5170                 return;
5171
5172         spin_lock(&eb->refs_lock);
5173         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5174
5175         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5176             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5177                 atomic_dec(&eb->refs);
5178         release_extent_buffer(eb);
5179 }
5180
5181 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5182 {
5183         unsigned long i;
5184         unsigned long num_pages;
5185         struct page *page;
5186
5187         num_pages = num_extent_pages(eb->start, eb->len);
5188
5189         for (i = 0; i < num_pages; i++) {
5190                 page = eb->pages[i];
5191                 if (!PageDirty(page))
5192                         continue;
5193
5194                 lock_page(page);
5195                 WARN_ON(!PagePrivate(page));
5196
5197                 clear_page_dirty_for_io(page);
5198                 spin_lock_irq(&page->mapping->tree_lock);
5199                 if (!PageDirty(page)) {
5200                         radix_tree_tag_clear(&page->mapping->page_tree,
5201                                                 page_index(page),
5202                                                 PAGECACHE_TAG_DIRTY);
5203                 }
5204                 spin_unlock_irq(&page->mapping->tree_lock);
5205                 ClearPageError(page);
5206                 unlock_page(page);
5207         }
5208         WARN_ON(atomic_read(&eb->refs) == 0);
5209 }
5210
5211 int set_extent_buffer_dirty(struct extent_buffer *eb)
5212 {
5213         unsigned long i;
5214         unsigned long num_pages;
5215         int was_dirty = 0;
5216
5217         check_buffer_tree_ref(eb);
5218
5219         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5220
5221         num_pages = num_extent_pages(eb->start, eb->len);
5222         WARN_ON(atomic_read(&eb->refs) == 0);
5223         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5224
5225         for (i = 0; i < num_pages; i++)
5226                 set_page_dirty(eb->pages[i]);
5227         return was_dirty;
5228 }
5229
5230 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5231 {
5232         unsigned long i;
5233         struct page *page;
5234         unsigned long num_pages;
5235
5236         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5237         num_pages = num_extent_pages(eb->start, eb->len);
5238         for (i = 0; i < num_pages; i++) {
5239                 page = eb->pages[i];
5240                 if (page)
5241                         ClearPageUptodate(page);
5242         }
5243         return 0;
5244 }
5245
5246 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5247 {
5248         unsigned long i;
5249         struct page *page;
5250         unsigned long num_pages;
5251
5252         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5253         num_pages = num_extent_pages(eb->start, eb->len);
5254         for (i = 0; i < num_pages; i++) {
5255                 page = eb->pages[i];
5256                 SetPageUptodate(page);
5257         }
5258         return 0;
5259 }
5260
5261 int extent_buffer_uptodate(struct extent_buffer *eb)
5262 {
5263         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5264 }
5265
5266 int read_extent_buffer_pages(struct extent_io_tree *tree,
5267                              struct extent_buffer *eb, u64 start, int wait,
5268                              get_extent_t *get_extent, int mirror_num)
5269 {
5270         unsigned long i;
5271         unsigned long start_i;
5272         struct page *page;
5273         int err;
5274         int ret = 0;
5275         int locked_pages = 0;
5276         int all_uptodate = 1;
5277         unsigned long num_pages;
5278         unsigned long num_reads = 0;
5279         struct bio *bio = NULL;
5280         unsigned long bio_flags = 0;
5281
5282         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5283                 return 0;
5284
5285         if (start) {
5286                 WARN_ON(start < eb->start);
5287                 start_i = (start >> PAGE_CACHE_SHIFT) -
5288                         (eb->start >> PAGE_CACHE_SHIFT);
5289         } else {
5290                 start_i = 0;
5291         }
5292
5293         num_pages = num_extent_pages(eb->start, eb->len);
5294         for (i = start_i; i < num_pages; i++) {
5295                 page = eb->pages[i];
5296                 if (wait == WAIT_NONE) {
5297                         if (!trylock_page(page))
5298                                 goto unlock_exit;
5299                 } else {
5300                         lock_page(page);
5301                 }
5302                 locked_pages++;
5303                 if (!PageUptodate(page)) {
5304                         num_reads++;
5305                         all_uptodate = 0;
5306                 }
5307         }
5308         if (all_uptodate) {
5309                 if (start_i == 0)
5310                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5311                 goto unlock_exit;
5312         }
5313
5314         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5315         eb->read_mirror = 0;
5316         atomic_set(&eb->io_pages, num_reads);
5317         for (i = start_i; i < num_pages; i++) {
5318                 page = eb->pages[i];
5319                 if (!PageUptodate(page)) {
5320                         ClearPageError(page);
5321                         err = __extent_read_full_page(tree, page,
5322                                                       get_extent, &bio,
5323                                                       mirror_num, &bio_flags,
5324                                                       READ | REQ_META);
5325                         if (err)
5326                                 ret = err;
5327                 } else {
5328                         unlock_page(page);
5329                 }
5330         }
5331
5332         if (bio) {
5333                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5334                                      bio_flags);
5335                 if (err)
5336                         return err;
5337         }
5338
5339         if (ret || wait != WAIT_COMPLETE)
5340                 return ret;
5341
5342         for (i = start_i; i < num_pages; i++) {
5343                 page = eb->pages[i];
5344                 wait_on_page_locked(page);
5345                 if (!PageUptodate(page))
5346                         ret = -EIO;
5347         }
5348
5349         return ret;
5350
5351 unlock_exit:
5352         i = start_i;
5353         while (locked_pages > 0) {
5354                 page = eb->pages[i];
5355                 i++;
5356                 unlock_page(page);
5357                 locked_pages--;
5358         }
5359         return ret;
5360 }
5361
5362 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5363                         unsigned long start,
5364                         unsigned long len)
5365 {
5366         size_t cur;
5367         size_t offset;
5368         struct page *page;
5369         char *kaddr;
5370         char *dst = (char *)dstv;
5371         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5372         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5373
5374         WARN_ON(start > eb->len);
5375         WARN_ON(start + len > eb->start + eb->len);
5376
5377         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5378
5379         while (len > 0) {
5380                 page = eb->pages[i];
5381
5382                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5383                 kaddr = page_address(page);
5384                 memcpy(dst, kaddr + offset, cur);
5385
5386                 dst += cur;
5387                 len -= cur;
5388                 offset = 0;
5389                 i++;
5390         }
5391 }
5392
5393 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5394                         unsigned long start,
5395                         unsigned long len)
5396 {
5397         size_t cur;
5398         size_t offset;
5399         struct page *page;
5400         char *kaddr;
5401         char __user *dst = (char __user *)dstv;
5402         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5403         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5404         int ret = 0;
5405
5406         WARN_ON(start > eb->len);
5407         WARN_ON(start + len > eb->start + eb->len);
5408
5409         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5410
5411         while (len > 0) {
5412                 page = eb->pages[i];
5413
5414                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5415                 kaddr = page_address(page);
5416                 if (copy_to_user(dst, kaddr + offset, cur)) {
5417                         ret = -EFAULT;
5418                         break;
5419                 }
5420
5421                 dst += cur;
5422                 len -= cur;
5423                 offset = 0;
5424                 i++;
5425         }
5426
5427         return ret;
5428 }
5429
5430 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5431                                unsigned long min_len, char **map,
5432                                unsigned long *map_start,
5433                                unsigned long *map_len)
5434 {
5435         size_t offset = start & (PAGE_CACHE_SIZE - 1);
5436         char *kaddr;
5437         struct page *p;
5438         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5439         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5440         unsigned long end_i = (start_offset + start + min_len - 1) >>
5441                 PAGE_CACHE_SHIFT;
5442
5443         if (i != end_i)
5444                 return -EINVAL;
5445
5446         if (i == 0) {
5447                 offset = start_offset;
5448                 *map_start = 0;
5449         } else {
5450                 offset = 0;
5451                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5452         }
5453
5454         if (start + min_len > eb->len) {
5455                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5456                        "wanted %lu %lu\n",
5457                        eb->start, eb->len, start, min_len);
5458                 return -EINVAL;
5459         }
5460
5461         p = eb->pages[i];
5462         kaddr = page_address(p);
5463         *map = kaddr + offset;
5464         *map_len = PAGE_CACHE_SIZE - offset;
5465         return 0;
5466 }
5467
5468 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5469                           unsigned long start,
5470                           unsigned long len)
5471 {
5472         size_t cur;
5473         size_t offset;
5474         struct page *page;
5475         char *kaddr;
5476         char *ptr = (char *)ptrv;
5477         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5478         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5479         int ret = 0;
5480
5481         WARN_ON(start > eb->len);
5482         WARN_ON(start + len > eb->start + eb->len);
5483
5484         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5485
5486         while (len > 0) {
5487                 page = eb->pages[i];
5488
5489                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5490
5491                 kaddr = page_address(page);
5492                 ret = memcmp(ptr, kaddr + offset, cur);
5493                 if (ret)
5494                         break;
5495
5496                 ptr += cur;
5497                 len -= cur;
5498                 offset = 0;
5499                 i++;
5500         }
5501         return ret;
5502 }
5503
5504 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5505                          unsigned long start, unsigned long len)
5506 {
5507         size_t cur;
5508         size_t offset;
5509         struct page *page;
5510         char *kaddr;
5511         char *src = (char *)srcv;
5512         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5513         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5514
5515         WARN_ON(start > eb->len);
5516         WARN_ON(start + len > eb->start + eb->len);
5517
5518         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5519
5520         while (len > 0) {
5521                 page = eb->pages[i];
5522                 WARN_ON(!PageUptodate(page));
5523
5524                 cur = min(len, PAGE_CACHE_SIZE - offset);
5525                 kaddr = page_address(page);
5526                 memcpy(kaddr + offset, src, cur);
5527
5528                 src += cur;
5529                 len -= cur;
5530                 offset = 0;
5531                 i++;
5532         }
5533 }
5534
5535 void memset_extent_buffer(struct extent_buffer *eb, char c,
5536                           unsigned long start, unsigned long len)
5537 {
5538         size_t cur;
5539         size_t offset;
5540         struct page *page;
5541         char *kaddr;
5542         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5543         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5544
5545         WARN_ON(start > eb->len);
5546         WARN_ON(start + len > eb->start + eb->len);
5547
5548         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5549
5550         while (len > 0) {
5551                 page = eb->pages[i];
5552                 WARN_ON(!PageUptodate(page));
5553
5554                 cur = min(len, PAGE_CACHE_SIZE - offset);
5555                 kaddr = page_address(page);
5556                 memset(kaddr + offset, c, cur);
5557
5558                 len -= cur;
5559                 offset = 0;
5560                 i++;
5561         }
5562 }
5563
5564 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5565                         unsigned long dst_offset, unsigned long src_offset,
5566                         unsigned long len)
5567 {
5568         u64 dst_len = dst->len;
5569         size_t cur;
5570         size_t offset;
5571         struct page *page;
5572         char *kaddr;
5573         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5574         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5575
5576         WARN_ON(src->len != dst_len);
5577
5578         offset = (start_offset + dst_offset) &
5579                 (PAGE_CACHE_SIZE - 1);
5580
5581         while (len > 0) {
5582                 page = dst->pages[i];
5583                 WARN_ON(!PageUptodate(page));
5584
5585                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5586
5587                 kaddr = page_address(page);
5588                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5589
5590                 src_offset += cur;
5591                 len -= cur;
5592                 offset = 0;
5593                 i++;
5594         }
5595 }
5596
5597 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5598 {
5599         unsigned long distance = (src > dst) ? src - dst : dst - src;
5600         return distance < len;
5601 }
5602
5603 static void copy_pages(struct page *dst_page, struct page *src_page,
5604                        unsigned long dst_off, unsigned long src_off,
5605                        unsigned long len)
5606 {
5607         char *dst_kaddr = page_address(dst_page);
5608         char *src_kaddr;
5609         int must_memmove = 0;
5610
5611         if (dst_page != src_page) {
5612                 src_kaddr = page_address(src_page);
5613         } else {
5614                 src_kaddr = dst_kaddr;
5615                 if (areas_overlap(src_off, dst_off, len))
5616                         must_memmove = 1;
5617         }
5618
5619         if (must_memmove)
5620                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5621         else
5622                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5623 }
5624
5625 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5626                            unsigned long src_offset, unsigned long len)
5627 {
5628         size_t cur;
5629         size_t dst_off_in_page;
5630         size_t src_off_in_page;
5631         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5632         unsigned long dst_i;
5633         unsigned long src_i;
5634
5635         if (src_offset + len > dst->len) {
5636                 btrfs_err(dst->fs_info,
5637                         "memmove bogus src_offset %lu move "
5638                        "len %lu dst len %lu", src_offset, len, dst->len);
5639                 BUG_ON(1);
5640         }
5641         if (dst_offset + len > dst->len) {
5642                 btrfs_err(dst->fs_info,
5643                         "memmove bogus dst_offset %lu move "
5644                        "len %lu dst len %lu", dst_offset, len, dst->len);
5645                 BUG_ON(1);
5646         }
5647
5648         while (len > 0) {
5649                 dst_off_in_page = (start_offset + dst_offset) &
5650                         (PAGE_CACHE_SIZE - 1);
5651                 src_off_in_page = (start_offset + src_offset) &
5652                         (PAGE_CACHE_SIZE - 1);
5653
5654                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5655                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5656
5657                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5658                                                src_off_in_page));
5659                 cur = min_t(unsigned long, cur,
5660                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5661
5662                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5663                            dst_off_in_page, src_off_in_page, cur);
5664
5665                 src_offset += cur;
5666                 dst_offset += cur;
5667                 len -= cur;
5668         }
5669 }
5670
5671 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5672                            unsigned long src_offset, unsigned long len)
5673 {
5674         size_t cur;
5675         size_t dst_off_in_page;
5676         size_t src_off_in_page;
5677         unsigned long dst_end = dst_offset + len - 1;
5678         unsigned long src_end = src_offset + len - 1;
5679         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5680         unsigned long dst_i;
5681         unsigned long src_i;
5682
5683         if (src_offset + len > dst->len) {
5684                 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5685                        "len %lu len %lu", src_offset, len, dst->len);
5686                 BUG_ON(1);
5687         }
5688         if (dst_offset + len > dst->len) {
5689                 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5690                        "len %lu len %lu", dst_offset, len, dst->len);
5691                 BUG_ON(1);
5692         }
5693         if (dst_offset < src_offset) {
5694                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5695                 return;
5696         }
5697         while (len > 0) {
5698                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5699                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5700
5701                 dst_off_in_page = (start_offset + dst_end) &
5702                         (PAGE_CACHE_SIZE - 1);
5703                 src_off_in_page = (start_offset + src_end) &
5704                         (PAGE_CACHE_SIZE - 1);
5705
5706                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5707                 cur = min(cur, dst_off_in_page + 1);
5708                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5709                            dst_off_in_page - cur + 1,
5710                            src_off_in_page - cur + 1, cur);
5711
5712                 dst_end -= cur;
5713                 src_end -= cur;
5714                 len -= cur;
5715         }
5716 }
5717
5718 int try_release_extent_buffer(struct page *page)
5719 {
5720         struct extent_buffer *eb;
5721
5722         /*
5723          * We need to make sure noboody is attaching this page to an eb right
5724          * now.
5725          */
5726         spin_lock(&page->mapping->private_lock);
5727         if (!PagePrivate(page)) {
5728                 spin_unlock(&page->mapping->private_lock);
5729                 return 1;
5730         }
5731
5732         eb = (struct extent_buffer *)page->private;
5733         BUG_ON(!eb);
5734
5735         /*
5736          * This is a little awful but should be ok, we need to make sure that
5737          * the eb doesn't disappear out from under us while we're looking at
5738          * this page.
5739          */
5740         spin_lock(&eb->refs_lock);
5741         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5742                 spin_unlock(&eb->refs_lock);
5743                 spin_unlock(&page->mapping->private_lock);
5744                 return 0;
5745         }
5746         spin_unlock(&page->mapping->private_lock);
5747
5748         /*
5749          * If tree ref isn't set then we know the ref on this eb is a real ref,
5750          * so just return, this page will likely be freed soon anyway.
5751          */
5752         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5753                 spin_unlock(&eb->refs_lock);
5754                 return 0;
5755         }
5756
5757         return release_extent_buffer(eb);
5758 }