Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83         if (held) {
84                 btrfs_set_lock_blocking_rw(held, held_rw);
85                 if (held_rw == BTRFS_WRITE_LOCK)
86                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87                 else if (held_rw == BTRFS_READ_LOCK)
88                         held_rw = BTRFS_READ_LOCK_BLOCKING;
89         }
90         btrfs_set_path_blocking(p);
91
92         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93                 if (p->nodes[i] && p->locks[i]) {
94                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96                                 p->locks[i] = BTRFS_WRITE_LOCK;
97                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98                                 p->locks[i] = BTRFS_READ_LOCK;
99                 }
100         }
101
102         if (held)
103                 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109         if (!p)
110                 return;
111         btrfs_release_path(p);
112         kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123         int i;
124
125         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126                 p->slots[i] = 0;
127                 if (!p->nodes[i])
128                         continue;
129                 if (p->locks[i]) {
130                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131                         p->locks[i] = 0;
132                 }
133                 free_extent_buffer(p->nodes[i]);
134                 p->nodes[i] = NULL;
135         }
136 }
137
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150         struct extent_buffer *eb;
151
152         while (1) {
153                 rcu_read_lock();
154                 eb = rcu_dereference(root->node);
155
156                 /*
157                  * RCU really hurts here, we could free up the root node because
158                  * it was cow'ed but we may not get the new root node yet so do
159                  * the inc_not_zero dance and if it doesn't work then
160                  * synchronize_rcu and try again.
161                  */
162                 if (atomic_inc_not_zero(&eb->refs)) {
163                         rcu_read_unlock();
164                         break;
165                 }
166                 rcu_read_unlock();
167                 synchronize_rcu();
168         }
169         return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178         struct extent_buffer *eb;
179
180         while (1) {
181                 eb = btrfs_root_node(root);
182                 btrfs_tree_lock(eb);
183                 if (eb == root->node)
184                         break;
185                 btrfs_tree_unlock(eb);
186                 free_extent_buffer(eb);
187         }
188         return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197         struct extent_buffer *eb;
198
199         while (1) {
200                 eb = btrfs_root_node(root);
201                 btrfs_tree_read_lock(eb);
202                 if (eb == root->node)
203                         break;
204                 btrfs_tree_read_unlock(eb);
205                 free_extent_buffer(eb);
206         }
207         return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218                 return;
219
220         spin_lock(&root->fs_info->trans_lock);
221         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222                 /* Want the extent tree to be the last on the list */
223                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224                         list_move_tail(&root->dirty_list,
225                                        &root->fs_info->dirty_cowonly_roots);
226                 else
227                         list_move(&root->dirty_list,
228                                   &root->fs_info->dirty_cowonly_roots);
229         }
230         spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234  * used by snapshot creation to make a copy of a root for a tree with
235  * a given objectid.  The buffer with the new root node is returned in
236  * cow_ret, and this func returns zero on success or a negative error code.
237  */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239                       struct btrfs_root *root,
240                       struct extent_buffer *buf,
241                       struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243         struct extent_buffer *cow;
244         int ret = 0;
245         int level;
246         struct btrfs_disk_key disk_key;
247
248         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249                 trans->transid != root->fs_info->running_transaction->transid);
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260                         &disk_key, level, buf->start, 0);
261         if (IS_ERR(cow))
262                 return PTR_ERR(cow);
263
264         copy_extent_buffer(cow, buf, 0, 0, cow->len);
265         btrfs_set_header_bytenr(cow, cow->start);
266         btrfs_set_header_generation(cow, trans->transid);
267         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269                                      BTRFS_HEADER_FLAG_RELOC);
270         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272         else
273                 btrfs_set_header_owner(cow, new_root_objectid);
274
275         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276                             BTRFS_FSID_SIZE);
277
278         WARN_ON(btrfs_header_generation(buf) > trans->transid);
279         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280                 ret = btrfs_inc_ref(trans, root, cow, 1);
281         else
282                 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284         if (ret)
285                 return ret;
286
287         btrfs_mark_buffer_dirty(cow);
288         *cow_ret = cow;
289         return 0;
290 }
291
292 enum mod_log_op {
293         MOD_LOG_KEY_REPLACE,
294         MOD_LOG_KEY_ADD,
295         MOD_LOG_KEY_REMOVE,
296         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298         MOD_LOG_MOVE_KEYS,
299         MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303         int dst_slot;
304         int nr_items;
305 };
306
307 struct tree_mod_root {
308         u64 logical;
309         u8 level;
310 };
311
312 struct tree_mod_elem {
313         struct rb_node node;
314         u64 index;              /* shifted logical */
315         u64 seq;
316         enum mod_log_op op;
317
318         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319         int slot;
320
321         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322         u64 generation;
323
324         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325         struct btrfs_disk_key key;
326         u64 blockptr;
327
328         /* this is used for op == MOD_LOG_MOVE_KEYS */
329         struct tree_mod_move move;
330
331         /* this is used for op == MOD_LOG_ROOT_REPLACE */
332         struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337         read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342         read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347         write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352         write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356  * Pull a new tree mod seq number for our operation.
357  */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360         return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         tree_mod_log_write_lock(fs_info);
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         if (!elem->seq) {
377                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379         }
380         spin_unlock(&fs_info->tree_mod_seq_lock);
381         tree_mod_log_write_unlock(fs_info);
382
383         return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387                             struct seq_list *elem)
388 {
389         struct rb_root *tm_root;
390         struct rb_node *node;
391         struct rb_node *next;
392         struct seq_list *cur_elem;
393         struct tree_mod_elem *tm;
394         u64 min_seq = (u64)-1;
395         u64 seq_putting = elem->seq;
396
397         if (!seq_putting)
398                 return;
399
400         spin_lock(&fs_info->tree_mod_seq_lock);
401         list_del(&elem->list);
402         elem->seq = 0;
403
404         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405                 if (cur_elem->seq < min_seq) {
406                         if (seq_putting > cur_elem->seq) {
407                                 /*
408                                  * blocker with lower sequence number exists, we
409                                  * cannot remove anything from the log
410                                  */
411                                 spin_unlock(&fs_info->tree_mod_seq_lock);
412                                 return;
413                         }
414                         min_seq = cur_elem->seq;
415                 }
416         }
417         spin_unlock(&fs_info->tree_mod_seq_lock);
418
419         /*
420          * anything that's lower than the lowest existing (read: blocked)
421          * sequence number can be removed from the tree.
422          */
423         tree_mod_log_write_lock(fs_info);
424         tm_root = &fs_info->tree_mod_log;
425         for (node = rb_first(tm_root); node; node = next) {
426                 next = rb_next(node);
427                 tm = container_of(node, struct tree_mod_elem, node);
428                 if (tm->seq > min_seq)
429                         continue;
430                 rb_erase(node, tm_root);
431                 kfree(tm);
432         }
433         tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437  * key order of the log:
438  *       index -> sequence
439  *
440  * the index is the shifted logical of the *new* root node for root replace
441  * operations, or the shifted logical of the affected block for all other
442  * operations.
443  *
444  * Note: must be called with write lock (tree_mod_log_write_lock).
445  */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449         struct rb_root *tm_root;
450         struct rb_node **new;
451         struct rb_node *parent = NULL;
452         struct tree_mod_elem *cur;
453
454         BUG_ON(!tm);
455
456         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458         tm_root = &fs_info->tree_mod_log;
459         new = &tm_root->rb_node;
460         while (*new) {
461                 cur = container_of(*new, struct tree_mod_elem, node);
462                 parent = *new;
463                 if (cur->index < tm->index)
464                         new = &((*new)->rb_left);
465                 else if (cur->index > tm->index)
466                         new = &((*new)->rb_right);
467                 else if (cur->seq < tm->seq)
468                         new = &((*new)->rb_left);
469                 else if (cur->seq > tm->seq)
470                         new = &((*new)->rb_right);
471                 else
472                         return -EEXIST;
473         }
474
475         rb_link_node(&tm->node, parent, new);
476         rb_insert_color(&tm->node, tm_root);
477         return 0;
478 }
479
480 /*
481  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482  * returns zero with the tree_mod_log_lock acquired. The caller must hold
483  * this until all tree mod log insertions are recorded in the rb tree and then
484  * call tree_mod_log_write_unlock() to release.
485  */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487                                     struct extent_buffer *eb) {
488         smp_mb();
489         if (list_empty(&(fs_info)->tree_mod_seq_list))
490                 return 1;
491         if (eb && btrfs_header_level(eb) == 0)
492                 return 1;
493
494         tree_mod_log_write_lock(fs_info);
495         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496                 tree_mod_log_write_unlock(fs_info);
497                 return 1;
498         }
499
500         return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505                                     struct extent_buffer *eb)
506 {
507         smp_mb();
508         if (list_empty(&(fs_info)->tree_mod_seq_list))
509                 return 0;
510         if (eb && btrfs_header_level(eb) == 0)
511                 return 0;
512
513         return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518                     enum mod_log_op op, gfp_t flags)
519 {
520         struct tree_mod_elem *tm;
521
522         tm = kzalloc(sizeof(*tm), flags);
523         if (!tm)
524                 return NULL;
525
526         tm->index = eb->start >> PAGE_CACHE_SHIFT;
527         if (op != MOD_LOG_KEY_ADD) {
528                 btrfs_node_key(eb, &tm->key, slot);
529                 tm->blockptr = btrfs_node_blockptr(eb, slot);
530         }
531         tm->op = op;
532         tm->slot = slot;
533         tm->generation = btrfs_node_ptr_generation(eb, slot);
534         RB_CLEAR_NODE(&tm->node);
535
536         return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541                         struct extent_buffer *eb, int slot,
542                         enum mod_log_op op, gfp_t flags)
543 {
544         struct tree_mod_elem *tm;
545         int ret;
546
547         if (!tree_mod_need_log(fs_info, eb))
548                 return 0;
549
550         tm = alloc_tree_mod_elem(eb, slot, op, flags);
551         if (!tm)
552                 return -ENOMEM;
553
554         if (tree_mod_dont_log(fs_info, eb)) {
555                 kfree(tm);
556                 return 0;
557         }
558
559         ret = __tree_mod_log_insert(fs_info, tm);
560         tree_mod_log_write_unlock(fs_info);
561         if (ret)
562                 kfree(tm);
563
564         return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569                          struct extent_buffer *eb, int dst_slot, int src_slot,
570                          int nr_items, gfp_t flags)
571 {
572         struct tree_mod_elem *tm = NULL;
573         struct tree_mod_elem **tm_list = NULL;
574         int ret = 0;
575         int i;
576         int locked = 0;
577
578         if (!tree_mod_need_log(fs_info, eb))
579                 return 0;
580
581         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582         if (!tm_list)
583                 return -ENOMEM;
584
585         tm = kzalloc(sizeof(*tm), flags);
586         if (!tm) {
587                 ret = -ENOMEM;
588                 goto free_tms;
589         }
590
591         tm->index = eb->start >> PAGE_CACHE_SHIFT;
592         tm->slot = src_slot;
593         tm->move.dst_slot = dst_slot;
594         tm->move.nr_items = nr_items;
595         tm->op = MOD_LOG_MOVE_KEYS;
596
597         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600                 if (!tm_list[i]) {
601                         ret = -ENOMEM;
602                         goto free_tms;
603                 }
604         }
605
606         if (tree_mod_dont_log(fs_info, eb))
607                 goto free_tms;
608         locked = 1;
609
610         /*
611          * When we override something during the move, we log these removals.
612          * This can only happen when we move towards the beginning of the
613          * buffer, i.e. dst_slot < src_slot.
614          */
615         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617                 if (ret)
618                         goto free_tms;
619         }
620
621         ret = __tree_mod_log_insert(fs_info, tm);
622         if (ret)
623                 goto free_tms;
624         tree_mod_log_write_unlock(fs_info);
625         kfree(tm_list);
626
627         return 0;
628 free_tms:
629         for (i = 0; i < nr_items; i++) {
630                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632                 kfree(tm_list[i]);
633         }
634         if (locked)
635                 tree_mod_log_write_unlock(fs_info);
636         kfree(tm_list);
637         kfree(tm);
638
639         return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644                        struct tree_mod_elem **tm_list,
645                        int nritems)
646 {
647         int i, j;
648         int ret;
649
650         for (i = nritems - 1; i >= 0; i--) {
651                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652                 if (ret) {
653                         for (j = nritems - 1; j > i; j--)
654                                 rb_erase(&tm_list[j]->node,
655                                          &fs_info->tree_mod_log);
656                         return ret;
657                 }
658         }
659
660         return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665                          struct extent_buffer *old_root,
666                          struct extent_buffer *new_root, gfp_t flags,
667                          int log_removal)
668 {
669         struct tree_mod_elem *tm = NULL;
670         struct tree_mod_elem **tm_list = NULL;
671         int nritems = 0;
672         int ret = 0;
673         int i;
674
675         if (!tree_mod_need_log(fs_info, NULL))
676                 return 0;
677
678         if (log_removal && btrfs_header_level(old_root) > 0) {
679                 nritems = btrfs_header_nritems(old_root);
680                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681                                   flags);
682                 if (!tm_list) {
683                         ret = -ENOMEM;
684                         goto free_tms;
685                 }
686                 for (i = 0; i < nritems; i++) {
687                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
688                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689                         if (!tm_list[i]) {
690                                 ret = -ENOMEM;
691                                 goto free_tms;
692                         }
693                 }
694         }
695
696         tm = kzalloc(sizeof(*tm), flags);
697         if (!tm) {
698                 ret = -ENOMEM;
699                 goto free_tms;
700         }
701
702         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703         tm->old_root.logical = old_root->start;
704         tm->old_root.level = btrfs_header_level(old_root);
705         tm->generation = btrfs_header_generation(old_root);
706         tm->op = MOD_LOG_ROOT_REPLACE;
707
708         if (tree_mod_dont_log(fs_info, NULL))
709                 goto free_tms;
710
711         if (tm_list)
712                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713         if (!ret)
714                 ret = __tree_mod_log_insert(fs_info, tm);
715
716         tree_mod_log_write_unlock(fs_info);
717         if (ret)
718                 goto free_tms;
719         kfree(tm_list);
720
721         return ret;
722
723 free_tms:
724         if (tm_list) {
725                 for (i = 0; i < nritems; i++)
726                         kfree(tm_list[i]);
727                 kfree(tm_list);
728         }
729         kfree(tm);
730
731         return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736                       int smallest)
737 {
738         struct rb_root *tm_root;
739         struct rb_node *node;
740         struct tree_mod_elem *cur = NULL;
741         struct tree_mod_elem *found = NULL;
742         u64 index = start >> PAGE_CACHE_SHIFT;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->index < index) {
750                         node = node->rb_left;
751                 } else if (cur->index > index) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909         if (!tm_list)
910                 return -ENOMEM;
911
912         for (i = 0; i < nritems; i++) {
913                 tm_list[i] = alloc_tree_mod_elem(eb, i,
914                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915                 if (!tm_list[i]) {
916                         ret = -ENOMEM;
917                         goto free_tms;
918                 }
919         }
920
921         if (tree_mod_dont_log(fs_info, eb))
922                 goto free_tms;
923
924         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925         tree_mod_log_write_unlock(fs_info);
926         if (ret)
927                 goto free_tms;
928         kfree(tm_list);
929
930         return 0;
931
932 free_tms:
933         for (i = 0; i < nritems; i++)
934                 kfree(tm_list[i]);
935         kfree(tm_list);
936
937         return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942                               struct extent_buffer *new_root_node,
943                               int log_removal)
944 {
945         int ret;
946         ret = tree_mod_log_insert_root(root->fs_info, root->node,
947                                        new_root_node, GFP_NOFS, log_removal);
948         BUG_ON(ret < 0);
949 }
950
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955                               struct extent_buffer *buf)
956 {
957         /*
958          * Tree blocks not in refernece counted trees and tree roots
959          * are never shared. If a block was allocated after the last
960          * snapshot and the block was not allocated by tree relocation,
961          * we know the block is not shared.
962          */
963         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964             buf != root->node && buf != root->commit_root &&
965             (btrfs_header_generation(buf) <=
966              btrfs_root_last_snapshot(&root->root_item) ||
967              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968                 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972                 return 1;
973 #endif
974         return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978                                        struct btrfs_root *root,
979                                        struct extent_buffer *buf,
980                                        struct extent_buffer *cow,
981                                        int *last_ref)
982 {
983         u64 refs;
984         u64 owner;
985         u64 flags;
986         u64 new_flags = 0;
987         int ret;
988
989         /*
990          * Backrefs update rules:
991          *
992          * Always use full backrefs for extent pointers in tree block
993          * allocated by tree relocation.
994          *
995          * If a shared tree block is no longer referenced by its owner
996          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997          * use full backrefs for extent pointers in tree block.
998          *
999          * If a tree block is been relocating
1000          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001          * use full backrefs for extent pointers in tree block.
1002          * The reason for this is some operations (such as drop tree)
1003          * are only allowed for blocks use full backrefs.
1004          */
1005
1006         if (btrfs_block_can_be_shared(root, buf)) {
1007                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                                btrfs_header_level(buf), 1,
1009                                                &refs, &flags);
1010                 if (ret)
1011                         return ret;
1012                 if (refs == 0) {
1013                         ret = -EROFS;
1014                         btrfs_std_error(root->fs_info, ret, NULL);
1015                         return ret;
1016                 }
1017         } else {
1018                 refs = 1;
1019                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                 else
1023                         flags = 0;
1024         }
1025
1026         owner = btrfs_header_owner(buf);
1027         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030         if (refs > 1) {
1031                 if ((owner == root->root_key.objectid ||
1032                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                         ret = btrfs_inc_ref(trans, root, buf, 1);
1035                         BUG_ON(ret); /* -ENOMEM */
1036
1037                         if (root->root_key.objectid ==
1038                             BTRFS_TREE_RELOC_OBJECTID) {
1039                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                 BUG_ON(ret); /* -ENOMEM */
1043                         }
1044                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                 } else {
1046
1047                         if (root->root_key.objectid ==
1048                             BTRFS_TREE_RELOC_OBJECTID)
1049                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1050                         else
1051                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1052                         BUG_ON(ret); /* -ENOMEM */
1053                 }
1054                 if (new_flags != 0) {
1055                         int level = btrfs_header_level(buf);
1056
1057                         ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                           buf->start,
1059                                                           buf->len,
1060                                                           new_flags, level, 0);
1061                         if (ret)
1062                                 return ret;
1063                 }
1064         } else {
1065                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                         if (root->root_key.objectid ==
1067                             BTRFS_TREE_RELOC_OBJECTID)
1068                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1069                         else
1070                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                         ret = btrfs_dec_ref(trans, root, buf, 1);
1073                         BUG_ON(ret); /* -ENOMEM */
1074                 }
1075                 clean_tree_block(trans, root->fs_info, buf);
1076                 *last_ref = 1;
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                              struct btrfs_root *root,
1095                              struct extent_buffer *buf,
1096                              struct extent_buffer *parent, int parent_slot,
1097                              struct extent_buffer **cow_ret,
1098                              u64 search_start, u64 empty_size)
1099 {
1100         struct btrfs_disk_key disk_key;
1101         struct extent_buffer *cow;
1102         int level, ret;
1103         int last_ref = 0;
1104         int unlock_orig = 0;
1105         u64 parent_start;
1106
1107         if (*cow_ret == buf)
1108                 unlock_orig = 1;
1109
1110         btrfs_assert_tree_locked(buf);
1111
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->fs_info->running_transaction->transid);
1114         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                 trans->transid != root->last_trans);
1116
1117         level = btrfs_header_level(buf);
1118
1119         if (level == 0)
1120                 btrfs_item_key(buf, &disk_key, 0);
1121         else
1122                 btrfs_node_key(buf, &disk_key, 0);
1123
1124         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                 if (parent)
1126                         parent_start = parent->start;
1127                 else
1128                         parent_start = 0;
1129         } else
1130                 parent_start = 0;
1131
1132         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                         root->root_key.objectid, &disk_key, level,
1134                         search_start, empty_size);
1135         if (IS_ERR(cow))
1136                 return PTR_ERR(cow);
1137
1138         /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141         btrfs_set_header_bytenr(cow, cow->start);
1142         btrfs_set_header_generation(cow, trans->transid);
1143         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                      BTRFS_HEADER_FLAG_RELOC);
1146         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148         else
1149                 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                             BTRFS_FSID_SIZE);
1153
1154         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155         if (ret) {
1156                 btrfs_abort_transaction(trans, root, ret);
1157                 return ret;
1158         }
1159
1160         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                 if (ret) {
1163                         btrfs_abort_transaction(trans, root, ret);
1164                         return ret;
1165                 }
1166         }
1167
1168         if (buf == root->node) {
1169                 WARN_ON(parent && parent != buf);
1170                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172                         parent_start = buf->start;
1173                 else
1174                         parent_start = 0;
1175
1176                 extent_buffer_get(cow);
1177                 tree_mod_log_set_root_pointer(root, cow, 1);
1178                 rcu_assign_pointer(root->node, cow);
1179
1180                 btrfs_free_tree_block(trans, root, buf, parent_start,
1181                                       last_ref);
1182                 free_extent_buffer(buf);
1183                 add_root_to_dirty_list(root);
1184         } else {
1185                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                         parent_start = parent->start;
1187                 else
1188                         parent_start = 0;
1189
1190                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193                 btrfs_set_node_blockptr(parent, parent_slot,
1194                                         cow->start);
1195                 btrfs_set_node_ptr_generation(parent, parent_slot,
1196                                               trans->transid);
1197                 btrfs_mark_buffer_dirty(parent);
1198                 if (last_ref) {
1199                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1200                         if (ret) {
1201                                 btrfs_abort_transaction(trans, root, ret);
1202                                 return ret;
1203                         }
1204                 }
1205                 btrfs_free_tree_block(trans, root, buf, parent_start,
1206                                       last_ref);
1207         }
1208         if (unlock_orig)
1209                 btrfs_tree_unlock(buf);
1210         free_extent_buffer_stale(buf);
1211         btrfs_mark_buffer_dirty(cow);
1212         *cow_ret = cow;
1213         return 0;
1214 }
1215
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222                            struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224         struct tree_mod_elem *tm;
1225         struct tree_mod_elem *found = NULL;
1226         u64 root_logical = eb_root->start;
1227         int looped = 0;
1228
1229         if (!time_seq)
1230                 return NULL;
1231
1232         /*
1233          * the very last operation that's logged for a root is the replacement
1234          * operation (if it is replaced at all). this has the index of the *new*
1235          * root, making it the very first operation that's logged for this root.
1236          */
1237         while (1) {
1238                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1239                                                 time_seq);
1240                 if (!looped && !tm)
1241                         return NULL;
1242                 /*
1243                  * if there are no tree operation for the oldest root, we simply
1244                  * return it. this should only happen if that (old) root is at
1245                  * level 0.
1246                  */
1247                 if (!tm)
1248                         break;
1249
1250                 /*
1251                  * if there's an operation that's not a root replacement, we
1252                  * found the oldest version of our root. normally, we'll find a
1253                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1254                  */
1255                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1256                         break;
1257
1258                 found = tm;
1259                 root_logical = tm->old_root.logical;
1260                 looped = 1;
1261         }
1262
1263         /* if there's no old root to return, return what we found instead */
1264         if (!found)
1265                 found = tm;
1266
1267         return found;
1268 }
1269
1270 /*
1271  * tm is a pointer to the first operation to rewind within eb. then, all
1272  * previous operations will be rewinded (until we reach something older than
1273  * time_seq).
1274  */
1275 static void
1276 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1277                       u64 time_seq, struct tree_mod_elem *first_tm)
1278 {
1279         u32 n;
1280         struct rb_node *next;
1281         struct tree_mod_elem *tm = first_tm;
1282         unsigned long o_dst;
1283         unsigned long o_src;
1284         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1285
1286         n = btrfs_header_nritems(eb);
1287         tree_mod_log_read_lock(fs_info);
1288         while (tm && tm->seq >= time_seq) {
1289                 /*
1290                  * all the operations are recorded with the operator used for
1291                  * the modification. as we're going backwards, we do the
1292                  * opposite of each operation here.
1293                  */
1294                 switch (tm->op) {
1295                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1296                         BUG_ON(tm->slot < n);
1297                         /* Fallthrough */
1298                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1299                 case MOD_LOG_KEY_REMOVE:
1300                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1301                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1302                         btrfs_set_node_ptr_generation(eb, tm->slot,
1303                                                       tm->generation);
1304                         n++;
1305                         break;
1306                 case MOD_LOG_KEY_REPLACE:
1307                         BUG_ON(tm->slot >= n);
1308                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1309                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1310                         btrfs_set_node_ptr_generation(eb, tm->slot,
1311                                                       tm->generation);
1312                         break;
1313                 case MOD_LOG_KEY_ADD:
1314                         /* if a move operation is needed it's in the log */
1315                         n--;
1316                         break;
1317                 case MOD_LOG_MOVE_KEYS:
1318                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1319                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1320                         memmove_extent_buffer(eb, o_dst, o_src,
1321                                               tm->move.nr_items * p_size);
1322                         break;
1323                 case MOD_LOG_ROOT_REPLACE:
1324                         /*
1325                          * this operation is special. for roots, this must be
1326                          * handled explicitly before rewinding.
1327                          * for non-roots, this operation may exist if the node
1328                          * was a root: root A -> child B; then A gets empty and
1329                          * B is promoted to the new root. in the mod log, we'll
1330                          * have a root-replace operation for B, a tree block
1331                          * that is no root. we simply ignore that operation.
1332                          */
1333                         break;
1334                 }
1335                 next = rb_next(&tm->node);
1336                 if (!next)
1337                         break;
1338                 tm = container_of(next, struct tree_mod_elem, node);
1339                 if (tm->index != first_tm->index)
1340                         break;
1341         }
1342         tree_mod_log_read_unlock(fs_info);
1343         btrfs_set_header_nritems(eb, n);
1344 }
1345
1346 /*
1347  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1348  * is returned. If rewind operations happen, a fresh buffer is returned. The
1349  * returned buffer is always read-locked. If the returned buffer is not the
1350  * input buffer, the lock on the input buffer is released and the input buffer
1351  * is freed (its refcount is decremented).
1352  */
1353 static struct extent_buffer *
1354 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1355                     struct extent_buffer *eb, u64 time_seq)
1356 {
1357         struct extent_buffer *eb_rewin;
1358         struct tree_mod_elem *tm;
1359
1360         if (!time_seq)
1361                 return eb;
1362
1363         if (btrfs_header_level(eb) == 0)
1364                 return eb;
1365
1366         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1367         if (!tm)
1368                 return eb;
1369
1370         btrfs_set_path_blocking(path);
1371         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1372
1373         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1374                 BUG_ON(tm->slot != 0);
1375                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1376                 if (!eb_rewin) {
1377                         btrfs_tree_read_unlock_blocking(eb);
1378                         free_extent_buffer(eb);
1379                         return NULL;
1380                 }
1381                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1382                 btrfs_set_header_backref_rev(eb_rewin,
1383                                              btrfs_header_backref_rev(eb));
1384                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1385                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1386         } else {
1387                 eb_rewin = btrfs_clone_extent_buffer(eb);
1388                 if (!eb_rewin) {
1389                         btrfs_tree_read_unlock_blocking(eb);
1390                         free_extent_buffer(eb);
1391                         return NULL;
1392                 }
1393         }
1394
1395         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1396         btrfs_tree_read_unlock_blocking(eb);
1397         free_extent_buffer(eb);
1398
1399         extent_buffer_get(eb_rewin);
1400         btrfs_tree_read_lock(eb_rewin);
1401         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1402         WARN_ON(btrfs_header_nritems(eb_rewin) >
1403                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1404
1405         return eb_rewin;
1406 }
1407
1408 /*
1409  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1410  * value. If there are no changes, the current root->root_node is returned. If
1411  * anything changed in between, there's a fresh buffer allocated on which the
1412  * rewind operations are done. In any case, the returned buffer is read locked.
1413  * Returns NULL on error (with no locks held).
1414  */
1415 static inline struct extent_buffer *
1416 get_old_root(struct btrfs_root *root, u64 time_seq)
1417 {
1418         struct tree_mod_elem *tm;
1419         struct extent_buffer *eb = NULL;
1420         struct extent_buffer *eb_root;
1421         struct extent_buffer *old;
1422         struct tree_mod_root *old_root = NULL;
1423         u64 old_generation = 0;
1424         u64 logical;
1425
1426         eb_root = btrfs_read_lock_root_node(root);
1427         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1428         if (!tm)
1429                 return eb_root;
1430
1431         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1432                 old_root = &tm->old_root;
1433                 old_generation = tm->generation;
1434                 logical = old_root->logical;
1435         } else {
1436                 logical = eb_root->start;
1437         }
1438
1439         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1440         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1441                 btrfs_tree_read_unlock(eb_root);
1442                 free_extent_buffer(eb_root);
1443                 old = read_tree_block(root, logical, 0);
1444                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1445                         if (!IS_ERR(old))
1446                                 free_extent_buffer(old);
1447                         btrfs_warn(root->fs_info,
1448                                 "failed to read tree block %llu from get_old_root", logical);
1449                 } else {
1450                         eb = btrfs_clone_extent_buffer(old);
1451                         free_extent_buffer(old);
1452                 }
1453         } else if (old_root) {
1454                 btrfs_tree_read_unlock(eb_root);
1455                 free_extent_buffer(eb_root);
1456                 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1457         } else {
1458                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1459                 eb = btrfs_clone_extent_buffer(eb_root);
1460                 btrfs_tree_read_unlock_blocking(eb_root);
1461                 free_extent_buffer(eb_root);
1462         }
1463
1464         if (!eb)
1465                 return NULL;
1466         extent_buffer_get(eb);
1467         btrfs_tree_read_lock(eb);
1468         if (old_root) {
1469                 btrfs_set_header_bytenr(eb, eb->start);
1470                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1471                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1472                 btrfs_set_header_level(eb, old_root->level);
1473                 btrfs_set_header_generation(eb, old_generation);
1474         }
1475         if (tm)
1476                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1477         else
1478                 WARN_ON(btrfs_header_level(eb) != 0);
1479         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1480
1481         return eb;
1482 }
1483
1484 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1485 {
1486         struct tree_mod_elem *tm;
1487         int level;
1488         struct extent_buffer *eb_root = btrfs_root_node(root);
1489
1490         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1491         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1492                 level = tm->old_root.level;
1493         } else {
1494                 level = btrfs_header_level(eb_root);
1495         }
1496         free_extent_buffer(eb_root);
1497
1498         return level;
1499 }
1500
1501 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1502                                    struct btrfs_root *root,
1503                                    struct extent_buffer *buf)
1504 {
1505         if (btrfs_test_is_dummy_root(root))
1506                 return 0;
1507
1508         /* ensure we can see the force_cow */
1509         smp_rmb();
1510
1511         /*
1512          * We do not need to cow a block if
1513          * 1) this block is not created or changed in this transaction;
1514          * 2) this block does not belong to TREE_RELOC tree;
1515          * 3) the root is not forced COW.
1516          *
1517          * What is forced COW:
1518          *    when we create snapshot during commiting the transaction,
1519          *    after we've finished coping src root, we must COW the shared
1520          *    block to ensure the metadata consistency.
1521          */
1522         if (btrfs_header_generation(buf) == trans->transid &&
1523             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1524             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1525               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1526             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1527                 return 0;
1528         return 1;
1529 }
1530
1531 /*
1532  * cows a single block, see __btrfs_cow_block for the real work.
1533  * This version of it has extra checks so that a block isn't cow'd more than
1534  * once per transaction, as long as it hasn't been written yet
1535  */
1536 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1537                     struct btrfs_root *root, struct extent_buffer *buf,
1538                     struct extent_buffer *parent, int parent_slot,
1539                     struct extent_buffer **cow_ret)
1540 {
1541         u64 search_start;
1542         int ret;
1543
1544         if (trans->transaction != root->fs_info->running_transaction)
1545                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1546                        trans->transid,
1547                        root->fs_info->running_transaction->transid);
1548
1549         if (trans->transid != root->fs_info->generation)
1550                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1551                        trans->transid, root->fs_info->generation);
1552
1553         if (!should_cow_block(trans, root, buf)) {
1554                 trans->dirty = true;
1555                 *cow_ret = buf;
1556                 return 0;
1557         }
1558
1559         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1560
1561         if (parent)
1562                 btrfs_set_lock_blocking(parent);
1563         btrfs_set_lock_blocking(buf);
1564
1565         ret = __btrfs_cow_block(trans, root, buf, parent,
1566                                  parent_slot, cow_ret, search_start, 0);
1567
1568         trace_btrfs_cow_block(root, buf, *cow_ret);
1569
1570         return ret;
1571 }
1572
1573 /*
1574  * helper function for defrag to decide if two blocks pointed to by a
1575  * node are actually close by
1576  */
1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578 {
1579         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580                 return 1;
1581         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582                 return 1;
1583         return 0;
1584 }
1585
1586 /*
1587  * compare two keys in a memcmp fashion
1588  */
1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1590 {
1591         struct btrfs_key k1;
1592
1593         btrfs_disk_key_to_cpu(&k1, disk);
1594
1595         return btrfs_comp_cpu_keys(&k1, k2);
1596 }
1597
1598 /*
1599  * same as comp_keys only with two btrfs_key's
1600  */
1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602 {
1603         if (k1->objectid > k2->objectid)
1604                 return 1;
1605         if (k1->objectid < k2->objectid)
1606                 return -1;
1607         if (k1->type > k2->type)
1608                 return 1;
1609         if (k1->type < k2->type)
1610                 return -1;
1611         if (k1->offset > k2->offset)
1612                 return 1;
1613         if (k1->offset < k2->offset)
1614                 return -1;
1615         return 0;
1616 }
1617
1618 /*
1619  * this is used by the defrag code to go through all the
1620  * leaves pointed to by a node and reallocate them so that
1621  * disk order is close to key order
1622  */
1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624                        struct btrfs_root *root, struct extent_buffer *parent,
1625                        int start_slot, u64 *last_ret,
1626                        struct btrfs_key *progress)
1627 {
1628         struct extent_buffer *cur;
1629         u64 blocknr;
1630         u64 gen;
1631         u64 search_start = *last_ret;
1632         u64 last_block = 0;
1633         u64 other;
1634         u32 parent_nritems;
1635         int end_slot;
1636         int i;
1637         int err = 0;
1638         int parent_level;
1639         int uptodate;
1640         u32 blocksize;
1641         int progress_passed = 0;
1642         struct btrfs_disk_key disk_key;
1643
1644         parent_level = btrfs_header_level(parent);
1645
1646         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647         WARN_ON(trans->transid != root->fs_info->generation);
1648
1649         parent_nritems = btrfs_header_nritems(parent);
1650         blocksize = root->nodesize;
1651         end_slot = parent_nritems - 1;
1652
1653         if (parent_nritems <= 1)
1654                 return 0;
1655
1656         btrfs_set_lock_blocking(parent);
1657
1658         for (i = start_slot; i <= end_slot; i++) {
1659                 int close = 1;
1660
1661                 btrfs_node_key(parent, &disk_key, i);
1662                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663                         continue;
1664
1665                 progress_passed = 1;
1666                 blocknr = btrfs_node_blockptr(parent, i);
1667                 gen = btrfs_node_ptr_generation(parent, i);
1668                 if (last_block == 0)
1669                         last_block = blocknr;
1670
1671                 if (i > 0) {
1672                         other = btrfs_node_blockptr(parent, i - 1);
1673                         close = close_blocks(blocknr, other, blocksize);
1674                 }
1675                 if (!close && i < end_slot) {
1676                         other = btrfs_node_blockptr(parent, i + 1);
1677                         close = close_blocks(blocknr, other, blocksize);
1678                 }
1679                 if (close) {
1680                         last_block = blocknr;
1681                         continue;
1682                 }
1683
1684                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1685                 if (cur)
1686                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687                 else
1688                         uptodate = 0;
1689                 if (!cur || !uptodate) {
1690                         if (!cur) {
1691                                 cur = read_tree_block(root, blocknr, gen);
1692                                 if (IS_ERR(cur)) {
1693                                         return PTR_ERR(cur);
1694                                 } else if (!extent_buffer_uptodate(cur)) {
1695                                         free_extent_buffer(cur);
1696                                         return -EIO;
1697                                 }
1698                         } else if (!uptodate) {
1699                                 err = btrfs_read_buffer(cur, gen);
1700                                 if (err) {
1701                                         free_extent_buffer(cur);
1702                                         return err;
1703                                 }
1704                         }
1705                 }
1706                 if (search_start == 0)
1707                         search_start = last_block;
1708
1709                 btrfs_tree_lock(cur);
1710                 btrfs_set_lock_blocking(cur);
1711                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1712                                         &cur, search_start,
1713                                         min(16 * blocksize,
1714                                             (end_slot - i) * blocksize));
1715                 if (err) {
1716                         btrfs_tree_unlock(cur);
1717                         free_extent_buffer(cur);
1718                         break;
1719                 }
1720                 search_start = cur->start;
1721                 last_block = cur->start;
1722                 *last_ret = search_start;
1723                 btrfs_tree_unlock(cur);
1724                 free_extent_buffer(cur);
1725         }
1726         return err;
1727 }
1728
1729 /*
1730  * The leaf data grows from end-to-front in the node.
1731  * this returns the address of the start of the last item,
1732  * which is the stop of the leaf data stack
1733  */
1734 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1735                                          struct extent_buffer *leaf)
1736 {
1737         u32 nr = btrfs_header_nritems(leaf);
1738         if (nr == 0)
1739                 return BTRFS_LEAF_DATA_SIZE(root);
1740         return btrfs_item_offset_nr(leaf, nr - 1);
1741 }
1742
1743
1744 /*
1745  * search for key in the extent_buffer.  The items start at offset p,
1746  * and they are item_size apart.  There are 'max' items in p.
1747  *
1748  * the slot in the array is returned via slot, and it points to
1749  * the place where you would insert key if it is not found in
1750  * the array.
1751  *
1752  * slot may point to max if the key is bigger than all of the keys
1753  */
1754 static noinline int generic_bin_search(struct extent_buffer *eb,
1755                                        unsigned long p,
1756                                        int item_size, struct btrfs_key *key,
1757                                        int max, int *slot)
1758 {
1759         int low = 0;
1760         int high = max;
1761         int mid;
1762         int ret;
1763         struct btrfs_disk_key *tmp = NULL;
1764         struct btrfs_disk_key unaligned;
1765         unsigned long offset;
1766         char *kaddr = NULL;
1767         unsigned long map_start = 0;
1768         unsigned long map_len = 0;
1769         int err;
1770
1771         while (low < high) {
1772                 mid = (low + high) / 2;
1773                 offset = p + mid * item_size;
1774
1775                 if (!kaddr || offset < map_start ||
1776                     (offset + sizeof(struct btrfs_disk_key)) >
1777                     map_start + map_len) {
1778
1779                         err = map_private_extent_buffer(eb, offset,
1780                                                 sizeof(struct btrfs_disk_key),
1781                                                 &kaddr, &map_start, &map_len);
1782
1783                         if (!err) {
1784                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785                                                         map_start);
1786                         } else {
1787                                 read_extent_buffer(eb, &unaligned,
1788                                                    offset, sizeof(unaligned));
1789                                 tmp = &unaligned;
1790                         }
1791
1792                 } else {
1793                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794                                                         map_start);
1795                 }
1796                 ret = comp_keys(tmp, key);
1797
1798                 if (ret < 0)
1799                         low = mid + 1;
1800                 else if (ret > 0)
1801                         high = mid;
1802                 else {
1803                         *slot = mid;
1804                         return 0;
1805                 }
1806         }
1807         *slot = low;
1808         return 1;
1809 }
1810
1811 /*
1812  * simple bin_search frontend that does the right thing for
1813  * leaves vs nodes
1814  */
1815 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816                       int level, int *slot)
1817 {
1818         if (level == 0)
1819                 return generic_bin_search(eb,
1820                                           offsetof(struct btrfs_leaf, items),
1821                                           sizeof(struct btrfs_item),
1822                                           key, btrfs_header_nritems(eb),
1823                                           slot);
1824         else
1825                 return generic_bin_search(eb,
1826                                           offsetof(struct btrfs_node, ptrs),
1827                                           sizeof(struct btrfs_key_ptr),
1828                                           key, btrfs_header_nritems(eb),
1829                                           slot);
1830 }
1831
1832 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833                      int level, int *slot)
1834 {
1835         return bin_search(eb, key, level, slot);
1836 }
1837
1838 static void root_add_used(struct btrfs_root *root, u32 size)
1839 {
1840         spin_lock(&root->accounting_lock);
1841         btrfs_set_root_used(&root->root_item,
1842                             btrfs_root_used(&root->root_item) + size);
1843         spin_unlock(&root->accounting_lock);
1844 }
1845
1846 static void root_sub_used(struct btrfs_root *root, u32 size)
1847 {
1848         spin_lock(&root->accounting_lock);
1849         btrfs_set_root_used(&root->root_item,
1850                             btrfs_root_used(&root->root_item) - size);
1851         spin_unlock(&root->accounting_lock);
1852 }
1853
1854 /* given a node and slot number, this reads the blocks it points to.  The
1855  * extent buffer is returned with a reference taken (but unlocked).
1856  * NULL is returned on error.
1857  */
1858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1859                                    struct extent_buffer *parent, int slot)
1860 {
1861         int level = btrfs_header_level(parent);
1862         struct extent_buffer *eb;
1863
1864         if (slot < 0)
1865                 return NULL;
1866         if (slot >= btrfs_header_nritems(parent))
1867                 return NULL;
1868
1869         BUG_ON(level == 0);
1870
1871         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1872                              btrfs_node_ptr_generation(parent, slot));
1873         if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1874                 if (!IS_ERR(eb))
1875                         free_extent_buffer(eb);
1876                 eb = NULL;
1877         }
1878
1879         return eb;
1880 }
1881
1882 /*
1883  * node level balancing, used to make sure nodes are in proper order for
1884  * item deletion.  We balance from the top down, so we have to make sure
1885  * that a deletion won't leave an node completely empty later on.
1886  */
1887 static noinline int balance_level(struct btrfs_trans_handle *trans,
1888                          struct btrfs_root *root,
1889                          struct btrfs_path *path, int level)
1890 {
1891         struct extent_buffer *right = NULL;
1892         struct extent_buffer *mid;
1893         struct extent_buffer *left = NULL;
1894         struct extent_buffer *parent = NULL;
1895         int ret = 0;
1896         int wret;
1897         int pslot;
1898         int orig_slot = path->slots[level];
1899         u64 orig_ptr;
1900
1901         if (level == 0)
1902                 return 0;
1903
1904         mid = path->nodes[level];
1905
1906         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1907                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1908         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1909
1910         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1911
1912         if (level < BTRFS_MAX_LEVEL - 1) {
1913                 parent = path->nodes[level + 1];
1914                 pslot = path->slots[level + 1];
1915         }
1916
1917         /*
1918          * deal with the case where there is only one pointer in the root
1919          * by promoting the node below to a root
1920          */
1921         if (!parent) {
1922                 struct extent_buffer *child;
1923
1924                 if (btrfs_header_nritems(mid) != 1)
1925                         return 0;
1926
1927                 /* promote the child to a root */
1928                 child = read_node_slot(root, mid, 0);
1929                 if (!child) {
1930                         ret = -EROFS;
1931                         btrfs_std_error(root->fs_info, ret, NULL);
1932                         goto enospc;
1933                 }
1934
1935                 btrfs_tree_lock(child);
1936                 btrfs_set_lock_blocking(child);
1937                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1938                 if (ret) {
1939                         btrfs_tree_unlock(child);
1940                         free_extent_buffer(child);
1941                         goto enospc;
1942                 }
1943
1944                 tree_mod_log_set_root_pointer(root, child, 1);
1945                 rcu_assign_pointer(root->node, child);
1946
1947                 add_root_to_dirty_list(root);
1948                 btrfs_tree_unlock(child);
1949
1950                 path->locks[level] = 0;
1951                 path->nodes[level] = NULL;
1952                 clean_tree_block(trans, root->fs_info, mid);
1953                 btrfs_tree_unlock(mid);
1954                 /* once for the path */
1955                 free_extent_buffer(mid);
1956
1957                 root_sub_used(root, mid->len);
1958                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1959                 /* once for the root ptr */
1960                 free_extent_buffer_stale(mid);
1961                 return 0;
1962         }
1963         if (btrfs_header_nritems(mid) >
1964             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1965                 return 0;
1966
1967         left = read_node_slot(root, parent, pslot - 1);
1968         if (left) {
1969                 btrfs_tree_lock(left);
1970                 btrfs_set_lock_blocking(left);
1971                 wret = btrfs_cow_block(trans, root, left,
1972                                        parent, pslot - 1, &left);
1973                 if (wret) {
1974                         ret = wret;
1975                         goto enospc;
1976                 }
1977         }
1978         right = read_node_slot(root, parent, pslot + 1);
1979         if (right) {
1980                 btrfs_tree_lock(right);
1981                 btrfs_set_lock_blocking(right);
1982                 wret = btrfs_cow_block(trans, root, right,
1983                                        parent, pslot + 1, &right);
1984                 if (wret) {
1985                         ret = wret;
1986                         goto enospc;
1987                 }
1988         }
1989
1990         /* first, try to make some room in the middle buffer */
1991         if (left) {
1992                 orig_slot += btrfs_header_nritems(left);
1993                 wret = push_node_left(trans, root, left, mid, 1);
1994                 if (wret < 0)
1995                         ret = wret;
1996         }
1997
1998         /*
1999          * then try to empty the right most buffer into the middle
2000          */
2001         if (right) {
2002                 wret = push_node_left(trans, root, mid, right, 1);
2003                 if (wret < 0 && wret != -ENOSPC)
2004                         ret = wret;
2005                 if (btrfs_header_nritems(right) == 0) {
2006                         clean_tree_block(trans, root->fs_info, right);
2007                         btrfs_tree_unlock(right);
2008                         del_ptr(root, path, level + 1, pslot + 1);
2009                         root_sub_used(root, right->len);
2010                         btrfs_free_tree_block(trans, root, right, 0, 1);
2011                         free_extent_buffer_stale(right);
2012                         right = NULL;
2013                 } else {
2014                         struct btrfs_disk_key right_key;
2015                         btrfs_node_key(right, &right_key, 0);
2016                         tree_mod_log_set_node_key(root->fs_info, parent,
2017                                                   pslot + 1, 0);
2018                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2019                         btrfs_mark_buffer_dirty(parent);
2020                 }
2021         }
2022         if (btrfs_header_nritems(mid) == 1) {
2023                 /*
2024                  * we're not allowed to leave a node with one item in the
2025                  * tree during a delete.  A deletion from lower in the tree
2026                  * could try to delete the only pointer in this node.
2027                  * So, pull some keys from the left.
2028                  * There has to be a left pointer at this point because
2029                  * otherwise we would have pulled some pointers from the
2030                  * right
2031                  */
2032                 if (!left) {
2033                         ret = -EROFS;
2034                         btrfs_std_error(root->fs_info, ret, NULL);
2035                         goto enospc;
2036                 }
2037                 wret = balance_node_right(trans, root, mid, left);
2038                 if (wret < 0) {
2039                         ret = wret;
2040                         goto enospc;
2041                 }
2042                 if (wret == 1) {
2043                         wret = push_node_left(trans, root, left, mid, 1);
2044                         if (wret < 0)
2045                                 ret = wret;
2046                 }
2047                 BUG_ON(wret == 1);
2048         }
2049         if (btrfs_header_nritems(mid) == 0) {
2050                 clean_tree_block(trans, root->fs_info, mid);
2051                 btrfs_tree_unlock(mid);
2052                 del_ptr(root, path, level + 1, pslot);
2053                 root_sub_used(root, mid->len);
2054                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2055                 free_extent_buffer_stale(mid);
2056                 mid = NULL;
2057         } else {
2058                 /* update the parent key to reflect our changes */
2059                 struct btrfs_disk_key mid_key;
2060                 btrfs_node_key(mid, &mid_key, 0);
2061                 tree_mod_log_set_node_key(root->fs_info, parent,
2062                                           pslot, 0);
2063                 btrfs_set_node_key(parent, &mid_key, pslot);
2064                 btrfs_mark_buffer_dirty(parent);
2065         }
2066
2067         /* update the path */
2068         if (left) {
2069                 if (btrfs_header_nritems(left) > orig_slot) {
2070                         extent_buffer_get(left);
2071                         /* left was locked after cow */
2072                         path->nodes[level] = left;
2073                         path->slots[level + 1] -= 1;
2074                         path->slots[level] = orig_slot;
2075                         if (mid) {
2076                                 btrfs_tree_unlock(mid);
2077                                 free_extent_buffer(mid);
2078                         }
2079                 } else {
2080                         orig_slot -= btrfs_header_nritems(left);
2081                         path->slots[level] = orig_slot;
2082                 }
2083         }
2084         /* double check we haven't messed things up */
2085         if (orig_ptr !=
2086             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087                 BUG();
2088 enospc:
2089         if (right) {
2090                 btrfs_tree_unlock(right);
2091                 free_extent_buffer(right);
2092         }
2093         if (left) {
2094                 if (path->nodes[level] != left)
2095                         btrfs_tree_unlock(left);
2096                 free_extent_buffer(left);
2097         }
2098         return ret;
2099 }
2100
2101 /* Node balancing for insertion.  Here we only split or push nodes around
2102  * when they are completely full.  This is also done top down, so we
2103  * have to be pessimistic.
2104  */
2105 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106                                           struct btrfs_root *root,
2107                                           struct btrfs_path *path, int level)
2108 {
2109         struct extent_buffer *right = NULL;
2110         struct extent_buffer *mid;
2111         struct extent_buffer *left = NULL;
2112         struct extent_buffer *parent = NULL;
2113         int ret = 0;
2114         int wret;
2115         int pslot;
2116         int orig_slot = path->slots[level];
2117
2118         if (level == 0)
2119                 return 1;
2120
2121         mid = path->nodes[level];
2122         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2123
2124         if (level < BTRFS_MAX_LEVEL - 1) {
2125                 parent = path->nodes[level + 1];
2126                 pslot = path->slots[level + 1];
2127         }
2128
2129         if (!parent)
2130                 return 1;
2131
2132         left = read_node_slot(root, parent, pslot - 1);
2133
2134         /* first, try to make some room in the middle buffer */
2135         if (left) {
2136                 u32 left_nr;
2137
2138                 btrfs_tree_lock(left);
2139                 btrfs_set_lock_blocking(left);
2140
2141                 left_nr = btrfs_header_nritems(left);
2142                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2143                         wret = 1;
2144                 } else {
2145                         ret = btrfs_cow_block(trans, root, left, parent,
2146                                               pslot - 1, &left);
2147                         if (ret)
2148                                 wret = 1;
2149                         else {
2150                                 wret = push_node_left(trans, root,
2151                                                       left, mid, 0);
2152                         }
2153                 }
2154                 if (wret < 0)
2155                         ret = wret;
2156                 if (wret == 0) {
2157                         struct btrfs_disk_key disk_key;
2158                         orig_slot += left_nr;
2159                         btrfs_node_key(mid, &disk_key, 0);
2160                         tree_mod_log_set_node_key(root->fs_info, parent,
2161                                                   pslot, 0);
2162                         btrfs_set_node_key(parent, &disk_key, pslot);
2163                         btrfs_mark_buffer_dirty(parent);
2164                         if (btrfs_header_nritems(left) > orig_slot) {
2165                                 path->nodes[level] = left;
2166                                 path->slots[level + 1] -= 1;
2167                                 path->slots[level] = orig_slot;
2168                                 btrfs_tree_unlock(mid);
2169                                 free_extent_buffer(mid);
2170                         } else {
2171                                 orig_slot -=
2172                                         btrfs_header_nritems(left);
2173                                 path->slots[level] = orig_slot;
2174                                 btrfs_tree_unlock(left);
2175                                 free_extent_buffer(left);
2176                         }
2177                         return 0;
2178                 }
2179                 btrfs_tree_unlock(left);
2180                 free_extent_buffer(left);
2181         }
2182         right = read_node_slot(root, parent, pslot + 1);
2183
2184         /*
2185          * then try to empty the right most buffer into the middle
2186          */
2187         if (right) {
2188                 u32 right_nr;
2189
2190                 btrfs_tree_lock(right);
2191                 btrfs_set_lock_blocking(right);
2192
2193                 right_nr = btrfs_header_nritems(right);
2194                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2195                         wret = 1;
2196                 } else {
2197                         ret = btrfs_cow_block(trans, root, right,
2198                                               parent, pslot + 1,
2199                                               &right);
2200                         if (ret)
2201                                 wret = 1;
2202                         else {
2203                                 wret = balance_node_right(trans, root,
2204                                                           right, mid);
2205                         }
2206                 }
2207                 if (wret < 0)
2208                         ret = wret;
2209                 if (wret == 0) {
2210                         struct btrfs_disk_key disk_key;
2211
2212                         btrfs_node_key(right, &disk_key, 0);
2213                         tree_mod_log_set_node_key(root->fs_info, parent,
2214                                                   pslot + 1, 0);
2215                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2216                         btrfs_mark_buffer_dirty(parent);
2217
2218                         if (btrfs_header_nritems(mid) <= orig_slot) {
2219                                 path->nodes[level] = right;
2220                                 path->slots[level + 1] += 1;
2221                                 path->slots[level] = orig_slot -
2222                                         btrfs_header_nritems(mid);
2223                                 btrfs_tree_unlock(mid);
2224                                 free_extent_buffer(mid);
2225                         } else {
2226                                 btrfs_tree_unlock(right);
2227                                 free_extent_buffer(right);
2228                         }
2229                         return 0;
2230                 }
2231                 btrfs_tree_unlock(right);
2232                 free_extent_buffer(right);
2233         }
2234         return 1;
2235 }
2236
2237 /*
2238  * readahead one full node of leaves, finding things that are close
2239  * to the block in 'slot', and triggering ra on them.
2240  */
2241 static void reada_for_search(struct btrfs_root *root,
2242                              struct btrfs_path *path,
2243                              int level, int slot, u64 objectid)
2244 {
2245         struct extent_buffer *node;
2246         struct btrfs_disk_key disk_key;
2247         u32 nritems;
2248         u64 search;
2249         u64 target;
2250         u64 nread = 0;
2251         u64 gen;
2252         int direction = path->reada;
2253         struct extent_buffer *eb;
2254         u32 nr;
2255         u32 blocksize;
2256         u32 nscan = 0;
2257
2258         if (level != 1)
2259                 return;
2260
2261         if (!path->nodes[level])
2262                 return;
2263
2264         node = path->nodes[level];
2265
2266         search = btrfs_node_blockptr(node, slot);
2267         blocksize = root->nodesize;
2268         eb = btrfs_find_tree_block(root->fs_info, search);
2269         if (eb) {
2270                 free_extent_buffer(eb);
2271                 return;
2272         }
2273
2274         target = search;
2275
2276         nritems = btrfs_header_nritems(node);
2277         nr = slot;
2278
2279         while (1) {
2280                 if (direction < 0) {
2281                         if (nr == 0)
2282                                 break;
2283                         nr--;
2284                 } else if (direction > 0) {
2285                         nr++;
2286                         if (nr >= nritems)
2287                                 break;
2288                 }
2289                 if (path->reada < 0 && objectid) {
2290                         btrfs_node_key(node, &disk_key, nr);
2291                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2292                                 break;
2293                 }
2294                 search = btrfs_node_blockptr(node, nr);
2295                 if ((search <= target && target - search <= 65536) ||
2296                     (search > target && search - target <= 65536)) {
2297                         gen = btrfs_node_ptr_generation(node, nr);
2298                         readahead_tree_block(root, search);
2299                         nread += blocksize;
2300                 }
2301                 nscan++;
2302                 if ((nread > 65536 || nscan > 32))
2303                         break;
2304         }
2305 }
2306
2307 static noinline void reada_for_balance(struct btrfs_root *root,
2308                                        struct btrfs_path *path, int level)
2309 {
2310         int slot;
2311         int nritems;
2312         struct extent_buffer *parent;
2313         struct extent_buffer *eb;
2314         u64 gen;
2315         u64 block1 = 0;
2316         u64 block2 = 0;
2317
2318         parent = path->nodes[level + 1];
2319         if (!parent)
2320                 return;
2321
2322         nritems = btrfs_header_nritems(parent);
2323         slot = path->slots[level + 1];
2324
2325         if (slot > 0) {
2326                 block1 = btrfs_node_blockptr(parent, slot - 1);
2327                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2328                 eb = btrfs_find_tree_block(root->fs_info, block1);
2329                 /*
2330                  * if we get -eagain from btrfs_buffer_uptodate, we
2331                  * don't want to return eagain here.  That will loop
2332                  * forever
2333                  */
2334                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2335                         block1 = 0;
2336                 free_extent_buffer(eb);
2337         }
2338         if (slot + 1 < nritems) {
2339                 block2 = btrfs_node_blockptr(parent, slot + 1);
2340                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2341                 eb = btrfs_find_tree_block(root->fs_info, block2);
2342                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2343                         block2 = 0;
2344                 free_extent_buffer(eb);
2345         }
2346
2347         if (block1)
2348                 readahead_tree_block(root, block1);
2349         if (block2)
2350                 readahead_tree_block(root, block2);
2351 }
2352
2353
2354 /*
2355  * when we walk down the tree, it is usually safe to unlock the higher layers
2356  * in the tree.  The exceptions are when our path goes through slot 0, because
2357  * operations on the tree might require changing key pointers higher up in the
2358  * tree.
2359  *
2360  * callers might also have set path->keep_locks, which tells this code to keep
2361  * the lock if the path points to the last slot in the block.  This is part of
2362  * walking through the tree, and selecting the next slot in the higher block.
2363  *
2364  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2365  * if lowest_unlock is 1, level 0 won't be unlocked
2366  */
2367 static noinline void unlock_up(struct btrfs_path *path, int level,
2368                                int lowest_unlock, int min_write_lock_level,
2369                                int *write_lock_level)
2370 {
2371         int i;
2372         int skip_level = level;
2373         int no_skips = 0;
2374         struct extent_buffer *t;
2375
2376         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2377                 if (!path->nodes[i])
2378                         break;
2379                 if (!path->locks[i])
2380                         break;
2381                 if (!no_skips && path->slots[i] == 0) {
2382                         skip_level = i + 1;
2383                         continue;
2384                 }
2385                 if (!no_skips && path->keep_locks) {
2386                         u32 nritems;
2387                         t = path->nodes[i];
2388                         nritems = btrfs_header_nritems(t);
2389                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2390                                 skip_level = i + 1;
2391                                 continue;
2392                         }
2393                 }
2394                 if (skip_level < i && i >= lowest_unlock)
2395                         no_skips = 1;
2396
2397                 t = path->nodes[i];
2398                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2399                         btrfs_tree_unlock_rw(t, path->locks[i]);
2400                         path->locks[i] = 0;
2401                         if (write_lock_level &&
2402                             i > min_write_lock_level &&
2403                             i <= *write_lock_level) {
2404                                 *write_lock_level = i - 1;
2405                         }
2406                 }
2407         }
2408 }
2409
2410 /*
2411  * This releases any locks held in the path starting at level and
2412  * going all the way up to the root.
2413  *
2414  * btrfs_search_slot will keep the lock held on higher nodes in a few
2415  * corner cases, such as COW of the block at slot zero in the node.  This
2416  * ignores those rules, and it should only be called when there are no
2417  * more updates to be done higher up in the tree.
2418  */
2419 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2420 {
2421         int i;
2422
2423         if (path->keep_locks)
2424                 return;
2425
2426         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2427                 if (!path->nodes[i])
2428                         continue;
2429                 if (!path->locks[i])
2430                         continue;
2431                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2432                 path->locks[i] = 0;
2433         }
2434 }
2435
2436 /*
2437  * helper function for btrfs_search_slot.  The goal is to find a block
2438  * in cache without setting the path to blocking.  If we find the block
2439  * we return zero and the path is unchanged.
2440  *
2441  * If we can't find the block, we set the path blocking and do some
2442  * reada.  -EAGAIN is returned and the search must be repeated.
2443  */
2444 static int
2445 read_block_for_search(struct btrfs_trans_handle *trans,
2446                        struct btrfs_root *root, struct btrfs_path *p,
2447                        struct extent_buffer **eb_ret, int level, int slot,
2448                        struct btrfs_key *key, u64 time_seq)
2449 {
2450         u64 blocknr;
2451         u64 gen;
2452         struct extent_buffer *b = *eb_ret;
2453         struct extent_buffer *tmp;
2454         int ret;
2455
2456         blocknr = btrfs_node_blockptr(b, slot);
2457         gen = btrfs_node_ptr_generation(b, slot);
2458
2459         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2460         if (tmp) {
2461                 /* first we do an atomic uptodate check */
2462                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2463                         *eb_ret = tmp;
2464                         return 0;
2465                 }
2466
2467                 /* the pages were up to date, but we failed
2468                  * the generation number check.  Do a full
2469                  * read for the generation number that is correct.
2470                  * We must do this without dropping locks so
2471                  * we can trust our generation number
2472                  */
2473                 btrfs_set_path_blocking(p);
2474
2475                 /* now we're allowed to do a blocking uptodate check */
2476                 ret = btrfs_read_buffer(tmp, gen);
2477                 if (!ret) {
2478                         *eb_ret = tmp;
2479                         return 0;
2480                 }
2481                 free_extent_buffer(tmp);
2482                 btrfs_release_path(p);
2483                 return -EIO;
2484         }
2485
2486         /*
2487          * reduce lock contention at high levels
2488          * of the btree by dropping locks before
2489          * we read.  Don't release the lock on the current
2490          * level because we need to walk this node to figure
2491          * out which blocks to read.
2492          */
2493         btrfs_unlock_up_safe(p, level + 1);
2494         btrfs_set_path_blocking(p);
2495
2496         free_extent_buffer(tmp);
2497         if (p->reada)
2498                 reada_for_search(root, p, level, slot, key->objectid);
2499
2500         btrfs_release_path(p);
2501
2502         ret = -EAGAIN;
2503         tmp = read_tree_block(root, blocknr, 0);
2504         if (!IS_ERR(tmp)) {
2505                 /*
2506                  * If the read above didn't mark this buffer up to date,
2507                  * it will never end up being up to date.  Set ret to EIO now
2508                  * and give up so that our caller doesn't loop forever
2509                  * on our EAGAINs.
2510                  */
2511                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2512                         ret = -EIO;
2513                 free_extent_buffer(tmp);
2514         }
2515         return ret;
2516 }
2517
2518 /*
2519  * helper function for btrfs_search_slot.  This does all of the checks
2520  * for node-level blocks and does any balancing required based on
2521  * the ins_len.
2522  *
2523  * If no extra work was required, zero is returned.  If we had to
2524  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2525  * start over
2526  */
2527 static int
2528 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2529                        struct btrfs_root *root, struct btrfs_path *p,
2530                        struct extent_buffer *b, int level, int ins_len,
2531                        int *write_lock_level)
2532 {
2533         int ret;
2534         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2536                 int sret;
2537
2538                 if (*write_lock_level < level + 1) {
2539                         *write_lock_level = level + 1;
2540                         btrfs_release_path(p);
2541                         goto again;
2542                 }
2543
2544                 btrfs_set_path_blocking(p);
2545                 reada_for_balance(root, p, level);
2546                 sret = split_node(trans, root, p, level);
2547                 btrfs_clear_path_blocking(p, NULL, 0);
2548
2549                 BUG_ON(sret > 0);
2550                 if (sret) {
2551                         ret = sret;
2552                         goto done;
2553                 }
2554                 b = p->nodes[level];
2555         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2556                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2557                 int sret;
2558
2559                 if (*write_lock_level < level + 1) {
2560                         *write_lock_level = level + 1;
2561                         btrfs_release_path(p);
2562                         goto again;
2563                 }
2564
2565                 btrfs_set_path_blocking(p);
2566                 reada_for_balance(root, p, level);
2567                 sret = balance_level(trans, root, p, level);
2568                 btrfs_clear_path_blocking(p, NULL, 0);
2569
2570                 if (sret) {
2571                         ret = sret;
2572                         goto done;
2573                 }
2574                 b = p->nodes[level];
2575                 if (!b) {
2576                         btrfs_release_path(p);
2577                         goto again;
2578                 }
2579                 BUG_ON(btrfs_header_nritems(b) == 1);
2580         }
2581         return 0;
2582
2583 again:
2584         ret = -EAGAIN;
2585 done:
2586         return ret;
2587 }
2588
2589 static void key_search_validate(struct extent_buffer *b,
2590                                 struct btrfs_key *key,
2591                                 int level)
2592 {
2593 #ifdef CONFIG_BTRFS_ASSERT
2594         struct btrfs_disk_key disk_key;
2595
2596         btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598         if (level == 0)
2599                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600                     offsetof(struct btrfs_leaf, items[0].key),
2601                     sizeof(disk_key)));
2602         else
2603                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604                     offsetof(struct btrfs_node, ptrs[0].key),
2605                     sizeof(disk_key)));
2606 #endif
2607 }
2608
2609 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610                       int level, int *prev_cmp, int *slot)
2611 {
2612         if (*prev_cmp != 0) {
2613                 *prev_cmp = bin_search(b, key, level, slot);
2614                 return *prev_cmp;
2615         }
2616
2617         key_search_validate(b, key, level);
2618         *slot = 0;
2619
2620         return 0;
2621 }
2622
2623 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624                 u64 iobjectid, u64 ioff, u8 key_type,
2625                 struct btrfs_key *found_key)
2626 {
2627         int ret;
2628         struct btrfs_key key;
2629         struct extent_buffer *eb;
2630
2631         ASSERT(path);
2632         ASSERT(found_key);
2633
2634         key.type = key_type;
2635         key.objectid = iobjectid;
2636         key.offset = ioff;
2637
2638         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639         if (ret < 0)
2640                 return ret;
2641
2642         eb = path->nodes[0];
2643         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644                 ret = btrfs_next_leaf(fs_root, path);
2645                 if (ret)
2646                         return ret;
2647                 eb = path->nodes[0];
2648         }
2649
2650         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651         if (found_key->type != key.type ||
2652                         found_key->objectid != key.objectid)
2653                 return 1;
2654
2655         return 0;
2656 }
2657
2658 /*
2659  * look for key in the tree.  path is filled in with nodes along the way
2660  * if key is found, we return zero and you can find the item in the leaf
2661  * level of the path (level 0)
2662  *
2663  * If the key isn't found, the path points to the slot where it should
2664  * be inserted, and 1 is returned.  If there are other errors during the
2665  * search a negative error number is returned.
2666  *
2667  * if ins_len > 0, nodes and leaves will be split as we walk down the
2668  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669  * possible)
2670  */
2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2673                       ins_len, int cow)
2674 {
2675         struct extent_buffer *b;
2676         int slot;
2677         int ret;
2678         int err;
2679         int level;
2680         int lowest_unlock = 1;
2681         int root_lock;
2682         /* everything at write_lock_level or lower must be write locked */
2683         int write_lock_level = 0;
2684         u8 lowest_level = 0;
2685         int min_write_lock_level;
2686         int prev_cmp;
2687
2688         lowest_level = p->lowest_level;
2689         WARN_ON(lowest_level && ins_len > 0);
2690         WARN_ON(p->nodes[0] != NULL);
2691         BUG_ON(!cow && ins_len);
2692
2693         if (ins_len < 0) {
2694                 lowest_unlock = 2;
2695
2696                 /* when we are removing items, we might have to go up to level
2697                  * two as we update tree pointers  Make sure we keep write
2698                  * for those levels as well
2699                  */
2700                 write_lock_level = 2;
2701         } else if (ins_len > 0) {
2702                 /*
2703                  * for inserting items, make sure we have a write lock on
2704                  * level 1 so we can update keys
2705                  */
2706                 write_lock_level = 1;
2707         }
2708
2709         if (!cow)
2710                 write_lock_level = -1;
2711
2712         if (cow && (p->keep_locks || p->lowest_level))
2713                 write_lock_level = BTRFS_MAX_LEVEL;
2714
2715         min_write_lock_level = write_lock_level;
2716
2717 again:
2718         prev_cmp = -1;
2719         /*
2720          * we try very hard to do read locks on the root
2721          */
2722         root_lock = BTRFS_READ_LOCK;
2723         level = 0;
2724         if (p->search_commit_root) {
2725                 /*
2726                  * the commit roots are read only
2727                  * so we always do read locks
2728                  */
2729                 if (p->need_commit_sem)
2730                         down_read(&root->fs_info->commit_root_sem);
2731                 b = root->commit_root;
2732                 extent_buffer_get(b);
2733                 level = btrfs_header_level(b);
2734                 if (p->need_commit_sem)
2735                         up_read(&root->fs_info->commit_root_sem);
2736                 if (!p->skip_locking)
2737                         btrfs_tree_read_lock(b);
2738         } else {
2739                 if (p->skip_locking) {
2740                         b = btrfs_root_node(root);
2741                         level = btrfs_header_level(b);
2742                 } else {
2743                         /* we don't know the level of the root node
2744                          * until we actually have it read locked
2745                          */
2746                         b = btrfs_read_lock_root_node(root);
2747                         level = btrfs_header_level(b);
2748                         if (level <= write_lock_level) {
2749                                 /* whoops, must trade for write lock */
2750                                 btrfs_tree_read_unlock(b);
2751                                 free_extent_buffer(b);
2752                                 b = btrfs_lock_root_node(root);
2753                                 root_lock = BTRFS_WRITE_LOCK;
2754
2755                                 /* the level might have changed, check again */
2756                                 level = btrfs_header_level(b);
2757                         }
2758                 }
2759         }
2760         p->nodes[level] = b;
2761         if (!p->skip_locking)
2762                 p->locks[level] = root_lock;
2763
2764         while (b) {
2765                 level = btrfs_header_level(b);
2766
2767                 /*
2768                  * setup the path here so we can release it under lock
2769                  * contention with the cow code
2770                  */
2771                 if (cow) {
2772                         /*
2773                          * if we don't really need to cow this block
2774                          * then we don't want to set the path blocking,
2775                          * so we test it here
2776                          */
2777                         if (!should_cow_block(trans, root, b)) {
2778                                 trans->dirty = true;
2779                                 goto cow_done;
2780                         }
2781
2782                         /*
2783                          * must have write locks on this node and the
2784                          * parent
2785                          */
2786                         if (level > write_lock_level ||
2787                             (level + 1 > write_lock_level &&
2788                             level + 1 < BTRFS_MAX_LEVEL &&
2789                             p->nodes[level + 1])) {
2790                                 write_lock_level = level + 1;
2791                                 btrfs_release_path(p);
2792                                 goto again;
2793                         }
2794
2795                         btrfs_set_path_blocking(p);
2796                         err = btrfs_cow_block(trans, root, b,
2797                                               p->nodes[level + 1],
2798                                               p->slots[level + 1], &b);
2799                         if (err) {
2800                                 ret = err;
2801                                 goto done;
2802                         }
2803                 }
2804 cow_done:
2805                 p->nodes[level] = b;
2806                 btrfs_clear_path_blocking(p, NULL, 0);
2807
2808                 /*
2809                  * we have a lock on b and as long as we aren't changing
2810                  * the tree, there is no way to for the items in b to change.
2811                  * It is safe to drop the lock on our parent before we
2812                  * go through the expensive btree search on b.
2813                  *
2814                  * If we're inserting or deleting (ins_len != 0), then we might
2815                  * be changing slot zero, which may require changing the parent.
2816                  * So, we can't drop the lock until after we know which slot
2817                  * we're operating on.
2818                  */
2819                 if (!ins_len && !p->keep_locks) {
2820                         int u = level + 1;
2821
2822                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2823                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2824                                 p->locks[u] = 0;
2825                         }
2826                 }
2827
2828                 ret = key_search(b, key, level, &prev_cmp, &slot);
2829
2830                 if (level != 0) {
2831                         int dec = 0;
2832                         if (ret && slot > 0) {
2833                                 dec = 1;
2834                                 slot -= 1;
2835                         }
2836                         p->slots[level] = slot;
2837                         err = setup_nodes_for_search(trans, root, p, b, level,
2838                                              ins_len, &write_lock_level);
2839                         if (err == -EAGAIN)
2840                                 goto again;
2841                         if (err) {
2842                                 ret = err;
2843                                 goto done;
2844                         }
2845                         b = p->nodes[level];
2846                         slot = p->slots[level];
2847
2848                         /*
2849                          * slot 0 is special, if we change the key
2850                          * we have to update the parent pointer
2851                          * which means we must have a write lock
2852                          * on the parent
2853                          */
2854                         if (slot == 0 && ins_len &&
2855                             write_lock_level < level + 1) {
2856                                 write_lock_level = level + 1;
2857                                 btrfs_release_path(p);
2858                                 goto again;
2859                         }
2860
2861                         unlock_up(p, level, lowest_unlock,
2862                                   min_write_lock_level, &write_lock_level);
2863
2864                         if (level == lowest_level) {
2865                                 if (dec)
2866                                         p->slots[level]++;
2867                                 goto done;
2868                         }
2869
2870                         err = read_block_for_search(trans, root, p,
2871                                                     &b, level, slot, key, 0);
2872                         if (err == -EAGAIN)
2873                                 goto again;
2874                         if (err) {
2875                                 ret = err;
2876                                 goto done;
2877                         }
2878
2879                         if (!p->skip_locking) {
2880                                 level = btrfs_header_level(b);
2881                                 if (level <= write_lock_level) {
2882                                         err = btrfs_try_tree_write_lock(b);
2883                                         if (!err) {
2884                                                 btrfs_set_path_blocking(p);
2885                                                 btrfs_tree_lock(b);
2886                                                 btrfs_clear_path_blocking(p, b,
2887                                                                   BTRFS_WRITE_LOCK);
2888                                         }
2889                                         p->locks[level] = BTRFS_WRITE_LOCK;
2890                                 } else {
2891                                         err = btrfs_tree_read_lock_atomic(b);
2892                                         if (!err) {
2893                                                 btrfs_set_path_blocking(p);
2894                                                 btrfs_tree_read_lock(b);
2895                                                 btrfs_clear_path_blocking(p, b,
2896                                                                   BTRFS_READ_LOCK);
2897                                         }
2898                                         p->locks[level] = BTRFS_READ_LOCK;
2899                                 }
2900                                 p->nodes[level] = b;
2901                         }
2902                 } else {
2903                         p->slots[level] = slot;
2904                         if (ins_len > 0 &&
2905                             btrfs_leaf_free_space(root, b) < ins_len) {
2906                                 if (write_lock_level < 1) {
2907                                         write_lock_level = 1;
2908                                         btrfs_release_path(p);
2909                                         goto again;
2910                                 }
2911
2912                                 btrfs_set_path_blocking(p);
2913                                 err = split_leaf(trans, root, key,
2914                                                  p, ins_len, ret == 0);
2915                                 btrfs_clear_path_blocking(p, NULL, 0);
2916
2917                                 BUG_ON(err > 0);
2918                                 if (err) {
2919                                         ret = err;
2920                                         goto done;
2921                                 }
2922                         }
2923                         if (!p->search_for_split)
2924                                 unlock_up(p, level, lowest_unlock,
2925                                           min_write_lock_level, &write_lock_level);
2926                         goto done;
2927                 }
2928         }
2929         ret = 1;
2930 done:
2931         /*
2932          * we don't really know what they plan on doing with the path
2933          * from here on, so for now just mark it as blocking
2934          */
2935         if (!p->leave_spinning)
2936                 btrfs_set_path_blocking(p);
2937         if (ret < 0 && !p->skip_release_on_error)
2938                 btrfs_release_path(p);
2939         return ret;
2940 }
2941
2942 /*
2943  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2944  * current state of the tree together with the operations recorded in the tree
2945  * modification log to search for the key in a previous version of this tree, as
2946  * denoted by the time_seq parameter.
2947  *
2948  * Naturally, there is no support for insert, delete or cow operations.
2949  *
2950  * The resulting path and return value will be set up as if we called
2951  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2952  */
2953 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2954                           struct btrfs_path *p, u64 time_seq)
2955 {
2956         struct extent_buffer *b;
2957         int slot;
2958         int ret;
2959         int err;
2960         int level;
2961         int lowest_unlock = 1;
2962         u8 lowest_level = 0;
2963         int prev_cmp = -1;
2964
2965         lowest_level = p->lowest_level;
2966         WARN_ON(p->nodes[0] != NULL);
2967
2968         if (p->search_commit_root) {
2969                 BUG_ON(time_seq);
2970                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2971         }
2972
2973 again:
2974         b = get_old_root(root, time_seq);
2975         level = btrfs_header_level(b);
2976         p->locks[level] = BTRFS_READ_LOCK;
2977
2978         while (b) {
2979                 level = btrfs_header_level(b);
2980                 p->nodes[level] = b;
2981                 btrfs_clear_path_blocking(p, NULL, 0);
2982
2983                 /*
2984                  * we have a lock on b and as long as we aren't changing
2985                  * the tree, there is no way to for the items in b to change.
2986                  * It is safe to drop the lock on our parent before we
2987                  * go through the expensive btree search on b.
2988                  */
2989                 btrfs_unlock_up_safe(p, level + 1);
2990
2991                 /*
2992                  * Since we can unwind eb's we want to do a real search every
2993                  * time.
2994                  */
2995                 prev_cmp = -1;
2996                 ret = key_search(b, key, level, &prev_cmp, &slot);
2997
2998                 if (level != 0) {
2999                         int dec = 0;
3000                         if (ret && slot > 0) {
3001                                 dec = 1;
3002                                 slot -= 1;
3003                         }
3004                         p->slots[level] = slot;
3005                         unlock_up(p, level, lowest_unlock, 0, NULL);
3006
3007                         if (level == lowest_level) {
3008                                 if (dec)
3009                                         p->slots[level]++;
3010                                 goto done;
3011                         }
3012
3013                         err = read_block_for_search(NULL, root, p, &b, level,
3014                                                     slot, key, time_seq);
3015                         if (err == -EAGAIN)
3016                                 goto again;
3017                         if (err) {
3018                                 ret = err;
3019                                 goto done;
3020                         }
3021
3022                         level = btrfs_header_level(b);
3023                         err = btrfs_tree_read_lock_atomic(b);
3024                         if (!err) {
3025                                 btrfs_set_path_blocking(p);
3026                                 btrfs_tree_read_lock(b);
3027                                 btrfs_clear_path_blocking(p, b,
3028                                                           BTRFS_READ_LOCK);
3029                         }
3030                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3031                         if (!b) {
3032                                 ret = -ENOMEM;
3033                                 goto done;
3034                         }
3035                         p->locks[level] = BTRFS_READ_LOCK;
3036                         p->nodes[level] = b;
3037                 } else {
3038                         p->slots[level] = slot;
3039                         unlock_up(p, level, lowest_unlock, 0, NULL);
3040                         goto done;
3041                 }
3042         }
3043         ret = 1;
3044 done:
3045         if (!p->leave_spinning)
3046                 btrfs_set_path_blocking(p);
3047         if (ret < 0)
3048                 btrfs_release_path(p);
3049
3050         return ret;
3051 }
3052
3053 /*
3054  * helper to use instead of search slot if no exact match is needed but
3055  * instead the next or previous item should be returned.
3056  * When find_higher is true, the next higher item is returned, the next lower
3057  * otherwise.
3058  * When return_any and find_higher are both true, and no higher item is found,
3059  * return the next lower instead.
3060  * When return_any is true and find_higher is false, and no lower item is found,
3061  * return the next higher instead.
3062  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3063  * < 0 on error
3064  */
3065 int btrfs_search_slot_for_read(struct btrfs_root *root,
3066                                struct btrfs_key *key, struct btrfs_path *p,
3067                                int find_higher, int return_any)
3068 {
3069         int ret;
3070         struct extent_buffer *leaf;
3071
3072 again:
3073         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3074         if (ret <= 0)
3075                 return ret;
3076         /*
3077          * a return value of 1 means the path is at the position where the
3078          * item should be inserted. Normally this is the next bigger item,
3079          * but in case the previous item is the last in a leaf, path points
3080          * to the first free slot in the previous leaf, i.e. at an invalid
3081          * item.
3082          */
3083         leaf = p->nodes[0];
3084
3085         if (find_higher) {
3086                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3087                         ret = btrfs_next_leaf(root, p);
3088                         if (ret <= 0)
3089                                 return ret;
3090                         if (!return_any)
3091                                 return 1;
3092                         /*
3093                          * no higher item found, return the next
3094                          * lower instead
3095                          */
3096                         return_any = 0;
3097                         find_higher = 0;
3098                         btrfs_release_path(p);
3099                         goto again;
3100                 }
3101         } else {
3102                 if (p->slots[0] == 0) {
3103                         ret = btrfs_prev_leaf(root, p);
3104                         if (ret < 0)
3105                                 return ret;
3106                         if (!ret) {
3107                                 leaf = p->nodes[0];
3108                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3109                                         p->slots[0]--;
3110                                 return 0;
3111                         }
3112                         if (!return_any)
3113                                 return 1;
3114                         /*
3115                          * no lower item found, return the next
3116                          * higher instead
3117                          */
3118                         return_any = 0;
3119                         find_higher = 1;
3120                         btrfs_release_path(p);
3121                         goto again;
3122                 } else {
3123                         --p->slots[0];
3124                 }
3125         }
3126         return 0;
3127 }
3128
3129 /*
3130  * adjust the pointers going up the tree, starting at level
3131  * making sure the right key of each node is points to 'key'.
3132  * This is used after shifting pointers to the left, so it stops
3133  * fixing up pointers when a given leaf/node is not in slot 0 of the
3134  * higher levels
3135  *
3136  */
3137 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3138                            struct btrfs_path *path,
3139                            struct btrfs_disk_key *key, int level)
3140 {
3141         int i;
3142         struct extent_buffer *t;
3143
3144         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3145                 int tslot = path->slots[i];
3146                 if (!path->nodes[i])
3147                         break;
3148                 t = path->nodes[i];
3149                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3150                 btrfs_set_node_key(t, key, tslot);
3151                 btrfs_mark_buffer_dirty(path->nodes[i]);
3152                 if (tslot != 0)
3153                         break;
3154         }
3155 }
3156
3157 /*
3158  * update item key.
3159  *
3160  * This function isn't completely safe. It's the caller's responsibility
3161  * that the new key won't break the order
3162  */
3163 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3164                              struct btrfs_path *path,
3165                              struct btrfs_key *new_key)
3166 {
3167         struct btrfs_disk_key disk_key;
3168         struct extent_buffer *eb;
3169         int slot;
3170
3171         eb = path->nodes[0];
3172         slot = path->slots[0];
3173         if (slot > 0) {
3174                 btrfs_item_key(eb, &disk_key, slot - 1);
3175                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3176         }
3177         if (slot < btrfs_header_nritems(eb) - 1) {
3178                 btrfs_item_key(eb, &disk_key, slot + 1);
3179                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3180         }
3181
3182         btrfs_cpu_key_to_disk(&disk_key, new_key);
3183         btrfs_set_item_key(eb, &disk_key, slot);
3184         btrfs_mark_buffer_dirty(eb);
3185         if (slot == 0)
3186                 fixup_low_keys(fs_info, path, &disk_key, 1);
3187 }
3188
3189 /*
3190  * try to push data from one node into the next node left in the
3191  * tree.
3192  *
3193  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3194  * error, and > 0 if there was no room in the left hand block.
3195  */
3196 static int push_node_left(struct btrfs_trans_handle *trans,
3197                           struct btrfs_root *root, struct extent_buffer *dst,
3198                           struct extent_buffer *src, int empty)
3199 {
3200         int push_items = 0;
3201         int src_nritems;
3202         int dst_nritems;
3203         int ret = 0;
3204
3205         src_nritems = btrfs_header_nritems(src);
3206         dst_nritems = btrfs_header_nritems(dst);
3207         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3208         WARN_ON(btrfs_header_generation(src) != trans->transid);
3209         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3210
3211         if (!empty && src_nritems <= 8)
3212                 return 1;
3213
3214         if (push_items <= 0)
3215                 return 1;
3216
3217         if (empty) {
3218                 push_items = min(src_nritems, push_items);
3219                 if (push_items < src_nritems) {
3220                         /* leave at least 8 pointers in the node if
3221                          * we aren't going to empty it
3222                          */
3223                         if (src_nritems - push_items < 8) {
3224                                 if (push_items <= 8)
3225                                         return 1;
3226                                 push_items -= 8;
3227                         }
3228                 }
3229         } else
3230                 push_items = min(src_nritems - 8, push_items);
3231
3232         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3233                                    push_items);
3234         if (ret) {
3235                 btrfs_abort_transaction(trans, root, ret);
3236                 return ret;
3237         }
3238         copy_extent_buffer(dst, src,
3239                            btrfs_node_key_ptr_offset(dst_nritems),
3240                            btrfs_node_key_ptr_offset(0),
3241                            push_items * sizeof(struct btrfs_key_ptr));
3242
3243         if (push_items < src_nritems) {
3244                 /*
3245                  * don't call tree_mod_log_eb_move here, key removal was already
3246                  * fully logged by tree_mod_log_eb_copy above.
3247                  */
3248                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3249                                       btrfs_node_key_ptr_offset(push_items),
3250                                       (src_nritems - push_items) *
3251                                       sizeof(struct btrfs_key_ptr));
3252         }
3253         btrfs_set_header_nritems(src, src_nritems - push_items);
3254         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3255         btrfs_mark_buffer_dirty(src);
3256         btrfs_mark_buffer_dirty(dst);
3257
3258         return ret;
3259 }
3260
3261 /*
3262  * try to push data from one node into the next node right in the
3263  * tree.
3264  *
3265  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3266  * error, and > 0 if there was no room in the right hand block.
3267  *
3268  * this will  only push up to 1/2 the contents of the left node over
3269  */
3270 static int balance_node_right(struct btrfs_trans_handle *trans,
3271                               struct btrfs_root *root,
3272                               struct extent_buffer *dst,
3273                               struct extent_buffer *src)
3274 {
3275         int push_items = 0;
3276         int max_push;
3277         int src_nritems;
3278         int dst_nritems;
3279         int ret = 0;
3280
3281         WARN_ON(btrfs_header_generation(src) != trans->transid);
3282         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3283
3284         src_nritems = btrfs_header_nritems(src);
3285         dst_nritems = btrfs_header_nritems(dst);
3286         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3287         if (push_items <= 0)
3288                 return 1;
3289
3290         if (src_nritems < 4)
3291                 return 1;
3292
3293         max_push = src_nritems / 2 + 1;
3294         /* don't try to empty the node */
3295         if (max_push >= src_nritems)
3296                 return 1;
3297
3298         if (max_push < push_items)
3299                 push_items = max_push;
3300
3301         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3302         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3303                                       btrfs_node_key_ptr_offset(0),
3304                                       (dst_nritems) *
3305                                       sizeof(struct btrfs_key_ptr));
3306
3307         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3308                                    src_nritems - push_items, push_items);
3309         if (ret) {
3310                 btrfs_abort_transaction(trans, root, ret);
3311                 return ret;
3312         }
3313         copy_extent_buffer(dst, src,
3314                            btrfs_node_key_ptr_offset(0),
3315                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3316                            push_items * sizeof(struct btrfs_key_ptr));
3317
3318         btrfs_set_header_nritems(src, src_nritems - push_items);
3319         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3320
3321         btrfs_mark_buffer_dirty(src);
3322         btrfs_mark_buffer_dirty(dst);
3323
3324         return ret;
3325 }
3326
3327 /*
3328  * helper function to insert a new root level in the tree.
3329  * A new node is allocated, and a single item is inserted to
3330  * point to the existing root
3331  *
3332  * returns zero on success or < 0 on failure.
3333  */
3334 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3335                            struct btrfs_root *root,
3336                            struct btrfs_path *path, int level)
3337 {
3338         u64 lower_gen;
3339         struct extent_buffer *lower;
3340         struct extent_buffer *c;
3341         struct extent_buffer *old;
3342         struct btrfs_disk_key lower_key;
3343
3344         BUG_ON(path->nodes[level]);
3345         BUG_ON(path->nodes[level-1] != root->node);
3346
3347         lower = path->nodes[level-1];
3348         if (level == 1)
3349                 btrfs_item_key(lower, &lower_key, 0);
3350         else
3351                 btrfs_node_key(lower, &lower_key, 0);
3352
3353         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3354                                    &lower_key, level, root->node->start, 0);
3355         if (IS_ERR(c))
3356                 return PTR_ERR(c);
3357
3358         root_add_used(root, root->nodesize);
3359
3360         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3361         btrfs_set_header_nritems(c, 1);
3362         btrfs_set_header_level(c, level);
3363         btrfs_set_header_bytenr(c, c->start);
3364         btrfs_set_header_generation(c, trans->transid);
3365         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3366         btrfs_set_header_owner(c, root->root_key.objectid);
3367
3368         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3369                             BTRFS_FSID_SIZE);
3370
3371         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3372                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3373
3374         btrfs_set_node_key(c, &lower_key, 0);
3375         btrfs_set_node_blockptr(c, 0, lower->start);
3376         lower_gen = btrfs_header_generation(lower);
3377         WARN_ON(lower_gen != trans->transid);
3378
3379         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3380
3381         btrfs_mark_buffer_dirty(c);
3382
3383         old = root->node;
3384         tree_mod_log_set_root_pointer(root, c, 0);
3385         rcu_assign_pointer(root->node, c);
3386
3387         /* the super has an extra ref to root->node */
3388         free_extent_buffer(old);
3389
3390         add_root_to_dirty_list(root);
3391         extent_buffer_get(c);
3392         path->nodes[level] = c;
3393         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3394         path->slots[level] = 0;
3395         return 0;
3396 }
3397
3398 /*
3399  * worker function to insert a single pointer in a node.
3400  * the node should have enough room for the pointer already
3401  *
3402  * slot and level indicate where you want the key to go, and
3403  * blocknr is the block the key points to.
3404  */
3405 static void insert_ptr(struct btrfs_trans_handle *trans,
3406                        struct btrfs_root *root, struct btrfs_path *path,
3407                        struct btrfs_disk_key *key, u64 bytenr,
3408                        int slot, int level)
3409 {
3410         struct extent_buffer *lower;
3411         int nritems;
3412         int ret;
3413
3414         BUG_ON(!path->nodes[level]);
3415         btrfs_assert_tree_locked(path->nodes[level]);
3416         lower = path->nodes[level];
3417         nritems = btrfs_header_nritems(lower);
3418         BUG_ON(slot > nritems);
3419         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3420         if (slot != nritems) {
3421                 if (level)
3422                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3423                                              slot, nritems - slot);
3424                 memmove_extent_buffer(lower,
3425                               btrfs_node_key_ptr_offset(slot + 1),
3426                               btrfs_node_key_ptr_offset(slot),
3427                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3428         }
3429         if (level) {
3430                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3431                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3432                 BUG_ON(ret < 0);
3433         }
3434         btrfs_set_node_key(lower, key, slot);
3435         btrfs_set_node_blockptr(lower, slot, bytenr);
3436         WARN_ON(trans->transid == 0);
3437         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3438         btrfs_set_header_nritems(lower, nritems + 1);
3439         btrfs_mark_buffer_dirty(lower);
3440 }
3441
3442 /*
3443  * split the node at the specified level in path in two.
3444  * The path is corrected to point to the appropriate node after the split
3445  *
3446  * Before splitting this tries to make some room in the node by pushing
3447  * left and right, if either one works, it returns right away.
3448  *
3449  * returns 0 on success and < 0 on failure
3450  */
3451 static noinline int split_node(struct btrfs_trans_handle *trans,
3452                                struct btrfs_root *root,
3453                                struct btrfs_path *path, int level)
3454 {
3455         struct extent_buffer *c;
3456         struct extent_buffer *split;
3457         struct btrfs_disk_key disk_key;
3458         int mid;
3459         int ret;
3460         u32 c_nritems;
3461
3462         c = path->nodes[level];
3463         WARN_ON(btrfs_header_generation(c) != trans->transid);
3464         if (c == root->node) {
3465                 /*
3466                  * trying to split the root, lets make a new one
3467                  *
3468                  * tree mod log: We don't log_removal old root in
3469                  * insert_new_root, because that root buffer will be kept as a
3470                  * normal node. We are going to log removal of half of the
3471                  * elements below with tree_mod_log_eb_copy. We're holding a
3472                  * tree lock on the buffer, which is why we cannot race with
3473                  * other tree_mod_log users.
3474                  */
3475                 ret = insert_new_root(trans, root, path, level + 1);
3476                 if (ret)
3477                         return ret;
3478         } else {
3479                 ret = push_nodes_for_insert(trans, root, path, level);
3480                 c = path->nodes[level];
3481                 if (!ret && btrfs_header_nritems(c) <
3482                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3483                         return 0;
3484                 if (ret < 0)
3485                         return ret;
3486         }
3487
3488         c_nritems = btrfs_header_nritems(c);
3489         mid = (c_nritems + 1) / 2;
3490         btrfs_node_key(c, &disk_key, mid);
3491
3492         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3493                         &disk_key, level, c->start, 0);
3494         if (IS_ERR(split))
3495                 return PTR_ERR(split);
3496
3497         root_add_used(root, root->nodesize);
3498
3499         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3500         btrfs_set_header_level(split, btrfs_header_level(c));
3501         btrfs_set_header_bytenr(split, split->start);
3502         btrfs_set_header_generation(split, trans->transid);
3503         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3504         btrfs_set_header_owner(split, root->root_key.objectid);
3505         write_extent_buffer(split, root->fs_info->fsid,
3506                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3507         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3508                             btrfs_header_chunk_tree_uuid(split),
3509                             BTRFS_UUID_SIZE);
3510
3511         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3512                                    mid, c_nritems - mid);
3513         if (ret) {
3514                 btrfs_abort_transaction(trans, root, ret);
3515                 return ret;
3516         }
3517         copy_extent_buffer(split, c,
3518                            btrfs_node_key_ptr_offset(0),
3519                            btrfs_node_key_ptr_offset(mid),
3520                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521         btrfs_set_header_nritems(split, c_nritems - mid);
3522         btrfs_set_header_nritems(c, mid);
3523         ret = 0;
3524
3525         btrfs_mark_buffer_dirty(c);
3526         btrfs_mark_buffer_dirty(split);
3527
3528         insert_ptr(trans, root, path, &disk_key, split->start,
3529                    path->slots[level + 1] + 1, level + 1);
3530
3531         if (path->slots[level] >= mid) {
3532                 path->slots[level] -= mid;
3533                 btrfs_tree_unlock(c);
3534                 free_extent_buffer(c);
3535                 path->nodes[level] = split;
3536                 path->slots[level + 1] += 1;
3537         } else {
3538                 btrfs_tree_unlock(split);
3539                 free_extent_buffer(split);
3540         }
3541         return ret;
3542 }
3543
3544 /*
3545  * how many bytes are required to store the items in a leaf.  start
3546  * and nr indicate which items in the leaf to check.  This totals up the
3547  * space used both by the item structs and the item data
3548  */
3549 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550 {
3551         struct btrfs_item *start_item;
3552         struct btrfs_item *end_item;
3553         struct btrfs_map_token token;
3554         int data_len;
3555         int nritems = btrfs_header_nritems(l);
3556         int end = min(nritems, start + nr) - 1;
3557
3558         if (!nr)
3559                 return 0;
3560         btrfs_init_map_token(&token);
3561         start_item = btrfs_item_nr(start);
3562         end_item = btrfs_item_nr(end);
3563         data_len = btrfs_token_item_offset(l, start_item, &token) +
3564                 btrfs_token_item_size(l, start_item, &token);
3565         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566         data_len += sizeof(struct btrfs_item) * nr;
3567         WARN_ON(data_len < 0);
3568         return data_len;
3569 }
3570
3571 /*
3572  * The space between the end of the leaf items and
3573  * the start of the leaf data.  IOW, how much room
3574  * the leaf has left for both items and data
3575  */
3576 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3577                                    struct extent_buffer *leaf)
3578 {
3579         int nritems = btrfs_header_nritems(leaf);
3580         int ret;
3581         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3582         if (ret < 0) {
3583                 btrfs_crit(root->fs_info,
3584                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3586                        leaf_space_used(leaf, 0, nritems), nritems);
3587         }
3588         return ret;
3589 }
3590
3591 /*
3592  * min slot controls the lowest index we're willing to push to the
3593  * right.  We'll push up to and including min_slot, but no lower
3594  */
3595 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3596                                       struct btrfs_root *root,
3597                                       struct btrfs_path *path,
3598                                       int data_size, int empty,
3599                                       struct extent_buffer *right,
3600                                       int free_space, u32 left_nritems,
3601                                       u32 min_slot)
3602 {
3603         struct extent_buffer *left = path->nodes[0];
3604         struct extent_buffer *upper = path->nodes[1];
3605         struct btrfs_map_token token;
3606         struct btrfs_disk_key disk_key;
3607         int slot;
3608         u32 i;
3609         int push_space = 0;
3610         int push_items = 0;
3611         struct btrfs_item *item;
3612         u32 nr;
3613         u32 right_nritems;
3614         u32 data_end;
3615         u32 this_item_size;
3616
3617         btrfs_init_map_token(&token);
3618
3619         if (empty)
3620                 nr = 0;
3621         else
3622                 nr = max_t(u32, 1, min_slot);
3623
3624         if (path->slots[0] >= left_nritems)
3625                 push_space += data_size;
3626
3627         slot = path->slots[1];
3628         i = left_nritems - 1;
3629         while (i >= nr) {
3630                 item = btrfs_item_nr(i);
3631
3632                 if (!empty && push_items > 0) {
3633                         if (path->slots[0] > i)
3634                                 break;
3635                         if (path->slots[0] == i) {
3636                                 int space = btrfs_leaf_free_space(root, left);
3637                                 if (space + push_space * 2 > free_space)
3638                                         break;
3639                         }
3640                 }
3641
3642                 if (path->slots[0] == i)
3643                         push_space += data_size;
3644
3645                 this_item_size = btrfs_item_size(left, item);
3646                 if (this_item_size + sizeof(*item) + push_space > free_space)
3647                         break;
3648
3649                 push_items++;
3650                 push_space += this_item_size + sizeof(*item);
3651                 if (i == 0)
3652                         break;
3653                 i--;
3654         }
3655
3656         if (push_items == 0)
3657                 goto out_unlock;
3658
3659         WARN_ON(!empty && push_items == left_nritems);
3660
3661         /* push left to right */
3662         right_nritems = btrfs_header_nritems(right);
3663
3664         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665         push_space -= leaf_data_end(root, left);
3666
3667         /* make room in the right data area */
3668         data_end = leaf_data_end(root, right);
3669         memmove_extent_buffer(right,
3670                               btrfs_leaf_data(right) + data_end - push_space,
3671                               btrfs_leaf_data(right) + data_end,
3672                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3673
3674         /* copy from the left data area */
3675         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3676                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3677                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3678                      push_space);
3679
3680         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681                               btrfs_item_nr_offset(0),
3682                               right_nritems * sizeof(struct btrfs_item));
3683
3684         /* copy the items from left to right */
3685         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686                    btrfs_item_nr_offset(left_nritems - push_items),
3687                    push_items * sizeof(struct btrfs_item));
3688
3689         /* update the item pointers */
3690         right_nritems += push_items;
3691         btrfs_set_header_nritems(right, right_nritems);
3692         push_space = BTRFS_LEAF_DATA_SIZE(root);
3693         for (i = 0; i < right_nritems; i++) {
3694                 item = btrfs_item_nr(i);
3695                 push_space -= btrfs_token_item_size(right, item, &token);
3696                 btrfs_set_token_item_offset(right, item, push_space, &token);
3697         }
3698
3699         left_nritems -= push_items;
3700         btrfs_set_header_nritems(left, left_nritems);
3701
3702         if (left_nritems)
3703                 btrfs_mark_buffer_dirty(left);
3704         else
3705                 clean_tree_block(trans, root->fs_info, left);
3706
3707         btrfs_mark_buffer_dirty(right);
3708
3709         btrfs_item_key(right, &disk_key, 0);
3710         btrfs_set_node_key(upper, &disk_key, slot + 1);
3711         btrfs_mark_buffer_dirty(upper);
3712
3713         /* then fixup the leaf pointer in the path */
3714         if (path->slots[0] >= left_nritems) {
3715                 path->slots[0] -= left_nritems;
3716                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3717                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3718                 btrfs_tree_unlock(path->nodes[0]);
3719                 free_extent_buffer(path->nodes[0]);
3720                 path->nodes[0] = right;
3721                 path->slots[1] += 1;
3722         } else {
3723                 btrfs_tree_unlock(right);
3724                 free_extent_buffer(right);
3725         }
3726         return 0;
3727
3728 out_unlock:
3729         btrfs_tree_unlock(right);
3730         free_extent_buffer(right);
3731         return 1;
3732 }
3733
3734 /*
3735  * push some data in the path leaf to the right, trying to free up at
3736  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737  *
3738  * returns 1 if the push failed because the other node didn't have enough
3739  * room, 0 if everything worked out and < 0 if there were major errors.
3740  *
3741  * this will push starting from min_slot to the end of the leaf.  It won't
3742  * push any slot lower than min_slot
3743  */
3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745                            *root, struct btrfs_path *path,
3746                            int min_data_size, int data_size,
3747                            int empty, u32 min_slot)
3748 {
3749         struct extent_buffer *left = path->nodes[0];
3750         struct extent_buffer *right;
3751         struct extent_buffer *upper;
3752         int slot;
3753         int free_space;
3754         u32 left_nritems;
3755         int ret;
3756
3757         if (!path->nodes[1])
3758                 return 1;
3759
3760         slot = path->slots[1];
3761         upper = path->nodes[1];
3762         if (slot >= btrfs_header_nritems(upper) - 1)
3763                 return 1;
3764
3765         btrfs_assert_tree_locked(path->nodes[1]);
3766
3767         right = read_node_slot(root, upper, slot + 1);
3768         if (right == NULL)
3769                 return 1;
3770
3771         btrfs_tree_lock(right);
3772         btrfs_set_lock_blocking(right);
3773
3774         free_space = btrfs_leaf_free_space(root, right);
3775         if (free_space < data_size)
3776                 goto out_unlock;
3777
3778         /* cow and double check */
3779         ret = btrfs_cow_block(trans, root, right, upper,
3780                               slot + 1, &right);
3781         if (ret)
3782                 goto out_unlock;
3783
3784         free_space = btrfs_leaf_free_space(root, right);
3785         if (free_space < data_size)
3786                 goto out_unlock;
3787
3788         left_nritems = btrfs_header_nritems(left);
3789         if (left_nritems == 0)
3790                 goto out_unlock;
3791
3792         if (path->slots[0] == left_nritems && !empty) {
3793                 /* Key greater than all keys in the leaf, right neighbor has
3794                  * enough room for it and we're not emptying our leaf to delete
3795                  * it, therefore use right neighbor to insert the new item and
3796                  * no need to touch/dirty our left leaft. */
3797                 btrfs_tree_unlock(left);
3798                 free_extent_buffer(left);
3799                 path->nodes[0] = right;
3800                 path->slots[0] = 0;
3801                 path->slots[1]++;
3802                 return 0;
3803         }
3804
3805         return __push_leaf_right(trans, root, path, min_data_size, empty,
3806                                 right, free_space, left_nritems, min_slot);
3807 out_unlock:
3808         btrfs_tree_unlock(right);
3809         free_extent_buffer(right);
3810         return 1;
3811 }
3812
3813 /*
3814  * push some data in the path leaf to the left, trying to free up at
3815  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3816  *
3817  * max_slot can put a limit on how far into the leaf we'll push items.  The
3818  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3819  * items
3820  */
3821 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3822                                      struct btrfs_root *root,
3823                                      struct btrfs_path *path, int data_size,
3824                                      int empty, struct extent_buffer *left,
3825                                      int free_space, u32 right_nritems,
3826                                      u32 max_slot)
3827 {
3828         struct btrfs_disk_key disk_key;
3829         struct extent_buffer *right = path->nodes[0];
3830         int i;
3831         int push_space = 0;
3832         int push_items = 0;
3833         struct btrfs_item *item;
3834         u32 old_left_nritems;
3835         u32 nr;
3836         int ret = 0;
3837         u32 this_item_size;
3838         u32 old_left_item_size;
3839         struct btrfs_map_token token;
3840
3841         btrfs_init_map_token(&token);
3842
3843         if (empty)
3844                 nr = min(right_nritems, max_slot);
3845         else
3846                 nr = min(right_nritems - 1, max_slot);
3847
3848         for (i = 0; i < nr; i++) {
3849                 item = btrfs_item_nr(i);
3850
3851                 if (!empty && push_items > 0) {
3852                         if (path->slots[0] < i)
3853                                 break;
3854                         if (path->slots[0] == i) {
3855                                 int space = btrfs_leaf_free_space(root, right);
3856                                 if (space + push_space * 2 > free_space)
3857                                         break;
3858                         }
3859                 }
3860
3861                 if (path->slots[0] == i)
3862                         push_space += data_size;
3863
3864                 this_item_size = btrfs_item_size(right, item);
3865                 if (this_item_size + sizeof(*item) + push_space > free_space)
3866                         break;
3867
3868                 push_items++;
3869                 push_space += this_item_size + sizeof(*item);
3870         }
3871
3872         if (push_items == 0) {
3873                 ret = 1;
3874                 goto out;
3875         }
3876         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3877
3878         /* push data from right to left */
3879         copy_extent_buffer(left, right,
3880                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3881                            btrfs_item_nr_offset(0),
3882                            push_items * sizeof(struct btrfs_item));
3883
3884         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3885                      btrfs_item_offset_nr(right, push_items - 1);
3886
3887         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3888                      leaf_data_end(root, left) - push_space,
3889                      btrfs_leaf_data(right) +
3890                      btrfs_item_offset_nr(right, push_items - 1),
3891                      push_space);
3892         old_left_nritems = btrfs_header_nritems(left);
3893         BUG_ON(old_left_nritems <= 0);
3894
3895         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3896         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3897                 u32 ioff;
3898
3899                 item = btrfs_item_nr(i);
3900
3901                 ioff = btrfs_token_item_offset(left, item, &token);
3902                 btrfs_set_token_item_offset(left, item,
3903                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3904                       &token);
3905         }
3906         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3907
3908         /* fixup right node */
3909         if (push_items > right_nritems)
3910                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3911                        right_nritems);
3912
3913         if (push_items < right_nritems) {
3914                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3915                                                   leaf_data_end(root, right);
3916                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3917                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3918                                       btrfs_leaf_data(right) +
3919                                       leaf_data_end(root, right), push_space);
3920
3921                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3922                               btrfs_item_nr_offset(push_items),
3923                              (btrfs_header_nritems(right) - push_items) *
3924                              sizeof(struct btrfs_item));
3925         }
3926         right_nritems -= push_items;
3927         btrfs_set_header_nritems(right, right_nritems);
3928         push_space = BTRFS_LEAF_DATA_SIZE(root);
3929         for (i = 0; i < right_nritems; i++) {
3930                 item = btrfs_item_nr(i);
3931
3932                 push_space = push_space - btrfs_token_item_size(right,
3933                                                                 item, &token);
3934                 btrfs_set_token_item_offset(right, item, push_space, &token);
3935         }
3936
3937         btrfs_mark_buffer_dirty(left);
3938         if (right_nritems)
3939                 btrfs_mark_buffer_dirty(right);
3940         else
3941                 clean_tree_block(trans, root->fs_info, right);
3942
3943         btrfs_item_key(right, &disk_key, 0);
3944         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3945
3946         /* then fixup the leaf pointer in the path */
3947         if (path->slots[0] < push_items) {
3948                 path->slots[0] += old_left_nritems;
3949                 btrfs_tree_unlock(path->nodes[0]);
3950                 free_extent_buffer(path->nodes[0]);
3951                 path->nodes[0] = left;
3952                 path->slots[1] -= 1;
3953         } else {
3954                 btrfs_tree_unlock(left);
3955                 free_extent_buffer(left);
3956                 path->slots[0] -= push_items;
3957         }
3958         BUG_ON(path->slots[0] < 0);
3959         return ret;
3960 out:
3961         btrfs_tree_unlock(left);
3962         free_extent_buffer(left);
3963         return ret;
3964 }
3965
3966 /*
3967  * push some data in the path leaf to the left, trying to free up at
3968  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3969  *
3970  * max_slot can put a limit on how far into the leaf we'll push items.  The
3971  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3972  * items
3973  */
3974 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3975                           *root, struct btrfs_path *path, int min_data_size,
3976                           int data_size, int empty, u32 max_slot)
3977 {
3978         struct extent_buffer *right = path->nodes[0];
3979         struct extent_buffer *left;
3980         int slot;
3981         int free_space;
3982         u32 right_nritems;
3983         int ret = 0;
3984
3985         slot = path->slots[1];
3986         if (slot == 0)
3987                 return 1;
3988         if (!path->nodes[1])
3989                 return 1;
3990
3991         right_nritems = btrfs_header_nritems(right);
3992         if (right_nritems == 0)
3993                 return 1;
3994
3995         btrfs_assert_tree_locked(path->nodes[1]);
3996
3997         left = read_node_slot(root, path->nodes[1], slot - 1);
3998         if (left == NULL)
3999                 return 1;
4000
4001         btrfs_tree_lock(left);
4002         btrfs_set_lock_blocking(left);
4003
4004         free_space = btrfs_leaf_free_space(root, left);
4005         if (free_space < data_size) {
4006                 ret = 1;
4007                 goto out;
4008         }
4009
4010         /* cow and double check */
4011         ret = btrfs_cow_block(trans, root, left,
4012                               path->nodes[1], slot - 1, &left);
4013         if (ret) {
4014                 /* we hit -ENOSPC, but it isn't fatal here */
4015                 if (ret == -ENOSPC)
4016                         ret = 1;
4017                 goto out;
4018         }
4019
4020         free_space = btrfs_leaf_free_space(root, left);
4021         if (free_space < data_size) {
4022                 ret = 1;
4023                 goto out;
4024         }
4025
4026         return __push_leaf_left(trans, root, path, min_data_size,
4027                                empty, left, free_space, right_nritems,
4028                                max_slot);
4029 out:
4030         btrfs_tree_unlock(left);
4031         free_extent_buffer(left);
4032         return ret;
4033 }
4034
4035 /*
4036  * split the path's leaf in two, making sure there is at least data_size
4037  * available for the resulting leaf level of the path.
4038  */
4039 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4040                                     struct btrfs_root *root,
4041                                     struct btrfs_path *path,
4042                                     struct extent_buffer *l,
4043                                     struct extent_buffer *right,
4044                                     int slot, int mid, int nritems)
4045 {
4046         int data_copy_size;
4047         int rt_data_off;
4048         int i;
4049         struct btrfs_disk_key disk_key;
4050         struct btrfs_map_token token;
4051
4052         btrfs_init_map_token(&token);
4053
4054         nritems = nritems - mid;
4055         btrfs_set_header_nritems(right, nritems);
4056         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4057
4058         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4059                            btrfs_item_nr_offset(mid),
4060                            nritems * sizeof(struct btrfs_item));
4061
4062         copy_extent_buffer(right, l,
4063                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4064                      data_copy_size, btrfs_leaf_data(l) +
4065                      leaf_data_end(root, l), data_copy_size);
4066
4067         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4068                       btrfs_item_end_nr(l, mid);
4069
4070         for (i = 0; i < nritems; i++) {
4071                 struct btrfs_item *item = btrfs_item_nr(i);
4072                 u32 ioff;
4073
4074                 ioff = btrfs_token_item_offset(right, item, &token);
4075                 btrfs_set_token_item_offset(right, item,
4076                                             ioff + rt_data_off, &token);
4077         }
4078
4079         btrfs_set_header_nritems(l, mid);
4080         btrfs_item_key(right, &disk_key, 0);
4081         insert_ptr(trans, root, path, &disk_key, right->start,
4082                    path->slots[1] + 1, 1);
4083
4084         btrfs_mark_buffer_dirty(right);
4085         btrfs_mark_buffer_dirty(l);
4086         BUG_ON(path->slots[0] != slot);
4087
4088         if (mid <= slot) {
4089                 btrfs_tree_unlock(path->nodes[0]);
4090                 free_extent_buffer(path->nodes[0]);
4091                 path->nodes[0] = right;
4092                 path->slots[0] -= mid;
4093                 path->slots[1] += 1;
4094         } else {
4095                 btrfs_tree_unlock(right);
4096                 free_extent_buffer(right);
4097         }
4098
4099         BUG_ON(path->slots[0] < 0);
4100 }
4101
4102 /*
4103  * double splits happen when we need to insert a big item in the middle
4104  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4105  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4106  *          A                 B                 C
4107  *
4108  * We avoid this by trying to push the items on either side of our target
4109  * into the adjacent leaves.  If all goes well we can avoid the double split
4110  * completely.
4111  */
4112 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4113                                           struct btrfs_root *root,
4114                                           struct btrfs_path *path,
4115                                           int data_size)
4116 {
4117         int ret;
4118         int progress = 0;
4119         int slot;
4120         u32 nritems;
4121         int space_needed = data_size;
4122
4123         slot = path->slots[0];
4124         if (slot < btrfs_header_nritems(path->nodes[0]))
4125                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4126
4127         /*
4128          * try to push all the items after our slot into the
4129          * right leaf
4130          */
4131         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4132         if (ret < 0)
4133                 return ret;
4134
4135         if (ret == 0)
4136                 progress++;
4137
4138         nritems = btrfs_header_nritems(path->nodes[0]);
4139         /*
4140          * our goal is to get our slot at the start or end of a leaf.  If
4141          * we've done so we're done
4142          */
4143         if (path->slots[0] == 0 || path->slots[0] == nritems)
4144                 return 0;
4145
4146         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4147                 return 0;
4148
4149         /* try to push all the items before our slot into the next leaf */
4150         slot = path->slots[0];
4151         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4152         if (ret < 0)
4153                 return ret;
4154
4155         if (ret == 0)
4156                 progress++;
4157
4158         if (progress)
4159                 return 0;
4160         return 1;
4161 }
4162
4163 /*
4164  * split the path's leaf in two, making sure there is at least data_size
4165  * available for the resulting leaf level of the path.
4166  *
4167  * returns 0 if all went well and < 0 on failure.
4168  */
4169 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4170                                struct btrfs_root *root,
4171                                struct btrfs_key *ins_key,
4172                                struct btrfs_path *path, int data_size,
4173                                int extend)
4174 {
4175         struct btrfs_disk_key disk_key;
4176         struct extent_buffer *l;
4177         u32 nritems;
4178         int mid;
4179         int slot;
4180         struct extent_buffer *right;
4181         struct btrfs_fs_info *fs_info = root->fs_info;
4182         int ret = 0;
4183         int wret;
4184         int split;
4185         int num_doubles = 0;
4186         int tried_avoid_double = 0;
4187
4188         l = path->nodes[0];
4189         slot = path->slots[0];
4190         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4191             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4192                 return -EOVERFLOW;
4193
4194         /* first try to make some room by pushing left and right */
4195         if (data_size && path->nodes[1]) {
4196                 int space_needed = data_size;
4197
4198                 if (slot < btrfs_header_nritems(l))
4199                         space_needed -= btrfs_leaf_free_space(root, l);
4200
4201                 wret = push_leaf_right(trans, root, path, space_needed,
4202                                        space_needed, 0, 0);
4203                 if (wret < 0)
4204                         return wret;
4205                 if (wret) {
4206                         wret = push_leaf_left(trans, root, path, space_needed,
4207                                               space_needed, 0, (u32)-1);
4208                         if (wret < 0)
4209                                 return wret;
4210                 }
4211                 l = path->nodes[0];
4212
4213                 /* did the pushes work? */
4214                 if (btrfs_leaf_free_space(root, l) >= data_size)
4215                         return 0;
4216         }
4217
4218         if (!path->nodes[1]) {
4219                 ret = insert_new_root(trans, root, path, 1);
4220                 if (ret)
4221                         return ret;
4222         }
4223 again:
4224         split = 1;
4225         l = path->nodes[0];
4226         slot = path->slots[0];
4227         nritems = btrfs_header_nritems(l);
4228         mid = (nritems + 1) / 2;
4229
4230         if (mid <= slot) {
4231                 if (nritems == 1 ||
4232                     leaf_space_used(l, mid, nritems - mid) + data_size >
4233                         BTRFS_LEAF_DATA_SIZE(root)) {
4234                         if (slot >= nritems) {
4235                                 split = 0;
4236                         } else {
4237                                 mid = slot;
4238                                 if (mid != nritems &&
4239                                     leaf_space_used(l, mid, nritems - mid) +
4240                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4241                                         if (data_size && !tried_avoid_double)
4242                                                 goto push_for_double;
4243                                         split = 2;
4244                                 }
4245                         }
4246                 }
4247         } else {
4248                 if (leaf_space_used(l, 0, mid) + data_size >
4249                         BTRFS_LEAF_DATA_SIZE(root)) {
4250                         if (!extend && data_size && slot == 0) {
4251                                 split = 0;
4252                         } else if ((extend || !data_size) && slot == 0) {
4253                                 mid = 1;
4254                         } else {
4255                                 mid = slot;
4256                                 if (mid != nritems &&
4257                                     leaf_space_used(l, mid, nritems - mid) +
4258                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4259                                         if (data_size && !tried_avoid_double)
4260                                                 goto push_for_double;
4261                                         split = 2;
4262                                 }
4263                         }
4264                 }
4265         }
4266
4267         if (split == 0)
4268                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4269         else
4270                 btrfs_item_key(l, &disk_key, mid);
4271
4272         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4273                         &disk_key, 0, l->start, 0);
4274         if (IS_ERR(right))
4275                 return PTR_ERR(right);
4276
4277         root_add_used(root, root->nodesize);
4278
4279         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4280         btrfs_set_header_bytenr(right, right->start);
4281         btrfs_set_header_generation(right, trans->transid);
4282         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4283         btrfs_set_header_owner(right, root->root_key.objectid);
4284         btrfs_set_header_level(right, 0);
4285         write_extent_buffer(right, fs_info->fsid,
4286                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4287
4288         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4289                             btrfs_header_chunk_tree_uuid(right),
4290                             BTRFS_UUID_SIZE);
4291
4292         if (split == 0) {
4293                 if (mid <= slot) {
4294                         btrfs_set_header_nritems(right, 0);
4295                         insert_ptr(trans, root, path, &disk_key, right->start,
4296                                    path->slots[1] + 1, 1);
4297                         btrfs_tree_unlock(path->nodes[0]);
4298                         free_extent_buffer(path->nodes[0]);
4299                         path->nodes[0] = right;
4300                         path->slots[0] = 0;
4301                         path->slots[1] += 1;
4302                 } else {
4303                         btrfs_set_header_nritems(right, 0);
4304                         insert_ptr(trans, root, path, &disk_key, right->start,
4305                                           path->slots[1], 1);
4306                         btrfs_tree_unlock(path->nodes[0]);
4307                         free_extent_buffer(path->nodes[0]);
4308                         path->nodes[0] = right;
4309                         path->slots[0] = 0;
4310                         if (path->slots[1] == 0)
4311                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4312                 }
4313                 btrfs_mark_buffer_dirty(right);
4314                 return ret;
4315         }
4316
4317         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4318
4319         if (split == 2) {
4320                 BUG_ON(num_doubles != 0);
4321                 num_doubles++;
4322                 goto again;
4323         }
4324
4325         return 0;
4326
4327 push_for_double:
4328         push_for_double_split(trans, root, path, data_size);
4329         tried_avoid_double = 1;
4330         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4331                 return 0;
4332         goto again;
4333 }
4334
4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4336                                          struct btrfs_root *root,
4337                                          struct btrfs_path *path, int ins_len)
4338 {
4339         struct btrfs_key key;
4340         struct extent_buffer *leaf;
4341         struct btrfs_file_extent_item *fi;
4342         u64 extent_len = 0;
4343         u32 item_size;
4344         int ret;
4345
4346         leaf = path->nodes[0];
4347         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4348
4349         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4350                key.type != BTRFS_EXTENT_CSUM_KEY);
4351
4352         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4353                 return 0;
4354
4355         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4356         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4357                 fi = btrfs_item_ptr(leaf, path->slots[0],
4358                                     struct btrfs_file_extent_item);
4359                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4360         }
4361         btrfs_release_path(path);
4362
4363         path->keep_locks = 1;
4364         path->search_for_split = 1;
4365         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4366         path->search_for_split = 0;
4367         if (ret > 0)
4368                 ret = -EAGAIN;
4369         if (ret < 0)
4370                 goto err;
4371
4372         ret = -EAGAIN;
4373         leaf = path->nodes[0];
4374         /* if our item isn't there, return now */
4375         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4376                 goto err;
4377
4378         /* the leaf has  changed, it now has room.  return now */
4379         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4380                 goto err;
4381
4382         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4383                 fi = btrfs_item_ptr(leaf, path->slots[0],
4384                                     struct btrfs_file_extent_item);
4385                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4386                         goto err;
4387         }
4388
4389         btrfs_set_path_blocking(path);
4390         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4391         if (ret)
4392                 goto err;
4393
4394         path->keep_locks = 0;
4395         btrfs_unlock_up_safe(path, 1);
4396         return 0;
4397 err:
4398         path->keep_locks = 0;
4399         return ret;
4400 }
4401
4402 static noinline int split_item(struct btrfs_trans_handle *trans,
4403                                struct btrfs_root *root,
4404                                struct btrfs_path *path,
4405                                struct btrfs_key *new_key,
4406                                unsigned long split_offset)
4407 {
4408         struct extent_buffer *leaf;
4409         struct btrfs_item *item;
4410         struct btrfs_item *new_item;
4411         int slot;
4412         char *buf;
4413         u32 nritems;
4414         u32 item_size;
4415         u32 orig_offset;
4416         struct btrfs_disk_key disk_key;
4417
4418         leaf = path->nodes[0];
4419         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4420
4421         btrfs_set_path_blocking(path);
4422
4423         item = btrfs_item_nr(path->slots[0]);
4424         orig_offset = btrfs_item_offset(leaf, item);
4425         item_size = btrfs_item_size(leaf, item);
4426
4427         buf = kmalloc(item_size, GFP_NOFS);
4428         if (!buf)
4429                 return -ENOMEM;
4430
4431         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4432                             path->slots[0]), item_size);
4433
4434         slot = path->slots[0] + 1;
4435         nritems = btrfs_header_nritems(leaf);
4436         if (slot != nritems) {
4437                 /* shift the items */
4438                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4439                                 btrfs_item_nr_offset(slot),
4440                                 (nritems - slot) * sizeof(struct btrfs_item));
4441         }
4442
4443         btrfs_cpu_key_to_disk(&disk_key, new_key);
4444         btrfs_set_item_key(leaf, &disk_key, slot);
4445
4446         new_item = btrfs_item_nr(slot);
4447
4448         btrfs_set_item_offset(leaf, new_item, orig_offset);
4449         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4450
4451         btrfs_set_item_offset(leaf, item,
4452                               orig_offset + item_size - split_offset);
4453         btrfs_set_item_size(leaf, item, split_offset);
4454
4455         btrfs_set_header_nritems(leaf, nritems + 1);
4456
4457         /* write the data for the start of the original item */
4458         write_extent_buffer(leaf, buf,
4459                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4460                             split_offset);
4461
4462         /* write the data for the new item */
4463         write_extent_buffer(leaf, buf + split_offset,
4464                             btrfs_item_ptr_offset(leaf, slot),
4465                             item_size - split_offset);
4466         btrfs_mark_buffer_dirty(leaf);
4467
4468         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4469         kfree(buf);
4470         return 0;
4471 }
4472
4473 /*
4474  * This function splits a single item into two items,
4475  * giving 'new_key' to the new item and splitting the
4476  * old one at split_offset (from the start of the item).
4477  *
4478  * The path may be released by this operation.  After
4479  * the split, the path is pointing to the old item.  The
4480  * new item is going to be in the same node as the old one.
4481  *
4482  * Note, the item being split must be smaller enough to live alone on
4483  * a tree block with room for one extra struct btrfs_item
4484  *
4485  * This allows us to split the item in place, keeping a lock on the
4486  * leaf the entire time.
4487  */
4488 int btrfs_split_item(struct btrfs_trans_handle *trans,
4489                      struct btrfs_root *root,
4490                      struct btrfs_path *path,
4491                      struct btrfs_key *new_key,
4492                      unsigned long split_offset)
4493 {
4494         int ret;
4495         ret = setup_leaf_for_split(trans, root, path,
4496                                    sizeof(struct btrfs_item));
4497         if (ret)
4498                 return ret;
4499
4500         ret = split_item(trans, root, path, new_key, split_offset);
4501         return ret;
4502 }
4503
4504 /*
4505  * This function duplicate a item, giving 'new_key' to the new item.
4506  * It guarantees both items live in the same tree leaf and the new item
4507  * is contiguous with the original item.
4508  *
4509  * This allows us to split file extent in place, keeping a lock on the
4510  * leaf the entire time.
4511  */
4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4513                          struct btrfs_root *root,
4514                          struct btrfs_path *path,
4515                          struct btrfs_key *new_key)
4516 {
4517         struct extent_buffer *leaf;
4518         int ret;
4519         u32 item_size;
4520
4521         leaf = path->nodes[0];
4522         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4523         ret = setup_leaf_for_split(trans, root, path,
4524                                    item_size + sizeof(struct btrfs_item));
4525         if (ret)
4526                 return ret;
4527
4528         path->slots[0]++;
4529         setup_items_for_insert(root, path, new_key, &item_size,
4530                                item_size, item_size +
4531                                sizeof(struct btrfs_item), 1);
4532         leaf = path->nodes[0];
4533         memcpy_extent_buffer(leaf,
4534                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4535                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4536                              item_size);
4537         return 0;
4538 }
4539
4540 /*
4541  * make the item pointed to by the path smaller.  new_size indicates
4542  * how small to make it, and from_end tells us if we just chop bytes
4543  * off the end of the item or if we shift the item to chop bytes off
4544  * the front.
4545  */
4546 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4547                          u32 new_size, int from_end)
4548 {
4549         int slot;
4550         struct extent_buffer *leaf;
4551         struct btrfs_item *item;
4552         u32 nritems;
4553         unsigned int data_end;
4554         unsigned int old_data_start;
4555         unsigned int old_size;
4556         unsigned int size_diff;
4557         int i;
4558         struct btrfs_map_token token;
4559
4560         btrfs_init_map_token(&token);
4561
4562         leaf = path->nodes[0];
4563         slot = path->slots[0];
4564
4565         old_size = btrfs_item_size_nr(leaf, slot);
4566         if (old_size == new_size)
4567                 return;
4568
4569         nritems = btrfs_header_nritems(leaf);
4570         data_end = leaf_data_end(root, leaf);
4571
4572         old_data_start = btrfs_item_offset_nr(leaf, slot);
4573
4574         size_diff = old_size - new_size;
4575
4576         BUG_ON(slot < 0);
4577         BUG_ON(slot >= nritems);
4578
4579         /*
4580          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581          */
4582         /* first correct the data pointers */
4583         for (i = slot; i < nritems; i++) {
4584                 u32 ioff;
4585                 item = btrfs_item_nr(i);
4586
4587                 ioff = btrfs_token_item_offset(leaf, item, &token);
4588                 btrfs_set_token_item_offset(leaf, item,
4589                                             ioff + size_diff, &token);
4590         }
4591
4592         /* shift the data */
4593         if (from_end) {
4594                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4595                               data_end + size_diff, btrfs_leaf_data(leaf) +
4596                               data_end, old_data_start + new_size - data_end);
4597         } else {
4598                 struct btrfs_disk_key disk_key;
4599                 u64 offset;
4600
4601                 btrfs_item_key(leaf, &disk_key, slot);
4602
4603                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4604                         unsigned long ptr;
4605                         struct btrfs_file_extent_item *fi;
4606
4607                         fi = btrfs_item_ptr(leaf, slot,
4608                                             struct btrfs_file_extent_item);
4609                         fi = (struct btrfs_file_extent_item *)(
4610                              (unsigned long)fi - size_diff);
4611
4612                         if (btrfs_file_extent_type(leaf, fi) ==
4613                             BTRFS_FILE_EXTENT_INLINE) {
4614                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4615                                 memmove_extent_buffer(leaf, ptr,
4616                                       (unsigned long)fi,
4617                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4618                         }
4619                 }
4620
4621                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4622                               data_end + size_diff, btrfs_leaf_data(leaf) +
4623                               data_end, old_data_start - data_end);
4624
4625                 offset = btrfs_disk_key_offset(&disk_key);
4626                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4627                 btrfs_set_item_key(leaf, &disk_key, slot);
4628                 if (slot == 0)
4629                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4630         }
4631
4632         item = btrfs_item_nr(slot);
4633         btrfs_set_item_size(leaf, item, new_size);
4634         btrfs_mark_buffer_dirty(leaf);
4635
4636         if (btrfs_leaf_free_space(root, leaf) < 0) {
4637                 btrfs_print_leaf(root, leaf);
4638                 BUG();
4639         }
4640 }
4641
4642 /*
4643  * make the item pointed to by the path bigger, data_size is the added size.
4644  */
4645 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4646                        u32 data_size)
4647 {
4648         int slot;
4649         struct extent_buffer *leaf;
4650         struct btrfs_item *item;
4651         u32 nritems;
4652         unsigned int data_end;
4653         unsigned int old_data;
4654         unsigned int old_size;
4655         int i;
4656         struct btrfs_map_token token;
4657
4658         btrfs_init_map_token(&token);
4659
4660         leaf = path->nodes[0];
4661
4662         nritems = btrfs_header_nritems(leaf);
4663         data_end = leaf_data_end(root, leaf);
4664
4665         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4666                 btrfs_print_leaf(root, leaf);
4667                 BUG();
4668         }
4669         slot = path->slots[0];
4670         old_data = btrfs_item_end_nr(leaf, slot);
4671
4672         BUG_ON(slot < 0);
4673         if (slot >= nritems) {
4674                 btrfs_print_leaf(root, leaf);
4675                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4676                        slot, nritems);
4677                 BUG_ON(1);
4678         }
4679
4680         /*
4681          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682          */
4683         /* first correct the data pointers */
4684         for (i = slot; i < nritems; i++) {
4685                 u32 ioff;
4686                 item = btrfs_item_nr(i);
4687
4688                 ioff = btrfs_token_item_offset(leaf, item, &token);
4689                 btrfs_set_token_item_offset(leaf, item,
4690                                             ioff - data_size, &token);
4691         }
4692
4693         /* shift the data */
4694         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4695                       data_end - data_size, btrfs_leaf_data(leaf) +
4696                       data_end, old_data - data_end);
4697
4698         data_end = old_data;
4699         old_size = btrfs_item_size_nr(leaf, slot);
4700         item = btrfs_item_nr(slot);
4701         btrfs_set_item_size(leaf, item, old_size + data_size);
4702         btrfs_mark_buffer_dirty(leaf);
4703
4704         if (btrfs_leaf_free_space(root, leaf) < 0) {
4705                 btrfs_print_leaf(root, leaf);
4706                 BUG();
4707         }
4708 }
4709
4710 /*
4711  * this is a helper for btrfs_insert_empty_items, the main goal here is
4712  * to save stack depth by doing the bulk of the work in a function
4713  * that doesn't call btrfs_search_slot
4714  */
4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4716                             struct btrfs_key *cpu_key, u32 *data_size,
4717                             u32 total_data, u32 total_size, int nr)
4718 {
4719         struct btrfs_item *item;
4720         int i;
4721         u32 nritems;
4722         unsigned int data_end;
4723         struct btrfs_disk_key disk_key;
4724         struct extent_buffer *leaf;
4725         int slot;
4726         struct btrfs_map_token token;
4727
4728         if (path->slots[0] == 0) {
4729                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4730                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4731         }
4732         btrfs_unlock_up_safe(path, 1);
4733
4734         btrfs_init_map_token(&token);
4735
4736         leaf = path->nodes[0];
4737         slot = path->slots[0];
4738
4739         nritems = btrfs_header_nritems(leaf);
4740         data_end = leaf_data_end(root, leaf);
4741
4742         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4743                 btrfs_print_leaf(root, leaf);
4744                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4745                        total_size, btrfs_leaf_free_space(root, leaf));
4746                 BUG();
4747         }
4748
4749         if (slot != nritems) {
4750                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4751
4752                 if (old_data < data_end) {
4753                         btrfs_print_leaf(root, leaf);
4754                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4755                                slot, old_data, data_end);
4756                         BUG_ON(1);
4757                 }
4758                 /*
4759                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4760                  */
4761                 /* first correct the data pointers */
4762                 for (i = slot; i < nritems; i++) {
4763                         u32 ioff;
4764
4765                         item = btrfs_item_nr( i);
4766                         ioff = btrfs_token_item_offset(leaf, item, &token);
4767                         btrfs_set_token_item_offset(leaf, item,
4768                                                     ioff - total_data, &token);
4769                 }
4770                 /* shift the items */
4771                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4772                               btrfs_item_nr_offset(slot),
4773                               (nritems - slot) * sizeof(struct btrfs_item));
4774
4775                 /* shift the data */
4776                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4777                               data_end - total_data, btrfs_leaf_data(leaf) +
4778                               data_end, old_data - data_end);
4779                 data_end = old_data;
4780         }
4781
4782         /* setup the item for the new data */
4783         for (i = 0; i < nr; i++) {
4784                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4785                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4786                 item = btrfs_item_nr(slot + i);
4787                 btrfs_set_token_item_offset(leaf, item,
4788                                             data_end - data_size[i], &token);
4789                 data_end -= data_size[i];
4790                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4791         }
4792
4793         btrfs_set_header_nritems(leaf, nritems + nr);
4794         btrfs_mark_buffer_dirty(leaf);
4795
4796         if (btrfs_leaf_free_space(root, leaf) < 0) {
4797                 btrfs_print_leaf(root, leaf);
4798                 BUG();
4799         }
4800 }
4801
4802 /*
4803  * Given a key and some data, insert items into the tree.
4804  * This does all the path init required, making room in the tree if needed.
4805  */
4806 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4807                             struct btrfs_root *root,
4808                             struct btrfs_path *path,
4809                             struct btrfs_key *cpu_key, u32 *data_size,
4810                             int nr)
4811 {
4812         int ret = 0;
4813         int slot;
4814         int i;
4815         u32 total_size = 0;
4816         u32 total_data = 0;
4817
4818         for (i = 0; i < nr; i++)
4819                 total_data += data_size[i];
4820
4821         total_size = total_data + (nr * sizeof(struct btrfs_item));
4822         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4823         if (ret == 0)
4824                 return -EEXIST;
4825         if (ret < 0)
4826                 return ret;
4827
4828         slot = path->slots[0];
4829         BUG_ON(slot < 0);
4830
4831         setup_items_for_insert(root, path, cpu_key, data_size,
4832                                total_data, total_size, nr);
4833         return 0;
4834 }
4835
4836 /*
4837  * Given a key and some data, insert an item into the tree.
4838  * This does all the path init required, making room in the tree if needed.
4839  */
4840 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4841                       *root, struct btrfs_key *cpu_key, void *data, u32
4842                       data_size)
4843 {
4844         int ret = 0;
4845         struct btrfs_path *path;
4846         struct extent_buffer *leaf;
4847         unsigned long ptr;
4848
4849         path = btrfs_alloc_path();
4850         if (!path)
4851                 return -ENOMEM;
4852         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4853         if (!ret) {
4854                 leaf = path->nodes[0];
4855                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4856                 write_extent_buffer(leaf, data, ptr, data_size);
4857                 btrfs_mark_buffer_dirty(leaf);
4858         }
4859         btrfs_free_path(path);
4860         return ret;
4861 }
4862
4863 /*
4864  * delete the pointer from a given node.
4865  *
4866  * the tree should have been previously balanced so the deletion does not
4867  * empty a node.
4868  */
4869 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4870                     int level, int slot)
4871 {
4872         struct extent_buffer *parent = path->nodes[level];
4873         u32 nritems;
4874         int ret;
4875
4876         nritems = btrfs_header_nritems(parent);
4877         if (slot != nritems - 1) {
4878                 if (level)
4879                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4880                                              slot + 1, nritems - slot - 1);
4881                 memmove_extent_buffer(parent,
4882                               btrfs_node_key_ptr_offset(slot),
4883                               btrfs_node_key_ptr_offset(slot + 1),
4884                               sizeof(struct btrfs_key_ptr) *
4885                               (nritems - slot - 1));
4886         } else if (level) {
4887                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4888                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4889                 BUG_ON(ret < 0);
4890         }
4891
4892         nritems--;
4893         btrfs_set_header_nritems(parent, nritems);
4894         if (nritems == 0 && parent == root->node) {
4895                 BUG_ON(btrfs_header_level(root->node) != 1);
4896                 /* just turn the root into a leaf and break */
4897                 btrfs_set_header_level(root->node, 0);
4898         } else if (slot == 0) {
4899                 struct btrfs_disk_key disk_key;
4900
4901                 btrfs_node_key(parent, &disk_key, 0);
4902                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4903         }
4904         btrfs_mark_buffer_dirty(parent);
4905 }
4906
4907 /*
4908  * a helper function to delete the leaf pointed to by path->slots[1] and
4909  * path->nodes[1].
4910  *
4911  * This deletes the pointer in path->nodes[1] and frees the leaf
4912  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4913  *
4914  * The path must have already been setup for deleting the leaf, including
4915  * all the proper balancing.  path->nodes[1] must be locked.
4916  */
4917 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4918                                     struct btrfs_root *root,
4919                                     struct btrfs_path *path,
4920                                     struct extent_buffer *leaf)
4921 {
4922         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4923         del_ptr(root, path, 1, path->slots[1]);
4924
4925         /*
4926          * btrfs_free_extent is expensive, we want to make sure we
4927          * aren't holding any locks when we call it
4928          */
4929         btrfs_unlock_up_safe(path, 0);
4930
4931         root_sub_used(root, leaf->len);
4932
4933         extent_buffer_get(leaf);
4934         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4935         free_extent_buffer_stale(leaf);
4936 }
4937 /*
4938  * delete the item at the leaf level in path.  If that empties
4939  * the leaf, remove it from the tree
4940  */
4941 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4942                     struct btrfs_path *path, int slot, int nr)
4943 {
4944         struct extent_buffer *leaf;
4945         struct btrfs_item *item;
4946         u32 last_off;
4947         u32 dsize = 0;
4948         int ret = 0;
4949         int wret;
4950         int i;
4951         u32 nritems;
4952         struct btrfs_map_token token;
4953
4954         btrfs_init_map_token(&token);
4955
4956         leaf = path->nodes[0];
4957         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4958
4959         for (i = 0; i < nr; i++)
4960                 dsize += btrfs_item_size_nr(leaf, slot + i);
4961
4962         nritems = btrfs_header_nritems(leaf);
4963
4964         if (slot + nr != nritems) {
4965                 int data_end = leaf_data_end(root, leaf);
4966
4967                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4968                               data_end + dsize,
4969                               btrfs_leaf_data(leaf) + data_end,
4970                               last_off - data_end);
4971
4972                 for (i = slot + nr; i < nritems; i++) {
4973                         u32 ioff;
4974
4975                         item = btrfs_item_nr(i);
4976                         ioff = btrfs_token_item_offset(leaf, item, &token);
4977                         btrfs_set_token_item_offset(leaf, item,
4978                                                     ioff + dsize, &token);
4979                 }
4980
4981                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4982                               btrfs_item_nr_offset(slot + nr),
4983                               sizeof(struct btrfs_item) *
4984                               (nritems - slot - nr));
4985         }
4986         btrfs_set_header_nritems(leaf, nritems - nr);
4987         nritems -= nr;
4988
4989         /* delete the leaf if we've emptied it */
4990         if (nritems == 0) {
4991                 if (leaf == root->node) {
4992                         btrfs_set_header_level(leaf, 0);
4993                 } else {
4994                         btrfs_set_path_blocking(path);
4995                         clean_tree_block(trans, root->fs_info, leaf);
4996                         btrfs_del_leaf(trans, root, path, leaf);
4997                 }
4998         } else {
4999                 int used = leaf_space_used(leaf, 0, nritems);
5000                 if (slot == 0) {
5001                         struct btrfs_disk_key disk_key;
5002
5003                         btrfs_item_key(leaf, &disk_key, 0);
5004                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5005                 }
5006
5007                 /* delete the leaf if it is mostly empty */
5008                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5009                         /* push_leaf_left fixes the path.
5010                          * make sure the path still points to our leaf
5011                          * for possible call to del_ptr below
5012                          */
5013                         slot = path->slots[1];
5014                         extent_buffer_get(leaf);
5015
5016                         btrfs_set_path_blocking(path);
5017                         wret = push_leaf_left(trans, root, path, 1, 1,
5018                                               1, (u32)-1);
5019                         if (wret < 0 && wret != -ENOSPC)
5020                                 ret = wret;
5021
5022                         if (path->nodes[0] == leaf &&
5023                             btrfs_header_nritems(leaf)) {
5024                                 wret = push_leaf_right(trans, root, path, 1,
5025                                                        1, 1, 0);
5026                                 if (wret < 0 && wret != -ENOSPC)
5027                                         ret = wret;
5028                         }
5029
5030                         if (btrfs_header_nritems(leaf) == 0) {
5031                                 path->slots[1] = slot;
5032                                 btrfs_del_leaf(trans, root, path, leaf);
5033                                 free_extent_buffer(leaf);
5034                                 ret = 0;
5035                         } else {
5036                                 /* if we're still in the path, make sure
5037                                  * we're dirty.  Otherwise, one of the
5038                                  * push_leaf functions must have already
5039                                  * dirtied this buffer
5040                                  */
5041                                 if (path->nodes[0] == leaf)
5042                                         btrfs_mark_buffer_dirty(leaf);
5043                                 free_extent_buffer(leaf);
5044                         }
5045                 } else {
5046                         btrfs_mark_buffer_dirty(leaf);
5047                 }
5048         }
5049         return ret;
5050 }
5051
5052 /*
5053  * search the tree again to find a leaf with lesser keys
5054  * returns 0 if it found something or 1 if there are no lesser leaves.
5055  * returns < 0 on io errors.
5056  *
5057  * This may release the path, and so you may lose any locks held at the
5058  * time you call it.
5059  */
5060 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5061 {
5062         struct btrfs_key key;
5063         struct btrfs_disk_key found_key;
5064         int ret;
5065
5066         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5067
5068         if (key.offset > 0) {
5069                 key.offset--;
5070         } else if (key.type > 0) {
5071                 key.type--;
5072                 key.offset = (u64)-1;
5073         } else if (key.objectid > 0) {
5074                 key.objectid--;
5075                 key.type = (u8)-1;
5076                 key.offset = (u64)-1;
5077         } else {
5078                 return 1;
5079         }
5080
5081         btrfs_release_path(path);
5082         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5083         if (ret < 0)
5084                 return ret;
5085         btrfs_item_key(path->nodes[0], &found_key, 0);
5086         ret = comp_keys(&found_key, &key);
5087         /*
5088          * We might have had an item with the previous key in the tree right
5089          * before we released our path. And after we released our path, that
5090          * item might have been pushed to the first slot (0) of the leaf we
5091          * were holding due to a tree balance. Alternatively, an item with the
5092          * previous key can exist as the only element of a leaf (big fat item).
5093          * Therefore account for these 2 cases, so that our callers (like
5094          * btrfs_previous_item) don't miss an existing item with a key matching
5095          * the previous key we computed above.
5096          */
5097         if (ret <= 0)
5098                 return 0;
5099         return 1;
5100 }
5101
5102 /*
5103  * A helper function to walk down the tree starting at min_key, and looking
5104  * for nodes or leaves that are have a minimum transaction id.
5105  * This is used by the btree defrag code, and tree logging
5106  *
5107  * This does not cow, but it does stuff the starting key it finds back
5108  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5109  * key and get a writable path.
5110  *
5111  * This does lock as it descends, and path->keep_locks should be set
5112  * to 1 by the caller.
5113  *
5114  * This honors path->lowest_level to prevent descent past a given level
5115  * of the tree.
5116  *
5117  * min_trans indicates the oldest transaction that you are interested
5118  * in walking through.  Any nodes or leaves older than min_trans are
5119  * skipped over (without reading them).
5120  *
5121  * returns zero if something useful was found, < 0 on error and 1 if there
5122  * was nothing in the tree that matched the search criteria.
5123  */
5124 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5125                          struct btrfs_path *path,
5126                          u64 min_trans)
5127 {
5128         struct extent_buffer *cur;
5129         struct btrfs_key found_key;
5130         int slot;
5131         int sret;
5132         u32 nritems;
5133         int level;
5134         int ret = 1;
5135         int keep_locks = path->keep_locks;
5136
5137         path->keep_locks = 1;
5138 again:
5139         cur = btrfs_read_lock_root_node(root);
5140         level = btrfs_header_level(cur);
5141         WARN_ON(path->nodes[level]);
5142         path->nodes[level] = cur;
5143         path->locks[level] = BTRFS_READ_LOCK;
5144
5145         if (btrfs_header_generation(cur) < min_trans) {
5146                 ret = 1;
5147                 goto out;
5148         }
5149         while (1) {
5150                 nritems = btrfs_header_nritems(cur);
5151                 level = btrfs_header_level(cur);
5152                 sret = bin_search(cur, min_key, level, &slot);
5153
5154                 /* at the lowest level, we're done, setup the path and exit */
5155                 if (level == path->lowest_level) {
5156                         if (slot >= nritems)
5157                                 goto find_next_key;
5158                         ret = 0;
5159                         path->slots[level] = slot;
5160                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5161                         goto out;
5162                 }
5163                 if (sret && slot > 0)
5164                         slot--;
5165                 /*
5166                  * check this node pointer against the min_trans parameters.
5167                  * If it is too old, old, skip to the next one.
5168                  */
5169                 while (slot < nritems) {
5170                         u64 gen;
5171
5172                         gen = btrfs_node_ptr_generation(cur, slot);
5173                         if (gen < min_trans) {
5174                                 slot++;
5175                                 continue;
5176                         }
5177                         break;
5178                 }
5179 find_next_key:
5180                 /*
5181                  * we didn't find a candidate key in this node, walk forward
5182                  * and find another one
5183                  */
5184                 if (slot >= nritems) {
5185                         path->slots[level] = slot;
5186                         btrfs_set_path_blocking(path);
5187                         sret = btrfs_find_next_key(root, path, min_key, level,
5188                                                   min_trans);
5189                         if (sret == 0) {
5190                                 btrfs_release_path(path);
5191                                 goto again;
5192                         } else {
5193                                 goto out;
5194                         }
5195                 }
5196                 /* save our key for returning back */
5197                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5198                 path->slots[level] = slot;
5199                 if (level == path->lowest_level) {
5200                         ret = 0;
5201                         goto out;
5202                 }
5203                 btrfs_set_path_blocking(path);
5204                 cur = read_node_slot(root, cur, slot);
5205                 BUG_ON(!cur); /* -ENOMEM */
5206
5207                 btrfs_tree_read_lock(cur);
5208
5209                 path->locks[level - 1] = BTRFS_READ_LOCK;
5210                 path->nodes[level - 1] = cur;
5211                 unlock_up(path, level, 1, 0, NULL);
5212                 btrfs_clear_path_blocking(path, NULL, 0);
5213         }
5214 out:
5215         path->keep_locks = keep_locks;
5216         if (ret == 0) {
5217                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5218                 btrfs_set_path_blocking(path);
5219                 memcpy(min_key, &found_key, sizeof(found_key));
5220         }
5221         return ret;
5222 }
5223
5224 static void tree_move_down(struct btrfs_root *root,
5225                            struct btrfs_path *path,
5226                            int *level, int root_level)
5227 {
5228         BUG_ON(*level == 0);
5229         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5230                                         path->slots[*level]);
5231         path->slots[*level - 1] = 0;
5232         (*level)--;
5233 }
5234
5235 static int tree_move_next_or_upnext(struct btrfs_root *root,
5236                                     struct btrfs_path *path,
5237                                     int *level, int root_level)
5238 {
5239         int ret = 0;
5240         int nritems;
5241         nritems = btrfs_header_nritems(path->nodes[*level]);
5242
5243         path->slots[*level]++;
5244
5245         while (path->slots[*level] >= nritems) {
5246                 if (*level == root_level)
5247                         return -1;
5248
5249                 /* move upnext */
5250                 path->slots[*level] = 0;
5251                 free_extent_buffer(path->nodes[*level]);
5252                 path->nodes[*level] = NULL;
5253                 (*level)++;
5254                 path->slots[*level]++;
5255
5256                 nritems = btrfs_header_nritems(path->nodes[*level]);
5257                 ret = 1;
5258         }
5259         return ret;
5260 }
5261
5262 /*
5263  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264  * or down.
5265  */
5266 static int tree_advance(struct btrfs_root *root,
5267                         struct btrfs_path *path,
5268                         int *level, int root_level,
5269                         int allow_down,
5270                         struct btrfs_key *key)
5271 {
5272         int ret;
5273
5274         if (*level == 0 || !allow_down) {
5275                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5276         } else {
5277                 tree_move_down(root, path, level, root_level);
5278                 ret = 0;
5279         }
5280         if (ret >= 0) {
5281                 if (*level == 0)
5282                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5283                                         path->slots[*level]);
5284                 else
5285                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5286                                         path->slots[*level]);
5287         }
5288         return ret;
5289 }
5290
5291 static int tree_compare_item(struct btrfs_root *left_root,
5292                              struct btrfs_path *left_path,
5293                              struct btrfs_path *right_path,
5294                              char *tmp_buf)
5295 {
5296         int cmp;
5297         int len1, len2;
5298         unsigned long off1, off2;
5299
5300         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5301         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5302         if (len1 != len2)
5303                 return 1;
5304
5305         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5306         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5307                                 right_path->slots[0]);
5308
5309         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5310
5311         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5312         if (cmp)
5313                 return 1;
5314         return 0;
5315 }
5316
5317 #define ADVANCE 1
5318 #define ADVANCE_ONLY_NEXT -1
5319
5320 /*
5321  * This function compares two trees and calls the provided callback for
5322  * every changed/new/deleted item it finds.
5323  * If shared tree blocks are encountered, whole subtrees are skipped, making
5324  * the compare pretty fast on snapshotted subvolumes.
5325  *
5326  * This currently works on commit roots only. As commit roots are read only,
5327  * we don't do any locking. The commit roots are protected with transactions.
5328  * Transactions are ended and rejoined when a commit is tried in between.
5329  *
5330  * This function checks for modifications done to the trees while comparing.
5331  * If it detects a change, it aborts immediately.
5332  */
5333 int btrfs_compare_trees(struct btrfs_root *left_root,
5334                         struct btrfs_root *right_root,
5335                         btrfs_changed_cb_t changed_cb, void *ctx)
5336 {
5337         int ret;
5338         int cmp;
5339         struct btrfs_path *left_path = NULL;
5340         struct btrfs_path *right_path = NULL;
5341         struct btrfs_key left_key;
5342         struct btrfs_key right_key;
5343         char *tmp_buf = NULL;
5344         int left_root_level;
5345         int right_root_level;
5346         int left_level;
5347         int right_level;
5348         int left_end_reached;
5349         int right_end_reached;
5350         int advance_left;
5351         int advance_right;
5352         u64 left_blockptr;
5353         u64 right_blockptr;
5354         u64 left_gen;
5355         u64 right_gen;
5356
5357         left_path = btrfs_alloc_path();
5358         if (!left_path) {
5359                 ret = -ENOMEM;
5360                 goto out;
5361         }
5362         right_path = btrfs_alloc_path();
5363         if (!right_path) {
5364                 ret = -ENOMEM;
5365                 goto out;
5366         }
5367
5368         tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5369         if (!tmp_buf) {
5370                 ret = -ENOMEM;
5371                 goto out;
5372         }
5373
5374         left_path->search_commit_root = 1;
5375         left_path->skip_locking = 1;
5376         right_path->search_commit_root = 1;
5377         right_path->skip_locking = 1;
5378
5379         /*
5380          * Strategy: Go to the first items of both trees. Then do
5381          *
5382          * If both trees are at level 0
5383          *   Compare keys of current items
5384          *     If left < right treat left item as new, advance left tree
5385          *       and repeat
5386          *     If left > right treat right item as deleted, advance right tree
5387          *       and repeat
5388          *     If left == right do deep compare of items, treat as changed if
5389          *       needed, advance both trees and repeat
5390          * If both trees are at the same level but not at level 0
5391          *   Compare keys of current nodes/leafs
5392          *     If left < right advance left tree and repeat
5393          *     If left > right advance right tree and repeat
5394          *     If left == right compare blockptrs of the next nodes/leafs
5395          *       If they match advance both trees but stay at the same level
5396          *         and repeat
5397          *       If they don't match advance both trees while allowing to go
5398          *         deeper and repeat
5399          * If tree levels are different
5400          *   Advance the tree that needs it and repeat
5401          *
5402          * Advancing a tree means:
5403          *   If we are at level 0, try to go to the next slot. If that's not
5404          *   possible, go one level up and repeat. Stop when we found a level
5405          *   where we could go to the next slot. We may at this point be on a
5406          *   node or a leaf.
5407          *
5408          *   If we are not at level 0 and not on shared tree blocks, go one
5409          *   level deeper.
5410          *
5411          *   If we are not at level 0 and on shared tree blocks, go one slot to
5412          *   the right if possible or go up and right.
5413          */
5414
5415         down_read(&left_root->fs_info->commit_root_sem);
5416         left_level = btrfs_header_level(left_root->commit_root);
5417         left_root_level = left_level;
5418         left_path->nodes[left_level] = left_root->commit_root;
5419         extent_buffer_get(left_path->nodes[left_level]);
5420
5421         right_level = btrfs_header_level(right_root->commit_root);
5422         right_root_level = right_level;
5423         right_path->nodes[right_level] = right_root->commit_root;
5424         extent_buffer_get(right_path->nodes[right_level]);
5425         up_read(&left_root->fs_info->commit_root_sem);
5426
5427         if (left_level == 0)
5428                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429                                 &left_key, left_path->slots[left_level]);
5430         else
5431                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432                                 &left_key, left_path->slots[left_level]);
5433         if (right_level == 0)
5434                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435                                 &right_key, right_path->slots[right_level]);
5436         else
5437                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438                                 &right_key, right_path->slots[right_level]);
5439
5440         left_end_reached = right_end_reached = 0;
5441         advance_left = advance_right = 0;
5442
5443         while (1) {
5444                 if (advance_left && !left_end_reached) {
5445                         ret = tree_advance(left_root, left_path, &left_level,
5446                                         left_root_level,
5447                                         advance_left != ADVANCE_ONLY_NEXT,
5448                                         &left_key);
5449                         if (ret < 0)
5450                                 left_end_reached = ADVANCE;
5451                         advance_left = 0;
5452                 }
5453                 if (advance_right && !right_end_reached) {
5454                         ret = tree_advance(right_root, right_path, &right_level,
5455                                         right_root_level,
5456                                         advance_right != ADVANCE_ONLY_NEXT,
5457                                         &right_key);
5458                         if (ret < 0)
5459                                 right_end_reached = ADVANCE;
5460                         advance_right = 0;
5461                 }
5462
5463                 if (left_end_reached && right_end_reached) {
5464                         ret = 0;
5465                         goto out;
5466                 } else if (left_end_reached) {
5467                         if (right_level == 0) {
5468                                 ret = changed_cb(left_root, right_root,
5469                                                 left_path, right_path,
5470                                                 &right_key,
5471                                                 BTRFS_COMPARE_TREE_DELETED,
5472                                                 ctx);
5473                                 if (ret < 0)
5474                                         goto out;
5475                         }
5476                         advance_right = ADVANCE;
5477                         continue;
5478                 } else if (right_end_reached) {
5479                         if (left_level == 0) {
5480                                 ret = changed_cb(left_root, right_root,
5481                                                 left_path, right_path,
5482                                                 &left_key,
5483                                                 BTRFS_COMPARE_TREE_NEW,
5484                                                 ctx);
5485                                 if (ret < 0)
5486                                         goto out;
5487                         }
5488                         advance_left = ADVANCE;
5489                         continue;
5490                 }
5491
5492                 if (left_level == 0 && right_level == 0) {
5493                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494                         if (cmp < 0) {
5495                                 ret = changed_cb(left_root, right_root,
5496                                                 left_path, right_path,
5497                                                 &left_key,
5498                                                 BTRFS_COMPARE_TREE_NEW,
5499                                                 ctx);
5500                                 if (ret < 0)
5501                                         goto out;
5502                                 advance_left = ADVANCE;
5503                         } else if (cmp > 0) {
5504                                 ret = changed_cb(left_root, right_root,
5505                                                 left_path, right_path,
5506                                                 &right_key,
5507                                                 BTRFS_COMPARE_TREE_DELETED,
5508                                                 ctx);
5509                                 if (ret < 0)
5510                                         goto out;
5511                                 advance_right = ADVANCE;
5512                         } else {
5513                                 enum btrfs_compare_tree_result result;
5514
5515                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516                                 ret = tree_compare_item(left_root, left_path,
5517                                                 right_path, tmp_buf);
5518                                 if (ret)
5519                                         result = BTRFS_COMPARE_TREE_CHANGED;
5520                                 else
5521                                         result = BTRFS_COMPARE_TREE_SAME;
5522                                 ret = changed_cb(left_root, right_root,
5523                                                  left_path, right_path,
5524                                                  &left_key, result, ctx);
5525                                 if (ret < 0)
5526                                         goto out;
5527                                 advance_left = ADVANCE;
5528                                 advance_right = ADVANCE;
5529                         }
5530                 } else if (left_level == right_level) {
5531                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532                         if (cmp < 0) {
5533                                 advance_left = ADVANCE;
5534                         } else if (cmp > 0) {
5535                                 advance_right = ADVANCE;
5536                         } else {
5537                                 left_blockptr = btrfs_node_blockptr(
5538                                                 left_path->nodes[left_level],
5539                                                 left_path->slots[left_level]);
5540                                 right_blockptr = btrfs_node_blockptr(
5541                                                 right_path->nodes[right_level],
5542                                                 right_path->slots[right_level]);
5543                                 left_gen = btrfs_node_ptr_generation(
5544                                                 left_path->nodes[left_level],
5545                                                 left_path->slots[left_level]);
5546                                 right_gen = btrfs_node_ptr_generation(
5547                                                 right_path->nodes[right_level],
5548                                                 right_path->slots[right_level]);
5549                                 if (left_blockptr == right_blockptr &&
5550                                     left_gen == right_gen) {
5551                                         /*
5552                                          * As we're on a shared block, don't
5553                                          * allow to go deeper.
5554                                          */
5555                                         advance_left = ADVANCE_ONLY_NEXT;
5556                                         advance_right = ADVANCE_ONLY_NEXT;
5557                                 } else {
5558                                         advance_left = ADVANCE;
5559                                         advance_right = ADVANCE;
5560                                 }
5561                         }
5562                 } else if (left_level < right_level) {
5563                         advance_right = ADVANCE;
5564                 } else {
5565                         advance_left = ADVANCE;
5566                 }
5567         }
5568
5569 out:
5570         btrfs_free_path(left_path);
5571         btrfs_free_path(right_path);
5572         kfree(tmp_buf);
5573         return ret;
5574 }
5575
5576 /*
5577  * this is similar to btrfs_next_leaf, but does not try to preserve
5578  * and fixup the path.  It looks for and returns the next key in the
5579  * tree based on the current path and the min_trans parameters.
5580  *
5581  * 0 is returned if another key is found, < 0 if there are any errors
5582  * and 1 is returned if there are no higher keys in the tree
5583  *
5584  * path->keep_locks should be set to 1 on the search made before
5585  * calling this function.
5586  */
5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588                         struct btrfs_key *key, int level, u64 min_trans)
5589 {
5590         int slot;
5591         struct extent_buffer *c;
5592
5593         WARN_ON(!path->keep_locks);
5594         while (level < BTRFS_MAX_LEVEL) {
5595                 if (!path->nodes[level])
5596                         return 1;
5597
5598                 slot = path->slots[level] + 1;
5599                 c = path->nodes[level];
5600 next:
5601                 if (slot >= btrfs_header_nritems(c)) {
5602                         int ret;
5603                         int orig_lowest;
5604                         struct btrfs_key cur_key;
5605                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5606                             !path->nodes[level + 1])
5607                                 return 1;
5608
5609                         if (path->locks[level + 1]) {
5610                                 level++;
5611                                 continue;
5612                         }
5613
5614                         slot = btrfs_header_nritems(c) - 1;
5615                         if (level == 0)
5616                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5617                         else
5618                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5619
5620                         orig_lowest = path->lowest_level;
5621                         btrfs_release_path(path);
5622                         path->lowest_level = level;
5623                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624                                                 0, 0);
5625                         path->lowest_level = orig_lowest;
5626                         if (ret < 0)
5627                                 return ret;
5628
5629                         c = path->nodes[level];
5630                         slot = path->slots[level];
5631                         if (ret == 0)
5632                                 slot++;
5633                         goto next;
5634                 }
5635
5636                 if (level == 0)
5637                         btrfs_item_key_to_cpu(c, key, slot);
5638                 else {
5639                         u64 gen = btrfs_node_ptr_generation(c, slot);
5640
5641                         if (gen < min_trans) {
5642                                 slot++;
5643                                 goto next;
5644                         }
5645                         btrfs_node_key_to_cpu(c, key, slot);
5646                 }
5647                 return 0;
5648         }
5649         return 1;
5650 }
5651
5652 /*
5653  * search the tree again to find a leaf with greater keys
5654  * returns 0 if it found something or 1 if there are no greater leaves.
5655  * returns < 0 on io errors.
5656  */
5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658 {
5659         return btrfs_next_old_leaf(root, path, 0);
5660 }
5661
5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663                         u64 time_seq)
5664 {
5665         int slot;
5666         int level;
5667         struct extent_buffer *c;
5668         struct extent_buffer *next;
5669         struct btrfs_key key;
5670         u32 nritems;
5671         int ret;
5672         int old_spinning = path->leave_spinning;
5673         int next_rw_lock = 0;
5674
5675         nritems = btrfs_header_nritems(path->nodes[0]);
5676         if (nritems == 0)
5677                 return 1;
5678
5679         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680 again:
5681         level = 1;
5682         next = NULL;
5683         next_rw_lock = 0;
5684         btrfs_release_path(path);
5685
5686         path->keep_locks = 1;
5687         path->leave_spinning = 1;
5688
5689         if (time_seq)
5690                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691         else
5692                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693         path->keep_locks = 0;
5694
5695         if (ret < 0)
5696                 return ret;
5697
5698         nritems = btrfs_header_nritems(path->nodes[0]);
5699         /*
5700          * by releasing the path above we dropped all our locks.  A balance
5701          * could have added more items next to the key that used to be
5702          * at the very end of the block.  So, check again here and
5703          * advance the path if there are now more items available.
5704          */
5705         if (nritems > 0 && path->slots[0] < nritems - 1) {
5706                 if (ret == 0)
5707                         path->slots[0]++;
5708                 ret = 0;
5709                 goto done;
5710         }
5711         /*
5712          * So the above check misses one case:
5713          * - after releasing the path above, someone has removed the item that
5714          *   used to be at the very end of the block, and balance between leafs
5715          *   gets another one with bigger key.offset to replace it.
5716          *
5717          * This one should be returned as well, or we can get leaf corruption
5718          * later(esp. in __btrfs_drop_extents()).
5719          *
5720          * And a bit more explanation about this check,
5721          * with ret > 0, the key isn't found, the path points to the slot
5722          * where it should be inserted, so the path->slots[0] item must be the
5723          * bigger one.
5724          */
5725         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726                 ret = 0;
5727                 goto done;
5728         }
5729
5730         while (level < BTRFS_MAX_LEVEL) {
5731                 if (!path->nodes[level]) {
5732                         ret = 1;
5733                         goto done;
5734                 }
5735
5736                 slot = path->slots[level] + 1;
5737                 c = path->nodes[level];
5738                 if (slot >= btrfs_header_nritems(c)) {
5739                         level++;
5740                         if (level == BTRFS_MAX_LEVEL) {
5741                                 ret = 1;
5742                                 goto done;
5743                         }
5744                         continue;
5745                 }
5746
5747                 if (next) {
5748                         btrfs_tree_unlock_rw(next, next_rw_lock);
5749                         free_extent_buffer(next);
5750                 }
5751
5752                 next = c;
5753                 next_rw_lock = path->locks[level];
5754                 ret = read_block_for_search(NULL, root, path, &next, level,
5755                                             slot, &key, 0);
5756                 if (ret == -EAGAIN)
5757                         goto again;
5758
5759                 if (ret < 0) {
5760                         btrfs_release_path(path);
5761                         goto done;
5762                 }
5763
5764                 if (!path->skip_locking) {
5765                         ret = btrfs_try_tree_read_lock(next);
5766                         if (!ret && time_seq) {
5767                                 /*
5768                                  * If we don't get the lock, we may be racing
5769                                  * with push_leaf_left, holding that lock while
5770                                  * itself waiting for the leaf we've currently
5771                                  * locked. To solve this situation, we give up
5772                                  * on our lock and cycle.
5773                                  */
5774                                 free_extent_buffer(next);
5775                                 btrfs_release_path(path);
5776                                 cond_resched();
5777                                 goto again;
5778                         }
5779                         if (!ret) {
5780                                 btrfs_set_path_blocking(path);
5781                                 btrfs_tree_read_lock(next);
5782                                 btrfs_clear_path_blocking(path, next,
5783                                                           BTRFS_READ_LOCK);
5784                         }
5785                         next_rw_lock = BTRFS_READ_LOCK;
5786                 }
5787                 break;
5788         }
5789         path->slots[level] = slot;
5790         while (1) {
5791                 level--;
5792                 c = path->nodes[level];
5793                 if (path->locks[level])
5794                         btrfs_tree_unlock_rw(c, path->locks[level]);
5795
5796                 free_extent_buffer(c);
5797                 path->nodes[level] = next;
5798                 path->slots[level] = 0;
5799                 if (!path->skip_locking)
5800                         path->locks[level] = next_rw_lock;
5801                 if (!level)
5802                         break;
5803
5804                 ret = read_block_for_search(NULL, root, path, &next, level,
5805                                             0, &key, 0);
5806                 if (ret == -EAGAIN)
5807                         goto again;
5808
5809                 if (ret < 0) {
5810                         btrfs_release_path(path);
5811                         goto done;
5812                 }
5813
5814                 if (!path->skip_locking) {
5815                         ret = btrfs_try_tree_read_lock(next);
5816                         if (!ret) {
5817                                 btrfs_set_path_blocking(path);
5818                                 btrfs_tree_read_lock(next);
5819                                 btrfs_clear_path_blocking(path, next,
5820                                                           BTRFS_READ_LOCK);
5821                         }
5822                         next_rw_lock = BTRFS_READ_LOCK;
5823                 }
5824         }
5825         ret = 0;
5826 done:
5827         unlock_up(path, 0, 1, 0, NULL);
5828         path->leave_spinning = old_spinning;
5829         if (!old_spinning)
5830                 btrfs_set_path_blocking(path);
5831
5832         return ret;
5833 }
5834
5835 /*
5836  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837  * searching until it gets past min_objectid or finds an item of 'type'
5838  *
5839  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840  */
5841 int btrfs_previous_item(struct btrfs_root *root,
5842                         struct btrfs_path *path, u64 min_objectid,
5843                         int type)
5844 {
5845         struct btrfs_key found_key;
5846         struct extent_buffer *leaf;
5847         u32 nritems;
5848         int ret;
5849
5850         while (1) {
5851                 if (path->slots[0] == 0) {
5852                         btrfs_set_path_blocking(path);
5853                         ret = btrfs_prev_leaf(root, path);
5854                         if (ret != 0)
5855                                 return ret;
5856                 } else {
5857                         path->slots[0]--;
5858                 }
5859                 leaf = path->nodes[0];
5860                 nritems = btrfs_header_nritems(leaf);
5861                 if (nritems == 0)
5862                         return 1;
5863                 if (path->slots[0] == nritems)
5864                         path->slots[0]--;
5865
5866                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867                 if (found_key.objectid < min_objectid)
5868                         break;
5869                 if (found_key.type == type)
5870                         return 0;
5871                 if (found_key.objectid == min_objectid &&
5872                     found_key.type < type)
5873                         break;
5874         }
5875         return 1;
5876 }
5877
5878 /*
5879  * search in extent tree to find a previous Metadata/Data extent item with
5880  * min objecitd.
5881  *
5882  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883  */
5884 int btrfs_previous_extent_item(struct btrfs_root *root,
5885                         struct btrfs_path *path, u64 min_objectid)
5886 {
5887         struct btrfs_key found_key;
5888         struct extent_buffer *leaf;
5889         u32 nritems;
5890         int ret;
5891
5892         while (1) {
5893                 if (path->slots[0] == 0) {
5894                         btrfs_set_path_blocking(path);
5895                         ret = btrfs_prev_leaf(root, path);
5896                         if (ret != 0)
5897                                 return ret;
5898                 } else {
5899                         path->slots[0]--;
5900                 }
5901                 leaf = path->nodes[0];
5902                 nritems = btrfs_header_nritems(leaf);
5903                 if (nritems == 0)
5904                         return 1;
5905                 if (path->slots[0] == nritems)
5906                         path->slots[0]--;
5907
5908                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909                 if (found_key.objectid < min_objectid)
5910                         break;
5911                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5913                         return 0;
5914                 if (found_key.objectid == min_objectid &&
5915                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916                         break;
5917         }
5918         return 1;
5919 }