Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / w1 / masters / ds2490.c
1 /*
2  *      ds2490.c  USB to one wire bridge
3  *
4  * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
5  *
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
27
28 #include "../w1_int.h"
29 #include "../w1.h"
30
31 /* USB Standard */
32 /* USB Control request vendor type */
33 #define VENDOR                          0x40
34
35 /* COMMAND TYPE CODES */
36 #define CONTROL_CMD                     0x00
37 #define COMM_CMD                        0x01
38 #define MODE_CMD                        0x02
39
40 /* CONTROL COMMAND CODES */
41 #define CTL_RESET_DEVICE                0x0000
42 #define CTL_START_EXE                   0x0001
43 #define CTL_RESUME_EXE                  0x0002
44 #define CTL_HALT_EXE_IDLE               0x0003
45 #define CTL_HALT_EXE_DONE               0x0004
46 #define CTL_FLUSH_COMM_CMDS             0x0007
47 #define CTL_FLUSH_RCV_BUFFER            0x0008
48 #define CTL_FLUSH_XMT_BUFFER            0x0009
49 #define CTL_GET_COMM_CMDS               0x000A
50
51 /* MODE COMMAND CODES */
52 #define MOD_PULSE_EN                    0x0000
53 #define MOD_SPEED_CHANGE_EN             0x0001
54 #define MOD_1WIRE_SPEED                 0x0002
55 #define MOD_STRONG_PU_DURATION          0x0003
56 #define MOD_PULLDOWN_SLEWRATE           0x0004
57 #define MOD_PROG_PULSE_DURATION         0x0005
58 #define MOD_WRITE1_LOWTIME              0x0006
59 #define MOD_DSOW0_TREC                  0x0007
60
61 /* COMMUNICATION COMMAND CODES */
62 #define COMM_ERROR_ESCAPE               0x0601
63 #define COMM_SET_DURATION               0x0012
64 #define COMM_BIT_IO                     0x0020
65 #define COMM_PULSE                      0x0030
66 #define COMM_1_WIRE_RESET               0x0042
67 #define COMM_BYTE_IO                    0x0052
68 #define COMM_MATCH_ACCESS               0x0064
69 #define COMM_BLOCK_IO                   0x0074
70 #define COMM_READ_STRAIGHT              0x0080
71 #define COMM_DO_RELEASE                 0x6092
72 #define COMM_SET_PATH                   0x00A2
73 #define COMM_WRITE_SRAM_PAGE            0x00B2
74 #define COMM_WRITE_EPROM                0x00C4
75 #define COMM_READ_CRC_PROT_PAGE         0x00D4
76 #define COMM_READ_REDIRECT_PAGE_CRC     0x21E4
77 #define COMM_SEARCH_ACCESS              0x00F4
78
79 /* Communication command bits */
80 #define COMM_TYPE                       0x0008
81 #define COMM_SE                         0x0008
82 #define COMM_D                          0x0008
83 #define COMM_Z                          0x0008
84 #define COMM_CH                         0x0008
85 #define COMM_SM                         0x0008
86 #define COMM_R                          0x0008
87 #define COMM_IM                         0x0001
88
89 #define COMM_PS                         0x4000
90 #define COMM_PST                        0x4000
91 #define COMM_CIB                        0x4000
92 #define COMM_RTS                        0x4000
93 #define COMM_DT                         0x2000
94 #define COMM_SPU                        0x1000
95 #define COMM_F                          0x0800
96 #define COMM_NTF                        0x0400
97 #define COMM_ICP                        0x0200
98 #define COMM_RST                        0x0100
99
100 #define PULSE_PROG                      0x01
101 #define PULSE_SPUE                      0x02
102
103 #define BRANCH_MAIN                     0xCC
104 #define BRANCH_AUX                      0x33
105
106 /* Status flags */
107 #define ST_SPUA                         0x01  /* Strong Pull-up is active */
108 #define ST_PRGA                         0x02  /* 12V programming pulse is being generated */
109 #define ST_12VP                         0x04  /* external 12V programming voltage is present */
110 #define ST_PMOD                         0x08  /* DS2490 powered from USB and external sources */
111 #define ST_HALT                         0x10  /* DS2490 is currently halted */
112 #define ST_IDLE                         0x20  /* DS2490 is currently idle */
113 #define ST_EPOF                         0x80
114 /* Status transfer size, 16 bytes status, 16 byte result flags */
115 #define ST_SIZE                         0x20
116
117 /* Result Register flags */
118 #define RR_DETECT                       0xA5 /* New device detected */
119 #define RR_NRS                          0x01 /* Reset no presence or ... */
120 #define RR_SH                           0x02 /* short on reset or set path */
121 #define RR_APP                          0x04 /* alarming presence on reset */
122 #define RR_VPP                          0x08 /* 12V expected not seen */
123 #define RR_CMP                          0x10 /* compare error */
124 #define RR_CRC                          0x20 /* CRC error detected */
125 #define RR_RDP                          0x40 /* redirected page */
126 #define RR_EOS                          0x80 /* end of search error */
127
128 #define SPEED_NORMAL                    0x00
129 #define SPEED_FLEXIBLE                  0x01
130 #define SPEED_OVERDRIVE                 0x02
131
132 #define NUM_EP                          4
133 #define EP_CONTROL                      0
134 #define EP_STATUS                       1
135 #define EP_DATA_OUT                     2
136 #define EP_DATA_IN                      3
137
138 struct ds_device
139 {
140         struct list_head        ds_entry;
141
142         struct usb_device       *udev;
143         struct usb_interface    *intf;
144
145         int                     ep[NUM_EP];
146
147         /* Strong PullUp
148          * 0: pullup not active, else duration in milliseconds
149          */
150         int                     spu_sleep;
151         /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
152          * should be active or not for writes.
153          */
154         u16                     spu_bit;
155
156         struct w1_bus_master    master;
157 };
158
159 struct ds_status
160 {
161         u8                      enable;
162         u8                      speed;
163         u8                      pullup_dur;
164         u8                      ppuls_dur;
165         u8                      pulldown_slew;
166         u8                      write1_time;
167         u8                      write0_time;
168         u8                      reserved0;
169         u8                      status;
170         u8                      command0;
171         u8                      command1;
172         u8                      command_buffer_status;
173         u8                      data_out_buffer_status;
174         u8                      data_in_buffer_status;
175         u8                      reserved1;
176         u8                      reserved2;
177
178 };
179
180 static struct usb_device_id ds_id_table [] = {
181         { USB_DEVICE(0x04fa, 0x2490) },
182         { },
183 };
184 MODULE_DEVICE_TABLE(usb, ds_id_table);
185
186 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
187 static void ds_disconnect(struct usb_interface *);
188
189 static int ds_send_control(struct ds_device *, u16, u16);
190 static int ds_send_control_cmd(struct ds_device *, u16, u16);
191
192 static LIST_HEAD(ds_devices);
193 static DEFINE_MUTEX(ds_mutex);
194
195 static struct usb_driver ds_driver = {
196         .name =         "DS9490R",
197         .probe =        ds_probe,
198         .disconnect =   ds_disconnect,
199         .id_table =     ds_id_table,
200 };
201
202 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
203 {
204         int err;
205
206         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
207                         CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
208         if (err < 0) {
209                 pr_err("Failed to send command control message %x.%x: err=%d.\n",
210                                 value, index, err);
211                 return err;
212         }
213
214         return err;
215 }
216
217 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
218 {
219         int err;
220
221         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
222                         MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
223         if (err < 0) {
224                 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
225                                 value, index, err);
226                 return err;
227         }
228
229         return err;
230 }
231
232 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
233 {
234         int err;
235
236         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
237                         COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
238         if (err < 0) {
239                 pr_err("Failed to send control message %x.%x: err=%d.\n",
240                                 value, index, err);
241                 return err;
242         }
243
244         return err;
245 }
246
247 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
248                                  unsigned char *buf, int size)
249 {
250         int count, err;
251
252         memset(st, 0, sizeof(*st));
253
254         count = 0;
255         err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev,
256                 dev->ep[EP_STATUS]), buf, size, &count, 1000);
257         if (err < 0) {
258                 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
259                        dev->ep[EP_STATUS], err);
260                 return err;
261         }
262
263         if (count >= sizeof(*st))
264                 memcpy(st, buf, sizeof(*st));
265
266         return count;
267 }
268
269 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
270 {
271         pr_info("%45s: %8x\n", str, buf[off]);
272 }
273
274 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
275 {
276         int i;
277
278         pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
279         for (i=0; i<count; ++i)
280                 pr_info("%02x ", buf[i]);
281         pr_info("\n");
282
283         if (count >= 16) {
284                 ds_print_msg(buf, "enable flag", 0);
285                 ds_print_msg(buf, "1-wire speed", 1);
286                 ds_print_msg(buf, "strong pullup duration", 2);
287                 ds_print_msg(buf, "programming pulse duration", 3);
288                 ds_print_msg(buf, "pulldown slew rate control", 4);
289                 ds_print_msg(buf, "write-1 low time", 5);
290                 ds_print_msg(buf, "data sample offset/write-0 recovery time",
291                         6);
292                 ds_print_msg(buf, "reserved (test register)", 7);
293                 ds_print_msg(buf, "device status flags", 8);
294                 ds_print_msg(buf, "communication command byte 1", 9);
295                 ds_print_msg(buf, "communication command byte 2", 10);
296                 ds_print_msg(buf, "communication command buffer status", 11);
297                 ds_print_msg(buf, "1-wire data output buffer status", 12);
298                 ds_print_msg(buf, "1-wire data input buffer status", 13);
299                 ds_print_msg(buf, "reserved", 14);
300                 ds_print_msg(buf, "reserved", 15);
301         }
302         for (i = 16; i < count; ++i) {
303                 if (buf[i] == RR_DETECT) {
304                         ds_print_msg(buf, "new device detect", i);
305                         continue;
306                 }
307                 ds_print_msg(buf, "Result Register Value: ", i);
308                 if (buf[i] & RR_NRS)
309                         pr_info("NRS: Reset no presence or ...\n");
310                 if (buf[i] & RR_SH)
311                         pr_info("SH: short on reset or set path\n");
312                 if (buf[i] & RR_APP)
313                         pr_info("APP: alarming presence on reset\n");
314                 if (buf[i] & RR_VPP)
315                         pr_info("VPP: 12V expected not seen\n");
316                 if (buf[i] & RR_CMP)
317                         pr_info("CMP: compare error\n");
318                 if (buf[i] & RR_CRC)
319                         pr_info("CRC: CRC error detected\n");
320                 if (buf[i] & RR_RDP)
321                         pr_info("RDP: redirected page\n");
322                 if (buf[i] & RR_EOS)
323                         pr_info("EOS: end of search error\n");
324         }
325 }
326
327 static void ds_reset_device(struct ds_device *dev)
328 {
329         ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
330         /* Always allow strong pullup which allow individual writes to use
331          * the strong pullup.
332          */
333         if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
334                 pr_err("ds_reset_device: Error allowing strong pullup\n");
335         /* Chip strong pullup time was cleared. */
336         if (dev->spu_sleep) {
337                 /* lower 4 bits are 0, see ds_set_pullup */
338                 u8 del = dev->spu_sleep>>4;
339                 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
340                         pr_err("ds_reset_device: Error setting duration\n");
341         }
342 }
343
344 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
345 {
346         int count, err;
347         struct ds_status st;
348
349         /* Careful on size.  If size is less than what is available in
350          * the input buffer, the device fails the bulk transfer and
351          * clears the input buffer.  It could read the maximum size of
352          * the data buffer, but then do you return the first, last, or
353          * some set of the middle size bytes?  As long as the rest of
354          * the code is correct there will be size bytes waiting.  A
355          * call to ds_wait_status will wait until the device is idle
356          * and any data to be received would have been available.
357          */
358         count = 0;
359         err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
360                                 buf, size, &count, 1000);
361         if (err < 0) {
362                 u8 buf[ST_SIZE];
363                 int count;
364
365                 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
366                 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
367
368                 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
369                 ds_dump_status(dev, buf, count);
370                 return err;
371         }
372
373 #if 0
374         {
375                 int i;
376
377                 printk("%s: count=%d: ", __func__, count);
378                 for (i=0; i<count; ++i)
379                         printk("%02x ", buf[i]);
380                 printk("\n");
381         }
382 #endif
383         return count;
384 }
385
386 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
387 {
388         int count, err;
389
390         count = 0;
391         err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
392         if (err < 0) {
393                 pr_err("Failed to write 1-wire data to ep0x%x: "
394                         "err=%d.\n", dev->ep[EP_DATA_OUT], err);
395                 return err;
396         }
397
398         return err;
399 }
400
401 #if 0
402
403 int ds_stop_pulse(struct ds_device *dev, int limit)
404 {
405         struct ds_status st;
406         int count = 0, err = 0;
407         u8 buf[ST_SIZE];
408
409         do {
410                 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
411                 if (err)
412                         break;
413                 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
414                 if (err)
415                         break;
416                 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
417                 if (err)
418                         break;
419
420                 if ((st.status & ST_SPUA) == 0) {
421                         err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
422                         if (err)
423                                 break;
424                 }
425         } while(++count < limit);
426
427         return err;
428 }
429
430 int ds_detect(struct ds_device *dev, struct ds_status *st)
431 {
432         int err;
433
434         err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
435         if (err)
436                 return err;
437
438         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
439         if (err)
440                 return err;
441
442         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
443         if (err)
444                 return err;
445
446         err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
447         if (err)
448                 return err;
449
450         err = ds_dump_status(dev, st);
451
452         return err;
453 }
454
455 #endif  /*  0  */
456
457 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
458 {
459         u8 buf[ST_SIZE];
460         int err, count = 0;
461
462         do {
463                 st->status = 0;
464                 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
465 #if 0
466                 if (err >= 0) {
467                         int i;
468                         printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
469                         for (i=0; i<err; ++i)
470                                 printk("%02x ", buf[i]);
471                         printk("\n");
472                 }
473 #endif
474         } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
475
476         if (err >= 16 && st->status & ST_EPOF) {
477                 pr_info("Resetting device after ST_EPOF.\n");
478                 ds_reset_device(dev);
479                 /* Always dump the device status. */
480                 count = 101;
481         }
482
483         /* Dump the status for errors or if there is extended return data.
484          * The extended status includes new device detection (maybe someone
485          * can do something with it).
486          */
487         if (err > 16 || count >= 100 || err < 0)
488                 ds_dump_status(dev, buf, err);
489
490         /* Extended data isn't an error.  Well, a short is, but the dump
491          * would have already told the user that and we can't do anything
492          * about it in software anyway.
493          */
494         if (count >= 100 || err < 0)
495                 return -1;
496         else
497                 return 0;
498 }
499
500 static int ds_reset(struct ds_device *dev)
501 {
502         int err;
503
504         /* Other potentionally interesting flags for reset.
505          *
506          * COMM_NTF: Return result register feedback.  This could be used to
507          * detect some conditions such as short, alarming presence, or
508          * detect if a new device was detected.
509          *
510          * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
511          * Select the data transfer rate.
512          */
513         err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
514         if (err)
515                 return err;
516
517         return 0;
518 }
519
520 #if 0
521 static int ds_set_speed(struct ds_device *dev, int speed)
522 {
523         int err;
524
525         if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
526                 return -EINVAL;
527
528         if (speed != SPEED_OVERDRIVE)
529                 speed = SPEED_FLEXIBLE;
530
531         speed &= 0xff;
532
533         err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
534         if (err)
535                 return err;
536
537         return err;
538 }
539 #endif  /*  0  */
540
541 static int ds_set_pullup(struct ds_device *dev, int delay)
542 {
543         int err = 0;
544         u8 del = 1 + (u8)(delay >> 4);
545         /* Just storing delay would not get the trunication and roundup. */
546         int ms = del<<4;
547
548         /* Enable spu_bit if a delay is set. */
549         dev->spu_bit = delay ? COMM_SPU : 0;
550         /* If delay is zero, it has already been disabled, if the time is
551          * the same as the hardware was last programmed to, there is also
552          * nothing more to do.  Compare with the recalculated value ms
553          * rather than del or delay which can have a different value.
554          */
555         if (delay == 0 || ms == dev->spu_sleep)
556                 return err;
557
558         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
559         if (err)
560                 return err;
561
562         dev->spu_sleep = ms;
563
564         return err;
565 }
566
567 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
568 {
569         int err;
570         struct ds_status st;
571
572         err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
573                 0);
574         if (err)
575                 return err;
576
577         ds_wait_status(dev, &st);
578
579         err = ds_recv_data(dev, tbit, sizeof(*tbit));
580         if (err < 0)
581                 return err;
582
583         return 0;
584 }
585
586 #if 0
587 static int ds_write_bit(struct ds_device *dev, u8 bit)
588 {
589         int err;
590         struct ds_status st;
591
592         /* Set COMM_ICP to write without a readback.  Note, this will
593          * produce one time slot, a down followed by an up with COMM_D
594          * only determing the timing.
595          */
596         err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
597                 (bit ? COMM_D : 0), 0);
598         if (err)
599                 return err;
600
601         ds_wait_status(dev, &st);
602
603         return 0;
604 }
605 #endif
606
607 static int ds_write_byte(struct ds_device *dev, u8 byte)
608 {
609         int err;
610         struct ds_status st;
611         u8 rbyte;
612
613         err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
614         if (err)
615                 return err;
616
617         if (dev->spu_bit)
618                 msleep(dev->spu_sleep);
619
620         err = ds_wait_status(dev, &st);
621         if (err)
622                 return err;
623
624         err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
625         if (err < 0)
626                 return err;
627
628         return !(byte == rbyte);
629 }
630
631 static int ds_read_byte(struct ds_device *dev, u8 *byte)
632 {
633         int err;
634         struct ds_status st;
635
636         err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
637         if (err)
638                 return err;
639
640         ds_wait_status(dev, &st);
641
642         err = ds_recv_data(dev, byte, sizeof(*byte));
643         if (err < 0)
644                 return err;
645
646         return 0;
647 }
648
649 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
650 {
651         struct ds_status st;
652         int err;
653
654         if (len > 64*1024)
655                 return -E2BIG;
656
657         memset(buf, 0xFF, len);
658
659         err = ds_send_data(dev, buf, len);
660         if (err < 0)
661                 return err;
662
663         err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
664         if (err)
665                 return err;
666
667         ds_wait_status(dev, &st);
668
669         memset(buf, 0x00, len);
670         err = ds_recv_data(dev, buf, len);
671
672         return err;
673 }
674
675 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
676 {
677         int err;
678         struct ds_status st;
679
680         err = ds_send_data(dev, buf, len);
681         if (err < 0)
682                 return err;
683
684         err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
685         if (err)
686                 return err;
687
688         if (dev->spu_bit)
689                 msleep(dev->spu_sleep);
690
691         ds_wait_status(dev, &st);
692
693         err = ds_recv_data(dev, buf, len);
694         if (err < 0)
695                 return err;
696
697         return !(err == len);
698 }
699
700 static void ds9490r_search(void *data, struct w1_master *master,
701         u8 search_type, w1_slave_found_callback callback)
702 {
703         /* When starting with an existing id, the first id returned will
704          * be that device (if it is still on the bus most likely).
705          *
706          * If the number of devices found is less than or equal to the
707          * search_limit, that number of IDs will be returned.  If there are
708          * more, search_limit IDs will be returned followed by a non-zero
709          * discrepency value.
710          */
711         struct ds_device *dev = data;
712         int err;
713         u16 value, index;
714         struct ds_status st;
715         u8 st_buf[ST_SIZE];
716         int search_limit;
717         int found = 0;
718         int i;
719
720         /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
721          * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
722          */
723         const unsigned long jtime = msecs_to_jiffies(1000*8/75);
724         /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
725          * packet size.
726          */
727         u64 buf[2*64/8];
728
729         mutex_lock(&master->bus_mutex);
730
731         /* address to start searching at */
732         if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
733                 goto search_out;
734         master->search_id = 0;
735
736         value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
737                 COMM_RTS;
738         search_limit = master->max_slave_count;
739         if (search_limit > 255)
740                 search_limit = 0;
741         index = search_type | (search_limit << 8);
742         if (ds_send_control(dev, value, index) < 0)
743                 goto search_out;
744
745         do {
746                 schedule_timeout(jtime);
747
748                 if (ds_recv_status_nodump(dev, &st, st_buf, sizeof(st_buf)) <
749                         sizeof(st)) {
750                         break;
751                 }
752
753                 if (st.data_in_buffer_status) {
754                         /* Bulk in can receive partial ids, but when it does
755                          * they fail crc and will be discarded anyway.
756                          * That has only been seen when status in buffer
757                          * is 0 and bulk is read anyway, so don't read
758                          * bulk without first checking if status says there
759                          * is data to read.
760                          */
761                         err = ds_recv_data(dev, (u8 *)buf, sizeof(buf));
762                         if (err < 0)
763                                 break;
764                         for (i = 0; i < err/8; ++i) {
765                                 ++found;
766                                 if (found <= search_limit)
767                                         callback(master, buf[i]);
768                                 /* can't know if there will be a discrepancy
769                                  * value after until the next id */
770                                 if (found == search_limit)
771                                         master->search_id = buf[i];
772                         }
773                 }
774
775                 if (test_bit(W1_ABORT_SEARCH, &master->flags))
776                         break;
777         } while (!(st.status & (ST_IDLE | ST_HALT)));
778
779         /* only continue the search if some weren't found */
780         if (found <= search_limit) {
781                 master->search_id = 0;
782         } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
783                 /* Only max_slave_count will be scanned in a search,
784                  * but it will start where it left off next search
785                  * until all ids are identified and then it will start
786                  * over.  A continued search will report the previous
787                  * last id as the first id (provided it is still on the
788                  * bus).
789                  */
790                 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
791                         "will continue next search.\n", __func__,
792                         master->max_slave_count);
793                 set_bit(W1_WARN_MAX_COUNT, &master->flags);
794         }
795 search_out:
796         mutex_unlock(&master->bus_mutex);
797 }
798
799 #if 0
800 static int ds_match_access(struct ds_device *dev, u64 init)
801 {
802         int err;
803         struct ds_status st;
804
805         err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
806         if (err)
807                 return err;
808
809         ds_wait_status(dev, &st);
810
811         err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
812         if (err)
813                 return err;
814
815         ds_wait_status(dev, &st);
816
817         return 0;
818 }
819
820 static int ds_set_path(struct ds_device *dev, u64 init)
821 {
822         int err;
823         struct ds_status st;
824         u8 buf[9];
825
826         memcpy(buf, &init, 8);
827         buf[8] = BRANCH_MAIN;
828
829         err = ds_send_data(dev, buf, sizeof(buf));
830         if (err)
831                 return err;
832
833         ds_wait_status(dev, &st);
834
835         err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
836         if (err)
837                 return err;
838
839         ds_wait_status(dev, &st);
840
841         return 0;
842 }
843
844 #endif  /*  0  */
845
846 static u8 ds9490r_touch_bit(void *data, u8 bit)
847 {
848         u8 ret;
849         struct ds_device *dev = data;
850
851         if (ds_touch_bit(dev, bit, &ret))
852                 return 0;
853
854         return ret;
855 }
856
857 #if 0
858 static void ds9490r_write_bit(void *data, u8 bit)
859 {
860         struct ds_device *dev = data;
861
862         ds_write_bit(dev, bit);
863 }
864
865 static u8 ds9490r_read_bit(void *data)
866 {
867         struct ds_device *dev = data;
868         int err;
869         u8 bit = 0;
870
871         err = ds_touch_bit(dev, 1, &bit);
872         if (err)
873                 return 0;
874
875         return bit & 1;
876 }
877 #endif
878
879 static void ds9490r_write_byte(void *data, u8 byte)
880 {
881         struct ds_device *dev = data;
882
883         ds_write_byte(dev, byte);
884 }
885
886 static u8 ds9490r_read_byte(void *data)
887 {
888         struct ds_device *dev = data;
889         int err;
890         u8 byte = 0;
891
892         err = ds_read_byte(dev, &byte);
893         if (err)
894                 return 0;
895
896         return byte;
897 }
898
899 static void ds9490r_write_block(void *data, const u8 *buf, int len)
900 {
901         struct ds_device *dev = data;
902
903         ds_write_block(dev, (u8 *)buf, len);
904 }
905
906 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
907 {
908         struct ds_device *dev = data;
909         int err;
910
911         err = ds_read_block(dev, buf, len);
912         if (err < 0)
913                 return 0;
914
915         return len;
916 }
917
918 static u8 ds9490r_reset(void *data)
919 {
920         struct ds_device *dev = data;
921         int err;
922
923         err = ds_reset(dev);
924         if (err)
925                 return 1;
926
927         return 0;
928 }
929
930 static u8 ds9490r_set_pullup(void *data, int delay)
931 {
932         struct ds_device *dev = data;
933
934         if (ds_set_pullup(dev, delay))
935                 return 1;
936
937         return 0;
938 }
939
940 static int ds_w1_init(struct ds_device *dev)
941 {
942         memset(&dev->master, 0, sizeof(struct w1_bus_master));
943
944         /* Reset the device as it can be in a bad state.
945          * This is necessary because a block write will wait for data
946          * to be placed in the output buffer and block any later
947          * commands which will keep accumulating and the device will
948          * not be idle.  Another case is removing the ds2490 module
949          * while a bus search is in progress, somehow a few commands
950          * get through, but the input transfers fail leaving data in
951          * the input buffer.  This will cause the next read to fail
952          * see the note in ds_recv_data.
953          */
954         ds_reset_device(dev);
955
956         dev->master.data        = dev;
957         dev->master.touch_bit   = &ds9490r_touch_bit;
958         /* read_bit and write_bit in w1_bus_master are expected to set and
959          * sample the line level.  For write_bit that means it is expected to
960          * set it to that value and leave it there.  ds2490 only supports an
961          * individual time slot at the lowest level.  The requirement from
962          * pulling the bus state down to reading the state is 15us, something
963          * that isn't realistic on the USB bus anyway.
964         dev->master.read_bit    = &ds9490r_read_bit;
965         dev->master.write_bit   = &ds9490r_write_bit;
966         */
967         dev->master.read_byte   = &ds9490r_read_byte;
968         dev->master.write_byte  = &ds9490r_write_byte;
969         dev->master.read_block  = &ds9490r_read_block;
970         dev->master.write_block = &ds9490r_write_block;
971         dev->master.reset_bus   = &ds9490r_reset;
972         dev->master.set_pullup  = &ds9490r_set_pullup;
973         dev->master.search      = &ds9490r_search;
974
975         return w1_add_master_device(&dev->master);
976 }
977
978 static void ds_w1_fini(struct ds_device *dev)
979 {
980         w1_remove_master_device(&dev->master);
981 }
982
983 static int ds_probe(struct usb_interface *intf,
984                     const struct usb_device_id *udev_id)
985 {
986         struct usb_device *udev = interface_to_usbdev(intf);
987         struct usb_endpoint_descriptor *endpoint;
988         struct usb_host_interface *iface_desc;
989         struct ds_device *dev;
990         int i, err, alt;
991
992         dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
993         if (!dev) {
994                 pr_info("Failed to allocate new DS9490R structure.\n");
995                 return -ENOMEM;
996         }
997         dev->udev = usb_get_dev(udev);
998         if (!dev->udev) {
999                 err = -ENOMEM;
1000                 goto err_out_free;
1001         }
1002         memset(dev->ep, 0, sizeof(dev->ep));
1003
1004         usb_set_intfdata(intf, dev);
1005
1006         err = usb_reset_configuration(dev->udev);
1007         if (err) {
1008                 dev_err(&dev->udev->dev,
1009                         "Failed to reset configuration: err=%d.\n", err);
1010                 goto err_out_clear;
1011         }
1012
1013         /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1014         alt = 3;
1015         err = usb_set_interface(dev->udev,
1016                 intf->altsetting[alt].desc.bInterfaceNumber, alt);
1017         if (err) {
1018                 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1019                         "for %d interface: err=%d.\n", alt,
1020                         intf->altsetting[alt].desc.bInterfaceNumber, err);
1021                 goto err_out_clear;
1022         }
1023
1024         iface_desc = &intf->altsetting[alt];
1025         if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1026                 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1027                         iface_desc->desc.bNumEndpoints);
1028                 err = -EINVAL;
1029                 goto err_out_clear;
1030         }
1031
1032         /*
1033          * This loop doesn'd show control 0 endpoint,
1034          * so we will fill only 1-3 endpoints entry.
1035          */
1036         for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1037                 endpoint = &iface_desc->endpoint[i].desc;
1038
1039                 dev->ep[i+1] = endpoint->bEndpointAddress;
1040 #if 0
1041                 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1042                         i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1043                         (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1044                         endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1045 #endif
1046         }
1047
1048         err = ds_w1_init(dev);
1049         if (err)
1050                 goto err_out_clear;
1051
1052         mutex_lock(&ds_mutex);
1053         list_add_tail(&dev->ds_entry, &ds_devices);
1054         mutex_unlock(&ds_mutex);
1055
1056         return 0;
1057
1058 err_out_clear:
1059         usb_set_intfdata(intf, NULL);
1060         usb_put_dev(dev->udev);
1061 err_out_free:
1062         kfree(dev);
1063         return err;
1064 }
1065
1066 static void ds_disconnect(struct usb_interface *intf)
1067 {
1068         struct ds_device *dev;
1069
1070         dev = usb_get_intfdata(intf);
1071         if (!dev)
1072                 return;
1073
1074         mutex_lock(&ds_mutex);
1075         list_del(&dev->ds_entry);
1076         mutex_unlock(&ds_mutex);
1077
1078         ds_w1_fini(dev);
1079
1080         usb_set_intfdata(intf, NULL);
1081
1082         usb_put_dev(dev->udev);
1083         kfree(dev);
1084 }
1085
1086 module_usb_driver(ds_driver);
1087
1088 MODULE_LICENSE("GPL");
1089 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");