Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / video / fbdev / kyro / STG4000InitDevice.c
1 /*
2  *  linux/drivers/video/kyro/STG4000InitDevice.c
3  *
4  *  Copyright (C) 2000 Imagination Technologies Ltd
5  *  Copyright (C) 2002 STMicroelectronics
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive
9  * for more details.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/types.h>
15 #include <linux/pci.h>
16
17 #include "STG4000Reg.h"
18 #include "STG4000Interface.h"
19
20 /* SDRAM fixed settings */
21 #define SDRAM_CFG_0   0x49A1
22 #define SDRAM_CFG_1   0xA732
23 #define SDRAM_CFG_2   0x31
24 #define SDRAM_ARB_CFG 0xA0
25 #define SDRAM_REFRESH 0x20
26
27 /* Reset values */
28 #define PMX2_SOFTRESET_DAC_RST          0x0001
29 #define PMX2_SOFTRESET_C1_RST           0x0004
30 #define PMX2_SOFTRESET_C2_RST           0x0008
31 #define PMX2_SOFTRESET_3D_RST           0x0010
32 #define PMX2_SOFTRESET_VIDIN_RST        0x0020
33 #define PMX2_SOFTRESET_TLB_RST          0x0040
34 #define PMX2_SOFTRESET_SD_RST           0x0080
35 #define PMX2_SOFTRESET_VGA_RST          0x0100
36 #define PMX2_SOFTRESET_ROM_RST          0x0200  /* reserved bit, do not reset */
37 #define PMX2_SOFTRESET_TA_RST           0x0400
38 #define PMX2_SOFTRESET_REG_RST          0x4000
39 #define PMX2_SOFTRESET_ALL              0x7fff
40
41 /* Core clock freq */
42 #define CORE_PLL_FREQ 1000000
43
44 /* Reference Clock freq */
45 #define REF_FREQ 14318
46
47 /* PCI Registers */
48 static u16 CorePllControl = 0x70;
49
50 #define PCI_CONFIG_SUBSYS_ID    0x2e
51
52 /* Misc */
53 #define CORE_PLL_MODE_REG_0_7      3
54 #define CORE_PLL_MODE_REG_8_15     2
55 #define CORE_PLL_MODE_CONFIG_REG   1
56 #define DAC_PLL_CONFIG_REG         0
57
58 #define STG_MAX_VCO 500000
59 #define STG_MIN_VCO 100000
60
61 /* PLL Clock */
62 #define    STG4K3_PLL_SCALER      8     /* scale numbers by 2^8 for fixed point calc */
63 #define    STG4K3_PLL_MIN_R       2     /* Minimum multiplier */
64 #define    STG4K3_PLL_MAX_R       33    /* Max */
65 #define    STG4K3_PLL_MIN_F       2     /* Minimum divisor */
66 #define    STG4K3_PLL_MAX_F       513   /* Max */
67 #define    STG4K3_PLL_MIN_OD      0     /* Min output divider (shift) */
68 #define    STG4K3_PLL_MAX_OD      2     /* Max */
69 #define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate */
70 #define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate */
71 #define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate (restricted) */
72 #define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate (restricted) */
73 #define    STG4K3_PLL_MINR_VCO    100000000     /* Min VCO rate (restricted) */
74 #define    STG4K3_PLL_MAX_VCO     500000000     /* Max VCO rate */
75 #define    STG4K3_PLL_MAXR_VCO    500000000     /* Max VCO rate (restricted) */
76
77 #define OS_DELAY(X) \
78 { \
79 volatile u32 i,count=0; \
80     for(i=0;i<X;i++) count++; \
81 }
82
83 static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
84                               u32 dwSubSysID, u32 dwRevID)
85 {
86         u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
87         u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
88         u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
89         u32 adwSDRAMRsh[] = { 36, 39, 40 };
90         u32 adwChipSpeed[] = { 110, 120, 125 };
91         u32 dwMemTypeIdx;
92         u32 dwChipSpeedIdx;
93
94         /* Get memory tpye and chip speed indexs from the SubSysDevID */
95         dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
96         dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
97
98         if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
99                 return 0;
100
101         /* Program SD-RAM interface */
102         STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
103         if (dwRevID < 5) {
104                 STG_WRITE_REG(SDRAMConf0, 0x49A1);
105                 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
106         } else {
107                 STG_WRITE_REG(SDRAMConf0, 0x4DF1);
108                 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
109         }
110
111         STG_WRITE_REG(SDRAMConf2, 0x31);
112         STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
113
114         return adwChipSpeed[dwChipSpeedIdx] * 10000;
115 }
116
117 u32 ProgramClock(u32 refClock,
118                    u32 coreClock,
119                    u32 * FOut, u32 * ROut, u32 * POut)
120 {
121         u32 R = 0, F = 0, OD = 0, ODIndex = 0;
122         u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
123         u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
124         u32 ulScore, ulPhaseScore, ulVcoScore;
125         u32 ulTmp = 0, ulVCO;
126         u32 ulScaleClockReq, ulMinClock, ulMaxClock;
127         u32 ODValues[] = { 1, 2, 0 };
128
129         /* Translate clock in Hz */
130         coreClock *= 100;       /* in Hz */
131         refClock *= 1000;       /* in Hz */
132
133         /* Work out acceptable clock
134          * The method calculates ~ +- 0.4% (1/256)
135          */
136         ulMinClock = coreClock - (coreClock >> 8);
137         ulMaxClock = coreClock + (coreClock >> 8);
138
139         /* Scale clock required for use in calculations */
140         ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
141
142         /* Iterate through post divider values */
143         for (ODIndex = 0; ODIndex < 3; ODIndex++) {
144                 OD = ODValues[ODIndex];
145                 R = STG4K3_PLL_MIN_R;
146
147                 /* loop for pre-divider from min to max  */
148                 while (R <= STG4K3_PLL_MAX_R) {
149                         /* estimate required feedback multiplier */
150                         ulTmp = R * (ulScaleClockReq << OD);
151
152                         /* F = ClkRequired * R * (2^OD) / Fref */
153                         F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
154
155                         /* compensate for accuracy */
156                         if (F > STG4K3_PLL_MIN_F)
157                                 F--;
158
159
160                         /*
161                          * We should be close to our target frequency (if it's
162                          * achievable with current OD & R) let's iterate
163                          * through F for best fit
164                          */
165                         while ((F >= STG4K3_PLL_MIN_F) &&
166                                (F <= STG4K3_PLL_MAX_F)) {
167                                 /* Calc VCO at full accuracy */
168                                 ulVCO = refClock / R;
169                                 ulVCO = F * ulVCO;
170
171                                 /*
172                                  * Check it's within restricted VCO range
173                                  * unless of course the desired frequency is
174                                  * above the restricted range, then test
175                                  * against VCO limit
176                                  */
177                                 if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
178                                     ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
179                                      ((coreClock > STG4K3_PLL_MAXR_VCO)
180                                       && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
181                                         ulTmp = (ulVCO >> OD);  /* Clock = VCO / (2^OD) */
182
183                                         /* Is this clock good enough? */
184                                         if ((ulTmp >= ulMinClock)
185                                             && (ulTmp <= ulMaxClock)) {
186                                                 ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
187
188                                                 ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
189                                                 ulScore = ulPhaseScore + ulVcoScore;
190
191                                                 if (!ulBestScore) {
192                                                         ulBestVCO = ulVCO;
193                                                         ulBestOD = OD;
194                                                         ulBestF = F;
195                                                         ulBestR = R;
196                                                         ulBestClk = ulTmp;
197                                                         ulBestScore =
198                                                             ulScore;
199                                                 }
200                                                 /* is this better, ( aim for highest Score) */
201                         /*--------------------------------------------------------------------------
202                              Here we want to use a scoring system which will take account of both the
203                             value at the phase comparater and the VCO output
204                              to do this we will use a cumulative score between the two
205                           The way this ends up is that we choose the first value in the loop anyway
206                           but we shall keep this code in case new restrictions come into play
207                           --------------------------------------------------------------------------*/
208                                                 if ((ulScore >= ulBestScore) && (OD > 0)) {
209                                                         ulBestVCO = ulVCO;
210                                                         ulBestOD = OD;
211                                                         ulBestF = F;
212                                                         ulBestR = R;
213                                                         ulBestClk = ulTmp;
214                                                         ulBestScore =
215                                                             ulScore;
216                                                 }
217                                         }
218                                 }
219                                 F++;
220                         }
221                         R++;
222                 }
223         }
224
225         /*
226            did we find anything?
227            Then return RFOD
228          */
229         if (ulBestScore) {
230                 *ROut = ulBestR;
231                 *FOut = ulBestF;
232
233                 if ((ulBestOD == 2) || (ulBestOD == 3)) {
234                         *POut = 3;
235                 } else
236                         *POut = ulBestOD;
237
238         }
239
240         return (ulBestClk);
241 }
242
243 int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
244 {
245         u32 F, R, P;
246         u16 core_pll = 0, sub;
247         u32 ulCoreClock;
248         u32 tmp;
249         u32 ulChipSpeed;
250
251         STG_WRITE_REG(IntMask, 0xFFFF);
252
253         /* Disable Primary Core Thread0 */
254         tmp = STG_READ_REG(Thread0Enable);
255         CLEAR_BIT(0);
256         STG_WRITE_REG(Thread0Enable, tmp);
257
258         /* Disable Primary Core Thread1 */
259         tmp = STG_READ_REG(Thread1Enable);
260         CLEAR_BIT(0);
261         STG_WRITE_REG(Thread1Enable, tmp);
262
263         STG_WRITE_REG(SoftwareReset,
264                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
265         STG_WRITE_REG(SoftwareReset,
266                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
267                       PMX2_SOFTRESET_ROM_RST);
268
269         /* Need to play around to reset TA */
270         STG_WRITE_REG(TAConfiguration, 0);
271         STG_WRITE_REG(SoftwareReset,
272                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
273         STG_WRITE_REG(SoftwareReset,
274                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
275                       PMX2_SOFTRESET_ROM_RST);
276
277         pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
278
279         ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub,
280                                          (u32)pDev->revision);
281
282         if (ulChipSpeed == 0)
283                 return -EINVAL;
284
285         ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
286
287         core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
288
289         /* Set Core PLL Control to Core PLL Mode  */
290
291         /* Send bits 0:7 of the Core PLL Mode register */
292         tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
293         pci_write_config_word(pDev, CorePllControl, tmp);
294         /* Without some delay between the PCI config writes the clock does
295            not reliably set when the code is compiled -O3
296          */
297         OS_DELAY(1000000);
298
299         tmp |= SET_BIT(14);
300         pci_write_config_word(pDev, CorePllControl, tmp);
301         OS_DELAY(1000000);
302
303         /* Send bits 8:15 of the Core PLL Mode register */
304         tmp =
305             ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
306         pci_write_config_word(pDev, CorePllControl, tmp);
307         OS_DELAY(1000000);
308
309         tmp |= SET_BIT(14);
310         pci_write_config_word(pDev, CorePllControl, tmp);
311         OS_DELAY(1000000);
312
313         STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
314
315 #if 0
316         /* Enable Primary Core Thread0 */
317         tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
318         STG_WRITE_REG(Thread0Enable, tmp);
319
320         /* Enable Primary Core Thread1 */
321         tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
322         STG_WRITE_REG(Thread1Enable, tmp);
323 #endif
324
325         return 0;
326 }