Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / usb / gadget / udc / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2  *
3  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com/
5  *
6  * S3C24XX USB 2.0 High-speed USB controller gadget driver
7  *
8  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9  * Each endpoint can be configured as either in or out endpoint. Endpoints
10  * can be configured for Bulk or Interrupt transfer mode.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/err.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/prefetch.h>
32 #include <linux/platform_data/s3c-hsudc.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/pm_runtime.h>
35
36 #include <mach/regs-s3c2443-clock.h>
37
38 #define S3C_HSUDC_REG(x)        (x)
39
40 /* Non-Indexed Registers */
41 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
42 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
43 #define S3C_EIR_EP0                     (1<<0)
44 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
45 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
46 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
47 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
48 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
49 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
50 #define S3C_SSR_DTZIEN_EN               (0xff8f)
51 #define S3C_SSR_ERR                     (0xff80)
52 #define S3C_SSR_VBUSON                  (1 << 8)
53 #define S3C_SSR_HSP                     (1 << 4)
54 #define S3C_SSR_SDE                     (1 << 3)
55 #define S3C_SSR_RESUME                  (1 << 2)
56 #define S3C_SSR_SUSPEND                 (1 << 1)
57 #define S3C_SSR_RESET                   (1 << 0)
58 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
59 #define S3C_SCR_DTZIEN_EN               (1 << 14)
60 #define S3C_SCR_RRD_EN                  (1 << 5)
61 #define S3C_SCR_SUS_EN                  (1 << 1)
62 #define S3C_SCR_RST_EN                  (1 << 0)
63 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
64 #define S3C_EP0SR_EP0_LWO               (1 << 6)
65 #define S3C_EP0SR_STALL                 (1 << 4)
66 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
67 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
68 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
69 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
70
71 /* Indexed Registers */
72 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
73 #define S3C_ESR_FLUSH                   (1 << 6)
74 #define S3C_ESR_STALL                   (1 << 5)
75 #define S3C_ESR_LWO                     (1 << 4)
76 #define S3C_ESR_PSIF_ONE                (1 << 2)
77 #define S3C_ESR_PSIF_TWO                (2 << 2)
78 #define S3C_ESR_TX_SUCCESS              (1 << 1)
79 #define S3C_ESR_RX_SUCCESS              (1 << 0)
80 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
81 #define S3C_ECR_DUEN                    (1 << 7)
82 #define S3C_ECR_FLUSH                   (1 << 6)
83 #define S3C_ECR_STALL                   (1 << 1)
84 #define S3C_ECR_IEMS                    (1 << 0)
85 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
86 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
87 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
88
89 #define WAIT_FOR_SETUP                  (0)
90 #define DATA_STATE_XMIT                 (1)
91 #define DATA_STATE_RECV                 (2)
92
93 static const char * const s3c_hsudc_supply_names[] = {
94         "vdda",         /* analog phy supply, 3.3V */
95         "vddi",         /* digital phy supply, 1.2V */
96         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
97 };
98
99 /**
100  * struct s3c_hsudc_ep - Endpoint representation used by driver.
101  * @ep: USB gadget layer representation of device endpoint.
102  * @name: Endpoint name (as required by ep autoconfiguration).
103  * @dev: Reference to the device controller to which this EP belongs.
104  * @desc: Endpoint descriptor obtained from the gadget driver.
105  * @queue: Transfer request queue for the endpoint.
106  * @stopped: Maintains state of endpoint, set if EP is halted.
107  * @bEndpointAddress: EP address (including direction bit).
108  * @fifo: Base address of EP FIFO.
109  */
110 struct s3c_hsudc_ep {
111         struct usb_ep ep;
112         char name[20];
113         struct s3c_hsudc *dev;
114         struct list_head queue;
115         u8 stopped;
116         u8 wedge;
117         u8 bEndpointAddress;
118         void __iomem *fifo;
119 };
120
121 /**
122  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
123  * @req: Reference to USB gadget transfer request.
124  * @queue: Used for inserting this request to the endpoint request queue.
125  */
126 struct s3c_hsudc_req {
127         struct usb_request req;
128         struct list_head queue;
129 };
130
131 /**
132  * struct s3c_hsudc - Driver's abstraction of the device controller.
133  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
134  * @driver: Reference to currenty active gadget driver.
135  * @dev: The device reference used by probe function.
136  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
137  * @regs: Remapped base address of controller's register space.
138  * irq: IRQ number used by the controller.
139  * uclk: Reference to the controller clock.
140  * ep0state: Current state of EP0.
141  * ep: List of endpoints supported by the controller.
142  */
143 struct s3c_hsudc {
144         struct usb_gadget gadget;
145         struct usb_gadget_driver *driver;
146         struct device *dev;
147         struct s3c24xx_hsudc_platdata *pd;
148         struct usb_phy *transceiver;
149         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
150         spinlock_t lock;
151         void __iomem *regs;
152         int irq;
153         struct clk *uclk;
154         int ep0state;
155         struct s3c_hsudc_ep ep[];
156 };
157
158 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
159 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
160 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
161                                         USB_ENDPOINT_NUMBER_MASK)
162
163 static const char driver_name[] = "s3c-udc";
164 static const char ep0name[] = "ep0-control";
165
166 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
167 {
168         return container_of(req, struct s3c_hsudc_req, req);
169 }
170
171 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
172 {
173         return container_of(ep, struct s3c_hsudc_ep, ep);
174 }
175
176 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
177 {
178         return container_of(gadget, struct s3c_hsudc, gadget);
179 }
180
181 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
182 {
183         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
184         writel(ep_addr, hsudc->regs + S3C_IR);
185 }
186
187 static inline void __orr32(void __iomem *ptr, u32 val)
188 {
189         writel(readl(ptr) | val, ptr);
190 }
191
192 static void s3c_hsudc_init_phy(void)
193 {
194         u32 cfg;
195
196         cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
197         writel(cfg, S3C2443_PWRCFG);
198
199         cfg = readl(S3C2443_URSTCON);
200         cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
201         writel(cfg, S3C2443_URSTCON);
202         mdelay(1);
203
204         cfg = readl(S3C2443_URSTCON);
205         cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
206         writel(cfg, S3C2443_URSTCON);
207
208         cfg = readl(S3C2443_PHYCTRL);
209         cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
210         cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
211         writel(cfg, S3C2443_PHYCTRL);
212
213         cfg = readl(S3C2443_PHYPWR);
214         cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
215                 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
216                 S3C2443_PHYPWR_ANALOG_PD);
217         cfg |= S3C2443_PHYPWR_COMMON_ON;
218         writel(cfg, S3C2443_PHYPWR);
219
220         cfg = readl(S3C2443_UCLKCON);
221         cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
222                 S3C2443_UCLKCON_TCLKEN);
223         writel(cfg, S3C2443_UCLKCON);
224 }
225
226 static void s3c_hsudc_uninit_phy(void)
227 {
228         u32 cfg;
229
230         cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
231         writel(cfg, S3C2443_PWRCFG);
232
233         writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
234
235         cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
236         writel(cfg, S3C2443_UCLKCON);
237 }
238
239 /**
240  * s3c_hsudc_complete_request - Complete a transfer request.
241  * @hsep: Endpoint to which the request belongs.
242  * @hsreq: Transfer request to be completed.
243  * @status: Transfer completion status for the transfer request.
244  */
245 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
246                                 struct s3c_hsudc_req *hsreq, int status)
247 {
248         unsigned int stopped = hsep->stopped;
249         struct s3c_hsudc *hsudc = hsep->dev;
250
251         list_del_init(&hsreq->queue);
252         hsreq->req.status = status;
253
254         if (!ep_index(hsep)) {
255                 hsudc->ep0state = WAIT_FOR_SETUP;
256                 hsep->bEndpointAddress &= ~USB_DIR_IN;
257         }
258
259         hsep->stopped = 1;
260         spin_unlock(&hsudc->lock);
261         usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
262         spin_lock(&hsudc->lock);
263         hsep->stopped = stopped;
264 }
265
266 /**
267  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
268  * @hsep: Endpoint for which queued requests have to be terminated.
269  * @status: Transfer completion status for the transfer request.
270  */
271 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
272 {
273         struct s3c_hsudc_req *hsreq;
274
275         while (!list_empty(&hsep->queue)) {
276                 hsreq = list_entry(hsep->queue.next,
277                                 struct s3c_hsudc_req, queue);
278                 s3c_hsudc_complete_request(hsep, hsreq, status);
279         }
280 }
281
282 /**
283  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
284  * @hsudc: Device controller for which EP activity is to be stopped.
285  *
286  * All the endpoints are stopped and any pending transfer requests if any on
287  * the endpoint are terminated.
288  */
289 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
290 {
291         struct s3c_hsudc_ep *hsep;
292         int epnum;
293
294         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
295
296         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
297                 hsep = &hsudc->ep[epnum];
298                 hsep->stopped = 1;
299                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
300         }
301 }
302
303 /**
304  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
305  * @hsudc: Device controller from which setup packet is to be read.
306  * @buf: The buffer into which the setup packet is read.
307  *
308  * The setup packet received in the EP0 fifo is read and stored into a
309  * given buffer address.
310  */
311
312 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
313 {
314         int count;
315
316         count = readl(hsudc->regs + S3C_BRCR);
317         while (count--)
318                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
319
320         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
321 }
322
323 /**
324  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
325  * @hsep: Endpoint to which the data is to be written.
326  * @hsreq: Transfer request from which the next chunk of data is written.
327  *
328  * Write the next chunk of data from a transfer request to the endpoint FIFO.
329  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
330  */
331 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
332                                 struct s3c_hsudc_req *hsreq)
333 {
334         u16 *buf;
335         u32 max = ep_maxpacket(hsep);
336         u32 count, length;
337         bool is_last;
338         void __iomem *fifo = hsep->fifo;
339
340         buf = hsreq->req.buf + hsreq->req.actual;
341         prefetch(buf);
342
343         length = hsreq->req.length - hsreq->req.actual;
344         length = min(length, max);
345         hsreq->req.actual += length;
346
347         writel(length, hsep->dev->regs + S3C_BWCR);
348         for (count = 0; count < length; count += 2)
349                 writel(*buf++, fifo);
350
351         if (count != max) {
352                 is_last = true;
353         } else {
354                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
355                         is_last = false;
356                 else
357                         is_last = true;
358         }
359
360         if (is_last) {
361                 s3c_hsudc_complete_request(hsep, hsreq, 0);
362                 return 1;
363         }
364
365         return 0;
366 }
367
368 /**
369  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
370  * @hsep: Endpoint from which the data is to be read.
371  * @hsreq: Transfer request to which the next chunk of data read is written.
372  *
373  * Read the next chunk of data from the endpoint FIFO and a write it to the
374  * transfer request buffer. If the transfer request completes, 1 is returned,
375  * otherwise 0 is returned.
376  */
377 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
378                                 struct s3c_hsudc_req *hsreq)
379 {
380         struct s3c_hsudc *hsudc = hsep->dev;
381         u32 csr, offset;
382         u16 *buf, word;
383         u32 buflen, rcnt, rlen;
384         void __iomem *fifo = hsep->fifo;
385         u32 is_short = 0;
386
387         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
388         csr = readl(hsudc->regs + offset);
389         if (!(csr & S3C_ESR_RX_SUCCESS))
390                 return -EINVAL;
391
392         buf = hsreq->req.buf + hsreq->req.actual;
393         prefetchw(buf);
394         buflen = hsreq->req.length - hsreq->req.actual;
395
396         rcnt = readl(hsudc->regs + S3C_BRCR);
397         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
398
399         hsreq->req.actual += min(rlen, buflen);
400         is_short = (rlen < hsep->ep.maxpacket);
401
402         while (rcnt-- != 0) {
403                 word = (u16)readl(fifo);
404                 if (buflen) {
405                         *buf++ = word;
406                         buflen--;
407                 } else {
408                         hsreq->req.status = -EOVERFLOW;
409                 }
410         }
411
412         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
413
414         if (is_short || hsreq->req.actual == hsreq->req.length) {
415                 s3c_hsudc_complete_request(hsep, hsreq, 0);
416                 return 1;
417         }
418
419         return 0;
420 }
421
422 /**
423  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
424  * @hsudc - Device controller for which the interrupt is to be handled.
425  * @ep_idx - Endpoint number on which an interrupt is pending.
426  *
427  * Handles interrupt for a in-endpoint. The interrupts that are handled are
428  * stall and data transmit complete interrupt.
429  */
430 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
431 {
432         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
433         struct s3c_hsudc_req *hsreq;
434         u32 csr;
435
436         csr = readl(hsudc->regs + S3C_ESR);
437         if (csr & S3C_ESR_STALL) {
438                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
439                 return;
440         }
441
442         if (csr & S3C_ESR_TX_SUCCESS) {
443                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
444                 if (list_empty(&hsep->queue))
445                         return;
446
447                 hsreq = list_entry(hsep->queue.next,
448                                 struct s3c_hsudc_req, queue);
449                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
450                                 (csr & S3C_ESR_PSIF_TWO))
451                         s3c_hsudc_write_fifo(hsep, hsreq);
452         }
453 }
454
455 /**
456  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
457  * @hsudc - Device controller for which the interrupt is to be handled.
458  * @ep_idx - Endpoint number on which an interrupt is pending.
459  *
460  * Handles interrupt for a out-endpoint. The interrupts that are handled are
461  * stall, flush and data ready interrupt.
462  */
463 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
464 {
465         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
466         struct s3c_hsudc_req *hsreq;
467         u32 csr;
468
469         csr = readl(hsudc->regs + S3C_ESR);
470         if (csr & S3C_ESR_STALL) {
471                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
472                 return;
473         }
474
475         if (csr & S3C_ESR_FLUSH) {
476                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
477                 return;
478         }
479
480         if (csr & S3C_ESR_RX_SUCCESS) {
481                 if (list_empty(&hsep->queue))
482                         return;
483
484                 hsreq = list_entry(hsep->queue.next,
485                                 struct s3c_hsudc_req, queue);
486                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
487                                 (csr & S3C_ESR_PSIF_TWO))
488                         s3c_hsudc_read_fifo(hsep, hsreq);
489         }
490 }
491
492 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
493  * @_ep: Endpoint on which halt has to be set or cleared.
494  * @value: 1 for setting halt on endpoint, 0 to clear halt.
495  *
496  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
497  * If halt is cleared, for in-endpoints, if there are any pending
498  * transfer requests, transfers are started.
499  */
500 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
501 {
502         struct s3c_hsudc_ep *hsep = our_ep(_ep);
503         struct s3c_hsudc *hsudc = hsep->dev;
504         struct s3c_hsudc_req *hsreq;
505         unsigned long irqflags;
506         u32 ecr;
507         u32 offset;
508
509         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
510                 return -EAGAIN;
511
512         spin_lock_irqsave(&hsudc->lock, irqflags);
513         set_index(hsudc, ep_index(hsep));
514         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
515         ecr = readl(hsudc->regs + offset);
516
517         if (value) {
518                 ecr |= S3C_ECR_STALL;
519                 if (ep_index(hsep))
520                         ecr |= S3C_ECR_FLUSH;
521                 hsep->stopped = 1;
522         } else {
523                 ecr &= ~S3C_ECR_STALL;
524                 hsep->stopped = hsep->wedge = 0;
525         }
526         writel(ecr, hsudc->regs + offset);
527
528         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
529                 hsreq = list_entry(hsep->queue.next,
530                         struct s3c_hsudc_req, queue);
531                 if (hsreq)
532                         s3c_hsudc_write_fifo(hsep, hsreq);
533         }
534
535         spin_unlock_irqrestore(&hsudc->lock, irqflags);
536         return 0;
537 }
538
539 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
540  * @_ep: Endpoint on which wedge has to be set.
541  *
542  * Sets the halt feature with the clear requests ignored.
543  */
544 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
545 {
546         struct s3c_hsudc_ep *hsep = our_ep(_ep);
547
548         if (!hsep)
549                 return -EINVAL;
550
551         hsep->wedge = 1;
552         return usb_ep_set_halt(_ep);
553 }
554
555 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
556  * @_ep: Device controller on which the set/clear feature needs to be handled.
557  * @ctrl: Control request as received on the endpoint 0.
558  *
559  * Handle set feature or clear feature control requests on the control endpoint.
560  */
561 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
562                                         struct usb_ctrlrequest *ctrl)
563 {
564         struct s3c_hsudc_ep *hsep;
565         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
566         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
567
568         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
569                 hsep = &hsudc->ep[ep_num];
570                 switch (le16_to_cpu(ctrl->wValue)) {
571                 case USB_ENDPOINT_HALT:
572                         if (set || (!set && !hsep->wedge))
573                                 s3c_hsudc_set_halt(&hsep->ep, set);
574                         return 0;
575                 }
576         }
577
578         return -ENOENT;
579 }
580
581 /**
582  * s3c_hsudc_process_req_status - Handle get status control request.
583  * @hsudc: Device controller on which get status request has be handled.
584  * @ctrl: Control request as received on the endpoint 0.
585  *
586  * Handle get status control request received on control endpoint.
587  */
588 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
589                                         struct usb_ctrlrequest *ctrl)
590 {
591         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
592         struct s3c_hsudc_req hsreq;
593         struct s3c_hsudc_ep *hsep;
594         __le16 reply;
595         u8 epnum;
596
597         switch (ctrl->bRequestType & USB_RECIP_MASK) {
598         case USB_RECIP_DEVICE:
599                 reply = cpu_to_le16(0);
600                 break;
601
602         case USB_RECIP_INTERFACE:
603                 reply = cpu_to_le16(0);
604                 break;
605
606         case USB_RECIP_ENDPOINT:
607                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
608                 hsep = &hsudc->ep[epnum];
609                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
610                 break;
611         }
612
613         INIT_LIST_HEAD(&hsreq.queue);
614         hsreq.req.length = 2;
615         hsreq.req.buf = &reply;
616         hsreq.req.actual = 0;
617         hsreq.req.complete = NULL;
618         s3c_hsudc_write_fifo(hsep0, &hsreq);
619 }
620
621 /**
622  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
623  * @hsudc: Device controller on which control request has been received.
624  *
625  * Read the control request received on endpoint 0, decode it and handle
626  * the request.
627  */
628 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
629 {
630         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
631         struct usb_ctrlrequest ctrl = {0};
632         int ret;
633
634         s3c_hsudc_nuke_ep(hsep, -EPROTO);
635         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
636
637         if (ctrl.bRequestType & USB_DIR_IN) {
638                 hsep->bEndpointAddress |= USB_DIR_IN;
639                 hsudc->ep0state = DATA_STATE_XMIT;
640         } else {
641                 hsep->bEndpointAddress &= ~USB_DIR_IN;
642                 hsudc->ep0state = DATA_STATE_RECV;
643         }
644
645         switch (ctrl.bRequest) {
646         case USB_REQ_SET_ADDRESS:
647                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
648                         break;
649                 hsudc->ep0state = WAIT_FOR_SETUP;
650                 return;
651
652         case USB_REQ_GET_STATUS:
653                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
654                         break;
655                 s3c_hsudc_process_req_status(hsudc, &ctrl);
656                 return;
657
658         case USB_REQ_SET_FEATURE:
659         case USB_REQ_CLEAR_FEATURE:
660                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
661                         break;
662                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
663                 hsudc->ep0state = WAIT_FOR_SETUP;
664                 return;
665         }
666
667         if (hsudc->driver) {
668                 spin_unlock(&hsudc->lock);
669                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
670                 spin_lock(&hsudc->lock);
671
672                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
673                         hsep->bEndpointAddress &= ~USB_DIR_IN;
674                         hsudc->ep0state = WAIT_FOR_SETUP;
675                 }
676
677                 if (ret < 0) {
678                         dev_err(hsudc->dev, "setup failed, returned %d\n",
679                                                 ret);
680                         s3c_hsudc_set_halt(&hsep->ep, 1);
681                         hsudc->ep0state = WAIT_FOR_SETUP;
682                         hsep->bEndpointAddress &= ~USB_DIR_IN;
683                 }
684         }
685 }
686
687 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
688  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
689  *
690  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
691  * when a stall handshake is sent to host or data is sent/received on
692  * endpoint 0.
693  */
694 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
695 {
696         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
697         struct s3c_hsudc_req *hsreq;
698         u32 csr = readl(hsudc->regs + S3C_EP0SR);
699         u32 ecr;
700
701         if (csr & S3C_EP0SR_STALL) {
702                 ecr = readl(hsudc->regs + S3C_EP0CR);
703                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
704                 writel(ecr, hsudc->regs + S3C_EP0CR);
705
706                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
707                 hsep->stopped = 0;
708
709                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
710                 hsudc->ep0state = WAIT_FOR_SETUP;
711                 hsep->bEndpointAddress &= ~USB_DIR_IN;
712                 return;
713         }
714
715         if (csr & S3C_EP0SR_TX_SUCCESS) {
716                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
717                 if (ep_is_in(hsep)) {
718                         if (list_empty(&hsep->queue))
719                                 return;
720
721                         hsreq = list_entry(hsep->queue.next,
722                                         struct s3c_hsudc_req, queue);
723                         s3c_hsudc_write_fifo(hsep, hsreq);
724                 }
725         }
726
727         if (csr & S3C_EP0SR_RX_SUCCESS) {
728                 if (hsudc->ep0state == WAIT_FOR_SETUP)
729                         s3c_hsudc_process_setup(hsudc);
730                 else {
731                         if (!ep_is_in(hsep)) {
732                                 if (list_empty(&hsep->queue))
733                                         return;
734                                 hsreq = list_entry(hsep->queue.next,
735                                         struct s3c_hsudc_req, queue);
736                                 s3c_hsudc_read_fifo(hsep, hsreq);
737                         }
738                 }
739         }
740 }
741
742 /**
743  * s3c_hsudc_ep_enable - Enable a endpoint.
744  * @_ep: The endpoint to be enabled.
745  * @desc: Endpoint descriptor.
746  *
747  * Enables a endpoint when called from the gadget driver. Endpoint stall if
748  * any is cleared, transfer type is configured and endpoint interrupt is
749  * enabled.
750  */
751 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
752                                 const struct usb_endpoint_descriptor *desc)
753 {
754         struct s3c_hsudc_ep *hsep;
755         struct s3c_hsudc *hsudc;
756         unsigned long flags;
757         u32 ecr = 0;
758
759         hsep = our_ep(_ep);
760         if (!_ep || !desc || _ep->name == ep0name
761                 || desc->bDescriptorType != USB_DT_ENDPOINT
762                 || hsep->bEndpointAddress != desc->bEndpointAddress
763                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
764                 return -EINVAL;
765
766         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
767                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
768                 || !desc->wMaxPacketSize)
769                 return -ERANGE;
770
771         hsudc = hsep->dev;
772         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
773                 return -ESHUTDOWN;
774
775         spin_lock_irqsave(&hsudc->lock, flags);
776
777         set_index(hsudc, hsep->bEndpointAddress);
778         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
779         writel(ecr, hsudc->regs + S3C_ECR);
780
781         hsep->stopped = hsep->wedge = 0;
782         hsep->ep.desc = desc;
783         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
784
785         s3c_hsudc_set_halt(_ep, 0);
786         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
787
788         spin_unlock_irqrestore(&hsudc->lock, flags);
789         return 0;
790 }
791
792 /**
793  * s3c_hsudc_ep_disable - Disable a endpoint.
794  * @_ep: The endpoint to be disabled.
795  * @desc: Endpoint descriptor.
796  *
797  * Disables a endpoint when called from the gadget driver.
798  */
799 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
800 {
801         struct s3c_hsudc_ep *hsep = our_ep(_ep);
802         struct s3c_hsudc *hsudc = hsep->dev;
803         unsigned long flags;
804
805         if (!_ep || !hsep->ep.desc)
806                 return -EINVAL;
807
808         spin_lock_irqsave(&hsudc->lock, flags);
809
810         set_index(hsudc, hsep->bEndpointAddress);
811         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
812
813         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
814
815         hsep->ep.desc = NULL;
816         hsep->stopped = 1;
817
818         spin_unlock_irqrestore(&hsudc->lock, flags);
819         return 0;
820 }
821
822 /**
823  * s3c_hsudc_alloc_request - Allocate a new request.
824  * @_ep: Endpoint for which request is allocated (not used).
825  * @gfp_flags: Flags used for the allocation.
826  *
827  * Allocates a single transfer request structure when called from gadget driver.
828  */
829 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
830                                                 gfp_t gfp_flags)
831 {
832         struct s3c_hsudc_req *hsreq;
833
834         hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
835         if (!hsreq)
836                 return NULL;
837
838         INIT_LIST_HEAD(&hsreq->queue);
839         return &hsreq->req;
840 }
841
842 /**
843  * s3c_hsudc_free_request - Deallocate a request.
844  * @ep: Endpoint for which request is deallocated (not used).
845  * @_req: Request to be deallocated.
846  *
847  * Allocates a single transfer request structure when called from gadget driver.
848  */
849 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
850 {
851         struct s3c_hsudc_req *hsreq;
852
853         hsreq = our_req(_req);
854         WARN_ON(!list_empty(&hsreq->queue));
855         kfree(hsreq);
856 }
857
858 /**
859  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
860  * @_ep: Endpoint for which the request is queued.
861  * @_req: Request to be queued.
862  * @gfp_flags: Not used.
863  *
864  * Start or enqueue a request for a endpoint when called from gadget driver.
865  */
866 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
867                         gfp_t gfp_flags)
868 {
869         struct s3c_hsudc_req *hsreq;
870         struct s3c_hsudc_ep *hsep;
871         struct s3c_hsudc *hsudc;
872         unsigned long flags;
873         u32 offset;
874         u32 csr;
875
876         hsreq = our_req(_req);
877         if ((!_req || !_req->complete || !_req->buf ||
878                 !list_empty(&hsreq->queue)))
879                 return -EINVAL;
880
881         hsep = our_ep(_ep);
882         hsudc = hsep->dev;
883         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
884                 return -ESHUTDOWN;
885
886         spin_lock_irqsave(&hsudc->lock, flags);
887         set_index(hsudc, hsep->bEndpointAddress);
888
889         _req->status = -EINPROGRESS;
890         _req->actual = 0;
891
892         if (!ep_index(hsep) && _req->length == 0) {
893                 hsudc->ep0state = WAIT_FOR_SETUP;
894                 s3c_hsudc_complete_request(hsep, hsreq, 0);
895                 spin_unlock_irqrestore(&hsudc->lock, flags);
896                 return 0;
897         }
898
899         if (list_empty(&hsep->queue) && !hsep->stopped) {
900                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
901                 if (ep_is_in(hsep)) {
902                         csr = readl(hsudc->regs + offset);
903                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
904                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
905                                 hsreq = NULL;
906                 } else {
907                         csr = readl(hsudc->regs + offset);
908                         if ((csr & S3C_ESR_RX_SUCCESS)
909                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
910                                 hsreq = NULL;
911                 }
912         }
913
914         if (hsreq)
915                 list_add_tail(&hsreq->queue, &hsep->queue);
916
917         spin_unlock_irqrestore(&hsudc->lock, flags);
918         return 0;
919 }
920
921 /**
922  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
923  * @_ep: Endpoint from which the request is dequeued.
924  * @_req: Request to be dequeued.
925  *
926  * Dequeue a request from a endpoint when called from gadget driver.
927  */
928 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
929 {
930         struct s3c_hsudc_ep *hsep = our_ep(_ep);
931         struct s3c_hsudc *hsudc = hsep->dev;
932         struct s3c_hsudc_req *hsreq;
933         unsigned long flags;
934
935         hsep = our_ep(_ep);
936         if (!_ep || hsep->ep.name == ep0name)
937                 return -EINVAL;
938
939         spin_lock_irqsave(&hsudc->lock, flags);
940
941         list_for_each_entry(hsreq, &hsep->queue, queue) {
942                 if (&hsreq->req == _req)
943                         break;
944         }
945         if (&hsreq->req != _req) {
946                 spin_unlock_irqrestore(&hsudc->lock, flags);
947                 return -EINVAL;
948         }
949
950         set_index(hsudc, hsep->bEndpointAddress);
951         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
952
953         spin_unlock_irqrestore(&hsudc->lock, flags);
954         return 0;
955 }
956
957 static struct usb_ep_ops s3c_hsudc_ep_ops = {
958         .enable = s3c_hsudc_ep_enable,
959         .disable = s3c_hsudc_ep_disable,
960         .alloc_request = s3c_hsudc_alloc_request,
961         .free_request = s3c_hsudc_free_request,
962         .queue = s3c_hsudc_queue,
963         .dequeue = s3c_hsudc_dequeue,
964         .set_halt = s3c_hsudc_set_halt,
965         .set_wedge = s3c_hsudc_set_wedge,
966 };
967
968 /**
969  * s3c_hsudc_initep - Initialize a endpoint to default state.
970  * @hsudc - Reference to the device controller.
971  * @hsep - Endpoint to be initialized.
972  * @epnum - Address to be assigned to the endpoint.
973  *
974  * Initialize a endpoint with default configuration.
975  */
976 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
977                                 struct s3c_hsudc_ep *hsep, int epnum)
978 {
979         char *dir;
980
981         if ((epnum % 2) == 0) {
982                 dir = "out";
983         } else {
984                 dir = "in";
985                 hsep->bEndpointAddress = USB_DIR_IN;
986         }
987
988         hsep->bEndpointAddress |= epnum;
989         if (epnum)
990                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
991         else
992                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
993
994         INIT_LIST_HEAD(&hsep->queue);
995         INIT_LIST_HEAD(&hsep->ep.ep_list);
996         if (epnum)
997                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
998
999         hsep->dev = hsudc;
1000         hsep->ep.name = hsep->name;
1001         usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
1002         hsep->ep.ops = &s3c_hsudc_ep_ops;
1003         hsep->fifo = hsudc->regs + S3C_BR(epnum);
1004         hsep->ep.desc = NULL;
1005         hsep->stopped = 0;
1006         hsep->wedge = 0;
1007
1008         set_index(hsudc, epnum);
1009         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1010 }
1011
1012 /**
1013  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1014  * @hsudc: Reference to device controller.
1015  *
1016  * Configures all endpoints to default state.
1017  */
1018 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1019 {
1020         int epnum;
1021
1022         hsudc->ep0state = WAIT_FOR_SETUP;
1023         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1024         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1025                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1026 }
1027
1028 /**
1029  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1030  * @hsudc: Reference to device controller.
1031  *
1032  * Reconfigures the device controller registers to a default state.
1033  */
1034 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1035 {
1036         writel(0xAA, hsudc->regs + S3C_EDR);
1037         writel(1, hsudc->regs + S3C_EIER);
1038         writel(0, hsudc->regs + S3C_TR);
1039         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1040                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1041         writel(0, hsudc->regs + S3C_EP0CR);
1042
1043         s3c_hsudc_setup_ep(hsudc);
1044 }
1045
1046 /**
1047  * s3c_hsudc_irq - Interrupt handler for device controller.
1048  * @irq: Not used.
1049  * @_dev: Reference to the device controller.
1050  *
1051  * Interrupt handler for the device controller. This handler handles controller
1052  * interrupts and endpoint interrupts.
1053  */
1054 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1055 {
1056         struct s3c_hsudc *hsudc = _dev;
1057         struct s3c_hsudc_ep *hsep;
1058         u32 ep_intr;
1059         u32 sys_status;
1060         u32 ep_idx;
1061
1062         spin_lock(&hsudc->lock);
1063
1064         sys_status = readl(hsudc->regs + S3C_SSR);
1065         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1066
1067         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1068                 spin_unlock(&hsudc->lock);
1069                 return IRQ_HANDLED;
1070         }
1071
1072         if (sys_status) {
1073                 if (sys_status & S3C_SSR_VBUSON)
1074                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1075
1076                 if (sys_status & S3C_SSR_ERR)
1077                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1078
1079                 if (sys_status & S3C_SSR_SDE) {
1080                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1081                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1082                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1083                 }
1084
1085                 if (sys_status & S3C_SSR_SUSPEND) {
1086                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1087                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1088                                 && hsudc->driver && hsudc->driver->suspend)
1089                                 hsudc->driver->suspend(&hsudc->gadget);
1090                 }
1091
1092                 if (sys_status & S3C_SSR_RESUME) {
1093                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1094                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1095                                 && hsudc->driver && hsudc->driver->resume)
1096                                 hsudc->driver->resume(&hsudc->gadget);
1097                 }
1098
1099                 if (sys_status & S3C_SSR_RESET) {
1100                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1101                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1102                                 hsep = &hsudc->ep[ep_idx];
1103                                 hsep->stopped = 1;
1104                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1105                         }
1106                         s3c_hsudc_reconfig(hsudc);
1107                         hsudc->ep0state = WAIT_FOR_SETUP;
1108                 }
1109         }
1110
1111         if (ep_intr & S3C_EIR_EP0) {
1112                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1113                 set_index(hsudc, 0);
1114                 s3c_hsudc_handle_ep0_intr(hsudc);
1115         }
1116
1117         ep_intr >>= 1;
1118         ep_idx = 1;
1119         while (ep_intr) {
1120                 if (ep_intr & 1)  {
1121                         hsep = &hsudc->ep[ep_idx];
1122                         set_index(hsudc, ep_idx);
1123                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1124                         if (ep_is_in(hsep))
1125                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1126                         else
1127                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1128                 }
1129                 ep_intr >>= 1;
1130                 ep_idx++;
1131         }
1132
1133         spin_unlock(&hsudc->lock);
1134         return IRQ_HANDLED;
1135 }
1136
1137 static int s3c_hsudc_start(struct usb_gadget *gadget,
1138                 struct usb_gadget_driver *driver)
1139 {
1140         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1141         int ret;
1142
1143         if (!driver
1144                 || driver->max_speed < USB_SPEED_FULL
1145                 || !driver->setup)
1146                 return -EINVAL;
1147
1148         if (!hsudc)
1149                 return -ENODEV;
1150
1151         if (hsudc->driver)
1152                 return -EBUSY;
1153
1154         hsudc->driver = driver;
1155
1156         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1157                                     hsudc->supplies);
1158         if (ret != 0) {
1159                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1160                 goto err_supplies;
1161         }
1162
1163         /* connect to bus through transceiver */
1164         if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1165                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1166                                         &hsudc->gadget);
1167                 if (ret) {
1168                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1169                                         hsudc->gadget.name);
1170                         goto err_otg;
1171                 }
1172         }
1173
1174         enable_irq(hsudc->irq);
1175         s3c_hsudc_reconfig(hsudc);
1176
1177         pm_runtime_get_sync(hsudc->dev);
1178
1179         s3c_hsudc_init_phy();
1180         if (hsudc->pd->gpio_init)
1181                 hsudc->pd->gpio_init();
1182
1183         return 0;
1184 err_otg:
1185         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1186 err_supplies:
1187         hsudc->driver = NULL;
1188         return ret;
1189 }
1190
1191 static int s3c_hsudc_stop(struct usb_gadget *gadget)
1192 {
1193         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1194         unsigned long flags;
1195
1196         if (!hsudc)
1197                 return -ENODEV;
1198
1199         spin_lock_irqsave(&hsudc->lock, flags);
1200         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1201         s3c_hsudc_uninit_phy();
1202
1203         pm_runtime_put(hsudc->dev);
1204
1205         if (hsudc->pd->gpio_uninit)
1206                 hsudc->pd->gpio_uninit();
1207         s3c_hsudc_stop_activity(hsudc);
1208         spin_unlock_irqrestore(&hsudc->lock, flags);
1209
1210         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1211                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1212
1213         disable_irq(hsudc->irq);
1214
1215         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1216         hsudc->driver = NULL;
1217
1218         return 0;
1219 }
1220
1221 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1222 {
1223         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1224 }
1225
1226 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1227 {
1228         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1229 }
1230
1231 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1232 {
1233         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1234
1235         if (!hsudc)
1236                 return -ENODEV;
1237
1238         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1239                 return usb_phy_set_power(hsudc->transceiver, mA);
1240
1241         return -EOPNOTSUPP;
1242 }
1243
1244 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1245         .get_frame      = s3c_hsudc_gadget_getframe,
1246         .udc_start      = s3c_hsudc_start,
1247         .udc_stop       = s3c_hsudc_stop,
1248         .vbus_draw      = s3c_hsudc_vbus_draw,
1249 };
1250
1251 static int s3c_hsudc_probe(struct platform_device *pdev)
1252 {
1253         struct device *dev = &pdev->dev;
1254         struct resource *res;
1255         struct s3c_hsudc *hsudc;
1256         struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1257         int ret, i;
1258
1259         hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1260                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1261                         GFP_KERNEL);
1262         if (!hsudc)
1263                 return -ENOMEM;
1264
1265         platform_set_drvdata(pdev, dev);
1266         hsudc->dev = dev;
1267         hsudc->pd = dev_get_platdata(&pdev->dev);
1268
1269         hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1270
1271         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1272                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1273
1274         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1275                                  hsudc->supplies);
1276         if (ret != 0) {
1277                 dev_err(dev, "failed to request supplies: %d\n", ret);
1278                 goto err_supplies;
1279         }
1280
1281         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282
1283         hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1284         if (IS_ERR(hsudc->regs)) {
1285                 ret = PTR_ERR(hsudc->regs);
1286                 goto err_res;
1287         }
1288
1289         spin_lock_init(&hsudc->lock);
1290
1291         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1292         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1293         hsudc->gadget.name = dev_name(dev);
1294         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1295         hsudc->gadget.is_otg = 0;
1296         hsudc->gadget.is_a_peripheral = 0;
1297         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1298
1299         s3c_hsudc_setup_ep(hsudc);
1300
1301         ret = platform_get_irq(pdev, 0);
1302         if (ret < 0) {
1303                 dev_err(dev, "unable to obtain IRQ number\n");
1304                 goto err_res;
1305         }
1306         hsudc->irq = ret;
1307
1308         ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1309                                 driver_name, hsudc);
1310         if (ret < 0) {
1311                 dev_err(dev, "irq request failed\n");
1312                 goto err_res;
1313         }
1314
1315         hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1316         if (IS_ERR(hsudc->uclk)) {
1317                 dev_err(dev, "failed to find usb-device clock source\n");
1318                 ret = PTR_ERR(hsudc->uclk);
1319                 goto err_res;
1320         }
1321         clk_enable(hsudc->uclk);
1322
1323         local_irq_disable();
1324
1325         disable_irq(hsudc->irq);
1326         local_irq_enable();
1327
1328         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1329         if (ret)
1330                 goto err_add_udc;
1331
1332         pm_runtime_enable(dev);
1333
1334         return 0;
1335 err_add_udc:
1336         clk_disable(hsudc->uclk);
1337 err_res:
1338         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1339                 usb_put_phy(hsudc->transceiver);
1340
1341 err_supplies:
1342         return ret;
1343 }
1344
1345 static struct platform_driver s3c_hsudc_driver = {
1346         .driver         = {
1347                 .name   = "s3c-hsudc",
1348         },
1349         .probe          = s3c_hsudc_probe,
1350 };
1351
1352 module_platform_driver(s3c_hsudc_driver);
1353
1354 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1355 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1356 MODULE_LICENSE("GPL");
1357 MODULE_ALIAS("platform:s3c-hsudc");