Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / drivers / usb / gadget / udc / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <chao.xie@marvell.com>
4  *         Neil Zhang <zhangwm@marvell.com>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION          "8 Nov 2010"
43
44 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
45                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT           10000
49 #define FLUSH_TIMEOUT           10000
50 #define EPSTATUS_TIMEOUT        10000
51 #define PRIME_TIMEOUT           10000
52 #define READSAFE_TIMEOUT        1000
53
54 #define LOOPS_USEC_SHIFT        1
55 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68         .bLength =              USB_DT_ENDPOINT_SIZE,
69         .bDescriptorType =      USB_DT_ENDPOINT,
70         .bEndpointAddress =     0,
71         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
72         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77         struct mv_ep *ep;
78         u32 epctrlx;
79         int i = 0;
80
81         /* ep0 in and out */
82         for (i = 0; i < 2; i++) {
83                 ep = &udc->eps[i];
84                 ep->udc = udc;
85
86                 /* ep0 dQH */
87                 ep->dqh = &udc->ep_dqh[i];
88
89                 /* configure ep0 endpoint capabilities in dQH */
90                 ep->dqh->max_packet_length =
91                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92                         | EP_QUEUE_HEAD_IOS;
93
94                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97                 if (i) {        /* TX */
98                         epctrlx |= EPCTRL_TX_ENABLE
99                                 | (USB_ENDPOINT_XFER_CONTROL
100                                         << EPCTRL_TX_EP_TYPE_SHIFT);
101
102                 } else {        /* RX */
103                         epctrlx |= EPCTRL_RX_ENABLE
104                                 | (USB_ENDPOINT_XFER_CONTROL
105                                         << EPCTRL_RX_EP_TYPE_SHIFT);
106                 }
107
108                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109         }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115         u32     epctrlx;
116
117         /* set TX and RX to stall */
118         epctrlx = readl(&udc->op_regs->epctrlx[0]);
119         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120         writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122         /* update ep0 state */
123         udc->ep0_state = WAIT_FOR_SETUP;
124         udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128         struct mv_req *curr_req)
129 {
130         struct mv_dtd   *curr_dtd;
131         struct mv_dqh   *curr_dqh;
132         int td_complete, actual, remaining_length;
133         int i, direction;
134         int retval = 0;
135         u32 errors;
136         u32 bit_pos;
137
138         curr_dqh = &udc->ep_dqh[index];
139         direction = index % 2;
140
141         curr_dtd = curr_req->head;
142         td_complete = 0;
143         actual = curr_req->req.length;
144
145         for (i = 0; i < curr_req->dtd_count; i++) {
146                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
147                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
148                                 udc->eps[index].name);
149                         return 1;
150                 }
151
152                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
153                 if (!errors) {
154                         remaining_length =
155                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
156                                         >> DTD_LENGTH_BIT_POS;
157                         actual -= remaining_length;
158
159                         if (remaining_length) {
160                                 if (direction) {
161                                         dev_dbg(&udc->dev->dev,
162                                                 "TX dTD remains data\n");
163                                         retval = -EPROTO;
164                                         break;
165                                 } else
166                                         break;
167                         }
168                 } else {
169                         dev_info(&udc->dev->dev,
170                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
171                                 index >> 1, direction ? "SEND" : "RECV",
172                                 errors);
173                         if (errors & DTD_STATUS_HALTED) {
174                                 /* Clear the errors and Halt condition */
175                                 curr_dqh->size_ioc_int_sts &= ~errors;
176                                 retval = -EPIPE;
177                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
178                                 retval = -EPROTO;
179                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
180                                 retval = -EILSEQ;
181                         }
182                 }
183                 if (i != curr_req->dtd_count - 1)
184                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
185         }
186         if (retval)
187                 return retval;
188
189         if (direction == EP_DIR_OUT)
190                 bit_pos = 1 << curr_req->ep->ep_num;
191         else
192                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
193
194         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
195                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
196                         while (readl(&udc->op_regs->epstatus) & bit_pos)
197                                 udelay(1);
198                         break;
199                 }
200                 udelay(1);
201         }
202
203         curr_req->req.actual = actual;
204
205         return 0;
206 }
207
208 /*
209  * done() - retire a request; caller blocked irqs
210  * @status : request status to be set, only works when
211  * request is still in progress.
212  */
213 static void done(struct mv_ep *ep, struct mv_req *req, int status)
214         __releases(&ep->udc->lock)
215         __acquires(&ep->udc->lock)
216 {
217         struct mv_udc *udc = NULL;
218         unsigned char stopped = ep->stopped;
219         struct mv_dtd *curr_td, *next_td;
220         int j;
221
222         udc = (struct mv_udc *)ep->udc;
223         /* Removed the req from fsl_ep->queue */
224         list_del_init(&req->queue);
225
226         /* req.status should be set as -EINPROGRESS in ep_queue() */
227         if (req->req.status == -EINPROGRESS)
228                 req->req.status = status;
229         else
230                 status = req->req.status;
231
232         /* Free dtd for the request */
233         next_td = req->head;
234         for (j = 0; j < req->dtd_count; j++) {
235                 curr_td = next_td;
236                 if (j != req->dtd_count - 1)
237                         next_td = curr_td->next_dtd_virt;
238                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
239         }
240
241         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
242
243         if (status && (status != -ESHUTDOWN))
244                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
245                         ep->ep.name, &req->req, status,
246                         req->req.actual, req->req.length);
247
248         ep->stopped = 1;
249
250         spin_unlock(&ep->udc->lock);
251
252         usb_gadget_giveback_request(&ep->ep, &req->req);
253
254         spin_lock(&ep->udc->lock);
255         ep->stopped = stopped;
256 }
257
258 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
259 {
260         struct mv_udc *udc;
261         struct mv_dqh *dqh;
262         u32 bit_pos, direction;
263         u32 usbcmd, epstatus;
264         unsigned int loops;
265         int retval = 0;
266
267         udc = ep->udc;
268         direction = ep_dir(ep);
269         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
270         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
271
272         /* check if the pipe is empty */
273         if (!(list_empty(&ep->queue))) {
274                 struct mv_req *lastreq;
275                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
276                 lastreq->tail->dtd_next =
277                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
278
279                 wmb();
280
281                 if (readl(&udc->op_regs->epprime) & bit_pos)
282                         goto done;
283
284                 loops = LOOPS(READSAFE_TIMEOUT);
285                 while (1) {
286                         /* start with setting the semaphores */
287                         usbcmd = readl(&udc->op_regs->usbcmd);
288                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
289                         writel(usbcmd, &udc->op_regs->usbcmd);
290
291                         /* read the endpoint status */
292                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
293
294                         /*
295                          * Reread the ATDTW semaphore bit to check if it is
296                          * cleared. When hardware see a hazard, it will clear
297                          * the bit or else we remain set to 1 and we can
298                          * proceed with priming of endpoint if not already
299                          * primed.
300                          */
301                         if (readl(&udc->op_regs->usbcmd)
302                                 & USBCMD_ATDTW_TRIPWIRE_SET)
303                                 break;
304
305                         loops--;
306                         if (loops == 0) {
307                                 dev_err(&udc->dev->dev,
308                                         "Timeout for ATDTW_TRIPWIRE...\n");
309                                 retval = -ETIME;
310                                 goto done;
311                         }
312                         udelay(LOOPS_USEC);
313                 }
314
315                 /* Clear the semaphore */
316                 usbcmd = readl(&udc->op_regs->usbcmd);
317                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
318                 writel(usbcmd, &udc->op_regs->usbcmd);
319
320                 if (epstatus)
321                         goto done;
322         }
323
324         /* Write dQH next pointer and terminate bit to 0 */
325         dqh->next_dtd_ptr = req->head->td_dma
326                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
327
328         /* clear active and halt bit, in case set from a previous error */
329         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
330
331         /* Ensure that updates to the QH will occur before priming. */
332         wmb();
333
334         /* Prime the Endpoint */
335         writel(bit_pos, &udc->op_regs->epprime);
336
337 done:
338         return retval;
339 }
340
341 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
342                 dma_addr_t *dma, int *is_last)
343 {
344         struct mv_dtd *dtd;
345         struct mv_udc *udc;
346         struct mv_dqh *dqh;
347         u32 temp, mult = 0;
348
349         /* how big will this transfer be? */
350         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
351                 dqh = req->ep->dqh;
352                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
353                                 & 0x3;
354                 *length = min(req->req.length - req->req.actual,
355                                 (unsigned)(mult * req->ep->ep.maxpacket));
356         } else
357                 *length = min(req->req.length - req->req.actual,
358                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
359
360         udc = req->ep->udc;
361
362         /*
363          * Be careful that no _GFP_HIGHMEM is set,
364          * or we can not use dma_to_virt
365          */
366         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
367         if (dtd == NULL)
368                 return dtd;
369
370         dtd->td_dma = *dma;
371         /* initialize buffer page pointers */
372         temp = (u32)(req->req.dma + req->req.actual);
373         dtd->buff_ptr0 = cpu_to_le32(temp);
374         temp &= ~0xFFF;
375         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
376         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
377         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
378         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
379
380         req->req.actual += *length;
381
382         /* zlp is needed if req->req.zero is set */
383         if (req->req.zero) {
384                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
385                         *is_last = 1;
386                 else
387                         *is_last = 0;
388         } else if (req->req.length == req->req.actual)
389                 *is_last = 1;
390         else
391                 *is_last = 0;
392
393         /* Fill in the transfer size; set active bit */
394         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
395
396         /* Enable interrupt for the last dtd of a request */
397         if (*is_last && !req->req.no_interrupt)
398                 temp |= DTD_IOC;
399
400         temp |= mult << 10;
401
402         dtd->size_ioc_sts = temp;
403
404         mb();
405
406         return dtd;
407 }
408
409 /* generate dTD linked list for a request */
410 static int req_to_dtd(struct mv_req *req)
411 {
412         unsigned count;
413         int is_last, is_first = 1;
414         struct mv_dtd *dtd, *last_dtd = NULL;
415         struct mv_udc *udc;
416         dma_addr_t dma;
417
418         udc = req->ep->udc;
419
420         do {
421                 dtd = build_dtd(req, &count, &dma, &is_last);
422                 if (dtd == NULL)
423                         return -ENOMEM;
424
425                 if (is_first) {
426                         is_first = 0;
427                         req->head = dtd;
428                 } else {
429                         last_dtd->dtd_next = dma;
430                         last_dtd->next_dtd_virt = dtd;
431                 }
432                 last_dtd = dtd;
433                 req->dtd_count++;
434         } while (!is_last);
435
436         /* set terminate bit to 1 for the last dTD */
437         dtd->dtd_next = DTD_NEXT_TERMINATE;
438
439         req->tail = dtd;
440
441         return 0;
442 }
443
444 static int mv_ep_enable(struct usb_ep *_ep,
445                 const struct usb_endpoint_descriptor *desc)
446 {
447         struct mv_udc *udc;
448         struct mv_ep *ep;
449         struct mv_dqh *dqh;
450         u16 max = 0;
451         u32 bit_pos, epctrlx, direction;
452         unsigned char zlt = 0, ios = 0, mult = 0;
453         unsigned long flags;
454
455         ep = container_of(_ep, struct mv_ep, ep);
456         udc = ep->udc;
457
458         if (!_ep || !desc
459                         || desc->bDescriptorType != USB_DT_ENDPOINT)
460                 return -EINVAL;
461
462         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
463                 return -ESHUTDOWN;
464
465         direction = ep_dir(ep);
466         max = usb_endpoint_maxp(desc);
467
468         /*
469          * disable HW zero length termination select
470          * driver handles zero length packet through req->req.zero
471          */
472         zlt = 1;
473
474         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
475
476         /* Check if the Endpoint is Primed */
477         if ((readl(&udc->op_regs->epprime) & bit_pos)
478                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
479                 dev_info(&udc->dev->dev,
480                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
481                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
482                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
483                         (unsigned)readl(&udc->op_regs->epprime),
484                         (unsigned)readl(&udc->op_regs->epstatus),
485                         (unsigned)bit_pos);
486                 goto en_done;
487         }
488         /* Set the max packet length, interrupt on Setup and Mult fields */
489         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
490         case USB_ENDPOINT_XFER_BULK:
491                 zlt = 1;
492                 mult = 0;
493                 break;
494         case USB_ENDPOINT_XFER_CONTROL:
495                 ios = 1;
496         case USB_ENDPOINT_XFER_INT:
497                 mult = 0;
498                 break;
499         case USB_ENDPOINT_XFER_ISOC:
500                 /* Calculate transactions needed for high bandwidth iso */
501                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
502                 max = max & 0x7ff;      /* bit 0~10 */
503                 /* 3 transactions at most */
504                 if (mult > 3)
505                         goto en_done;
506                 break;
507         default:
508                 goto en_done;
509         }
510
511         spin_lock_irqsave(&udc->lock, flags);
512         /* Get the endpoint queue head address */
513         dqh = ep->dqh;
514         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
515                 | (mult << EP_QUEUE_HEAD_MULT_POS)
516                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
517                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
518         dqh->next_dtd_ptr = 1;
519         dqh->size_ioc_int_sts = 0;
520
521         ep->ep.maxpacket = max;
522         ep->ep.desc = desc;
523         ep->stopped = 0;
524
525         /* Enable the endpoint for Rx or Tx and set the endpoint type */
526         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
527         if (direction == EP_DIR_IN) {
528                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
529                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
530                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
531                                 << EPCTRL_TX_EP_TYPE_SHIFT);
532         } else {
533                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
534                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
535                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
536                                 << EPCTRL_RX_EP_TYPE_SHIFT);
537         }
538         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
539
540         /*
541          * Implement Guideline (GL# USB-7) The unused endpoint type must
542          * be programmed to bulk.
543          */
544         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
545         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
546                 epctrlx |= (USB_ENDPOINT_XFER_BULK
547                                 << EPCTRL_RX_EP_TYPE_SHIFT);
548                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
549         }
550
551         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
552         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
553                 epctrlx |= (USB_ENDPOINT_XFER_BULK
554                                 << EPCTRL_TX_EP_TYPE_SHIFT);
555                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
556         }
557
558         spin_unlock_irqrestore(&udc->lock, flags);
559
560         return 0;
561 en_done:
562         return -EINVAL;
563 }
564
565 static int  mv_ep_disable(struct usb_ep *_ep)
566 {
567         struct mv_udc *udc;
568         struct mv_ep *ep;
569         struct mv_dqh *dqh;
570         u32 bit_pos, epctrlx, direction;
571         unsigned long flags;
572
573         ep = container_of(_ep, struct mv_ep, ep);
574         if ((_ep == NULL) || !ep->ep.desc)
575                 return -EINVAL;
576
577         udc = ep->udc;
578
579         /* Get the endpoint queue head address */
580         dqh = ep->dqh;
581
582         spin_lock_irqsave(&udc->lock, flags);
583
584         direction = ep_dir(ep);
585         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
586
587         /* Reset the max packet length and the interrupt on Setup */
588         dqh->max_packet_length = 0;
589
590         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
591         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
592         epctrlx &= ~((direction == EP_DIR_IN)
593                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
594                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
595         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
596
597         /* nuke all pending requests (does flush) */
598         nuke(ep, -ESHUTDOWN);
599
600         ep->ep.desc = NULL;
601         ep->stopped = 1;
602
603         spin_unlock_irqrestore(&udc->lock, flags);
604
605         return 0;
606 }
607
608 static struct usb_request *
609 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
610 {
611         struct mv_req *req = NULL;
612
613         req = kzalloc(sizeof *req, gfp_flags);
614         if (!req)
615                 return NULL;
616
617         req->req.dma = DMA_ADDR_INVALID;
618         INIT_LIST_HEAD(&req->queue);
619
620         return &req->req;
621 }
622
623 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
624 {
625         struct mv_req *req = NULL;
626
627         req = container_of(_req, struct mv_req, req);
628
629         if (_req)
630                 kfree(req);
631 }
632
633 static void mv_ep_fifo_flush(struct usb_ep *_ep)
634 {
635         struct mv_udc *udc;
636         u32 bit_pos, direction;
637         struct mv_ep *ep;
638         unsigned int loops;
639
640         if (!_ep)
641                 return;
642
643         ep = container_of(_ep, struct mv_ep, ep);
644         if (!ep->ep.desc)
645                 return;
646
647         udc = ep->udc;
648         direction = ep_dir(ep);
649
650         if (ep->ep_num == 0)
651                 bit_pos = (1 << 16) | 1;
652         else if (direction == EP_DIR_OUT)
653                 bit_pos = 1 << ep->ep_num;
654         else
655                 bit_pos = 1 << (16 + ep->ep_num);
656
657         loops = LOOPS(EPSTATUS_TIMEOUT);
658         do {
659                 unsigned int inter_loops;
660
661                 if (loops == 0) {
662                         dev_err(&udc->dev->dev,
663                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
664                                 (unsigned)readl(&udc->op_regs->epstatus),
665                                 (unsigned)bit_pos);
666                         return;
667                 }
668                 /* Write 1 to the Flush register */
669                 writel(bit_pos, &udc->op_regs->epflush);
670
671                 /* Wait until flushing completed */
672                 inter_loops = LOOPS(FLUSH_TIMEOUT);
673                 while (readl(&udc->op_regs->epflush)) {
674                         /*
675                          * ENDPTFLUSH bit should be cleared to indicate this
676                          * operation is complete
677                          */
678                         if (inter_loops == 0) {
679                                 dev_err(&udc->dev->dev,
680                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
681                                         "bit_pos=0x%x\n",
682                                         (unsigned)readl(&udc->op_regs->epflush),
683                                         (unsigned)bit_pos);
684                                 return;
685                         }
686                         inter_loops--;
687                         udelay(LOOPS_USEC);
688                 }
689                 loops--;
690         } while (readl(&udc->op_regs->epstatus) & bit_pos);
691 }
692
693 /* queues (submits) an I/O request to an endpoint */
694 static int
695 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
696 {
697         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
698         struct mv_req *req = container_of(_req, struct mv_req, req);
699         struct mv_udc *udc = ep->udc;
700         unsigned long flags;
701         int retval;
702
703         /* catch various bogus parameters */
704         if (!_req || !req->req.complete || !req->req.buf
705                         || !list_empty(&req->queue)) {
706                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
707                 return -EINVAL;
708         }
709         if (unlikely(!_ep || !ep->ep.desc)) {
710                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
711                 return -EINVAL;
712         }
713
714         udc = ep->udc;
715         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
716                 return -ESHUTDOWN;
717
718         req->ep = ep;
719
720         /* map virtual address to hardware */
721         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
722         if (retval)
723                 return retval;
724
725         req->req.status = -EINPROGRESS;
726         req->req.actual = 0;
727         req->dtd_count = 0;
728
729         spin_lock_irqsave(&udc->lock, flags);
730
731         /* build dtds and push them to device queue */
732         if (!req_to_dtd(req)) {
733                 retval = queue_dtd(ep, req);
734                 if (retval) {
735                         spin_unlock_irqrestore(&udc->lock, flags);
736                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
737                         goto err_unmap_dma;
738                 }
739         } else {
740                 spin_unlock_irqrestore(&udc->lock, flags);
741                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
742                 retval = -ENOMEM;
743                 goto err_unmap_dma;
744         }
745
746         /* Update ep0 state */
747         if (ep->ep_num == 0)
748                 udc->ep0_state = DATA_STATE_XMIT;
749
750         /* irq handler advances the queue */
751         list_add_tail(&req->queue, &ep->queue);
752         spin_unlock_irqrestore(&udc->lock, flags);
753
754         return 0;
755
756 err_unmap_dma:
757         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
758
759         return retval;
760 }
761
762 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
763 {
764         struct mv_dqh *dqh = ep->dqh;
765         u32 bit_pos;
766
767         /* Write dQH next pointer and terminate bit to 0 */
768         dqh->next_dtd_ptr = req->head->td_dma
769                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
770
771         /* clear active and halt bit, in case set from a previous error */
772         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
773
774         /* Ensure that updates to the QH will occure before priming. */
775         wmb();
776
777         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
778
779         /* Prime the Endpoint */
780         writel(bit_pos, &ep->udc->op_regs->epprime);
781 }
782
783 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
784 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
785 {
786         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
787         struct mv_req *req;
788         struct mv_udc *udc = ep->udc;
789         unsigned long flags;
790         int stopped, ret = 0;
791         u32 epctrlx;
792
793         if (!_ep || !_req)
794                 return -EINVAL;
795
796         spin_lock_irqsave(&ep->udc->lock, flags);
797         stopped = ep->stopped;
798
799         /* Stop the ep before we deal with the queue */
800         ep->stopped = 1;
801         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
802         if (ep_dir(ep) == EP_DIR_IN)
803                 epctrlx &= ~EPCTRL_TX_ENABLE;
804         else
805                 epctrlx &= ~EPCTRL_RX_ENABLE;
806         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
807
808         /* make sure it's actually queued on this endpoint */
809         list_for_each_entry(req, &ep->queue, queue) {
810                 if (&req->req == _req)
811                         break;
812         }
813         if (&req->req != _req) {
814                 ret = -EINVAL;
815                 goto out;
816         }
817
818         /* The request is in progress, or completed but not dequeued */
819         if (ep->queue.next == &req->queue) {
820                 _req->status = -ECONNRESET;
821                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
822
823                 /* The request isn't the last request in this ep queue */
824                 if (req->queue.next != &ep->queue) {
825                         struct mv_req *next_req;
826
827                         next_req = list_entry(req->queue.next,
828                                 struct mv_req, queue);
829
830                         /* Point the QH to the first TD of next request */
831                         mv_prime_ep(ep, next_req);
832                 } else {
833                         struct mv_dqh *qh;
834
835                         qh = ep->dqh;
836                         qh->next_dtd_ptr = 1;
837                         qh->size_ioc_int_sts = 0;
838                 }
839
840                 /* The request hasn't been processed, patch up the TD chain */
841         } else {
842                 struct mv_req *prev_req;
843
844                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
845                 writel(readl(&req->tail->dtd_next),
846                                 &prev_req->tail->dtd_next);
847
848         }
849
850         done(ep, req, -ECONNRESET);
851
852         /* Enable EP */
853 out:
854         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
855         if (ep_dir(ep) == EP_DIR_IN)
856                 epctrlx |= EPCTRL_TX_ENABLE;
857         else
858                 epctrlx |= EPCTRL_RX_ENABLE;
859         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
860         ep->stopped = stopped;
861
862         spin_unlock_irqrestore(&ep->udc->lock, flags);
863         return ret;
864 }
865
866 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
867 {
868         u32 epctrlx;
869
870         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
871
872         if (stall) {
873                 if (direction == EP_DIR_IN)
874                         epctrlx |= EPCTRL_TX_EP_STALL;
875                 else
876                         epctrlx |= EPCTRL_RX_EP_STALL;
877         } else {
878                 if (direction == EP_DIR_IN) {
879                         epctrlx &= ~EPCTRL_TX_EP_STALL;
880                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
881                 } else {
882                         epctrlx &= ~EPCTRL_RX_EP_STALL;
883                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
884                 }
885         }
886         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
887 }
888
889 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
890 {
891         u32 epctrlx;
892
893         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
894
895         if (direction == EP_DIR_OUT)
896                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
897         else
898                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
899 }
900
901 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
902 {
903         struct mv_ep *ep;
904         unsigned long flags = 0;
905         int status = 0;
906         struct mv_udc *udc;
907
908         ep = container_of(_ep, struct mv_ep, ep);
909         udc = ep->udc;
910         if (!_ep || !ep->ep.desc) {
911                 status = -EINVAL;
912                 goto out;
913         }
914
915         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
916                 status = -EOPNOTSUPP;
917                 goto out;
918         }
919
920         /*
921          * Attempt to halt IN ep will fail if any transfer requests
922          * are still queue
923          */
924         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
925                 status = -EAGAIN;
926                 goto out;
927         }
928
929         spin_lock_irqsave(&ep->udc->lock, flags);
930         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
931         if (halt && wedge)
932                 ep->wedge = 1;
933         else if (!halt)
934                 ep->wedge = 0;
935         spin_unlock_irqrestore(&ep->udc->lock, flags);
936
937         if (ep->ep_num == 0) {
938                 udc->ep0_state = WAIT_FOR_SETUP;
939                 udc->ep0_dir = EP_DIR_OUT;
940         }
941 out:
942         return status;
943 }
944
945 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
946 {
947         return mv_ep_set_halt_wedge(_ep, halt, 0);
948 }
949
950 static int mv_ep_set_wedge(struct usb_ep *_ep)
951 {
952         return mv_ep_set_halt_wedge(_ep, 1, 1);
953 }
954
955 static struct usb_ep_ops mv_ep_ops = {
956         .enable         = mv_ep_enable,
957         .disable        = mv_ep_disable,
958
959         .alloc_request  = mv_alloc_request,
960         .free_request   = mv_free_request,
961
962         .queue          = mv_ep_queue,
963         .dequeue        = mv_ep_dequeue,
964
965         .set_wedge      = mv_ep_set_wedge,
966         .set_halt       = mv_ep_set_halt,
967         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
968 };
969
970 static void udc_clock_enable(struct mv_udc *udc)
971 {
972         clk_prepare_enable(udc->clk);
973 }
974
975 static void udc_clock_disable(struct mv_udc *udc)
976 {
977         clk_disable_unprepare(udc->clk);
978 }
979
980 static void udc_stop(struct mv_udc *udc)
981 {
982         u32 tmp;
983
984         /* Disable interrupts */
985         tmp = readl(&udc->op_regs->usbintr);
986         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
987                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
988         writel(tmp, &udc->op_regs->usbintr);
989
990         udc->stopped = 1;
991
992         /* Reset the Run the bit in the command register to stop VUSB */
993         tmp = readl(&udc->op_regs->usbcmd);
994         tmp &= ~USBCMD_RUN_STOP;
995         writel(tmp, &udc->op_regs->usbcmd);
996 }
997
998 static void udc_start(struct mv_udc *udc)
999 {
1000         u32 usbintr;
1001
1002         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1003                 | USBINTR_PORT_CHANGE_DETECT_EN
1004                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1005         /* Enable interrupts */
1006         writel(usbintr, &udc->op_regs->usbintr);
1007
1008         udc->stopped = 0;
1009
1010         /* Set the Run bit in the command register */
1011         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1012 }
1013
1014 static int udc_reset(struct mv_udc *udc)
1015 {
1016         unsigned int loops;
1017         u32 tmp, portsc;
1018
1019         /* Stop the controller */
1020         tmp = readl(&udc->op_regs->usbcmd);
1021         tmp &= ~USBCMD_RUN_STOP;
1022         writel(tmp, &udc->op_regs->usbcmd);
1023
1024         /* Reset the controller to get default values */
1025         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1026
1027         /* wait for reset to complete */
1028         loops = LOOPS(RESET_TIMEOUT);
1029         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1030                 if (loops == 0) {
1031                         dev_err(&udc->dev->dev,
1032                                 "Wait for RESET completed TIMEOUT\n");
1033                         return -ETIMEDOUT;
1034                 }
1035                 loops--;
1036                 udelay(LOOPS_USEC);
1037         }
1038
1039         /* set controller to device mode */
1040         tmp = readl(&udc->op_regs->usbmode);
1041         tmp |= USBMODE_CTRL_MODE_DEVICE;
1042
1043         /* turn setup lockout off, require setup tripwire in usbcmd */
1044         tmp |= USBMODE_SETUP_LOCK_OFF;
1045
1046         writel(tmp, &udc->op_regs->usbmode);
1047
1048         writel(0x0, &udc->op_regs->epsetupstat);
1049
1050         /* Configure the Endpoint List Address */
1051         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1052                 &udc->op_regs->eplistaddr);
1053
1054         portsc = readl(&udc->op_regs->portsc[0]);
1055         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1056                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1057
1058         if (udc->force_fs)
1059                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1060         else
1061                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1062
1063         writel(portsc, &udc->op_regs->portsc[0]);
1064
1065         tmp = readl(&udc->op_regs->epctrlx[0]);
1066         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1067         writel(tmp, &udc->op_regs->epctrlx[0]);
1068
1069         return 0;
1070 }
1071
1072 static int mv_udc_enable_internal(struct mv_udc *udc)
1073 {
1074         int retval;
1075
1076         if (udc->active)
1077                 return 0;
1078
1079         dev_dbg(&udc->dev->dev, "enable udc\n");
1080         udc_clock_enable(udc);
1081         if (udc->pdata->phy_init) {
1082                 retval = udc->pdata->phy_init(udc->phy_regs);
1083                 if (retval) {
1084                         dev_err(&udc->dev->dev,
1085                                 "init phy error %d\n", retval);
1086                         udc_clock_disable(udc);
1087                         return retval;
1088                 }
1089         }
1090         udc->active = 1;
1091
1092         return 0;
1093 }
1094
1095 static int mv_udc_enable(struct mv_udc *udc)
1096 {
1097         if (udc->clock_gating)
1098                 return mv_udc_enable_internal(udc);
1099
1100         return 0;
1101 }
1102
1103 static void mv_udc_disable_internal(struct mv_udc *udc)
1104 {
1105         if (udc->active) {
1106                 dev_dbg(&udc->dev->dev, "disable udc\n");
1107                 if (udc->pdata->phy_deinit)
1108                         udc->pdata->phy_deinit(udc->phy_regs);
1109                 udc_clock_disable(udc);
1110                 udc->active = 0;
1111         }
1112 }
1113
1114 static void mv_udc_disable(struct mv_udc *udc)
1115 {
1116         if (udc->clock_gating)
1117                 mv_udc_disable_internal(udc);
1118 }
1119
1120 static int mv_udc_get_frame(struct usb_gadget *gadget)
1121 {
1122         struct mv_udc *udc;
1123         u16     retval;
1124
1125         if (!gadget)
1126                 return -ENODEV;
1127
1128         udc = container_of(gadget, struct mv_udc, gadget);
1129
1130         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1131
1132         return retval;
1133 }
1134
1135 /* Tries to wake up the host connected to this gadget */
1136 static int mv_udc_wakeup(struct usb_gadget *gadget)
1137 {
1138         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1139         u32 portsc;
1140
1141         /* Remote wakeup feature not enabled by host */
1142         if (!udc->remote_wakeup)
1143                 return -ENOTSUPP;
1144
1145         portsc = readl(&udc->op_regs->portsc);
1146         /* not suspended? */
1147         if (!(portsc & PORTSCX_PORT_SUSPEND))
1148                 return 0;
1149         /* trigger force resume */
1150         portsc |= PORTSCX_PORT_FORCE_RESUME;
1151         writel(portsc, &udc->op_regs->portsc[0]);
1152         return 0;
1153 }
1154
1155 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1156 {
1157         struct mv_udc *udc;
1158         unsigned long flags;
1159         int retval = 0;
1160
1161         udc = container_of(gadget, struct mv_udc, gadget);
1162         spin_lock_irqsave(&udc->lock, flags);
1163
1164         udc->vbus_active = (is_active != 0);
1165
1166         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1167                 __func__, udc->softconnect, udc->vbus_active);
1168
1169         if (udc->driver && udc->softconnect && udc->vbus_active) {
1170                 retval = mv_udc_enable(udc);
1171                 if (retval == 0) {
1172                         /* Clock is disabled, need re-init registers */
1173                         udc_reset(udc);
1174                         ep0_reset(udc);
1175                         udc_start(udc);
1176                 }
1177         } else if (udc->driver && udc->softconnect) {
1178                 if (!udc->active)
1179                         goto out;
1180
1181                 /* stop all the transfer in queue*/
1182                 stop_activity(udc, udc->driver);
1183                 udc_stop(udc);
1184                 mv_udc_disable(udc);
1185         }
1186
1187 out:
1188         spin_unlock_irqrestore(&udc->lock, flags);
1189         return retval;
1190 }
1191
1192 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1193 {
1194         struct mv_udc *udc;
1195         unsigned long flags;
1196         int retval = 0;
1197
1198         udc = container_of(gadget, struct mv_udc, gadget);
1199         spin_lock_irqsave(&udc->lock, flags);
1200
1201         udc->softconnect = (is_on != 0);
1202
1203         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1204                         __func__, udc->softconnect, udc->vbus_active);
1205
1206         if (udc->driver && udc->softconnect && udc->vbus_active) {
1207                 retval = mv_udc_enable(udc);
1208                 if (retval == 0) {
1209                         /* Clock is disabled, need re-init registers */
1210                         udc_reset(udc);
1211                         ep0_reset(udc);
1212                         udc_start(udc);
1213                 }
1214         } else if (udc->driver && udc->vbus_active) {
1215                 /* stop all the transfer in queue*/
1216                 stop_activity(udc, udc->driver);
1217                 udc_stop(udc);
1218                 mv_udc_disable(udc);
1219         }
1220
1221         spin_unlock_irqrestore(&udc->lock, flags);
1222         return retval;
1223 }
1224
1225 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1226 static int mv_udc_stop(struct usb_gadget *);
1227 /* device controller usb_gadget_ops structure */
1228 static const struct usb_gadget_ops mv_ops = {
1229
1230         /* returns the current frame number */
1231         .get_frame      = mv_udc_get_frame,
1232
1233         /* tries to wake up the host connected to this gadget */
1234         .wakeup         = mv_udc_wakeup,
1235
1236         /* notify controller that VBUS is powered or not */
1237         .vbus_session   = mv_udc_vbus_session,
1238
1239         /* D+ pullup, software-controlled connect/disconnect to USB host */
1240         .pullup         = mv_udc_pullup,
1241         .udc_start      = mv_udc_start,
1242         .udc_stop       = mv_udc_stop,
1243 };
1244
1245 static int eps_init(struct mv_udc *udc)
1246 {
1247         struct mv_ep    *ep;
1248         char name[14];
1249         int i;
1250
1251         /* initialize ep0 */
1252         ep = &udc->eps[0];
1253         ep->udc = udc;
1254         strncpy(ep->name, "ep0", sizeof(ep->name));
1255         ep->ep.name = ep->name;
1256         ep->ep.ops = &mv_ep_ops;
1257         ep->wedge = 0;
1258         ep->stopped = 0;
1259         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1260         ep->ep_num = 0;
1261         ep->ep.desc = &mv_ep0_desc;
1262         INIT_LIST_HEAD(&ep->queue);
1263
1264         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1265
1266         /* initialize other endpoints */
1267         for (i = 2; i < udc->max_eps * 2; i++) {
1268                 ep = &udc->eps[i];
1269                 if (i % 2) {
1270                         snprintf(name, sizeof(name), "ep%din", i / 2);
1271                         ep->direction = EP_DIR_IN;
1272                 } else {
1273                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1274                         ep->direction = EP_DIR_OUT;
1275                 }
1276                 ep->udc = udc;
1277                 strncpy(ep->name, name, sizeof(ep->name));
1278                 ep->ep.name = ep->name;
1279
1280                 ep->ep.ops = &mv_ep_ops;
1281                 ep->stopped = 0;
1282                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283                 ep->ep_num = i / 2;
1284
1285                 INIT_LIST_HEAD(&ep->queue);
1286                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287
1288                 ep->dqh = &udc->ep_dqh[i];
1289         }
1290
1291         return 0;
1292 }
1293
1294 /* delete all endpoint requests, called with spinlock held */
1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297         /* called with spinlock held */
1298         ep->stopped = 1;
1299
1300         /* endpoint fifo flush */
1301         mv_ep_fifo_flush(&ep->ep);
1302
1303         while (!list_empty(&ep->queue)) {
1304                 struct mv_req *req = NULL;
1305                 req = list_entry(ep->queue.next, struct mv_req, queue);
1306                 done(ep, req, status);
1307         }
1308 }
1309
1310 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1311 {
1312         struct mv_ep    *ep;
1313
1314         nuke(&udc->eps[0], -ESHUTDOWN);
1315
1316         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1317                 nuke(ep, -ESHUTDOWN);
1318         }
1319
1320         /* report reset; the driver is already quiesced */
1321         if (driver) {
1322                 spin_unlock(&udc->lock);
1323                 usb_gadget_udc_reset(&udc->gadget, driver);
1324                 spin_lock(&udc->lock);
1325         }
1326 }
1327 /* stop all USB activities */
1328 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330         struct mv_ep    *ep;
1331
1332         nuke(&udc->eps[0], -ESHUTDOWN);
1333
1334         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1335                 nuke(ep, -ESHUTDOWN);
1336         }
1337
1338         /* report disconnect; the driver is already quiesced */
1339         if (driver) {
1340                 spin_unlock(&udc->lock);
1341                 driver->disconnect(&udc->gadget);
1342                 spin_lock(&udc->lock);
1343         }
1344 }
1345
1346 static int mv_udc_start(struct usb_gadget *gadget,
1347                 struct usb_gadget_driver *driver)
1348 {
1349         struct mv_udc *udc;
1350         int retval = 0;
1351         unsigned long flags;
1352
1353         udc = container_of(gadget, struct mv_udc, gadget);
1354
1355         if (udc->driver)
1356                 return -EBUSY;
1357
1358         spin_lock_irqsave(&udc->lock, flags);
1359
1360         /* hook up the driver ... */
1361         driver->driver.bus = NULL;
1362         udc->driver = driver;
1363
1364         udc->usb_state = USB_STATE_ATTACHED;
1365         udc->ep0_state = WAIT_FOR_SETUP;
1366         udc->ep0_dir = EP_DIR_OUT;
1367
1368         spin_unlock_irqrestore(&udc->lock, flags);
1369
1370         if (udc->transceiver) {
1371                 retval = otg_set_peripheral(udc->transceiver->otg,
1372                                         &udc->gadget);
1373                 if (retval) {
1374                         dev_err(&udc->dev->dev,
1375                                 "unable to register peripheral to otg\n");
1376                         udc->driver = NULL;
1377                         return retval;
1378                 }
1379         }
1380
1381         /* When boot with cable attached, there will be no vbus irq occurred */
1382         if (udc->qwork)
1383                 queue_work(udc->qwork, &udc->vbus_work);
1384
1385         return 0;
1386 }
1387
1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390         struct mv_udc *udc;
1391         unsigned long flags;
1392
1393         udc = container_of(gadget, struct mv_udc, gadget);
1394
1395         spin_lock_irqsave(&udc->lock, flags);
1396
1397         mv_udc_enable(udc);
1398         udc_stop(udc);
1399
1400         /* stop all usb activities */
1401         udc->gadget.speed = USB_SPEED_UNKNOWN;
1402         stop_activity(udc, NULL);
1403         mv_udc_disable(udc);
1404
1405         spin_unlock_irqrestore(&udc->lock, flags);
1406
1407         /* unbind gadget driver */
1408         udc->driver = NULL;
1409
1410         return 0;
1411 }
1412
1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415         u32 portsc;
1416
1417         portsc = readl(&udc->op_regs->portsc[0]);
1418         portsc |= mode << 16;
1419         writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421
1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425         struct mv_req *req = container_of(_req, struct mv_req, req);
1426         struct mv_udc *udc;
1427         unsigned long flags;
1428
1429         udc = mvep->udc;
1430
1431         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432
1433         spin_lock_irqsave(&udc->lock, flags);
1434         if (req->test_mode) {
1435                 mv_set_ptc(udc, req->test_mode);
1436                 req->test_mode = 0;
1437         }
1438         spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440
1441 static int
1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444         int retval = 0;
1445         struct mv_req *req;
1446         struct mv_ep *ep;
1447
1448         ep = &udc->eps[0];
1449         udc->ep0_dir = direction;
1450         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451
1452         req = udc->status_req;
1453
1454         /* fill in the reqest structure */
1455         if (empty == false) {
1456                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1457                 req->req.length = 2;
1458         } else
1459                 req->req.length = 0;
1460
1461         req->ep = ep;
1462         req->req.status = -EINPROGRESS;
1463         req->req.actual = 0;
1464         if (udc->test_mode) {
1465                 req->req.complete = prime_status_complete;
1466                 req->test_mode = udc->test_mode;
1467                 udc->test_mode = 0;
1468         } else
1469                 req->req.complete = NULL;
1470         req->dtd_count = 0;
1471
1472         if (req->req.dma == DMA_ADDR_INVALID) {
1473                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474                                 req->req.buf, req->req.length,
1475                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476                 req->mapped = 1;
1477         }
1478
1479         /* prime the data phase */
1480         if (!req_to_dtd(req)) {
1481                 retval = queue_dtd(ep, req);
1482                 if (retval) {
1483                         dev_err(&udc->dev->dev,
1484                                 "Failed to queue dtd when prime status\n");
1485                         goto out;
1486                 }
1487         } else{ /* no mem */
1488                 retval = -ENOMEM;
1489                 dev_err(&udc->dev->dev,
1490                         "Failed to dma_pool_alloc when prime status\n");
1491                 goto out;
1492         }
1493
1494         list_add_tail(&req->queue, &ep->queue);
1495
1496         return 0;
1497 out:
1498         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499
1500         return retval;
1501 }
1502
1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505         if (index <= TEST_FORCE_EN) {
1506                 udc->test_mode = index;
1507                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508                         ep0_stall(udc);
1509         } else
1510                 dev_err(&udc->dev->dev,
1511                         "This test mode(%d) is not supported\n", index);
1512 }
1513
1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516         udc->dev_addr = (u8)setup->wValue;
1517
1518         /* update usb state */
1519         udc->usb_state = USB_STATE_ADDRESS;
1520
1521         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522                 ep0_stall(udc);
1523 }
1524
1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526         struct usb_ctrlrequest *setup)
1527 {
1528         u16 status = 0;
1529         int retval;
1530
1531         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1533                 return;
1534
1535         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536                 status = 1 << USB_DEVICE_SELF_POWERED;
1537                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538         } else if ((setup->bRequestType & USB_RECIP_MASK)
1539                         == USB_RECIP_INTERFACE) {
1540                 /* get interface status */
1541                 status = 0;
1542         } else if ((setup->bRequestType & USB_RECIP_MASK)
1543                         == USB_RECIP_ENDPOINT) {
1544                 u8 ep_num, direction;
1545
1546                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548                                 ? EP_DIR_IN : EP_DIR_OUT;
1549                 status = ep_is_stall(udc, ep_num, direction)
1550                                 << USB_ENDPOINT_HALT;
1551         }
1552
1553         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554         if (retval)
1555                 ep0_stall(udc);
1556         else
1557                 udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559
1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562         u8 ep_num;
1563         u8 direction;
1564         struct mv_ep *ep;
1565
1566         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568                 switch (setup->wValue) {
1569                 case USB_DEVICE_REMOTE_WAKEUP:
1570                         udc->remote_wakeup = 0;
1571                         break;
1572                 default:
1573                         goto out;
1574                 }
1575         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577                 switch (setup->wValue) {
1578                 case USB_ENDPOINT_HALT:
1579                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581                                 ? EP_DIR_IN : EP_DIR_OUT;
1582                         if (setup->wValue != 0 || setup->wLength != 0
1583                                 || ep_num > udc->max_eps)
1584                                 goto out;
1585                         ep = &udc->eps[ep_num * 2 + direction];
1586                         if (ep->wedge == 1)
1587                                 break;
1588                         spin_unlock(&udc->lock);
1589                         ep_set_stall(udc, ep_num, direction, 0);
1590                         spin_lock(&udc->lock);
1591                         break;
1592                 default:
1593                         goto out;
1594                 }
1595         } else
1596                 goto out;
1597
1598         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599                 ep0_stall(udc);
1600 out:
1601         return;
1602 }
1603
1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606         u8 ep_num;
1607         u8 direction;
1608
1609         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611                 switch (setup->wValue) {
1612                 case USB_DEVICE_REMOTE_WAKEUP:
1613                         udc->remote_wakeup = 1;
1614                         break;
1615                 case USB_DEVICE_TEST_MODE:
1616                         if (setup->wIndex & 0xFF
1617                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1618                                 ep0_stall(udc);
1619
1620                         if (udc->usb_state != USB_STATE_CONFIGURED
1621                                 && udc->usb_state != USB_STATE_ADDRESS
1622                                 && udc->usb_state != USB_STATE_DEFAULT)
1623                                 ep0_stall(udc);
1624
1625                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1626                         goto out;
1627                 default:
1628                         goto out;
1629                 }
1630         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632                 switch (setup->wValue) {
1633                 case USB_ENDPOINT_HALT:
1634                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636                                 ? EP_DIR_IN : EP_DIR_OUT;
1637                         if (setup->wValue != 0 || setup->wLength != 0
1638                                 || ep_num > udc->max_eps)
1639                                 goto out;
1640                         spin_unlock(&udc->lock);
1641                         ep_set_stall(udc, ep_num, direction, 1);
1642                         spin_lock(&udc->lock);
1643                         break;
1644                 default:
1645                         goto out;
1646                 }
1647         } else
1648                 goto out;
1649
1650         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651                 ep0_stall(udc);
1652 out:
1653         return;
1654 }
1655
1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657         struct usb_ctrlrequest *setup)
1658         __releases(&ep->udc->lock)
1659         __acquires(&ep->udc->lock)
1660 {
1661         bool delegate = false;
1662
1663         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664
1665         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666                         setup->bRequestType, setup->bRequest,
1667                         setup->wValue, setup->wIndex, setup->wLength);
1668         /* We process some standard setup requests here */
1669         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670                 switch (setup->bRequest) {
1671                 case USB_REQ_GET_STATUS:
1672                         ch9getstatus(udc, ep_num, setup);
1673                         break;
1674
1675                 case USB_REQ_SET_ADDRESS:
1676                         ch9setaddress(udc, setup);
1677                         break;
1678
1679                 case USB_REQ_CLEAR_FEATURE:
1680                         ch9clearfeature(udc, setup);
1681                         break;
1682
1683                 case USB_REQ_SET_FEATURE:
1684                         ch9setfeature(udc, setup);
1685                         break;
1686
1687                 default:
1688                         delegate = true;
1689                 }
1690         } else
1691                 delegate = true;
1692
1693         /* delegate USB standard requests to the gadget driver */
1694         if (delegate == true) {
1695                 /* USB requests handled by gadget */
1696                 if (setup->wLength) {
1697                         /* DATA phase from gadget, STATUS phase from udc */
1698                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699                                         ?  EP_DIR_IN : EP_DIR_OUT;
1700                         spin_unlock(&udc->lock);
1701                         if (udc->driver->setup(&udc->gadget,
1702                                 &udc->local_setup_buff) < 0)
1703                                 ep0_stall(udc);
1704                         spin_lock(&udc->lock);
1705                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1707                 } else {
1708                         /* no DATA phase, IN STATUS phase from gadget */
1709                         udc->ep0_dir = EP_DIR_IN;
1710                         spin_unlock(&udc->lock);
1711                         if (udc->driver->setup(&udc->gadget,
1712                                 &udc->local_setup_buff) < 0)
1713                                 ep0_stall(udc);
1714                         spin_lock(&udc->lock);
1715                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716                 }
1717         }
1718 }
1719
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1721 static void ep0_req_complete(struct mv_udc *udc,
1722         struct mv_ep *ep0, struct mv_req *req)
1723 {
1724         u32 new_addr;
1725
1726         if (udc->usb_state == USB_STATE_ADDRESS) {
1727                 /* set the new address */
1728                 new_addr = (u32)udc->dev_addr;
1729                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730                         &udc->op_regs->deviceaddr);
1731         }
1732
1733         done(ep0, req, 0);
1734
1735         switch (udc->ep0_state) {
1736         case DATA_STATE_XMIT:
1737                 /* receive status phase */
1738                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739                         ep0_stall(udc);
1740                 break;
1741         case DATA_STATE_RECV:
1742                 /* send status phase */
1743                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744                         ep0_stall(udc);
1745                 break;
1746         case WAIT_FOR_OUT_STATUS:
1747                 udc->ep0_state = WAIT_FOR_SETUP;
1748                 break;
1749         case WAIT_FOR_SETUP:
1750                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751                 break;
1752         default:
1753                 ep0_stall(udc);
1754                 break;
1755         }
1756 }
1757
1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760         u32 temp;
1761         struct mv_dqh *dqh;
1762
1763         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764
1765         /* Clear bit in ENDPTSETUPSTAT */
1766         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767
1768         /* while a hazard exists when setup package arrives */
1769         do {
1770                 /* Set Setup Tripwire */
1771                 temp = readl(&udc->op_regs->usbcmd);
1772                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773
1774                 /* Copy the setup packet to local buffer */
1775                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777
1778         /* Clear Setup Tripwire */
1779         temp = readl(&udc->op_regs->usbcmd);
1780         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782
1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785         u32 tmp, bit_pos;
1786         int i, ep_num = 0, direction = 0;
1787         struct mv_ep    *curr_ep;
1788         struct mv_req *curr_req, *temp_req;
1789         int status;
1790
1791         /*
1792          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793          * because the setup packets are to be read ASAP
1794          */
1795
1796         /* Process all Setup packet received interrupts */
1797         tmp = readl(&udc->op_regs->epsetupstat);
1798
1799         if (tmp) {
1800                 for (i = 0; i < udc->max_eps; i++) {
1801                         if (tmp & (1 << i)) {
1802                                 get_setup_data(udc, i,
1803                                         (u8 *)(&udc->local_setup_buff));
1804                                 handle_setup_packet(udc, i,
1805                                         &udc->local_setup_buff);
1806                         }
1807                 }
1808         }
1809
1810         /* Don't clear the endpoint setup status register here.
1811          * It is cleared as a setup packet is read out of the buffer
1812          */
1813
1814         /* Process non-setup transaction complete interrupts */
1815         tmp = readl(&udc->op_regs->epcomplete);
1816
1817         if (!tmp)
1818                 return;
1819
1820         writel(tmp, &udc->op_regs->epcomplete);
1821
1822         for (i = 0; i < udc->max_eps * 2; i++) {
1823                 ep_num = i >> 1;
1824                 direction = i % 2;
1825
1826                 bit_pos = 1 << (ep_num + 16 * direction);
1827
1828                 if (!(bit_pos & tmp))
1829                         continue;
1830
1831                 if (i == 1)
1832                         curr_ep = &udc->eps[0];
1833                 else
1834                         curr_ep = &udc->eps[i];
1835                 /* process the req queue until an uncomplete request */
1836                 list_for_each_entry_safe(curr_req, temp_req,
1837                         &curr_ep->queue, queue) {
1838                         status = process_ep_req(udc, i, curr_req);
1839                         if (status)
1840                                 break;
1841
1842                         /* write back status to req */
1843                         curr_req->req.status = status;
1844
1845                         /* ep0 request completion */
1846                         if (ep_num == 0) {
1847                                 ep0_req_complete(udc, curr_ep, curr_req);
1848                                 break;
1849                         } else {
1850                                 done(curr_ep, curr_req, status);
1851                         }
1852                 }
1853         }
1854 }
1855
1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858         u32 tmp;
1859         unsigned int loops;
1860
1861         udc->ep0_dir = EP_DIR_OUT;
1862         udc->ep0_state = WAIT_FOR_SETUP;
1863         udc->remote_wakeup = 0;         /* default to 0 on reset */
1864
1865         /* The address bits are past bit 25-31. Set the address */
1866         tmp = readl(&udc->op_regs->deviceaddr);
1867         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868         writel(tmp, &udc->op_regs->deviceaddr);
1869
1870         /* Clear all the setup token semaphores */
1871         tmp = readl(&udc->op_regs->epsetupstat);
1872         writel(tmp, &udc->op_regs->epsetupstat);
1873
1874         /* Clear all the endpoint complete status bits */
1875         tmp = readl(&udc->op_regs->epcomplete);
1876         writel(tmp, &udc->op_regs->epcomplete);
1877
1878         /* wait until all endptprime bits cleared */
1879         loops = LOOPS(PRIME_TIMEOUT);
1880         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881                 if (loops == 0) {
1882                         dev_err(&udc->dev->dev,
1883                                 "Timeout for ENDPTPRIME = 0x%x\n",
1884                                 readl(&udc->op_regs->epprime));
1885                         break;
1886                 }
1887                 loops--;
1888                 udelay(LOOPS_USEC);
1889         }
1890
1891         /* Write 1s to the Flush register */
1892         writel((u32)~0, &udc->op_regs->epflush);
1893
1894         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895                 dev_info(&udc->dev->dev, "usb bus reset\n");
1896                 udc->usb_state = USB_STATE_DEFAULT;
1897                 /* reset all the queues, stop all USB activities */
1898                 gadget_reset(udc, udc->driver);
1899         } else {
1900                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901                         readl(&udc->op_regs->portsc));
1902
1903                 /*
1904                  * re-initialize
1905                  * controller reset
1906                  */
1907                 udc_reset(udc);
1908
1909                 /* reset all the queues, stop all USB activities */
1910                 stop_activity(udc, udc->driver);
1911
1912                 /* reset ep0 dQH and endptctrl */
1913                 ep0_reset(udc);
1914
1915                 /* enable interrupt and set controller to run state */
1916                 udc_start(udc);
1917
1918                 udc->usb_state = USB_STATE_ATTACHED;
1919         }
1920 }
1921
1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924         udc->usb_state = udc->resume_state;
1925         udc->resume_state = 0;
1926
1927         /* report resume to the driver */
1928         if (udc->driver) {
1929                 if (udc->driver->resume) {
1930                         spin_unlock(&udc->lock);
1931                         udc->driver->resume(&udc->gadget);
1932                         spin_lock(&udc->lock);
1933                 }
1934         }
1935 }
1936
1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939         udc->resume_state = udc->usb_state;
1940         udc->usb_state = USB_STATE_SUSPENDED;
1941
1942         if (udc->driver->suspend) {
1943                 spin_unlock(&udc->lock);
1944                 udc->driver->suspend(&udc->gadget);
1945                 spin_lock(&udc->lock);
1946         }
1947 }
1948
1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951         u32 portsc;
1952
1953         portsc = readl(&udc->op_regs->portsc[0]);
1954         if (!(portsc & PORTSCX_PORT_RESET)) {
1955                 /* Get the speed */
1956                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957                 switch (speed) {
1958                 case PORTSCX_PORT_SPEED_HIGH:
1959                         udc->gadget.speed = USB_SPEED_HIGH;
1960                         break;
1961                 case PORTSCX_PORT_SPEED_FULL:
1962                         udc->gadget.speed = USB_SPEED_FULL;
1963                         break;
1964                 case PORTSCX_PORT_SPEED_LOW:
1965                         udc->gadget.speed = USB_SPEED_LOW;
1966                         break;
1967                 default:
1968                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1969                         break;
1970                 }
1971         }
1972
1973         if (portsc & PORTSCX_PORT_SUSPEND) {
1974                 udc->resume_state = udc->usb_state;
1975                 udc->usb_state = USB_STATE_SUSPENDED;
1976                 if (udc->driver->suspend) {
1977                         spin_unlock(&udc->lock);
1978                         udc->driver->suspend(&udc->gadget);
1979                         spin_lock(&udc->lock);
1980                 }
1981         }
1982
1983         if (!(portsc & PORTSCX_PORT_SUSPEND)
1984                 && udc->usb_state == USB_STATE_SUSPENDED) {
1985                 handle_bus_resume(udc);
1986         }
1987
1988         if (!udc->resume_state)
1989                 udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991
1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994         /* Increment the error count */
1995         udc->errors++;
1996 }
1997
1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000         struct mv_udc *udc = (struct mv_udc *)dev;
2001         u32 status, intr;
2002
2003         /* Disable ISR when stopped bit is set */
2004         if (udc->stopped)
2005                 return IRQ_NONE;
2006
2007         spin_lock(&udc->lock);
2008
2009         status = readl(&udc->op_regs->usbsts);
2010         intr = readl(&udc->op_regs->usbintr);
2011         status &= intr;
2012
2013         if (status == 0) {
2014                 spin_unlock(&udc->lock);
2015                 return IRQ_NONE;
2016         }
2017
2018         /* Clear all the interrupts occurred */
2019         writel(status, &udc->op_regs->usbsts);
2020
2021         if (status & USBSTS_ERR)
2022                 irq_process_error(udc);
2023
2024         if (status & USBSTS_RESET)
2025                 irq_process_reset(udc);
2026
2027         if (status & USBSTS_PORT_CHANGE)
2028                 irq_process_port_change(udc);
2029
2030         if (status & USBSTS_INT)
2031                 irq_process_tr_complete(udc);
2032
2033         if (status & USBSTS_SUSPEND)
2034                 irq_process_suspend(udc);
2035
2036         spin_unlock(&udc->lock);
2037
2038         return IRQ_HANDLED;
2039 }
2040
2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043         struct mv_udc *udc = (struct mv_udc *)dev;
2044
2045         /* polling VBUS and init phy may cause too much time*/
2046         if (udc->qwork)
2047                 queue_work(udc->qwork, &udc->vbus_work);
2048
2049         return IRQ_HANDLED;
2050 }
2051
2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054         struct mv_udc *udc;
2055         unsigned int vbus;
2056
2057         udc = container_of(work, struct mv_udc, vbus_work);
2058         if (!udc->pdata->vbus)
2059                 return;
2060
2061         vbus = udc->pdata->vbus->poll();
2062         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063
2064         if (vbus == VBUS_HIGH)
2065                 mv_udc_vbus_session(&udc->gadget, 1);
2066         else if (vbus == VBUS_LOW)
2067                 mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069
2070 /* release device structure */
2071 static void gadget_release(struct device *_dev)
2072 {
2073         struct mv_udc *udc;
2074
2075         udc = dev_get_drvdata(_dev);
2076
2077         complete(udc->done);
2078 }
2079
2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082         struct mv_udc *udc;
2083
2084         udc = platform_get_drvdata(pdev);
2085
2086         usb_del_gadget_udc(&udc->gadget);
2087
2088         if (udc->qwork) {
2089                 flush_workqueue(udc->qwork);
2090                 destroy_workqueue(udc->qwork);
2091         }
2092
2093         /* free memory allocated in probe */
2094         if (udc->dtd_pool)
2095                 dma_pool_destroy(udc->dtd_pool);
2096
2097         if (udc->ep_dqh)
2098                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2099                         udc->ep_dqh, udc->ep_dqh_dma);
2100
2101         mv_udc_disable(udc);
2102
2103         /* free dev, wait for the release() finished */
2104         wait_for_completion(udc->done);
2105
2106         return 0;
2107 }
2108
2109 static int mv_udc_probe(struct platform_device *pdev)
2110 {
2111         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2112         struct mv_udc *udc;
2113         int retval = 0;
2114         struct resource *r;
2115         size_t size;
2116
2117         if (pdata == NULL) {
2118                 dev_err(&pdev->dev, "missing platform_data\n");
2119                 return -ENODEV;
2120         }
2121
2122         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2123         if (udc == NULL)
2124                 return -ENOMEM;
2125
2126         udc->done = &release_done;
2127         udc->pdata = dev_get_platdata(&pdev->dev);
2128         spin_lock_init(&udc->lock);
2129
2130         udc->dev = pdev;
2131
2132         if (pdata->mode == MV_USB_MODE_OTG) {
2133                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2134                                         USB_PHY_TYPE_USB2);
2135                 if (IS_ERR(udc->transceiver)) {
2136                         retval = PTR_ERR(udc->transceiver);
2137
2138                         if (retval == -ENXIO)
2139                                 return retval;
2140
2141                         udc->transceiver = NULL;
2142                         return -EPROBE_DEFER;
2143                 }
2144         }
2145
2146         /* udc only have one sysclk. */
2147         udc->clk = devm_clk_get(&pdev->dev, NULL);
2148         if (IS_ERR(udc->clk))
2149                 return PTR_ERR(udc->clk);
2150
2151         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2152         if (r == NULL) {
2153                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2154                 return -ENODEV;
2155         }
2156
2157         udc->cap_regs = (struct mv_cap_regs __iomem *)
2158                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2159         if (udc->cap_regs == NULL) {
2160                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2161                 return -EBUSY;
2162         }
2163
2164         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2165         if (r == NULL) {
2166                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2167                 return -ENODEV;
2168         }
2169
2170         udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2171         if (udc->phy_regs == NULL) {
2172                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2173                 return -EBUSY;
2174         }
2175
2176         /* we will acces controller register, so enable the clk */
2177         retval = mv_udc_enable_internal(udc);
2178         if (retval)
2179                 return retval;
2180
2181         udc->op_regs =
2182                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2183                 + (readl(&udc->cap_regs->caplength_hciversion)
2184                         & CAPLENGTH_MASK));
2185         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2186
2187         /*
2188          * some platform will use usb to download image, it may not disconnect
2189          * usb gadget before loading kernel. So first stop udc here.
2190          */
2191         udc_stop(udc);
2192         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2193
2194         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2195         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2196         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2197                                         &udc->ep_dqh_dma, GFP_KERNEL);
2198
2199         if (udc->ep_dqh == NULL) {
2200                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2201                 retval = -ENOMEM;
2202                 goto err_disable_clock;
2203         }
2204         udc->ep_dqh_size = size;
2205
2206         /* create dTD dma_pool resource */
2207         udc->dtd_pool = dma_pool_create("mv_dtd",
2208                         &pdev->dev,
2209                         sizeof(struct mv_dtd),
2210                         DTD_ALIGNMENT,
2211                         DMA_BOUNDARY);
2212
2213         if (!udc->dtd_pool) {
2214                 retval = -ENOMEM;
2215                 goto err_free_dma;
2216         }
2217
2218         size = udc->max_eps * sizeof(struct mv_ep) *2;
2219         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2220         if (udc->eps == NULL) {
2221                 retval = -ENOMEM;
2222                 goto err_destroy_dma;
2223         }
2224
2225         /* initialize ep0 status request structure */
2226         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2227                                         GFP_KERNEL);
2228         if (!udc->status_req) {
2229                 retval = -ENOMEM;
2230                 goto err_destroy_dma;
2231         }
2232         INIT_LIST_HEAD(&udc->status_req->queue);
2233
2234         /* allocate a small amount of memory to get valid address */
2235         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2236         udc->status_req->req.dma = DMA_ADDR_INVALID;
2237
2238         udc->resume_state = USB_STATE_NOTATTACHED;
2239         udc->usb_state = USB_STATE_POWERED;
2240         udc->ep0_dir = EP_DIR_OUT;
2241         udc->remote_wakeup = 0;
2242
2243         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2244         if (r == NULL) {
2245                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2246                 retval = -ENODEV;
2247                 goto err_destroy_dma;
2248         }
2249         udc->irq = r->start;
2250         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2251                 IRQF_SHARED, driver_name, udc)) {
2252                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2253                         udc->irq);
2254                 retval = -ENODEV;
2255                 goto err_destroy_dma;
2256         }
2257
2258         /* initialize gadget structure */
2259         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2260         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2261         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2262         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2263         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2264
2265         /* the "gadget" abstracts/virtualizes the controller */
2266         udc->gadget.name = driver_name;         /* gadget name */
2267
2268         eps_init(udc);
2269
2270         /* VBUS detect: we can disable/enable clock on demand.*/
2271         if (udc->transceiver)
2272                 udc->clock_gating = 1;
2273         else if (pdata->vbus) {
2274                 udc->clock_gating = 1;
2275                 retval = devm_request_threaded_irq(&pdev->dev,
2276                                 pdata->vbus->irq, NULL,
2277                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2278                 if (retval) {
2279                         dev_info(&pdev->dev,
2280                                 "Can not request irq for VBUS, "
2281                                 "disable clock gating\n");
2282                         udc->clock_gating = 0;
2283                 }
2284
2285                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2286                 if (!udc->qwork) {
2287                         dev_err(&pdev->dev, "cannot create workqueue\n");
2288                         retval = -ENOMEM;
2289                         goto err_destroy_dma;
2290                 }
2291
2292                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2293         }
2294
2295         /*
2296          * When clock gating is supported, we can disable clk and phy.
2297          * If not, it means that VBUS detection is not supported, we
2298          * have to enable vbus active all the time to let controller work.
2299          */
2300         if (udc->clock_gating)
2301                 mv_udc_disable_internal(udc);
2302         else
2303                 udc->vbus_active = 1;
2304
2305         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2306                         gadget_release);
2307         if (retval)
2308                 goto err_create_workqueue;
2309
2310         platform_set_drvdata(pdev, udc);
2311         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2312                 udc->clock_gating ? "with" : "without");
2313
2314         return 0;
2315
2316 err_create_workqueue:
2317         destroy_workqueue(udc->qwork);
2318 err_destroy_dma:
2319         dma_pool_destroy(udc->dtd_pool);
2320 err_free_dma:
2321         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2322                         udc->ep_dqh, udc->ep_dqh_dma);
2323 err_disable_clock:
2324         mv_udc_disable_internal(udc);
2325
2326         return retval;
2327 }
2328
2329 #ifdef CONFIG_PM
2330 static int mv_udc_suspend(struct device *dev)
2331 {
2332         struct mv_udc *udc;
2333
2334         udc = dev_get_drvdata(dev);
2335
2336         /* if OTG is enabled, the following will be done in OTG driver*/
2337         if (udc->transceiver)
2338                 return 0;
2339
2340         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2341                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2342                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2343                         return -EAGAIN;
2344                 }
2345
2346         /*
2347          * only cable is unplugged, udc can suspend.
2348          * So do not care about clock_gating == 1.
2349          */
2350         if (!udc->clock_gating) {
2351                 udc_stop(udc);
2352
2353                 spin_lock_irq(&udc->lock);
2354                 /* stop all usb activities */
2355                 stop_activity(udc, udc->driver);
2356                 spin_unlock_irq(&udc->lock);
2357
2358                 mv_udc_disable_internal(udc);
2359         }
2360
2361         return 0;
2362 }
2363
2364 static int mv_udc_resume(struct device *dev)
2365 {
2366         struct mv_udc *udc;
2367         int retval;
2368
2369         udc = dev_get_drvdata(dev);
2370
2371         /* if OTG is enabled, the following will be done in OTG driver*/
2372         if (udc->transceiver)
2373                 return 0;
2374
2375         if (!udc->clock_gating) {
2376                 retval = mv_udc_enable_internal(udc);
2377                 if (retval)
2378                         return retval;
2379
2380                 if (udc->driver && udc->softconnect) {
2381                         udc_reset(udc);
2382                         ep0_reset(udc);
2383                         udc_start(udc);
2384                 }
2385         }
2386
2387         return 0;
2388 }
2389
2390 static const struct dev_pm_ops mv_udc_pm_ops = {
2391         .suspend        = mv_udc_suspend,
2392         .resume         = mv_udc_resume,
2393 };
2394 #endif
2395
2396 static void mv_udc_shutdown(struct platform_device *pdev)
2397 {
2398         struct mv_udc *udc;
2399         u32 mode;
2400
2401         udc = platform_get_drvdata(pdev);
2402         /* reset controller mode to IDLE */
2403         mv_udc_enable(udc);
2404         mode = readl(&udc->op_regs->usbmode);
2405         mode &= ~3;
2406         writel(mode, &udc->op_regs->usbmode);
2407         mv_udc_disable(udc);
2408 }
2409
2410 static struct platform_driver udc_driver = {
2411         .probe          = mv_udc_probe,
2412         .remove         = mv_udc_remove,
2413         .shutdown       = mv_udc_shutdown,
2414         .driver         = {
2415                 .name   = "mv-udc",
2416 #ifdef CONFIG_PM
2417                 .pm     = &mv_udc_pm_ops,
2418 #endif
2419         },
2420 };
2421
2422 module_platform_driver(udc_driver);
2423 MODULE_ALIAS("platform:mv-udc");
2424 MODULE_DESCRIPTION(DRIVER_DESC);
2425 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2426 MODULE_VERSION(DRIVER_VERSION);
2427 MODULE_LICENSE("GPL");