Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         put_device(tty->dev);
171         kfree(tty->write_buf);
172         tty->magic = 0xDEADDEAD;
173         kfree(tty);
174 }
175
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178         return ((struct tty_file_private *)file->private_data)->tty;
179 }
180
181 int tty_alloc_file(struct file *file)
182 {
183         struct tty_file_private *priv;
184
185         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186         if (!priv)
187                 return -ENOMEM;
188
189         file->private_data = priv;
190
191         return 0;
192 }
193
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197         struct tty_file_private *priv = file->private_data;
198
199         priv->tty = tty;
200         priv->file = file;
201
202         spin_lock(&tty_files_lock);
203         list_add(&priv->list, &tty->tty_files);
204         spin_unlock(&tty_files_lock);
205 }
206
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215         struct tty_file_private *priv = file->private_data;
216
217         file->private_data = NULL;
218         kfree(priv);
219 }
220
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224         struct tty_file_private *priv = file->private_data;
225
226         spin_lock(&tty_files_lock);
227         list_del(&priv->list);
228         spin_unlock(&tty_files_lock);
229         tty_free_file(file);
230 }
231
232
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234
235 /**
236  *      tty_name        -       return tty naming
237  *      @tty: tty structure
238  *      @buf: buffer for output
239  *
240  *      Convert a tty structure into a name. The name reflects the kernel
241  *      naming policy and if udev is in use may not reflect user space
242  *
243  *      Locking: none
244  */
245
246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249                 strcpy(buf, "NULL tty");
250         else
251                 strcpy(buf, tty->name);
252         return buf;
253 }
254
255 EXPORT_SYMBOL(tty_name);
256
257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258                               const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261         if (!tty) {
262                 printk(KERN_WARNING
263                         "null TTY for (%d:%d) in %s\n",
264                         imajor(inode), iminor(inode), routine);
265                 return 1;
266         }
267         if (tty->magic != TTY_MAGIC) {
268                 printk(KERN_WARNING
269                         "bad magic number for tty struct (%d:%d) in %s\n",
270                         imajor(inode), iminor(inode), routine);
271                 return 1;
272         }
273 #endif
274         return 0;
275 }
276
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281         struct list_head *p;
282         int count = 0;
283
284         spin_lock(&tty_files_lock);
285         list_for_each(p, &tty->tty_files) {
286                 count++;
287         }
288         spin_unlock(&tty_files_lock);
289         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290             tty->driver->subtype == PTY_TYPE_SLAVE &&
291             tty->link && tty->link->count)
292                 count++;
293         if (tty->count != count) {
294                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295                                     "!= #fd's(%d) in %s\n",
296                        tty->name, tty->count, count, routine);
297                 return count;
298         }
299 #endif
300         return 0;
301 }
302
303 /**
304  *      get_tty_driver          -       find device of a tty
305  *      @dev_t: device identifier
306  *      @index: returns the index of the tty
307  *
308  *      This routine returns a tty driver structure, given a device number
309  *      and also passes back the index number.
310  *
311  *      Locking: caller must hold tty_mutex
312  */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316         struct tty_driver *p;
317
318         list_for_each_entry(p, &tty_drivers, tty_drivers) {
319                 dev_t base = MKDEV(p->major, p->minor_start);
320                 if (device < base || device >= base + p->num)
321                         continue;
322                 *index = device - base;
323                 return tty_driver_kref_get(p);
324         }
325         return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331  *      tty_find_polling_driver -       find device of a polled tty
332  *      @name: name string to match
333  *      @line: pointer to resulting tty line nr
334  *
335  *      This routine returns a tty driver structure, given a name
336  *      and the condition that the tty driver is capable of polled
337  *      operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341         struct tty_driver *p, *res = NULL;
342         int tty_line = 0;
343         int len;
344         char *str, *stp;
345
346         for (str = name; *str; str++)
347                 if ((*str >= '0' && *str <= '9') || *str == ',')
348                         break;
349         if (!*str)
350                 return NULL;
351
352         len = str - name;
353         tty_line = simple_strtoul(str, &str, 10);
354
355         mutex_lock(&tty_mutex);
356         /* Search through the tty devices to look for a match */
357         list_for_each_entry(p, &tty_drivers, tty_drivers) {
358                 if (strncmp(name, p->name, len) != 0)
359                         continue;
360                 stp = str;
361                 if (*stp == ',')
362                         stp++;
363                 if (*stp == '\0')
364                         stp = NULL;
365
366                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368                         res = tty_driver_kref_get(p);
369                         *line = tty_line;
370                         break;
371                 }
372         }
373         mutex_unlock(&tty_mutex);
374
375         return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381  *      tty_check_change        -       check for POSIX terminal changes
382  *      @tty: tty to check
383  *
384  *      If we try to write to, or set the state of, a terminal and we're
385  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *      Locking: ctrl_lock
389  */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393         unsigned long flags;
394         int ret = 0;
395
396         if (current->signal->tty != tty)
397                 return 0;
398
399         spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401         if (!tty->pgrp) {
402                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403                 goto out_unlock;
404         }
405         if (task_pgrp(current) == tty->pgrp)
406                 goto out_unlock;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408         if (is_ignored(SIGTTOU))
409                 goto out;
410         if (is_current_pgrp_orphaned()) {
411                 ret = -EIO;
412                 goto out;
413         }
414         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415         set_thread_flag(TIF_SIGPENDING);
416         ret = -ERESTARTSYS;
417 out:
418         return ret;
419 out_unlock:
420         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421         return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427                                 size_t count, loff_t *ppos)
428 {
429         return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433                                  size_t count, loff_t *ppos)
434 {
435         return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445                 unsigned long arg)
446 {
447         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451                                      unsigned int cmd, unsigned long arg)
452 {
453         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457         .llseek         = no_llseek,
458         .read           = tty_read,
459         .write          = tty_write,
460         .poll           = tty_poll,
461         .unlocked_ioctl = tty_ioctl,
462         .compat_ioctl   = tty_compat_ioctl,
463         .open           = tty_open,
464         .release        = tty_release,
465         .fasync         = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469         .llseek         = no_llseek,
470         .read           = tty_read,
471         .write          = redirected_tty_write,
472         .poll           = tty_poll,
473         .unlocked_ioctl = tty_ioctl,
474         .compat_ioctl   = tty_compat_ioctl,
475         .open           = tty_open,
476         .release        = tty_release,
477         .fasync         = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481         .llseek         = no_llseek,
482         .read           = hung_up_tty_read,
483         .write          = hung_up_tty_write,
484         .poll           = hung_up_tty_poll,
485         .unlocked_ioctl = hung_up_tty_ioctl,
486         .compat_ioctl   = hung_up_tty_compat_ioctl,
487         .release        = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496         unsigned long flags;
497         struct tty_struct *tty;
498         spin_lock_irqsave(&p->sighand->siglock, flags);
499         tty = p->signal->tty;
500         p->signal->tty = NULL;
501         spin_unlock_irqrestore(&p->sighand->siglock, flags);
502         tty_kref_put(tty);
503 }
504
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *                    a readlock on tasklist_lock
513  *                    sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&tty->ctrl_lock, flags);
520         /*
521          * The session and fg pgrp references will be non-NULL if
522          * tiocsctty() is stealing the controlling tty
523          */
524         put_pid(tty->session);
525         put_pid(tty->pgrp);
526         tty->pgrp = get_pid(task_pgrp(current));
527         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528         tty->session = get_pid(task_session(current));
529         if (current->signal->tty) {
530                 printk(KERN_DEBUG "tty not NULL!!\n");
531                 tty_kref_put(current->signal->tty);
532         }
533         put_pid(current->signal->tty_old_pgrp);
534         current->signal->tty = tty_kref_get(tty);
535         current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540         spin_lock_irq(&current->sighand->siglock);
541         __proc_set_tty(tty);
542         spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547         struct tty_struct *tty;
548         unsigned long flags;
549
550         spin_lock_irqsave(&current->sighand->siglock, flags);
551         tty = tty_kref_get(current->signal->tty);
552         spin_unlock_irqrestore(&current->sighand->siglock, flags);
553         return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559         struct task_struct *p;
560         do_each_pid_task(session, PIDTYPE_SID, p) {
561                 proc_clear_tty(p);
562         } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566  *      tty_wakeup      -       request more data
567  *      @tty: terminal
568  *
569  *      Internal and external helper for wakeups of tty. This function
570  *      informs the line discipline if present that the driver is ready
571  *      to receive more output data.
572  */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576         struct tty_ldisc *ld;
577
578         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579                 ld = tty_ldisc_ref(tty);
580                 if (ld) {
581                         if (ld->ops->write_wakeup)
582                                 ld->ops->write_wakeup(tty);
583                         tty_ldisc_deref(ld);
584                 }
585         }
586         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592  *      tty_signal_session_leader       - sends SIGHUP to session leader
593  *      @tty            controlling tty
594  *      @exit_session   if non-zero, signal all foreground group processes
595  *
596  *      Send SIGHUP and SIGCONT to the session leader and its process group.
597  *      Optionally, signal all processes in the foreground process group.
598  *
599  *      Returns the number of processes in the session with this tty
600  *      as their controlling terminal. This value is used to drop
601  *      tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605         struct task_struct *p;
606         int refs = 0;
607         struct pid *tty_pgrp = NULL;
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock(&tty->ctrl_lock);
627                         tty_pgrp = get_pid(tty->pgrp);
628                         if (tty->pgrp)
629                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630                         spin_unlock(&tty->ctrl_lock);
631                         spin_unlock_irq(&p->sighand->siglock);
632                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633         }
634         read_unlock(&tasklist_lock);
635
636         if (tty_pgrp) {
637                 if (exit_session)
638                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639                 put_pid(tty_pgrp);
640         }
641
642         return refs;
643 }
644
645 /**
646  *      __tty_hangup            -       actual handler for hangup events
647  *      @work: tty device
648  *
649  *      This can be called by a "kworker" kernel thread.  That is process
650  *      synchronous but doesn't hold any locks, so we need to make sure we
651  *      have the appropriate locks for what we're doing.
652  *
653  *      The hangup event clears any pending redirections onto the hung up
654  *      device. It ensures future writes will error and it does the needed
655  *      line discipline hangup and signal delivery. The tty object itself
656  *      remains intact.
657  *
658  *      Locking:
659  *              BTM
660  *                redirect lock for undoing redirection
661  *                file list lock for manipulating list of ttys
662  *                tty_ldiscs_lock from called functions
663  *                termios_rwsem resetting termios data
664  *                tasklist_lock to walk task list for hangup event
665  *                  ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669         struct file *cons_filp = NULL;
670         struct file *filp, *f = NULL;
671         struct tty_file_private *priv;
672         int    closecount = 0, n;
673         int refs;
674
675         if (!tty)
676                 return;
677
678
679         spin_lock(&redirect_lock);
680         if (redirect && file_tty(redirect) == tty) {
681                 f = redirect;
682                 redirect = NULL;
683         }
684         spin_unlock(&redirect_lock);
685
686         tty_lock(tty);
687
688         if (test_bit(TTY_HUPPED, &tty->flags)) {
689                 tty_unlock(tty);
690                 return;
691         }
692
693         /* inuse_filps is protected by the single tty lock,
694            this really needs to change if we want to flush the
695            workqueue with the lock held */
696         check_tty_count(tty, "tty_hangup");
697
698         spin_lock(&tty_files_lock);
699         /* This breaks for file handles being sent over AF_UNIX sockets ? */
700         list_for_each_entry(priv, &tty->tty_files, list) {
701                 filp = priv->file;
702                 if (filp->f_op->write == redirected_tty_write)
703                         cons_filp = filp;
704                 if (filp->f_op->write != tty_write)
705                         continue;
706                 closecount++;
707                 __tty_fasync(-1, filp, 0);      /* can't block */
708                 filp->f_op = &hung_up_tty_fops;
709         }
710         spin_unlock(&tty_files_lock);
711
712         refs = tty_signal_session_leader(tty, exit_session);
713         /* Account for the p->signal references we killed */
714         while (refs--)
715                 tty_kref_put(tty);
716
717         tty_ldisc_hangup(tty);
718
719         spin_lock_irq(&tty->ctrl_lock);
720         clear_bit(TTY_THROTTLED, &tty->flags);
721         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722         put_pid(tty->session);
723         put_pid(tty->pgrp);
724         tty->session = NULL;
725         tty->pgrp = NULL;
726         tty->ctrl_status = 0;
727         spin_unlock_irq(&tty->ctrl_lock);
728
729         /*
730          * If one of the devices matches a console pointer, we
731          * cannot just call hangup() because that will cause
732          * tty->count and state->count to go out of sync.
733          * So we just call close() the right number of times.
734          */
735         if (cons_filp) {
736                 if (tty->ops->close)
737                         for (n = 0; n < closecount; n++)
738                                 tty->ops->close(tty, cons_filp);
739         } else if (tty->ops->hangup)
740                 tty->ops->hangup(tty);
741         /*
742          * We don't want to have driver/ldisc interactions beyond
743          * the ones we did here. The driver layer expects no
744          * calls after ->hangup() from the ldisc side. However we
745          * can't yet guarantee all that.
746          */
747         set_bit(TTY_HUPPED, &tty->flags);
748         tty_unlock(tty);
749
750         if (f)
751                 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756         struct tty_struct *tty =
757                 container_of(work, struct tty_struct, hangup_work);
758
759         __tty_hangup(tty, 0);
760 }
761
762 /**
763  *      tty_hangup              -       trigger a hangup event
764  *      @tty: tty to hangup
765  *
766  *      A carrier loss (virtual or otherwise) has occurred on this like
767  *      schedule a hangup sequence to run after this event.
768  */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776         schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782  *      tty_vhangup             -       process vhangup
783  *      @tty: tty to hangup
784  *
785  *      The user has asked via system call for the terminal to be hung up.
786  *      We do this synchronously so that when the syscall returns the process
787  *      is complete. That guarantee is necessary for security reasons.
788  */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793         char    buf[64];
794
795         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797         __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804  *      tty_vhangup_self        -       process vhangup for own ctty
805  *
806  *      Perform a vhangup on the current controlling tty
807  */
808
809 void tty_vhangup_self(void)
810 {
811         struct tty_struct *tty;
812
813         tty = get_current_tty();
814         if (tty) {
815                 tty_vhangup(tty);
816                 tty_kref_put(tty);
817         }
818 }
819
820 /**
821  *      tty_vhangup_session             -       hangup session leader exit
822  *      @tty: tty to hangup
823  *
824  *      The session leader is exiting and hanging up its controlling terminal.
825  *      Every process in the foreground process group is signalled SIGHUP.
826  *
827  *      We do this synchronously so that when the syscall returns the process
828  *      is complete. That guarantee is necessary for security reasons.
829  */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834         char    buf[64];
835
836         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838         __tty_hangup(tty, 1);
839 }
840
841 /**
842  *      tty_hung_up_p           -       was tty hung up
843  *      @filp: file pointer of tty
844  *
845  *      Return true if the tty has been subject to a vhangup or a carrier
846  *      loss
847  */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851         return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857  *      disassociate_ctty       -       disconnect controlling tty
858  *      @on_exit: true if exiting so need to "hang up" the session
859  *
860  *      This function is typically called only by the session leader, when
861  *      it wants to disassociate itself from its controlling tty.
862  *
863  *      It performs the following functions:
864  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  *      (2)  Clears the tty from being controlling the session
866  *      (3)  Clears the controlling tty for all processes in the
867  *              session group.
868  *
869  *      The argument on_exit is set to 1 if called when a process is
870  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *      Locking:
873  *              BTM is taken for hysterical raisins, and held when
874  *                called from no_tty().
875  *                tty_mutex is taken to protect tty
876  *                ->siglock is taken to protect ->signal/->sighand
877  *                tasklist_lock is taken to walk process list for sessions
878  *                  ->siglock is taken to protect ->signal/->sighand
879  */
880
881 void disassociate_ctty(int on_exit)
882 {
883         struct tty_struct *tty;
884
885         if (!current->signal->leader)
886                 return;
887
888         tty = get_current_tty();
889         if (tty) {
890                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891                         tty_vhangup_session(tty);
892                 } else {
893                         struct pid *tty_pgrp = tty_get_pgrp(tty);
894                         if (tty_pgrp) {
895                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896                                 if (!on_exit)
897                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898                                 put_pid(tty_pgrp);
899                         }
900                 }
901                 tty_kref_put(tty);
902
903         } else if (on_exit) {
904                 struct pid *old_pgrp;
905                 spin_lock_irq(&current->sighand->siglock);
906                 old_pgrp = current->signal->tty_old_pgrp;
907                 current->signal->tty_old_pgrp = NULL;
908                 spin_unlock_irq(&current->sighand->siglock);
909                 if (old_pgrp) {
910                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
911                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
912                         put_pid(old_pgrp);
913                 }
914                 return;
915         }
916
917         spin_lock_irq(&current->sighand->siglock);
918         put_pid(current->signal->tty_old_pgrp);
919         current->signal->tty_old_pgrp = NULL;
920
921         tty = tty_kref_get(current->signal->tty);
922         if (tty) {
923                 unsigned long flags;
924                 spin_lock_irqsave(&tty->ctrl_lock, flags);
925                 put_pid(tty->session);
926                 put_pid(tty->pgrp);
927                 tty->session = NULL;
928                 tty->pgrp = NULL;
929                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930                 tty_kref_put(tty);
931         } else {
932 #ifdef TTY_DEBUG_HANGUP
933                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934                        " = NULL", tty);
935 #endif
936         }
937
938         spin_unlock_irq(&current->sighand->siglock);
939         /* Now clear signal->tty under the lock */
940         read_lock(&tasklist_lock);
941         session_clear_tty(task_session(current));
942         read_unlock(&tasklist_lock);
943 }
944
945 /**
946  *
947  *      no_tty  - Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951         /* FIXME: Review locking here. The tty_lock never covered any race
952            between a new association and proc_clear_tty but possible we need
953            to protect against this anyway */
954         struct task_struct *tsk = current;
955         disassociate_ctty(0);
956         proc_clear_tty(tsk);
957 }
958
959
960 /**
961  *      stop_tty        -       propagate flow control
962  *      @tty: tty to stop
963  *
964  *      Perform flow control to the driver. May be called
965  *      on an already stopped device and will not re-call the driver
966  *      method.
967  *
968  *      This functionality is used by both the line disciplines for
969  *      halting incoming flow and by the driver. It may therefore be
970  *      called from any context, may be under the tty atomic_write_lock
971  *      but not always.
972  *
973  *      Locking:
974  *              flow_lock
975  */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979         if (tty->stopped)
980                 return;
981         tty->stopped = 1;
982         if (tty->ops->stop)
983                 tty->ops->stop(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988         unsigned long flags;
989
990         spin_lock_irqsave(&tty->flow_lock, flags);
991         __stop_tty(tty);
992         spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997  *      start_tty       -       propagate flow control
998  *      @tty: tty to start
999  *
1000  *      Start a tty that has been stopped if at all possible. If this
1001  *      tty was previous stopped and is now being started, the driver
1002  *      start method is invoked and the line discipline woken.
1003  *
1004  *      Locking:
1005  *              flow_lock
1006  */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010         if (!tty->stopped || tty->flow_stopped)
1011                 return;
1012         tty->stopped = 0;
1013         if (tty->ops->start)
1014                 tty->ops->start(tty);
1015         tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&tty->flow_lock, flags);
1023         __start_tty(tty);
1024         spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 static void tty_update_time(struct timespec *time)
1029 {
1030         unsigned long sec = get_seconds();
1031
1032         /*
1033          * We only care if the two values differ in anything other than the
1034          * lower three bits (i.e every 8 seconds).  If so, then we can update
1035          * the time of the tty device, otherwise it could be construded as a
1036          * security leak to let userspace know the exact timing of the tty.
1037          */
1038         if ((sec ^ time->tv_sec) & ~7)
1039                 time->tv_sec = sec;
1040 }
1041
1042 /**
1043  *      tty_read        -       read method for tty device files
1044  *      @file: pointer to tty file
1045  *      @buf: user buffer
1046  *      @count: size of user buffer
1047  *      @ppos: unused
1048  *
1049  *      Perform the read system call function on this terminal device. Checks
1050  *      for hung up devices before calling the line discipline method.
1051  *
1052  *      Locking:
1053  *              Locks the line discipline internally while needed. Multiple
1054  *      read calls may be outstanding in parallel.
1055  */
1056
1057 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1058                         loff_t *ppos)
1059 {
1060         int i;
1061         struct inode *inode = file_inode(file);
1062         struct tty_struct *tty = file_tty(file);
1063         struct tty_ldisc *ld;
1064
1065         if (tty_paranoia_check(tty, inode, "tty_read"))
1066                 return -EIO;
1067         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1068                 return -EIO;
1069
1070         /* We want to wait for the line discipline to sort out in this
1071            situation */
1072         ld = tty_ldisc_ref_wait(tty);
1073         if (ld->ops->read)
1074                 i = ld->ops->read(tty, file, buf, count);
1075         else
1076                 i = -EIO;
1077         tty_ldisc_deref(ld);
1078
1079         if (i > 0)
1080                 tty_update_time(&inode->i_atime);
1081
1082         return i;
1083 }
1084
1085 static void tty_write_unlock(struct tty_struct *tty)
1086 {
1087         mutex_unlock(&tty->atomic_write_lock);
1088         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1089 }
1090
1091 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1092 {
1093         if (!mutex_trylock(&tty->atomic_write_lock)) {
1094                 if (ndelay)
1095                         return -EAGAIN;
1096                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1097                         return -ERESTARTSYS;
1098         }
1099         return 0;
1100 }
1101
1102 /*
1103  * Split writes up in sane blocksizes to avoid
1104  * denial-of-service type attacks
1105  */
1106 static inline ssize_t do_tty_write(
1107         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1108         struct tty_struct *tty,
1109         struct file *file,
1110         const char __user *buf,
1111         size_t count)
1112 {
1113         ssize_t ret, written = 0;
1114         unsigned int chunk;
1115
1116         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1117         if (ret < 0)
1118                 return ret;
1119
1120         /*
1121          * We chunk up writes into a temporary buffer. This
1122          * simplifies low-level drivers immensely, since they
1123          * don't have locking issues and user mode accesses.
1124          *
1125          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1126          * big chunk-size..
1127          *
1128          * The default chunk-size is 2kB, because the NTTY
1129          * layer has problems with bigger chunks. It will
1130          * claim to be able to handle more characters than
1131          * it actually does.
1132          *
1133          * FIXME: This can probably go away now except that 64K chunks
1134          * are too likely to fail unless switched to vmalloc...
1135          */
1136         chunk = 2048;
1137         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1138                 chunk = 65536;
1139         if (count < chunk)
1140                 chunk = count;
1141
1142         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1143         if (tty->write_cnt < chunk) {
1144                 unsigned char *buf_chunk;
1145
1146                 if (chunk < 1024)
1147                         chunk = 1024;
1148
1149                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1150                 if (!buf_chunk) {
1151                         ret = -ENOMEM;
1152                         goto out;
1153                 }
1154                 kfree(tty->write_buf);
1155                 tty->write_cnt = chunk;
1156                 tty->write_buf = buf_chunk;
1157         }
1158
1159         /* Do the write .. */
1160         for (;;) {
1161                 size_t size = count;
1162                 if (size > chunk)
1163                         size = chunk;
1164                 ret = -EFAULT;
1165                 if (copy_from_user(tty->write_buf, buf, size))
1166                         break;
1167                 ret = write(tty, file, tty->write_buf, size);
1168                 if (ret <= 0)
1169                         break;
1170                 written += ret;
1171                 buf += ret;
1172                 count -= ret;
1173                 if (!count)
1174                         break;
1175                 ret = -ERESTARTSYS;
1176                 if (signal_pending(current))
1177                         break;
1178                 cond_resched();
1179         }
1180         if (written) {
1181                 tty_update_time(&file_inode(file)->i_mtime);
1182                 ret = written;
1183         }
1184 out:
1185         tty_write_unlock(tty);
1186         return ret;
1187 }
1188
1189 /**
1190  * tty_write_message - write a message to a certain tty, not just the console.
1191  * @tty: the destination tty_struct
1192  * @msg: the message to write
1193  *
1194  * This is used for messages that need to be redirected to a specific tty.
1195  * We don't put it into the syslog queue right now maybe in the future if
1196  * really needed.
1197  *
1198  * We must still hold the BTM and test the CLOSING flag for the moment.
1199  */
1200
1201 void tty_write_message(struct tty_struct *tty, char *msg)
1202 {
1203         if (tty) {
1204                 mutex_lock(&tty->atomic_write_lock);
1205                 tty_lock(tty);
1206                 if (tty->ops->write && tty->count > 0) {
1207                         tty_unlock(tty);
1208                         tty->ops->write(tty, msg, strlen(msg));
1209                 } else
1210                         tty_unlock(tty);
1211                 tty_write_unlock(tty);
1212         }
1213         return;
1214 }
1215
1216
1217 /**
1218  *      tty_write               -       write method for tty device file
1219  *      @file: tty file pointer
1220  *      @buf: user data to write
1221  *      @count: bytes to write
1222  *      @ppos: unused
1223  *
1224  *      Write data to a tty device via the line discipline.
1225  *
1226  *      Locking:
1227  *              Locks the line discipline as required
1228  *              Writes to the tty driver are serialized by the atomic_write_lock
1229  *      and are then processed in chunks to the device. The line discipline
1230  *      write method will not be invoked in parallel for each device.
1231  */
1232
1233 static ssize_t tty_write(struct file *file, const char __user *buf,
1234                                                 size_t count, loff_t *ppos)
1235 {
1236         struct tty_struct *tty = file_tty(file);
1237         struct tty_ldisc *ld;
1238         ssize_t ret;
1239
1240         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1241                 return -EIO;
1242         if (!tty || !tty->ops->write ||
1243                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1244                         return -EIO;
1245         /* Short term debug to catch buggy drivers */
1246         if (tty->ops->write_room == NULL)
1247                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1248                         tty->driver->name);
1249         ld = tty_ldisc_ref_wait(tty);
1250         if (!ld->ops->write)
1251                 ret = -EIO;
1252         else
1253                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1254         tty_ldisc_deref(ld);
1255         return ret;
1256 }
1257
1258 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1259                                                 size_t count, loff_t *ppos)
1260 {
1261         struct file *p = NULL;
1262
1263         spin_lock(&redirect_lock);
1264         if (redirect)
1265                 p = get_file(redirect);
1266         spin_unlock(&redirect_lock);
1267
1268         if (p) {
1269                 ssize_t res;
1270                 res = vfs_write(p, buf, count, &p->f_pos);
1271                 fput(p);
1272                 return res;
1273         }
1274         return tty_write(file, buf, count, ppos);
1275 }
1276
1277 /**
1278  *      tty_send_xchar  -       send priority character
1279  *
1280  *      Send a high priority character to the tty even if stopped
1281  *
1282  *      Locking: none for xchar method, write ordering for write method.
1283  */
1284
1285 int tty_send_xchar(struct tty_struct *tty, char ch)
1286 {
1287         int     was_stopped = tty->stopped;
1288
1289         if (tty->ops->send_xchar) {
1290                 tty->ops->send_xchar(tty, ch);
1291                 return 0;
1292         }
1293
1294         if (tty_write_lock(tty, 0) < 0)
1295                 return -ERESTARTSYS;
1296
1297         if (was_stopped)
1298                 start_tty(tty);
1299         tty->ops->write(tty, &ch, 1);
1300         if (was_stopped)
1301                 stop_tty(tty);
1302         tty_write_unlock(tty);
1303         return 0;
1304 }
1305
1306 static char ptychar[] = "pqrstuvwxyzabcde";
1307
1308 /**
1309  *      pty_line_name   -       generate name for a pty
1310  *      @driver: the tty driver in use
1311  *      @index: the minor number
1312  *      @p: output buffer of at least 6 bytes
1313  *
1314  *      Generate a name from a driver reference and write it to the output
1315  *      buffer.
1316  *
1317  *      Locking: None
1318  */
1319 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1320 {
1321         int i = index + driver->name_base;
1322         /* ->name is initialized to "ttyp", but "tty" is expected */
1323         sprintf(p, "%s%c%x",
1324                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1325                 ptychar[i >> 4 & 0xf], i & 0xf);
1326 }
1327
1328 /**
1329  *      tty_line_name   -       generate name for a tty
1330  *      @driver: the tty driver in use
1331  *      @index: the minor number
1332  *      @p: output buffer of at least 7 bytes
1333  *
1334  *      Generate a name from a driver reference and write it to the output
1335  *      buffer.
1336  *
1337  *      Locking: None
1338  */
1339 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1340 {
1341         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1342                 return sprintf(p, "%s", driver->name);
1343         else
1344                 return sprintf(p, "%s%d", driver->name,
1345                                index + driver->name_base);
1346 }
1347
1348 /**
1349  *      tty_driver_lookup_tty() - find an existing tty, if any
1350  *      @driver: the driver for the tty
1351  *      @idx:    the minor number
1352  *
1353  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1354  *      driver lookup() method returns an error.
1355  *
1356  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1357  */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359                 struct inode *inode, int idx)
1360 {
1361         struct tty_struct *tty;
1362
1363         if (driver->ops->lookup)
1364                 tty = driver->ops->lookup(driver, inode, idx);
1365         else
1366                 tty = driver->ttys[idx];
1367
1368         if (!IS_ERR(tty))
1369                 tty_kref_get(tty);
1370         return tty;
1371 }
1372
1373 /**
1374  *      tty_init_termios        -  helper for termios setup
1375  *      @tty: the tty to set up
1376  *
1377  *      Initialise the termios structures for this tty. Thus runs under
1378  *      the tty_mutex currently so we can be relaxed about ordering.
1379  */
1380
1381 int tty_init_termios(struct tty_struct *tty)
1382 {
1383         struct ktermios *tp;
1384         int idx = tty->index;
1385
1386         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1387                 tty->termios = tty->driver->init_termios;
1388         else {
1389                 /* Check for lazy saved data */
1390                 tp = tty->driver->termios[idx];
1391                 if (tp != NULL)
1392                         tty->termios = *tp;
1393                 else
1394                         tty->termios = tty->driver->init_termios;
1395         }
1396         /* Compatibility until drivers always set this */
1397         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1398         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(tty_init_termios);
1402
1403 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1404 {
1405         int ret = tty_init_termios(tty);
1406         if (ret)
1407                 return ret;
1408
1409         tty_driver_kref_get(driver);
1410         tty->count++;
1411         driver->ttys[tty->index] = tty;
1412         return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(tty_standard_install);
1415
1416 /**
1417  *      tty_driver_install_tty() - install a tty entry in the driver
1418  *      @driver: the driver for the tty
1419  *      @tty: the tty
1420  *
1421  *      Install a tty object into the driver tables. The tty->index field
1422  *      will be set by the time this is called. This method is responsible
1423  *      for ensuring any need additional structures are allocated and
1424  *      configured.
1425  *
1426  *      Locking: tty_mutex for now
1427  */
1428 static int tty_driver_install_tty(struct tty_driver *driver,
1429                                                 struct tty_struct *tty)
1430 {
1431         return driver->ops->install ? driver->ops->install(driver, tty) :
1432                 tty_standard_install(driver, tty);
1433 }
1434
1435 /**
1436  *      tty_driver_remove_tty() - remove a tty from the driver tables
1437  *      @driver: the driver for the tty
1438  *      @idx:    the minor number
1439  *
1440  *      Remvoe a tty object from the driver tables. The tty->index field
1441  *      will be set by the time this is called.
1442  *
1443  *      Locking: tty_mutex for now
1444  */
1445 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1446 {
1447         if (driver->ops->remove)
1448                 driver->ops->remove(driver, tty);
1449         else
1450                 driver->ttys[tty->index] = NULL;
1451 }
1452
1453 /*
1454  *      tty_reopen()    - fast re-open of an open tty
1455  *      @tty    - the tty to open
1456  *
1457  *      Return 0 on success, -errno on error.
1458  *      Re-opens on master ptys are not allowed and return -EIO.
1459  *
1460  *      Locking: Caller must hold tty_lock
1461  */
1462 static int tty_reopen(struct tty_struct *tty)
1463 {
1464         struct tty_driver *driver = tty->driver;
1465
1466         if (!tty->count)
1467                 return -EIO;
1468
1469         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1470             driver->subtype == PTY_TYPE_MASTER)
1471                 return -EIO;
1472
1473         if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1474                 return -EBUSY;
1475
1476         tty->count++;
1477
1478         WARN_ON(!tty->ldisc);
1479
1480         return 0;
1481 }
1482
1483 /**
1484  *      tty_init_dev            -       initialise a tty device
1485  *      @driver: tty driver we are opening a device on
1486  *      @idx: device index
1487  *      @ret_tty: returned tty structure
1488  *
1489  *      Prepare a tty device. This may not be a "new" clean device but
1490  *      could also be an active device. The pty drivers require special
1491  *      handling because of this.
1492  *
1493  *      Locking:
1494  *              The function is called under the tty_mutex, which
1495  *      protects us from the tty struct or driver itself going away.
1496  *
1497  *      On exit the tty device has the line discipline attached and
1498  *      a reference count of 1. If a pair was created for pty/tty use
1499  *      and the other was a pty master then it too has a reference count of 1.
1500  *
1501  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1502  * failed open.  The new code protects the open with a mutex, so it's
1503  * really quite straightforward.  The mutex locking can probably be
1504  * relaxed for the (most common) case of reopening a tty.
1505  */
1506
1507 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1508 {
1509         struct tty_struct *tty;
1510         int retval;
1511
1512         /*
1513          * First time open is complex, especially for PTY devices.
1514          * This code guarantees that either everything succeeds and the
1515          * TTY is ready for operation, or else the table slots are vacated
1516          * and the allocated memory released.  (Except that the termios
1517          * and locked termios may be retained.)
1518          */
1519
1520         if (!try_module_get(driver->owner))
1521                 return ERR_PTR(-ENODEV);
1522
1523         tty = alloc_tty_struct(driver, idx);
1524         if (!tty) {
1525                 retval = -ENOMEM;
1526                 goto err_module_put;
1527         }
1528
1529         tty_lock(tty);
1530         retval = tty_driver_install_tty(driver, tty);
1531         if (retval < 0)
1532                 goto err_deinit_tty;
1533
1534         if (!tty->port)
1535                 tty->port = driver->ports[idx];
1536
1537         WARN_RATELIMIT(!tty->port,
1538                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1539                         __func__, tty->driver->name);
1540
1541         tty->port->itty = tty;
1542
1543         /*
1544          * Structures all installed ... call the ldisc open routines.
1545          * If we fail here just call release_tty to clean up.  No need
1546          * to decrement the use counts, as release_tty doesn't care.
1547          */
1548         retval = tty_ldisc_setup(tty, tty->link);
1549         if (retval)
1550                 goto err_release_tty;
1551         /* Return the tty locked so that it cannot vanish under the caller */
1552         return tty;
1553
1554 err_deinit_tty:
1555         tty_unlock(tty);
1556         deinitialize_tty_struct(tty);
1557         free_tty_struct(tty);
1558 err_module_put:
1559         module_put(driver->owner);
1560         return ERR_PTR(retval);
1561
1562         /* call the tty release_tty routine to clean out this slot */
1563 err_release_tty:
1564         tty_unlock(tty);
1565         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1566                                  "clearing slot %d\n", idx);
1567         release_tty(tty, idx);
1568         return ERR_PTR(retval);
1569 }
1570
1571 void tty_free_termios(struct tty_struct *tty)
1572 {
1573         struct ktermios *tp;
1574         int idx = tty->index;
1575
1576         /* If the port is going to reset then it has no termios to save */
1577         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1578                 return;
1579
1580         /* Stash the termios data */
1581         tp = tty->driver->termios[idx];
1582         if (tp == NULL) {
1583                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1584                 if (tp == NULL) {
1585                         pr_warn("tty: no memory to save termios state.\n");
1586                         return;
1587                 }
1588                 tty->driver->termios[idx] = tp;
1589         }
1590         *tp = tty->termios;
1591 }
1592 EXPORT_SYMBOL(tty_free_termios);
1593
1594 /**
1595  *      tty_flush_works         -       flush all works of a tty/pty pair
1596  *      @tty: tty device to flush works for (or either end of a pty pair)
1597  *
1598  *      Sync flush all works belonging to @tty (and the 'other' tty).
1599  */
1600 static void tty_flush_works(struct tty_struct *tty)
1601 {
1602         flush_work(&tty->SAK_work);
1603         flush_work(&tty->hangup_work);
1604         if (tty->link) {
1605                 flush_work(&tty->link->SAK_work);
1606                 flush_work(&tty->link->hangup_work);
1607         }
1608 }
1609
1610 /**
1611  *      release_one_tty         -       release tty structure memory
1612  *      @kref: kref of tty we are obliterating
1613  *
1614  *      Releases memory associated with a tty structure, and clears out the
1615  *      driver table slots. This function is called when a device is no longer
1616  *      in use. It also gets called when setup of a device fails.
1617  *
1618  *      Locking:
1619  *              takes the file list lock internally when working on the list
1620  *      of ttys that the driver keeps.
1621  *
1622  *      This method gets called from a work queue so that the driver private
1623  *      cleanup ops can sleep (needed for USB at least)
1624  */
1625 static void release_one_tty(struct work_struct *work)
1626 {
1627         struct tty_struct *tty =
1628                 container_of(work, struct tty_struct, hangup_work);
1629         struct tty_driver *driver = tty->driver;
1630         struct module *owner = driver->owner;
1631
1632         if (tty->ops->cleanup)
1633                 tty->ops->cleanup(tty);
1634
1635         tty->magic = 0;
1636         tty_driver_kref_put(driver);
1637         module_put(owner);
1638
1639         spin_lock(&tty_files_lock);
1640         list_del_init(&tty->tty_files);
1641         spin_unlock(&tty_files_lock);
1642
1643         put_pid(tty->pgrp);
1644         put_pid(tty->session);
1645         free_tty_struct(tty);
1646 }
1647
1648 static void queue_release_one_tty(struct kref *kref)
1649 {
1650         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1651
1652         /* The hangup queue is now free so we can reuse it rather than
1653            waste a chunk of memory for each port */
1654         INIT_WORK(&tty->hangup_work, release_one_tty);
1655         schedule_work(&tty->hangup_work);
1656 }
1657
1658 /**
1659  *      tty_kref_put            -       release a tty kref
1660  *      @tty: tty device
1661  *
1662  *      Release a reference to a tty device and if need be let the kref
1663  *      layer destruct the object for us
1664  */
1665
1666 void tty_kref_put(struct tty_struct *tty)
1667 {
1668         if (tty)
1669                 kref_put(&tty->kref, queue_release_one_tty);
1670 }
1671 EXPORT_SYMBOL(tty_kref_put);
1672
1673 /**
1674  *      release_tty             -       release tty structure memory
1675  *
1676  *      Release both @tty and a possible linked partner (think pty pair),
1677  *      and decrement the refcount of the backing module.
1678  *
1679  *      Locking:
1680  *              tty_mutex
1681  *              takes the file list lock internally when working on the list
1682  *      of ttys that the driver keeps.
1683  *
1684  */
1685 static void release_tty(struct tty_struct *tty, int idx)
1686 {
1687         /* This should always be true but check for the moment */
1688         WARN_ON(tty->index != idx);
1689         WARN_ON(!mutex_is_locked(&tty_mutex));
1690         if (tty->ops->shutdown)
1691                 tty->ops->shutdown(tty);
1692         tty_free_termios(tty);
1693         tty_driver_remove_tty(tty->driver, tty);
1694         tty->port->itty = NULL;
1695         if (tty->link)
1696                 tty->link->port->itty = NULL;
1697         cancel_work_sync(&tty->port->buf.work);
1698
1699         tty_kref_put(tty->link);
1700         tty_kref_put(tty);
1701 }
1702
1703 /**
1704  *      tty_release_checks - check a tty before real release
1705  *      @tty: tty to check
1706  *      @o_tty: link of @tty (if any)
1707  *      @idx: index of the tty
1708  *
1709  *      Performs some paranoid checking before true release of the @tty.
1710  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1711  */
1712 static int tty_release_checks(struct tty_struct *tty, int idx)
1713 {
1714 #ifdef TTY_PARANOIA_CHECK
1715         if (idx < 0 || idx >= tty->driver->num) {
1716                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1717                                 __func__, tty->name);
1718                 return -1;
1719         }
1720
1721         /* not much to check for devpts */
1722         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723                 return 0;
1724
1725         if (tty != tty->driver->ttys[idx]) {
1726                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1727                                 __func__, idx, tty->name);
1728                 return -1;
1729         }
1730         if (tty->driver->other) {
1731                 struct tty_struct *o_tty = tty->link;
1732
1733                 if (o_tty != tty->driver->other->ttys[idx]) {
1734                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1735                                         __func__, idx, tty->name);
1736                         return -1;
1737                 }
1738                 if (o_tty->link != tty) {
1739                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1740                         return -1;
1741                 }
1742         }
1743 #endif
1744         return 0;
1745 }
1746
1747 /**
1748  *      tty_release             -       vfs callback for close
1749  *      @inode: inode of tty
1750  *      @filp: file pointer for handle to tty
1751  *
1752  *      Called the last time each file handle is closed that references
1753  *      this tty. There may however be several such references.
1754  *
1755  *      Locking:
1756  *              Takes bkl. See tty_release_dev
1757  *
1758  * Even releasing the tty structures is a tricky business.. We have
1759  * to be very careful that the structures are all released at the
1760  * same time, as interrupts might otherwise get the wrong pointers.
1761  *
1762  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763  * lead to double frees or releasing memory still in use.
1764  */
1765
1766 int tty_release(struct inode *inode, struct file *filp)
1767 {
1768         struct tty_struct *tty = file_tty(filp);
1769         struct tty_struct *o_tty = NULL;
1770         int     do_sleep, final;
1771         int     idx;
1772         char    buf[64];
1773         long    timeout = 0;
1774         int     once = 1;
1775
1776         if (tty_paranoia_check(tty, inode, __func__))
1777                 return 0;
1778
1779         tty_lock(tty);
1780         check_tty_count(tty, __func__);
1781
1782         __tty_fasync(-1, filp, 0);
1783
1784         idx = tty->index;
1785         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1786             tty->driver->subtype == PTY_TYPE_MASTER)
1787                 o_tty = tty->link;
1788
1789         if (tty_release_checks(tty, idx)) {
1790                 tty_unlock(tty);
1791                 return 0;
1792         }
1793
1794 #ifdef TTY_DEBUG_HANGUP
1795         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1796                         tty_name(tty, buf), tty->count);
1797 #endif
1798
1799         if (tty->ops->close)
1800                 tty->ops->close(tty, filp);
1801
1802         /* If tty is pty master, lock the slave pty (stable lock order) */
1803         tty_lock_slave(o_tty);
1804
1805         /*
1806          * Sanity check: if tty->count is going to zero, there shouldn't be
1807          * any waiters on tty->read_wait or tty->write_wait.  We test the
1808          * wait queues and kick everyone out _before_ actually starting to
1809          * close.  This ensures that we won't block while releasing the tty
1810          * structure.
1811          *
1812          * The test for the o_tty closing is necessary, since the master and
1813          * slave sides may close in any order.  If the slave side closes out
1814          * first, its count will be one, since the master side holds an open.
1815          * Thus this test wouldn't be triggered at the time the slave closed,
1816          * so we do it now.
1817          */
1818         while (1) {
1819                 do_sleep = 0;
1820
1821                 if (tty->count <= 1) {
1822                         if (waitqueue_active(&tty->read_wait)) {
1823                                 wake_up_poll(&tty->read_wait, POLLIN);
1824                                 do_sleep++;
1825                         }
1826                         if (waitqueue_active(&tty->write_wait)) {
1827                                 wake_up_poll(&tty->write_wait, POLLOUT);
1828                                 do_sleep++;
1829                         }
1830                 }
1831                 if (o_tty && o_tty->count <= 1) {
1832                         if (waitqueue_active(&o_tty->read_wait)) {
1833                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1834                                 do_sleep++;
1835                         }
1836                         if (waitqueue_active(&o_tty->write_wait)) {
1837                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1838                                 do_sleep++;
1839                         }
1840                 }
1841                 if (!do_sleep)
1842                         break;
1843
1844                 if (once) {
1845                         once = 0;
1846                         printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1847                                __func__, tty_name(tty, buf));
1848                 }
1849                 schedule_timeout_killable(timeout);
1850                 if (timeout < 120 * HZ)
1851                         timeout = 2 * timeout + 1;
1852                 else
1853                         timeout = MAX_SCHEDULE_TIMEOUT;
1854         }
1855
1856         if (o_tty) {
1857                 if (--o_tty->count < 0) {
1858                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1859                                 __func__, o_tty->count, tty_name(o_tty, buf));
1860                         o_tty->count = 0;
1861                 }
1862         }
1863         if (--tty->count < 0) {
1864                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1865                                 __func__, tty->count, tty_name(tty, buf));
1866                 tty->count = 0;
1867         }
1868
1869         /*
1870          * We've decremented tty->count, so we need to remove this file
1871          * descriptor off the tty->tty_files list; this serves two
1872          * purposes:
1873          *  - check_tty_count sees the correct number of file descriptors
1874          *    associated with this tty.
1875          *  - do_tty_hangup no longer sees this file descriptor as
1876          *    something that needs to be handled for hangups.
1877          */
1878         tty_del_file(filp);
1879
1880         /*
1881          * Perform some housekeeping before deciding whether to return.
1882          *
1883          * If _either_ side is closing, make sure there aren't any
1884          * processes that still think tty or o_tty is their controlling
1885          * tty.
1886          */
1887         if (!tty->count) {
1888                 read_lock(&tasklist_lock);
1889                 session_clear_tty(tty->session);
1890                 if (o_tty)
1891                         session_clear_tty(o_tty->session);
1892                 read_unlock(&tasklist_lock);
1893         }
1894
1895         /* check whether both sides are closing ... */
1896         final = !tty->count && !(o_tty && o_tty->count);
1897
1898         tty_unlock_slave(o_tty);
1899         tty_unlock(tty);
1900
1901         /* At this point, the tty->count == 0 should ensure a dead tty
1902            cannot be re-opened by a racing opener */
1903
1904         if (!final)
1905                 return 0;
1906
1907 #ifdef TTY_DEBUG_HANGUP
1908         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1909 #endif
1910         /*
1911          * Ask the line discipline code to release its structures
1912          */
1913         tty_ldisc_release(tty);
1914
1915         /* Wait for pending work before tty destruction commmences */
1916         tty_flush_works(tty);
1917
1918 #ifdef TTY_DEBUG_HANGUP
1919         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1920 #endif
1921         /*
1922          * The release_tty function takes care of the details of clearing
1923          * the slots and preserving the termios structure. The tty_unlock_pair
1924          * should be safe as we keep a kref while the tty is locked (so the
1925          * unlock never unlocks a freed tty).
1926          */
1927         mutex_lock(&tty_mutex);
1928         release_tty(tty, idx);
1929         mutex_unlock(&tty_mutex);
1930
1931         return 0;
1932 }
1933
1934 /**
1935  *      tty_open_current_tty - get locked tty of current task
1936  *      @device: device number
1937  *      @filp: file pointer to tty
1938  *      @return: locked tty of the current task iff @device is /dev/tty
1939  *
1940  *      Performs a re-open of the current task's controlling tty.
1941  *
1942  *      We cannot return driver and index like for the other nodes because
1943  *      devpts will not work then. It expects inodes to be from devpts FS.
1944  */
1945 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1946 {
1947         struct tty_struct *tty;
1948         int retval;
1949
1950         if (device != MKDEV(TTYAUX_MAJOR, 0))
1951                 return NULL;
1952
1953         tty = get_current_tty();
1954         if (!tty)
1955                 return ERR_PTR(-ENXIO);
1956
1957         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1958         /* noctty = 1; */
1959         tty_lock(tty);
1960         tty_kref_put(tty);      /* safe to drop the kref now */
1961
1962         retval = tty_reopen(tty);
1963         if (retval < 0) {
1964                 tty_unlock(tty);
1965                 tty = ERR_PTR(retval);
1966         }
1967         return tty;
1968 }
1969
1970 /**
1971  *      tty_lookup_driver - lookup a tty driver for a given device file
1972  *      @device: device number
1973  *      @filp: file pointer to tty
1974  *      @noctty: set if the device should not become a controlling tty
1975  *      @index: index for the device in the @return driver
1976  *      @return: driver for this inode (with increased refcount)
1977  *
1978  *      If @return is not erroneous, the caller is responsible to decrement the
1979  *      refcount by tty_driver_kref_put.
1980  *
1981  *      Locking: tty_mutex protects get_tty_driver
1982  */
1983 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1984                 int *noctty, int *index)
1985 {
1986         struct tty_driver *driver;
1987
1988         switch (device) {
1989 #ifdef CONFIG_VT
1990         case MKDEV(TTY_MAJOR, 0): {
1991                 extern struct tty_driver *console_driver;
1992                 driver = tty_driver_kref_get(console_driver);
1993                 *index = fg_console;
1994                 *noctty = 1;
1995                 break;
1996         }
1997 #endif
1998         case MKDEV(TTYAUX_MAJOR, 1): {
1999                 struct tty_driver *console_driver = console_device(index);
2000                 if (console_driver) {
2001                         driver = tty_driver_kref_get(console_driver);
2002                         if (driver) {
2003                                 /* Don't let /dev/console block */
2004                                 filp->f_flags |= O_NONBLOCK;
2005                                 *noctty = 1;
2006                                 break;
2007                         }
2008                 }
2009                 return ERR_PTR(-ENODEV);
2010         }
2011         default:
2012                 driver = get_tty_driver(device, index);
2013                 if (!driver)
2014                         return ERR_PTR(-ENODEV);
2015                 break;
2016         }
2017         return driver;
2018 }
2019
2020 /**
2021  *      tty_open                -       open a tty device
2022  *      @inode: inode of device file
2023  *      @filp: file pointer to tty
2024  *
2025  *      tty_open and tty_release keep up the tty count that contains the
2026  *      number of opens done on a tty. We cannot use the inode-count, as
2027  *      different inodes might point to the same tty.
2028  *
2029  *      Open-counting is needed for pty masters, as well as for keeping
2030  *      track of serial lines: DTR is dropped when the last close happens.
2031  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2032  *
2033  *      The termios state of a pty is reset on first open so that
2034  *      settings don't persist across reuse.
2035  *
2036  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2037  *               tty->count should protect the rest.
2038  *               ->siglock protects ->signal/->sighand
2039  *
2040  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2041  *      tty_mutex
2042  */
2043
2044 static int tty_open(struct inode *inode, struct file *filp)
2045 {
2046         struct tty_struct *tty;
2047         int noctty, retval;
2048         struct tty_driver *driver = NULL;
2049         int index;
2050         dev_t device = inode->i_rdev;
2051         unsigned saved_flags = filp->f_flags;
2052
2053         nonseekable_open(inode, filp);
2054
2055 retry_open:
2056         retval = tty_alloc_file(filp);
2057         if (retval)
2058                 return -ENOMEM;
2059
2060         noctty = filp->f_flags & O_NOCTTY;
2061         index  = -1;
2062         retval = 0;
2063
2064         tty = tty_open_current_tty(device, filp);
2065         if (!tty) {
2066                 mutex_lock(&tty_mutex);
2067                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2068                 if (IS_ERR(driver)) {
2069                         retval = PTR_ERR(driver);
2070                         goto err_unlock;
2071                 }
2072
2073                 /* check whether we're reopening an existing tty */
2074                 tty = tty_driver_lookup_tty(driver, inode, index);
2075                 if (IS_ERR(tty)) {
2076                         retval = PTR_ERR(tty);
2077                         goto err_unlock;
2078                 }
2079
2080                 if (tty) {
2081                         mutex_unlock(&tty_mutex);
2082                         tty_lock(tty);
2083                         /* safe to drop the kref from tty_driver_lookup_tty() */
2084                         tty_kref_put(tty);
2085                         retval = tty_reopen(tty);
2086                         if (retval < 0) {
2087                                 tty_unlock(tty);
2088                                 tty = ERR_PTR(retval);
2089                         }
2090                 } else { /* Returns with the tty_lock held for now */
2091                         tty = tty_init_dev(driver, index);
2092                         mutex_unlock(&tty_mutex);
2093                 }
2094
2095                 tty_driver_kref_put(driver);
2096         }
2097
2098         if (IS_ERR(tty)) {
2099                 retval = PTR_ERR(tty);
2100                 goto err_file;
2101         }
2102
2103         tty_add_file(tty, filp);
2104
2105         check_tty_count(tty, __func__);
2106         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2107             tty->driver->subtype == PTY_TYPE_MASTER)
2108                 noctty = 1;
2109 #ifdef TTY_DEBUG_HANGUP
2110         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2111 #endif
2112         if (tty->ops->open)
2113                 retval = tty->ops->open(tty, filp);
2114         else
2115                 retval = -ENODEV;
2116         filp->f_flags = saved_flags;
2117
2118         if (retval) {
2119 #ifdef TTY_DEBUG_HANGUP
2120                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2121                                 retval, tty->name);
2122 #endif
2123                 tty_unlock(tty); /* need to call tty_release without BTM */
2124                 tty_release(inode, filp);
2125                 if (retval != -ERESTARTSYS)
2126                         return retval;
2127
2128                 if (signal_pending(current))
2129                         return retval;
2130
2131                 schedule();
2132                 /*
2133                  * Need to reset f_op in case a hangup happened.
2134                  */
2135                 if (tty_hung_up_p(filp))
2136                         filp->f_op = &tty_fops;
2137                 goto retry_open;
2138         }
2139         clear_bit(TTY_HUPPED, &tty->flags);
2140
2141
2142         read_lock(&tasklist_lock);
2143         spin_lock_irq(&current->sighand->siglock);
2144         if (!noctty &&
2145             current->signal->leader &&
2146             !current->signal->tty &&
2147             tty->session == NULL)
2148                 __proc_set_tty(tty);
2149         spin_unlock_irq(&current->sighand->siglock);
2150         read_unlock(&tasklist_lock);
2151         tty_unlock(tty);
2152         return 0;
2153 err_unlock:
2154         mutex_unlock(&tty_mutex);
2155         /* after locks to avoid deadlock */
2156         if (!IS_ERR_OR_NULL(driver))
2157                 tty_driver_kref_put(driver);
2158 err_file:
2159         tty_free_file(filp);
2160         return retval;
2161 }
2162
2163
2164
2165 /**
2166  *      tty_poll        -       check tty status
2167  *      @filp: file being polled
2168  *      @wait: poll wait structures to update
2169  *
2170  *      Call the line discipline polling method to obtain the poll
2171  *      status of the device.
2172  *
2173  *      Locking: locks called line discipline but ldisc poll method
2174  *      may be re-entered freely by other callers.
2175  */
2176
2177 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2178 {
2179         struct tty_struct *tty = file_tty(filp);
2180         struct tty_ldisc *ld;
2181         int ret = 0;
2182
2183         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2184                 return 0;
2185
2186         ld = tty_ldisc_ref_wait(tty);
2187         if (ld->ops->poll)
2188                 ret = ld->ops->poll(tty, filp, wait);
2189         tty_ldisc_deref(ld);
2190         return ret;
2191 }
2192
2193 static int __tty_fasync(int fd, struct file *filp, int on)
2194 {
2195         struct tty_struct *tty = file_tty(filp);
2196         struct tty_ldisc *ldisc;
2197         unsigned long flags;
2198         int retval = 0;
2199
2200         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2201                 goto out;
2202
2203         retval = fasync_helper(fd, filp, on, &tty->fasync);
2204         if (retval <= 0)
2205                 goto out;
2206
2207         ldisc = tty_ldisc_ref(tty);
2208         if (ldisc) {
2209                 if (ldisc->ops->fasync)
2210                         ldisc->ops->fasync(tty, on);
2211                 tty_ldisc_deref(ldisc);
2212         }
2213
2214         if (on) {
2215                 enum pid_type type;
2216                 struct pid *pid;
2217
2218                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2219                 if (tty->pgrp) {
2220                         pid = tty->pgrp;
2221                         type = PIDTYPE_PGID;
2222                 } else {
2223                         pid = task_pid(current);
2224                         type = PIDTYPE_PID;
2225                 }
2226                 get_pid(pid);
2227                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2228                 __f_setown(filp, pid, type, 0);
2229                 put_pid(pid);
2230                 retval = 0;
2231         }
2232 out:
2233         return retval;
2234 }
2235
2236 static int tty_fasync(int fd, struct file *filp, int on)
2237 {
2238         struct tty_struct *tty = file_tty(filp);
2239         int retval;
2240
2241         tty_lock(tty);
2242         retval = __tty_fasync(fd, filp, on);
2243         tty_unlock(tty);
2244
2245         return retval;
2246 }
2247
2248 /**
2249  *      tiocsti                 -       fake input character
2250  *      @tty: tty to fake input into
2251  *      @p: pointer to character
2252  *
2253  *      Fake input to a tty device. Does the necessary locking and
2254  *      input management.
2255  *
2256  *      FIXME: does not honour flow control ??
2257  *
2258  *      Locking:
2259  *              Called functions take tty_ldiscs_lock
2260  *              current->signal->tty check is safe without locks
2261  *
2262  *      FIXME: may race normal receive processing
2263  */
2264
2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267         char ch, mbz = 0;
2268         struct tty_ldisc *ld;
2269
2270         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271                 return -EPERM;
2272         if (get_user(ch, p))
2273                 return -EFAULT;
2274         tty_audit_tiocsti(tty, ch);
2275         ld = tty_ldisc_ref_wait(tty);
2276         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2277         tty_ldisc_deref(ld);
2278         return 0;
2279 }
2280
2281 /**
2282  *      tiocgwinsz              -       implement window query ioctl
2283  *      @tty; tty
2284  *      @arg: user buffer for result
2285  *
2286  *      Copies the kernel idea of the window size into the user buffer.
2287  *
2288  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2289  *              is consistent.
2290  */
2291
2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2293 {
2294         int err;
2295
2296         mutex_lock(&tty->winsize_mutex);
2297         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2298         mutex_unlock(&tty->winsize_mutex);
2299
2300         return err ? -EFAULT: 0;
2301 }
2302
2303 /**
2304  *      tty_do_resize           -       resize event
2305  *      @tty: tty being resized
2306  *      @rows: rows (character)
2307  *      @cols: cols (character)
2308  *
2309  *      Update the termios variables and send the necessary signals to
2310  *      peform a terminal resize correctly
2311  */
2312
2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2314 {
2315         struct pid *pgrp;
2316
2317         /* Lock the tty */
2318         mutex_lock(&tty->winsize_mutex);
2319         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2320                 goto done;
2321
2322         /* Signal the foreground process group */
2323         pgrp = tty_get_pgrp(tty);
2324         if (pgrp)
2325                 kill_pgrp(pgrp, SIGWINCH, 1);
2326         put_pid(pgrp);
2327
2328         tty->winsize = *ws;
2329 done:
2330         mutex_unlock(&tty->winsize_mutex);
2331         return 0;
2332 }
2333 EXPORT_SYMBOL(tty_do_resize);
2334
2335 /**
2336  *      tiocswinsz              -       implement window size set ioctl
2337  *      @tty; tty side of tty
2338  *      @arg: user buffer for result
2339  *
2340  *      Copies the user idea of the window size to the kernel. Traditionally
2341  *      this is just advisory information but for the Linux console it
2342  *      actually has driver level meaning and triggers a VC resize.
2343  *
2344  *      Locking:
2345  *              Driver dependent. The default do_resize method takes the
2346  *      tty termios mutex and ctrl_lock. The console takes its own lock
2347  *      then calls into the default method.
2348  */
2349
2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2351 {
2352         struct winsize tmp_ws;
2353         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2354                 return -EFAULT;
2355
2356         if (tty->ops->resize)
2357                 return tty->ops->resize(tty, &tmp_ws);
2358         else
2359                 return tty_do_resize(tty, &tmp_ws);
2360 }
2361
2362 /**
2363  *      tioccons        -       allow admin to move logical console
2364  *      @file: the file to become console
2365  *
2366  *      Allow the administrator to move the redirected console device
2367  *
2368  *      Locking: uses redirect_lock to guard the redirect information
2369  */
2370
2371 static int tioccons(struct file *file)
2372 {
2373         if (!capable(CAP_SYS_ADMIN))
2374                 return -EPERM;
2375         if (file->f_op->write == redirected_tty_write) {
2376                 struct file *f;
2377                 spin_lock(&redirect_lock);
2378                 f = redirect;
2379                 redirect = NULL;
2380                 spin_unlock(&redirect_lock);
2381                 if (f)
2382                         fput(f);
2383                 return 0;
2384         }
2385         spin_lock(&redirect_lock);
2386         if (redirect) {
2387                 spin_unlock(&redirect_lock);
2388                 return -EBUSY;
2389         }
2390         redirect = get_file(file);
2391         spin_unlock(&redirect_lock);
2392         return 0;
2393 }
2394
2395 /**
2396  *      fionbio         -       non blocking ioctl
2397  *      @file: file to set blocking value
2398  *      @p: user parameter
2399  *
2400  *      Historical tty interfaces had a blocking control ioctl before
2401  *      the generic functionality existed. This piece of history is preserved
2402  *      in the expected tty API of posix OS's.
2403  *
2404  *      Locking: none, the open file handle ensures it won't go away.
2405  */
2406
2407 static int fionbio(struct file *file, int __user *p)
2408 {
2409         int nonblock;
2410
2411         if (get_user(nonblock, p))
2412                 return -EFAULT;
2413
2414         spin_lock(&file->f_lock);
2415         if (nonblock)
2416                 file->f_flags |= O_NONBLOCK;
2417         else
2418                 file->f_flags &= ~O_NONBLOCK;
2419         spin_unlock(&file->f_lock);
2420         return 0;
2421 }
2422
2423 /**
2424  *      tiocsctty       -       set controlling tty
2425  *      @tty: tty structure
2426  *      @arg: user argument
2427  *
2428  *      This ioctl is used to manage job control. It permits a session
2429  *      leader to set this tty as the controlling tty for the session.
2430  *
2431  *      Locking:
2432  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2433  *              Takes tasklist_lock internally to walk sessions
2434  *              Takes ->siglock() when updating signal->tty
2435  */
2436
2437 static int tiocsctty(struct tty_struct *tty, int arg)
2438 {
2439         int ret = 0;
2440
2441         tty_lock(tty);
2442         read_lock(&tasklist_lock);
2443
2444         if (current->signal->leader && (task_session(current) == tty->session))
2445                 goto unlock;
2446
2447         /*
2448          * The process must be a session leader and
2449          * not have a controlling tty already.
2450          */
2451         if (!current->signal->leader || current->signal->tty) {
2452                 ret = -EPERM;
2453                 goto unlock;
2454         }
2455
2456         if (tty->session) {
2457                 /*
2458                  * This tty is already the controlling
2459                  * tty for another session group!
2460                  */
2461                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2462                         /*
2463                          * Steal it away
2464                          */
2465                         session_clear_tty(tty->session);
2466                 } else {
2467                         ret = -EPERM;
2468                         goto unlock;
2469                 }
2470         }
2471         proc_set_tty(tty);
2472 unlock:
2473         read_unlock(&tasklist_lock);
2474         tty_unlock(tty);
2475         return ret;
2476 }
2477
2478 /**
2479  *      tty_get_pgrp    -       return a ref counted pgrp pid
2480  *      @tty: tty to read
2481  *
2482  *      Returns a refcounted instance of the pid struct for the process
2483  *      group controlling the tty.
2484  */
2485
2486 struct pid *tty_get_pgrp(struct tty_struct *tty)
2487 {
2488         unsigned long flags;
2489         struct pid *pgrp;
2490
2491         spin_lock_irqsave(&tty->ctrl_lock, flags);
2492         pgrp = get_pid(tty->pgrp);
2493         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2494
2495         return pgrp;
2496 }
2497 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2498
2499 /*
2500  * This checks not only the pgrp, but falls back on the pid if no
2501  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2502  * without this...
2503  *
2504  * The caller must hold rcu lock or the tasklist lock.
2505  */
2506 static struct pid *session_of_pgrp(struct pid *pgrp)
2507 {
2508         struct task_struct *p;
2509         struct pid *sid = NULL;
2510
2511         p = pid_task(pgrp, PIDTYPE_PGID);
2512         if (p == NULL)
2513                 p = pid_task(pgrp, PIDTYPE_PID);
2514         if (p != NULL)
2515                 sid = task_session(p);
2516
2517         return sid;
2518 }
2519
2520 /**
2521  *      tiocgpgrp               -       get process group
2522  *      @tty: tty passed by user
2523  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2524  *      @p: returned pid
2525  *
2526  *      Obtain the process group of the tty. If there is no process group
2527  *      return an error.
2528  *
2529  *      Locking: none. Reference to current->signal->tty is safe.
2530  */
2531
2532 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2533 {
2534         struct pid *pid;
2535         int ret;
2536         /*
2537          * (tty == real_tty) is a cheap way of
2538          * testing if the tty is NOT a master pty.
2539          */
2540         if (tty == real_tty && current->signal->tty != real_tty)
2541                 return -ENOTTY;
2542         pid = tty_get_pgrp(real_tty);
2543         ret =  put_user(pid_vnr(pid), p);
2544         put_pid(pid);
2545         return ret;
2546 }
2547
2548 /**
2549  *      tiocspgrp               -       attempt to set process group
2550  *      @tty: tty passed by user
2551  *      @real_tty: tty side device matching tty passed by user
2552  *      @p: pid pointer
2553  *
2554  *      Set the process group of the tty to the session passed. Only
2555  *      permitted where the tty session is our session.
2556  *
2557  *      Locking: RCU, ctrl lock
2558  */
2559
2560 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561 {
2562         struct pid *pgrp;
2563         pid_t pgrp_nr;
2564         int retval = tty_check_change(real_tty);
2565         unsigned long flags;
2566
2567         if (retval == -EIO)
2568                 return -ENOTTY;
2569         if (retval)
2570                 return retval;
2571         if (!current->signal->tty ||
2572             (current->signal->tty != real_tty) ||
2573             (real_tty->session != task_session(current)))
2574                 return -ENOTTY;
2575         if (get_user(pgrp_nr, p))
2576                 return -EFAULT;
2577         if (pgrp_nr < 0)
2578                 return -EINVAL;
2579         rcu_read_lock();
2580         pgrp = find_vpid(pgrp_nr);
2581         retval = -ESRCH;
2582         if (!pgrp)
2583                 goto out_unlock;
2584         retval = -EPERM;
2585         if (session_of_pgrp(pgrp) != task_session(current))
2586                 goto out_unlock;
2587         retval = 0;
2588         spin_lock_irqsave(&tty->ctrl_lock, flags);
2589         put_pid(real_tty->pgrp);
2590         real_tty->pgrp = get_pid(pgrp);
2591         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2592 out_unlock:
2593         rcu_read_unlock();
2594         return retval;
2595 }
2596
2597 /**
2598  *      tiocgsid                -       get session id
2599  *      @tty: tty passed by user
2600  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2601  *      @p: pointer to returned session id
2602  *
2603  *      Obtain the session id of the tty. If there is no session
2604  *      return an error.
2605  *
2606  *      Locking: none. Reference to current->signal->tty is safe.
2607  */
2608
2609 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2610 {
2611         /*
2612          * (tty == real_tty) is a cheap way of
2613          * testing if the tty is NOT a master pty.
2614         */
2615         if (tty == real_tty && current->signal->tty != real_tty)
2616                 return -ENOTTY;
2617         if (!real_tty->session)
2618                 return -ENOTTY;
2619         return put_user(pid_vnr(real_tty->session), p);
2620 }
2621
2622 /**
2623  *      tiocsetd        -       set line discipline
2624  *      @tty: tty device
2625  *      @p: pointer to user data
2626  *
2627  *      Set the line discipline according to user request.
2628  *
2629  *      Locking: see tty_set_ldisc, this function is just a helper
2630  */
2631
2632 static int tiocsetd(struct tty_struct *tty, int __user *p)
2633 {
2634         int ldisc;
2635         int ret;
2636
2637         if (get_user(ldisc, p))
2638                 return -EFAULT;
2639
2640         ret = tty_set_ldisc(tty, ldisc);
2641
2642         return ret;
2643 }
2644
2645 /**
2646  *      send_break      -       performed time break
2647  *      @tty: device to break on
2648  *      @duration: timeout in mS
2649  *
2650  *      Perform a timed break on hardware that lacks its own driver level
2651  *      timed break functionality.
2652  *
2653  *      Locking:
2654  *              atomic_write_lock serializes
2655  *
2656  */
2657
2658 static int send_break(struct tty_struct *tty, unsigned int duration)
2659 {
2660         int retval;
2661
2662         if (tty->ops->break_ctl == NULL)
2663                 return 0;
2664
2665         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2666                 retval = tty->ops->break_ctl(tty, duration);
2667         else {
2668                 /* Do the work ourselves */
2669                 if (tty_write_lock(tty, 0) < 0)
2670                         return -EINTR;
2671                 retval = tty->ops->break_ctl(tty, -1);
2672                 if (retval)
2673                         goto out;
2674                 if (!signal_pending(current))
2675                         msleep_interruptible(duration);
2676                 retval = tty->ops->break_ctl(tty, 0);
2677 out:
2678                 tty_write_unlock(tty);
2679                 if (signal_pending(current))
2680                         retval = -EINTR;
2681         }
2682         return retval;
2683 }
2684
2685 /**
2686  *      tty_tiocmget            -       get modem status
2687  *      @tty: tty device
2688  *      @file: user file pointer
2689  *      @p: pointer to result
2690  *
2691  *      Obtain the modem status bits from the tty driver if the feature
2692  *      is supported. Return -EINVAL if it is not available.
2693  *
2694  *      Locking: none (up to the driver)
2695  */
2696
2697 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2698 {
2699         int retval = -EINVAL;
2700
2701         if (tty->ops->tiocmget) {
2702                 retval = tty->ops->tiocmget(tty);
2703
2704                 if (retval >= 0)
2705                         retval = put_user(retval, p);
2706         }
2707         return retval;
2708 }
2709
2710 /**
2711  *      tty_tiocmset            -       set modem status
2712  *      @tty: tty device
2713  *      @cmd: command - clear bits, set bits or set all
2714  *      @p: pointer to desired bits
2715  *
2716  *      Set the modem status bits from the tty driver if the feature
2717  *      is supported. Return -EINVAL if it is not available.
2718  *
2719  *      Locking: none (up to the driver)
2720  */
2721
2722 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2723              unsigned __user *p)
2724 {
2725         int retval;
2726         unsigned int set, clear, val;
2727
2728         if (tty->ops->tiocmset == NULL)
2729                 return -EINVAL;
2730
2731         retval = get_user(val, p);
2732         if (retval)
2733                 return retval;
2734         set = clear = 0;
2735         switch (cmd) {
2736         case TIOCMBIS:
2737                 set = val;
2738                 break;
2739         case TIOCMBIC:
2740                 clear = val;
2741                 break;
2742         case TIOCMSET:
2743                 set = val;
2744                 clear = ~val;
2745                 break;
2746         }
2747         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2748         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2749         return tty->ops->tiocmset(tty, set, clear);
2750 }
2751
2752 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2753 {
2754         int retval = -EINVAL;
2755         struct serial_icounter_struct icount;
2756         memset(&icount, 0, sizeof(icount));
2757         if (tty->ops->get_icount)
2758                 retval = tty->ops->get_icount(tty, &icount);
2759         if (retval != 0)
2760                 return retval;
2761         if (copy_to_user(arg, &icount, sizeof(icount)))
2762                 return -EFAULT;
2763         return 0;
2764 }
2765
2766 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2767 {
2768         static DEFINE_RATELIMIT_STATE(depr_flags,
2769                         DEFAULT_RATELIMIT_INTERVAL,
2770                         DEFAULT_RATELIMIT_BURST);
2771         char comm[TASK_COMM_LEN];
2772         int flags;
2773
2774         if (get_user(flags, &ss->flags))
2775                 return;
2776
2777         flags &= ASYNC_DEPRECATED;
2778
2779         if (flags && __ratelimit(&depr_flags))
2780                 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2781                                 __func__, get_task_comm(comm, current), flags);
2782 }
2783
2784 /*
2785  * if pty, return the slave side (real_tty)
2786  * otherwise, return self
2787  */
2788 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2789 {
2790         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2791             tty->driver->subtype == PTY_TYPE_MASTER)
2792                 tty = tty->link;
2793         return tty;
2794 }
2795
2796 /*
2797  * Split this up, as gcc can choke on it otherwise..
2798  */
2799 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2800 {
2801         struct tty_struct *tty = file_tty(file);
2802         struct tty_struct *real_tty;
2803         void __user *p = (void __user *)arg;
2804         int retval;
2805         struct tty_ldisc *ld;
2806
2807         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2808                 return -EINVAL;
2809
2810         real_tty = tty_pair_get_tty(tty);
2811
2812         /*
2813          * Factor out some common prep work
2814          */
2815         switch (cmd) {
2816         case TIOCSETD:
2817         case TIOCSBRK:
2818         case TIOCCBRK:
2819         case TCSBRK:
2820         case TCSBRKP:
2821                 retval = tty_check_change(tty);
2822                 if (retval)
2823                         return retval;
2824                 if (cmd != TIOCCBRK) {
2825                         tty_wait_until_sent(tty, 0);
2826                         if (signal_pending(current))
2827                                 return -EINTR;
2828                 }
2829                 break;
2830         }
2831
2832         /*
2833          *      Now do the stuff.
2834          */
2835         switch (cmd) {
2836         case TIOCSTI:
2837                 return tiocsti(tty, p);
2838         case TIOCGWINSZ:
2839                 return tiocgwinsz(real_tty, p);
2840         case TIOCSWINSZ:
2841                 return tiocswinsz(real_tty, p);
2842         case TIOCCONS:
2843                 return real_tty != tty ? -EINVAL : tioccons(file);
2844         case FIONBIO:
2845                 return fionbio(file, p);
2846         case TIOCEXCL:
2847                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2848                 return 0;
2849         case TIOCNXCL:
2850                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2851                 return 0;
2852         case TIOCGEXCL:
2853         {
2854                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2855                 return put_user(excl, (int __user *)p);
2856         }
2857         case TIOCNOTTY:
2858                 if (current->signal->tty != tty)
2859                         return -ENOTTY;
2860                 no_tty();
2861                 return 0;
2862         case TIOCSCTTY:
2863                 return tiocsctty(tty, arg);
2864         case TIOCGPGRP:
2865                 return tiocgpgrp(tty, real_tty, p);
2866         case TIOCSPGRP:
2867                 return tiocspgrp(tty, real_tty, p);
2868         case TIOCGSID:
2869                 return tiocgsid(tty, real_tty, p);
2870         case TIOCGETD:
2871                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2872         case TIOCSETD:
2873                 return tiocsetd(tty, p);
2874         case TIOCVHANGUP:
2875                 if (!capable(CAP_SYS_ADMIN))
2876                         return -EPERM;
2877                 tty_vhangup(tty);
2878                 return 0;
2879         case TIOCGDEV:
2880         {
2881                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2882                 return put_user(ret, (unsigned int __user *)p);
2883         }
2884         /*
2885          * Break handling
2886          */
2887         case TIOCSBRK:  /* Turn break on, unconditionally */
2888                 if (tty->ops->break_ctl)
2889                         return tty->ops->break_ctl(tty, -1);
2890                 return 0;
2891         case TIOCCBRK:  /* Turn break off, unconditionally */
2892                 if (tty->ops->break_ctl)
2893                         return tty->ops->break_ctl(tty, 0);
2894                 return 0;
2895         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2896                 /* non-zero arg means wait for all output data
2897                  * to be sent (performed above) but don't send break.
2898                  * This is used by the tcdrain() termios function.
2899                  */
2900                 if (!arg)
2901                         return send_break(tty, 250);
2902                 return 0;
2903         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2904                 return send_break(tty, arg ? arg*100 : 250);
2905
2906         case TIOCMGET:
2907                 return tty_tiocmget(tty, p);
2908         case TIOCMSET:
2909         case TIOCMBIC:
2910         case TIOCMBIS:
2911                 return tty_tiocmset(tty, cmd, p);
2912         case TIOCGICOUNT:
2913                 retval = tty_tiocgicount(tty, p);
2914                 /* For the moment allow fall through to the old method */
2915                 if (retval != -EINVAL)
2916                         return retval;
2917                 break;
2918         case TCFLSH:
2919                 switch (arg) {
2920                 case TCIFLUSH:
2921                 case TCIOFLUSH:
2922                 /* flush tty buffer and allow ldisc to process ioctl */
2923                         tty_buffer_flush(tty, NULL);
2924                         break;
2925                 }
2926                 break;
2927         case TIOCSSERIAL:
2928                 tty_warn_deprecated_flags(p);
2929                 break;
2930         }
2931         if (tty->ops->ioctl) {
2932                 retval = tty->ops->ioctl(tty, cmd, arg);
2933                 if (retval != -ENOIOCTLCMD)
2934                         return retval;
2935         }
2936         ld = tty_ldisc_ref_wait(tty);
2937         retval = -EINVAL;
2938         if (ld->ops->ioctl) {
2939                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2940                 if (retval == -ENOIOCTLCMD)
2941                         retval = -ENOTTY;
2942         }
2943         tty_ldisc_deref(ld);
2944         return retval;
2945 }
2946
2947 #ifdef CONFIG_COMPAT
2948 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2949                                 unsigned long arg)
2950 {
2951         struct tty_struct *tty = file_tty(file);
2952         struct tty_ldisc *ld;
2953         int retval = -ENOIOCTLCMD;
2954
2955         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2956                 return -EINVAL;
2957
2958         if (tty->ops->compat_ioctl) {
2959                 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2960                 if (retval != -ENOIOCTLCMD)
2961                         return retval;
2962         }
2963
2964         ld = tty_ldisc_ref_wait(tty);
2965         if (ld->ops->compat_ioctl)
2966                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2967         else
2968                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2969         tty_ldisc_deref(ld);
2970
2971         return retval;
2972 }
2973 #endif
2974
2975 static int this_tty(const void *t, struct file *file, unsigned fd)
2976 {
2977         if (likely(file->f_op->read != tty_read))
2978                 return 0;
2979         return file_tty(file) != t ? 0 : fd + 1;
2980 }
2981         
2982 /*
2983  * This implements the "Secure Attention Key" ---  the idea is to
2984  * prevent trojan horses by killing all processes associated with this
2985  * tty when the user hits the "Secure Attention Key".  Required for
2986  * super-paranoid applications --- see the Orange Book for more details.
2987  *
2988  * This code could be nicer; ideally it should send a HUP, wait a few
2989  * seconds, then send a INT, and then a KILL signal.  But you then
2990  * have to coordinate with the init process, since all processes associated
2991  * with the current tty must be dead before the new getty is allowed
2992  * to spawn.
2993  *
2994  * Now, if it would be correct ;-/ The current code has a nasty hole -
2995  * it doesn't catch files in flight. We may send the descriptor to ourselves
2996  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2997  *
2998  * Nasty bug: do_SAK is being called in interrupt context.  This can
2999  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3000  */
3001 void __do_SAK(struct tty_struct *tty)
3002 {
3003 #ifdef TTY_SOFT_SAK
3004         tty_hangup(tty);
3005 #else
3006         struct task_struct *g, *p;
3007         struct pid *session;
3008         int             i;
3009
3010         if (!tty)
3011                 return;
3012         session = tty->session;
3013
3014         tty_ldisc_flush(tty);
3015
3016         tty_driver_flush_buffer(tty);
3017
3018         read_lock(&tasklist_lock);
3019         /* Kill the entire session */
3020         do_each_pid_task(session, PIDTYPE_SID, p) {
3021                 printk(KERN_NOTICE "SAK: killed process %d"
3022                         " (%s): task_session(p)==tty->session\n",
3023                         task_pid_nr(p), p->comm);
3024                 send_sig(SIGKILL, p, 1);
3025         } while_each_pid_task(session, PIDTYPE_SID, p);
3026         /* Now kill any processes that happen to have the
3027          * tty open.
3028          */
3029         do_each_thread(g, p) {
3030                 if (p->signal->tty == tty) {
3031                         printk(KERN_NOTICE "SAK: killed process %d"
3032                             " (%s): task_session(p)==tty->session\n",
3033                             task_pid_nr(p), p->comm);
3034                         send_sig(SIGKILL, p, 1);
3035                         continue;
3036                 }
3037                 task_lock(p);
3038                 i = iterate_fd(p->files, 0, this_tty, tty);
3039                 if (i != 0) {
3040                         printk(KERN_NOTICE "SAK: killed process %d"
3041                             " (%s): fd#%d opened to the tty\n",
3042                                     task_pid_nr(p), p->comm, i - 1);
3043                         force_sig(SIGKILL, p);
3044                 }
3045                 task_unlock(p);
3046         } while_each_thread(g, p);
3047         read_unlock(&tasklist_lock);
3048 #endif
3049 }
3050
3051 static void do_SAK_work(struct work_struct *work)
3052 {
3053         struct tty_struct *tty =
3054                 container_of(work, struct tty_struct, SAK_work);
3055         __do_SAK(tty);
3056 }
3057
3058 /*
3059  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3060  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3061  * the values which we write to it will be identical to the values which it
3062  * already has. --akpm
3063  */
3064 void do_SAK(struct tty_struct *tty)
3065 {
3066         if (!tty)
3067                 return;
3068         schedule_work(&tty->SAK_work);
3069 }
3070
3071 EXPORT_SYMBOL(do_SAK);
3072
3073 static int dev_match_devt(struct device *dev, const void *data)
3074 {
3075         const dev_t *devt = data;
3076         return dev->devt == *devt;
3077 }
3078
3079 /* Must put_device() after it's unused! */
3080 static struct device *tty_get_device(struct tty_struct *tty)
3081 {
3082         dev_t devt = tty_devnum(tty);
3083         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3084 }
3085
3086
3087 /**
3088  *      alloc_tty_struct
3089  *
3090  *      This subroutine allocates and initializes a tty structure.
3091  *
3092  *      Locking: none - tty in question is not exposed at this point
3093  */
3094
3095 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3096 {
3097         struct tty_struct *tty;
3098
3099         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3100         if (!tty)
3101                 return NULL;
3102
3103         kref_init(&tty->kref);
3104         tty->magic = TTY_MAGIC;
3105         tty_ldisc_init(tty);
3106         tty->session = NULL;
3107         tty->pgrp = NULL;
3108         mutex_init(&tty->legacy_mutex);
3109         mutex_init(&tty->throttle_mutex);
3110         init_rwsem(&tty->termios_rwsem);
3111         mutex_init(&tty->winsize_mutex);
3112         init_ldsem(&tty->ldisc_sem);
3113         init_waitqueue_head(&tty->write_wait);
3114         init_waitqueue_head(&tty->read_wait);
3115         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3116         mutex_init(&tty->atomic_write_lock);
3117         spin_lock_init(&tty->ctrl_lock);
3118         spin_lock_init(&tty->flow_lock);
3119         INIT_LIST_HEAD(&tty->tty_files);
3120         INIT_WORK(&tty->SAK_work, do_SAK_work);
3121
3122         tty->driver = driver;
3123         tty->ops = driver->ops;
3124         tty->index = idx;
3125         tty_line_name(driver, idx, tty->name);
3126         tty->dev = tty_get_device(tty);
3127
3128         return tty;
3129 }
3130
3131 /**
3132  *      deinitialize_tty_struct
3133  *      @tty: tty to deinitialize
3134  *
3135  *      This subroutine deinitializes a tty structure that has been newly
3136  *      allocated but tty_release cannot be called on that yet.
3137  *
3138  *      Locking: none - tty in question must not be exposed at this point
3139  */
3140 void deinitialize_tty_struct(struct tty_struct *tty)
3141 {
3142         tty_ldisc_deinit(tty);
3143 }
3144
3145 /**
3146  *      tty_put_char    -       write one character to a tty
3147  *      @tty: tty
3148  *      @ch: character
3149  *
3150  *      Write one byte to the tty using the provided put_char method
3151  *      if present. Returns the number of characters successfully output.
3152  *
3153  *      Note: the specific put_char operation in the driver layer may go
3154  *      away soon. Don't call it directly, use this method
3155  */
3156
3157 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3158 {
3159         if (tty->ops->put_char)
3160                 return tty->ops->put_char(tty, ch);
3161         return tty->ops->write(tty, &ch, 1);
3162 }
3163 EXPORT_SYMBOL_GPL(tty_put_char);
3164
3165 struct class *tty_class;
3166
3167 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3168                 unsigned int index, unsigned int count)
3169 {
3170         /* init here, since reused cdevs cause crashes */
3171         cdev_init(&driver->cdevs[index], &tty_fops);
3172         driver->cdevs[index].owner = driver->owner;
3173         return cdev_add(&driver->cdevs[index], dev, count);
3174 }
3175
3176 /**
3177  *      tty_register_device - register a tty device
3178  *      @driver: the tty driver that describes the tty device
3179  *      @index: the index in the tty driver for this tty device
3180  *      @device: a struct device that is associated with this tty device.
3181  *              This field is optional, if there is no known struct device
3182  *              for this tty device it can be set to NULL safely.
3183  *
3184  *      Returns a pointer to the struct device for this tty device
3185  *      (or ERR_PTR(-EFOO) on error).
3186  *
3187  *      This call is required to be made to register an individual tty device
3188  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3189  *      that bit is not set, this function should not be called by a tty
3190  *      driver.
3191  *
3192  *      Locking: ??
3193  */
3194
3195 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3196                                    struct device *device)
3197 {
3198         return tty_register_device_attr(driver, index, device, NULL, NULL);
3199 }
3200 EXPORT_SYMBOL(tty_register_device);
3201
3202 static void tty_device_create_release(struct device *dev)
3203 {
3204         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3205         kfree(dev);
3206 }
3207
3208 /**
3209  *      tty_register_device_attr - register a tty device
3210  *      @driver: the tty driver that describes the tty device
3211  *      @index: the index in the tty driver for this tty device
3212  *      @device: a struct device that is associated with this tty device.
3213  *              This field is optional, if there is no known struct device
3214  *              for this tty device it can be set to NULL safely.
3215  *      @drvdata: Driver data to be set to device.
3216  *      @attr_grp: Attribute group to be set on device.
3217  *
3218  *      Returns a pointer to the struct device for this tty device
3219  *      (or ERR_PTR(-EFOO) on error).
3220  *
3221  *      This call is required to be made to register an individual tty device
3222  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3223  *      that bit is not set, this function should not be called by a tty
3224  *      driver.
3225  *
3226  *      Locking: ??
3227  */
3228 struct device *tty_register_device_attr(struct tty_driver *driver,
3229                                    unsigned index, struct device *device,
3230                                    void *drvdata,
3231                                    const struct attribute_group **attr_grp)
3232 {
3233         char name[64];
3234         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3235         struct device *dev = NULL;
3236         int retval = -ENODEV;
3237         bool cdev = false;
3238
3239         if (index >= driver->num) {
3240                 printk(KERN_ERR "Attempt to register invalid tty line number "
3241                        " (%d).\n", index);
3242                 return ERR_PTR(-EINVAL);
3243         }
3244
3245         if (driver->type == TTY_DRIVER_TYPE_PTY)
3246                 pty_line_name(driver, index, name);
3247         else
3248                 tty_line_name(driver, index, name);
3249
3250         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3251                 retval = tty_cdev_add(driver, devt, index, 1);
3252                 if (retval)
3253                         goto error;
3254                 cdev = true;
3255         }
3256
3257         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3258         if (!dev) {
3259                 retval = -ENOMEM;
3260                 goto error;
3261         }
3262
3263         dev->devt = devt;
3264         dev->class = tty_class;
3265         dev->parent = device;
3266         dev->release = tty_device_create_release;
3267         dev_set_name(dev, "%s", name);
3268         dev->groups = attr_grp;
3269         dev_set_drvdata(dev, drvdata);
3270
3271         retval = device_register(dev);
3272         if (retval)
3273                 goto error;
3274
3275         return dev;
3276
3277 error:
3278         put_device(dev);
3279         if (cdev)
3280                 cdev_del(&driver->cdevs[index]);
3281         return ERR_PTR(retval);
3282 }
3283 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3284
3285 /**
3286  *      tty_unregister_device - unregister a tty device
3287  *      @driver: the tty driver that describes the tty device
3288  *      @index: the index in the tty driver for this tty device
3289  *
3290  *      If a tty device is registered with a call to tty_register_device() then
3291  *      this function must be called when the tty device is gone.
3292  *
3293  *      Locking: ??
3294  */
3295
3296 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3297 {
3298         device_destroy(tty_class,
3299                 MKDEV(driver->major, driver->minor_start) + index);
3300         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3301                 cdev_del(&driver->cdevs[index]);
3302 }
3303 EXPORT_SYMBOL(tty_unregister_device);
3304
3305 /**
3306  * __tty_alloc_driver -- allocate tty driver
3307  * @lines: count of lines this driver can handle at most
3308  * @owner: module which is repsonsible for this driver
3309  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3310  *
3311  * This should not be called directly, some of the provided macros should be
3312  * used instead. Use IS_ERR and friends on @retval.
3313  */
3314 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3315                 unsigned long flags)
3316 {
3317         struct tty_driver *driver;
3318         unsigned int cdevs = 1;
3319         int err;
3320
3321         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3322                 return ERR_PTR(-EINVAL);
3323
3324         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3325         if (!driver)
3326                 return ERR_PTR(-ENOMEM);
3327
3328         kref_init(&driver->kref);
3329         driver->magic = TTY_DRIVER_MAGIC;
3330         driver->num = lines;
3331         driver->owner = owner;
3332         driver->flags = flags;
3333
3334         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3335                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3336                                 GFP_KERNEL);
3337                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3338                                 GFP_KERNEL);
3339                 if (!driver->ttys || !driver->termios) {
3340                         err = -ENOMEM;
3341                         goto err_free_all;
3342                 }
3343         }
3344
3345         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3346                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3347                                 GFP_KERNEL);
3348                 if (!driver->ports) {
3349                         err = -ENOMEM;
3350                         goto err_free_all;
3351                 }
3352                 cdevs = lines;
3353         }
3354
3355         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3356         if (!driver->cdevs) {
3357                 err = -ENOMEM;
3358                 goto err_free_all;
3359         }
3360
3361         return driver;
3362 err_free_all:
3363         kfree(driver->ports);
3364         kfree(driver->ttys);
3365         kfree(driver->termios);
3366         kfree(driver);
3367         return ERR_PTR(err);
3368 }
3369 EXPORT_SYMBOL(__tty_alloc_driver);
3370
3371 static void destruct_tty_driver(struct kref *kref)
3372 {
3373         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3374         int i;
3375         struct ktermios *tp;
3376
3377         if (driver->flags & TTY_DRIVER_INSTALLED) {
3378                 /*
3379                  * Free the termios and termios_locked structures because
3380                  * we don't want to get memory leaks when modular tty
3381                  * drivers are removed from the kernel.
3382                  */
3383                 for (i = 0; i < driver->num; i++) {
3384                         tp = driver->termios[i];
3385                         if (tp) {
3386                                 driver->termios[i] = NULL;
3387                                 kfree(tp);
3388                         }
3389                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3390                                 tty_unregister_device(driver, i);
3391                 }
3392                 proc_tty_unregister_driver(driver);
3393                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3394                         cdev_del(&driver->cdevs[0]);
3395         }
3396         kfree(driver->cdevs);
3397         kfree(driver->ports);
3398         kfree(driver->termios);
3399         kfree(driver->ttys);
3400         kfree(driver);
3401 }
3402
3403 void tty_driver_kref_put(struct tty_driver *driver)
3404 {
3405         kref_put(&driver->kref, destruct_tty_driver);
3406 }
3407 EXPORT_SYMBOL(tty_driver_kref_put);
3408
3409 void tty_set_operations(struct tty_driver *driver,
3410                         const struct tty_operations *op)
3411 {
3412         driver->ops = op;
3413 };
3414 EXPORT_SYMBOL(tty_set_operations);
3415
3416 void put_tty_driver(struct tty_driver *d)
3417 {
3418         tty_driver_kref_put(d);
3419 }
3420 EXPORT_SYMBOL(put_tty_driver);
3421
3422 /*
3423  * Called by a tty driver to register itself.
3424  */
3425 int tty_register_driver(struct tty_driver *driver)
3426 {
3427         int error;
3428         int i;
3429         dev_t dev;
3430         struct device *d;
3431
3432         if (!driver->major) {
3433                 error = alloc_chrdev_region(&dev, driver->minor_start,
3434                                                 driver->num, driver->name);
3435                 if (!error) {
3436                         driver->major = MAJOR(dev);
3437                         driver->minor_start = MINOR(dev);
3438                 }
3439         } else {
3440                 dev = MKDEV(driver->major, driver->minor_start);
3441                 error = register_chrdev_region(dev, driver->num, driver->name);
3442         }
3443         if (error < 0)
3444                 goto err;
3445
3446         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3447                 error = tty_cdev_add(driver, dev, 0, driver->num);
3448                 if (error)
3449                         goto err_unreg_char;
3450         }
3451
3452         mutex_lock(&tty_mutex);
3453         list_add(&driver->tty_drivers, &tty_drivers);
3454         mutex_unlock(&tty_mutex);
3455
3456         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3457                 for (i = 0; i < driver->num; i++) {
3458                         d = tty_register_device(driver, i, NULL);
3459                         if (IS_ERR(d)) {
3460                                 error = PTR_ERR(d);
3461                                 goto err_unreg_devs;
3462                         }
3463                 }
3464         }
3465         proc_tty_register_driver(driver);
3466         driver->flags |= TTY_DRIVER_INSTALLED;
3467         return 0;
3468
3469 err_unreg_devs:
3470         for (i--; i >= 0; i--)
3471                 tty_unregister_device(driver, i);
3472
3473         mutex_lock(&tty_mutex);
3474         list_del(&driver->tty_drivers);
3475         mutex_unlock(&tty_mutex);
3476
3477 err_unreg_char:
3478         unregister_chrdev_region(dev, driver->num);
3479 err:
3480         return error;
3481 }
3482 EXPORT_SYMBOL(tty_register_driver);
3483
3484 /*
3485  * Called by a tty driver to unregister itself.
3486  */
3487 int tty_unregister_driver(struct tty_driver *driver)
3488 {
3489 #if 0
3490         /* FIXME */
3491         if (driver->refcount)
3492                 return -EBUSY;
3493 #endif
3494         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3495                                 driver->num);
3496         mutex_lock(&tty_mutex);
3497         list_del(&driver->tty_drivers);
3498         mutex_unlock(&tty_mutex);
3499         return 0;
3500 }
3501
3502 EXPORT_SYMBOL(tty_unregister_driver);
3503
3504 dev_t tty_devnum(struct tty_struct *tty)
3505 {
3506         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3507 }
3508 EXPORT_SYMBOL(tty_devnum);
3509
3510 void tty_default_fops(struct file_operations *fops)
3511 {
3512         *fops = tty_fops;
3513 }
3514
3515 /*
3516  * Initialize the console device. This is called *early*, so
3517  * we can't necessarily depend on lots of kernel help here.
3518  * Just do some early initializations, and do the complex setup
3519  * later.
3520  */
3521 void __init console_init(void)
3522 {
3523         initcall_t *call;
3524
3525         /* Setup the default TTY line discipline. */
3526         tty_ldisc_begin();
3527
3528         /*
3529          * set up the console device so that later boot sequences can
3530          * inform about problems etc..
3531          */
3532         call = __con_initcall_start;
3533         while (call < __con_initcall_end) {
3534                 (*call)();
3535                 call++;
3536         }
3537 }
3538
3539 static char *tty_devnode(struct device *dev, umode_t *mode)
3540 {
3541         if (!mode)
3542                 return NULL;
3543         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3544             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3545                 *mode = 0666;
3546         return NULL;
3547 }
3548
3549 static int __init tty_class_init(void)
3550 {
3551         tty_class = class_create(THIS_MODULE, "tty");
3552         if (IS_ERR(tty_class))
3553                 return PTR_ERR(tty_class);
3554         tty_class->devnode = tty_devnode;
3555         return 0;
3556 }
3557
3558 postcore_initcall(tty_class_init);
3559
3560 /* 3/2004 jmc: why do these devices exist? */
3561 static struct cdev tty_cdev, console_cdev;
3562
3563 static ssize_t show_cons_active(struct device *dev,
3564                                 struct device_attribute *attr, char *buf)
3565 {
3566         struct console *cs[16];
3567         int i = 0;
3568         struct console *c;
3569         ssize_t count = 0;
3570
3571         console_lock();
3572         for_each_console(c) {
3573                 if (!c->device)
3574                         continue;
3575                 if (!c->write)
3576                         continue;
3577                 if ((c->flags & CON_ENABLED) == 0)
3578                         continue;
3579                 cs[i++] = c;
3580                 if (i >= ARRAY_SIZE(cs))
3581                         break;
3582         }
3583         while (i--) {
3584                 int index = cs[i]->index;
3585                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3586
3587                 /* don't resolve tty0 as some programs depend on it */
3588                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3589                         count += tty_line_name(drv, index, buf + count);
3590                 else
3591                         count += sprintf(buf + count, "%s%d",
3592                                          cs[i]->name, cs[i]->index);
3593
3594                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3595         }
3596         console_unlock();
3597
3598         return count;
3599 }
3600 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3601
3602 static struct attribute *cons_dev_attrs[] = {
3603         &dev_attr_active.attr,
3604         NULL
3605 };
3606
3607 ATTRIBUTE_GROUPS(cons_dev);
3608
3609 static struct device *consdev;
3610
3611 void console_sysfs_notify(void)
3612 {
3613         if (consdev)
3614                 sysfs_notify(&consdev->kobj, NULL, "active");
3615 }
3616
3617 /*
3618  * Ok, now we can initialize the rest of the tty devices and can count
3619  * on memory allocations, interrupts etc..
3620  */
3621 int __init tty_init(void)
3622 {
3623         cdev_init(&tty_cdev, &tty_fops);
3624         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3625             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3626                 panic("Couldn't register /dev/tty driver\n");
3627         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3628
3629         cdev_init(&console_cdev, &console_fops);
3630         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3631             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3632                 panic("Couldn't register /dev/console driver\n");
3633         consdev = device_create_with_groups(tty_class, NULL,
3634                                             MKDEV(TTYAUX_MAJOR, 1), NULL,
3635                                             cons_dev_groups, "console");
3636         if (IS_ERR(consdev))
3637                 consdev = NULL;
3638
3639 #ifdef CONFIG_VT
3640         vty_init(&console_fops);
3641 #endif
3642         return 0;
3643 }
3644