Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / rtl8712 / rtl871x_security.c
1 /******************************************************************************
2  * rtl871x_security.c
3  *
4  * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
5  * Linux device driver for RTL8192SU
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
19  *
20  * Modifications for inclusion into the Linux staging tree are
21  * Copyright(c) 2010 Larry Finger. All rights reserved.
22  *
23  * Contact information:
24  * WLAN FAE <wlanfae@realtek.com>
25  * Larry Finger <Larry.Finger@lwfinger.net>
26  *
27  ******************************************************************************/
28
29 #define  _RTL871X_SECURITY_C_
30
31 #include <linux/compiler.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/slab.h>
35 #include <linux/module.h>
36 #include <linux/kref.h>
37 #include <linux/netdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/circ_buf.h>
40 #include <linux/uaccess.h>
41 #include <asm/byteorder.h>
42 #include <linux/atomic.h>
43 #include <linux/semaphore.h>
44
45 #include "osdep_service.h"
46 #include "drv_types.h"
47 #include "wifi.h"
48 #include "osdep_intf.h"
49
50 /* =====WEP related===== */
51
52 #define CRC32_POLY 0x04c11db7
53
54 struct arc4context {
55         u32 x;
56         u32 y;
57         u8 state[256];
58 };
59
60 static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
61 {
62         u32     t, u;
63         u32     keyindex;
64         u32     stateindex;
65         u8 *state;
66         u32     counter;
67
68         state = parc4ctx->state;
69         parc4ctx->x = 0;
70         parc4ctx->y = 0;
71         for (counter = 0; counter < 256; counter++)
72                 state[counter] = (u8)counter;
73         keyindex = 0;
74         stateindex = 0;
75         for (counter = 0; counter < 256; counter++) {
76                 t = state[counter];
77                 stateindex = (stateindex + key[keyindex] + t) & 0xff;
78                 u = state[stateindex];
79                 state[stateindex] = (u8)t;
80                 state[counter] = (u8)u;
81                 if (++keyindex >= key_len)
82                         keyindex = 0;
83         }
84 }
85
86 static u32 arcfour_byte(struct arc4context *parc4ctx)
87 {
88         u32 x;
89         u32 y;
90         u32 sx, sy;
91         u8 *state;
92
93         state = parc4ctx->state;
94         x = (parc4ctx->x + 1) & 0xff;
95         sx = state[x];
96         y = (sx + parc4ctx->y) & 0xff;
97         sy = state[y];
98         parc4ctx->x = x;
99         parc4ctx->y = y;
100         state[y] = (u8)sx;
101         state[x] = (u8)sy;
102         return state[(sx + sy) & 0xff];
103 }
104
105 static void arcfour_encrypt(struct arc4context  *parc4ctx,
106                      u8 *dest, u8 *src, u32 len)
107 {
108         u32 i;
109
110         for (i = 0; i < len; i++)
111                 dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
112 }
113
114 static sint bcrc32initialized;
115 static u32 crc32_table[256];
116
117 static u8 crc32_reverseBit(u8 data)
118 {
119         return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3)
120                  & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) |
121                  ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) &
122                  0x01);
123 }
124
125 static void crc32_init(void)
126 {
127         if (bcrc32initialized == 1)
128                 return;
129         else {
130                 sint i, j;
131                 u32 c;
132                 u8 *p = (u8 *)&c, *p1;
133                 u8 k;
134
135                 c = 0x12340000;
136                 for (i = 0; i < 256; ++i) {
137                         k = crc32_reverseBit((u8)i);
138                         for (c = ((u32)k) << 24, j = 8; j > 0; --j)
139                                 c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY :
140                                     (c << 1);
141                         p1 = (u8 *)&crc32_table[i];
142                         p1[0] = crc32_reverseBit(p[3]);
143                         p1[1] = crc32_reverseBit(p[2]);
144                         p1[2] = crc32_reverseBit(p[1]);
145                         p1[3] = crc32_reverseBit(p[0]);
146                 }
147                 bcrc32initialized = 1;
148         }
149 }
150
151 static u32 getcrc32(u8 *buf, u32 len)
152 {
153         u8 *p;
154         u32  crc;
155
156         if (!bcrc32initialized)
157                 crc32_init();
158         crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
159         for (p = buf; len > 0; ++p, --len)
160                 crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
161         return ~crc;    /* transmit complement, per CRC-32 spec */
162 }
163
164 /*
165         Need to consider the fragment  situation
166 */
167 void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe)
168 {       /* exclude ICV */
169         unsigned char   crc[4];
170         struct arc4context  mycontext;
171         u32 curfragnum, length, keylength;
172         u8 *pframe, *payload, *iv;    /*,*wepkey*/
173         u8 wepkey[16];
174         struct  pkt_attrib  *pattrib = &((struct xmit_frame *)
175                                        pxmitframe)->attrib;
176         struct  security_priv *psecuritypriv = &padapter->securitypriv;
177         struct  xmit_priv *pxmitpriv = &padapter->xmitpriv;
178
179         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
180                 return;
181         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
182         /*start to encrypt each fragment*/
183         if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
184                 keylength = psecuritypriv->DefKeylen[psecuritypriv->
185                             PrivacyKeyIndex];
186                 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
187                      curfragnum++) {
188                         iv = pframe+pattrib->hdrlen;
189                         memcpy(&wepkey[0], iv, 3);
190                         memcpy(&wepkey[3], &psecuritypriv->DefKey[
191                                 psecuritypriv->PrivacyKeyIndex].skey[0],
192                                 keylength);
193                         payload = pframe+pattrib->iv_len+pattrib->hdrlen;
194                         if ((curfragnum + 1) == pattrib->nr_frags) {
195                                 length = pattrib->last_txcmdsz-pattrib->
196                                          hdrlen-pattrib->iv_len -
197                                          pattrib->icv_len;
198                                 *((u32 *)crc) = cpu_to_le32(getcrc32(
199                                                 payload, length));
200                                 arcfour_init(&mycontext, wepkey, 3 + keylength);
201                                 arcfour_encrypt(&mycontext, payload, payload,
202                                                 length);
203                                 arcfour_encrypt(&mycontext, payload + length,
204                                                 crc, 4);
205                         } else {
206                                 length = pxmitpriv->frag_len-pattrib->hdrlen -
207                                          pattrib->iv_len-pattrib->icv_len;
208                                 *((u32 *)crc) = cpu_to_le32(getcrc32(
209                                                 payload, length));
210                                 arcfour_init(&mycontext, wepkey, 3 + keylength);
211                                 arcfour_encrypt(&mycontext, payload, payload,
212                                                 length);
213                                 arcfour_encrypt(&mycontext, payload+length,
214                                                 crc, 4);
215                                 pframe += pxmitpriv->frag_len;
216                                 pframe = (u8 *)RND4((addr_t)(pframe));
217                         }
218                 }
219         }
220 }
221
222 void r8712_wep_decrypt(struct _adapter  *padapter, u8 *precvframe)
223 {
224         /* exclude ICV */
225         u8 crc[4];
226         struct arc4context  mycontext;
227         u32 length, keylength;
228         u8 *pframe, *payload, *iv, wepkey[16];
229         u8  keyindex;
230         struct rx_pkt_attrib  *prxattrib = &(((union recv_frame *)
231                                           precvframe)->u.hdr.attrib);
232         struct security_priv *psecuritypriv = &padapter->securitypriv;
233
234         pframe = (unsigned char *)((union recv_frame *)precvframe)->
235                   u.hdr.rx_data;
236         /* start to decrypt recvframe */
237         if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt ==
238              _WEP104_)) {
239                 iv = pframe + prxattrib->hdrlen;
240                 keyindex = (iv[3] & 0x3);
241                 keylength = psecuritypriv->DefKeylen[keyindex];
242                 memcpy(&wepkey[0], iv, 3);
243                 memcpy(&wepkey[3], &psecuritypriv->DefKey[
244                         psecuritypriv->PrivacyKeyIndex].skey[0],
245                         keylength);
246                 length = ((union recv_frame *)precvframe)->
247                            u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
248                 payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;
249                 /* decrypt payload include icv */
250                 arcfour_init(&mycontext, wepkey, 3 + keylength);
251                 arcfour_encrypt(&mycontext, payload, payload,  length);
252                 /* calculate icv and compare the icv */
253                 *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4));
254         }
255 }
256
257 /* 3 =====TKIP related===== */
258
259 static u32 secmicgetuint32(u8 *p)
260 /* Convert from Byte[] to Us4Byte32 in a portable way */
261 {
262         s32 i;
263         u32 res = 0;
264
265         for (i = 0; i < 4; i++)
266                 res |= ((u32)(*p++)) << (8 * i);
267         return res;
268 }
269
270 static void secmicputuint32(u8 *p, u32 val)
271 /* Convert from Us4Byte32 to Byte[] in a portable way */
272 {
273         long i;
274
275         for (i = 0; i < 4; i++) {
276                 *p++ = (u8) (val & 0xff);
277                 val >>= 8;
278         }
279 }
280
281 static void secmicclear(struct mic_data *pmicdata)
282 {
283 /* Reset the state to the empty message. */
284         pmicdata->L = pmicdata->K0;
285         pmicdata->R = pmicdata->K1;
286         pmicdata->nBytesInM = 0;
287         pmicdata->M = 0;
288 }
289
290 void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key)
291 {
292         /* Set the key */
293         pmicdata->K0 = secmicgetuint32(key);
294         pmicdata->K1 = secmicgetuint32(key + 4);
295         /* and reset the message */
296         secmicclear(pmicdata);
297 }
298
299 static void secmicappendbyte(struct mic_data *pmicdata, u8 b)
300 {
301         /* Append the byte to our word-sized buffer */
302         pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM);
303         pmicdata->nBytesInM++;
304         /* Process the word if it is full. */
305         if (pmicdata->nBytesInM >= 4) {
306                 pmicdata->L ^= pmicdata->M;
307                 pmicdata->R ^= ROL32(pmicdata->L, 17);
308                 pmicdata->L += pmicdata->R;
309                 pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) |
310                                ((pmicdata->L & 0x00ff00ff) << 8);
311                 pmicdata->L += pmicdata->R;
312                 pmicdata->R ^= ROL32(pmicdata->L, 3);
313                 pmicdata->L += pmicdata->R;
314                 pmicdata->R ^= ROR32(pmicdata->L, 2);
315                 pmicdata->L += pmicdata->R;
316                 /* Clear the buffer */
317                 pmicdata->M = 0;
318                 pmicdata->nBytesInM = 0;
319         }
320 }
321
322 void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
323 {
324         /* This is simple */
325         while (nbytes > 0) {
326                 secmicappendbyte(pmicdata, *src++);
327                 nbytes--;
328         }
329 }
330
331 void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst)
332 {
333         /* Append the minimum padding */
334         secmicappendbyte(pmicdata, 0x5a);
335         secmicappendbyte(pmicdata, 0);
336         secmicappendbyte(pmicdata, 0);
337         secmicappendbyte(pmicdata, 0);
338         secmicappendbyte(pmicdata, 0);
339         /* and then zeroes until the length is a multiple of 4 */
340         while (pmicdata->nBytesInM != 0)
341                 secmicappendbyte(pmicdata, 0);
342         /* The appendByte function has already computed the result. */
343         secmicputuint32(dst, pmicdata->L);
344         secmicputuint32(dst + 4, pmicdata->R);
345         /* Reset to the empty message. */
346         secmicclear(pmicdata);
347 }
348
349 void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code,
350                     u8 pri)
351 {
352
353         struct mic_data micdata;
354         u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
355
356         r8712_secmicsetkey(&micdata, key);
357         priority[0] = pri;
358         /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
359         if (header[1] & 1) {   /* ToDS==1 */
360                 r8712_secmicappend(&micdata, &header[16], 6);  /* DA */
361                 if (header[1] & 2)  /* From Ds==1 */
362                         r8712_secmicappend(&micdata, &header[24], 6);
363                 else
364                         r8712_secmicappend(&micdata, &header[10], 6);
365         } else {        /* ToDS==0 */
366                 r8712_secmicappend(&micdata, &header[4], 6);   /* DA */
367                 if (header[1] & 2)  /* From Ds==1 */
368                         r8712_secmicappend(&micdata, &header[16], 6);
369                 else
370                         r8712_secmicappend(&micdata, &header[10], 6);
371         }
372         r8712_secmicappend(&micdata, &priority[0], 4);
373         r8712_secmicappend(&micdata, data, data_len);
374         r8712_secgetmic(&micdata, mic_code);
375 }
376
377 /* macros for extraction/creation of unsigned char/unsigned short values  */
378 #define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
379 #define   Lo8(v16)   ((u8)((v16) & 0x00FF))
380 #define   Hi8(v16)   ((u8)(((v16) >> 8) & 0x00FF))
381 #define  Lo16(v32)   ((u16)((v32) & 0xFFFF))
382 #define  Hi16(v32)   ((u16)(((v32) >> 16) & 0xFFFF))
383 #define  Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
384
385 /* select the Nth 16-bit word of the temporal key unsigned char array TK[]   */
386 #define  TK16(N)  Mk16(tk[2 * (N) + 1], tk[2 * (N)])
387
388 /* S-box lookup: 16 bits --> 16 bits */
389 #define _S_(v16)  (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
390
391 /* fixed algorithm "parameters" */
392 #define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */
393 #define TA_SIZE           6    /*  48-bit transmitter address       */
394 #define TK_SIZE          16    /* 128-bit temporal key              */
395 #define P1K_SIZE         10    /*  80-bit Phase1 key                */
396 #define RC4_KEY_SIZE     16    /* 128-bit RC4KEY (104 bits unknown) */
397
398
399 /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
400 static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */
401         {
402         0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
403         0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
404         0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
405         0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
406         0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
407         0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
408         0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
409         0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
410         0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
411         0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
412         0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
413         0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
414         0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
415         0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
416         0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
417         0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
418         0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
419         0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
420         0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
421         0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
422         0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
423         0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
424         0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
425         0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
426         0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
427         0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
428         0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
429         0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
430         0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
431         0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
432         0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
433         0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
434         },
435         {  /* second half is unsigned char-reversed version of first! */
436         0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
437         0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
438         0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
439         0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
440         0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
441         0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
442         0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
443         0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
444         0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
445         0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
446         0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
447         0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
448         0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
449         0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
450         0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
451         0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
452         0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
453         0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
454         0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
455         0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
456         0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
457         0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
458         0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
459         0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
460         0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
461         0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
462         0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
463         0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
464         0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
465         0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
466         0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
467         0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
468         }
469 };
470
471 /*
472 **********************************************************************
473 * Routine: Phase 1 -- generate P1K, given TA, TK, IV32
474 *
475 * Inputs:
476 *     tk[]      = temporal key                         [128 bits]
477 *     ta[]      = transmitter's MAC address            [ 48 bits]
478 *     iv32      = upper 32 bits of IV                  [ 32 bits]
479 * Output:
480 *     p1k[]     = Phase 1 key                          [ 80 bits]
481 *
482 * Note:
483 *     This function only needs to be called every 2**16 packets,
484 *     although in theory it could be called every packet.
485 *
486 **********************************************************************
487 */
488 static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
489 {
490         sint  i;
491
492         /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */
493         p1k[0] = Lo16(iv32);
494         p1k[1] = Hi16(iv32);
495         p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
496         p1k[3] = Mk16(ta[3], ta[2]);
497         p1k[4] = Mk16(ta[5], ta[4]);
498         /* Now compute an unbalanced Feistel cipher with 80-bit block */
499         /* size on the 80-bit block P1K[], using the 128-bit key TK[] */
500         for (i = 0; i < PHASE1_LOOP_CNT; i++) {  /* Each add is mod 2**16 */
501                 p1k[0] += _S_(p1k[4] ^ TK16((i&1) + 0));
502                 p1k[1] += _S_(p1k[0] ^ TK16((i&1) + 2));
503                 p1k[2] += _S_(p1k[1] ^ TK16((i&1) + 4));
504                 p1k[3] += _S_(p1k[2] ^ TK16((i&1) + 6));
505                 p1k[4] += _S_(p1k[3] ^ TK16((i&1) + 0));
506                 p1k[4] +=  (unsigned short)i;   /* avoid "slide attacks" */
507         }
508 }
509
510 /*
511 **********************************************************************
512 * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
513 *
514 * Inputs:
515 *     tk[]      = Temporal key                         [128 bits]
516 *     p1k[]     = Phase 1 output key                   [ 80 bits]
517 *     iv16      = low 16 bits of IV counter            [ 16 bits]
518 * Output:
519 *     rc4key[]  = the key used to encrypt the packet   [128 bits]
520 *
521 * Note:
522 *     The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
523 *     across all packets using the same key TK value. Then, for a
524 *     given value of TK[], this TKIP48 construction guarantees that
525 *     the final RC4KEY value is unique across all packets.
526 *
527 * Suggested implementation optimization: if PPK[] is "overlaid"
528 *     appropriately on RC4KEY[], there is no need for the final
529 *     for loop below that copies the PPK[] result into RC4KEY[].
530 *
531 **********************************************************************
532 */
533 static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
534 {
535         sint  i;
536         u16 PPK[6];                     /* temporary key for mixing    */
537
538         /* Note: all adds in the PPK[] equations below are mod 2**16 */
539         for (i = 0; i < 5; i++)
540                 PPK[i] = p1k[i]; /* first, copy P1K to PPK */
541         PPK[5]  =  p1k[4] + iv16; /* next,  add in IV16 */
542         /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
543         PPK[0] += _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round" */
544         PPK[1] += _S_(PPK[0] ^ TK16(1));
545         PPK[2] += _S_(PPK[1] ^ TK16(2));
546         PPK[3] += _S_(PPK[2] ^ TK16(3));
547         PPK[4] += _S_(PPK[3] ^ TK16(4));
548         PPK[5] += _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */
549         /* Final sweep: bijective, "linear". Rotates kill LSB correlations   */
550         PPK[0] +=  RotR1(PPK[5] ^ TK16(6));
551         PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */
552         PPK[2] +=  RotR1(PPK[1]);
553         PPK[3] +=  RotR1(PPK[2]);
554         PPK[4] +=  RotR1(PPK[3]);
555         PPK[5] +=  RotR1(PPK[4]);
556         /* Note: At this point, for a given key TK[0..15], the 96-bit output */
557         /* value PPK[0..5] is guaranteed to be unique, as a function   */
558         /* of the 96-bit "input" value   {TA,IV32,IV16}. That is, P1K  */
559         /* is now a keyed permutation of {TA,IV32,IV16}. */
560         /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */
561         rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV  */
562         rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */
563         rc4key[2] = Lo8(iv16);
564         rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
565         /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian) */
566         for (i = 0; i < 6; i++) {
567                 rc4key[4 + 2 * i] = Lo8(PPK[i]);
568                 rc4key[5 + 2 * i] = Hi8(PPK[i]);
569         }
570 }
571
572 /*The hlen isn't include the IV*/
573 u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe)
574 {       /*  exclude ICV */
575         u16 pnl;
576         u32 pnh;
577         u8 rc4key[16];
578         u8 ttkey[16];
579         u8 crc[4];
580         struct arc4context mycontext;
581         u32 curfragnum, length;
582
583         u8 *pframe, *payload, *iv, *prwskey;
584         union pn48 txpn;
585         struct sta_info *stainfo;
586         struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
587         struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
588         u32 res = _SUCCESS;
589
590         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
591                 return _FAIL;
592
593         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
594         /* 4 start to encrypt each fragment */
595         if (pattrib->encrypt == _TKIP_) {
596                 if (pattrib->psta)
597                         stainfo = pattrib->psta;
598                 else
599                         stainfo = r8712_get_stainfo(&padapter->stapriv,
600                                   &pattrib->ra[0]);
601                 if (stainfo != NULL) {
602                         prwskey = &stainfo->x_UncstKey.skey[0];
603                         for (curfragnum = 0; curfragnum < pattrib->nr_frags;
604                              curfragnum++) {
605                                 iv = pframe + pattrib->hdrlen;
606                                 payload = pframe+pattrib->iv_len +
607                                           pattrib->hdrlen;
608                                 GET_TKIP_PN(iv, txpn);
609                                 pnl = (u16)(txpn.val);
610                                 pnh = (u32)(txpn.val >> 16);
611                                 phase1((u16 *)&ttkey[0], prwskey, &pattrib->
612                                        ta[0], pnh);
613                                 phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0],
614                                        pnl);
615                                 if ((curfragnum + 1) == pattrib->nr_frags) {
616                                         /* 4 the last fragment */
617                                         length = pattrib->last_txcmdsz -
618                                              pattrib->hdrlen-pattrib->iv_len -
619                                              pattrib->icv_len;
620                                         *((u32 *)crc) = cpu_to_le32(
621                                                 getcrc32(payload, length));
622                                         arcfour_init(&mycontext, rc4key, 16);
623                                         arcfour_encrypt(&mycontext, payload,
624                                                         payload, length);
625                                         arcfour_encrypt(&mycontext, payload +
626                                                         length, crc, 4);
627                                 } else {
628                                         length = pxmitpriv->frag_len-pattrib->
629                                                  hdrlen-pattrib->
630                                                  iv_len-pattrib->icv_len;
631                                         *((u32 *)crc) = cpu_to_le32(getcrc32(
632                                                         payload, length));
633                                         arcfour_init(&mycontext, rc4key, 16);
634                                         arcfour_encrypt(&mycontext, payload,
635                                                          payload, length);
636                                         arcfour_encrypt(&mycontext,
637                                                         payload+length, crc, 4);
638                                         pframe += pxmitpriv->frag_len;
639                                         pframe = (u8 *)RND4((addr_t)(pframe));
640                                 }
641                         }
642                 } else
643                         res = _FAIL;
644         }
645         return res;
646 }
647
648 /* The hlen doesn't include the IV */
649 u32 r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe)
650 {       /* exclude ICV */
651         u16 pnl;
652         u32 pnh;
653         u8 rc4key[16];
654         u8 ttkey[16];
655         u8 crc[4];
656         struct arc4context mycontext;
657         u32 length;
658         u8 *pframe, *payload, *iv, *prwskey, idx = 0;
659         union pn48 txpn;
660         struct  sta_info *stainfo;
661         struct  rx_pkt_attrib *prxattrib = &((union recv_frame *)
662                                            precvframe)->u.hdr.attrib;
663         struct  security_priv   *psecuritypriv = &padapter->securitypriv;
664
665         pframe = (unsigned char *)((union recv_frame *)
666                                    precvframe)->u.hdr.rx_data;
667         /* 4 start to decrypt recvframe */
668         if (prxattrib->encrypt == _TKIP_) {
669                 stainfo = r8712_get_stainfo(&padapter->stapriv,
670                                             &prxattrib->ta[0]);
671                 if (stainfo != NULL) {
672                         iv = pframe+prxattrib->hdrlen;
673                         payload = pframe+prxattrib->iv_len + prxattrib->hdrlen;
674                         length = ((union recv_frame *)precvframe)->
675                                  u.hdr.len - prxattrib->hdrlen -
676                                  prxattrib->iv_len;
677                         if (IS_MCAST(prxattrib->ra)) {
678                                 idx = iv[3];
679                                 prwskey = &psecuritypriv->XGrpKey[
680                                          ((idx >> 6) & 0x3) - 1].skey[0];
681                                 if (psecuritypriv->binstallGrpkey == false)
682                                         return _FAIL;
683                         } else
684                                 prwskey = &stainfo->x_UncstKey.skey[0];
685                         GET_TKIP_PN(iv, txpn);
686                         pnl = (u16)(txpn.val);
687                         pnh = (u32)(txpn.val >> 16);
688                         phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0],
689                                 pnh);
690                         phase2(&rc4key[0], prwskey, (unsigned short *)
691                                &ttkey[0], pnl);
692                         /* 4 decrypt payload include icv */
693                         arcfour_init(&mycontext, rc4key, 16);
694                         arcfour_encrypt(&mycontext, payload, payload, length);
695                         *((u32 *)crc) = cpu_to_le32(getcrc32(payload,
696                                         length - 4));
697                         if (crc[3] != payload[length - 1] ||
698                             crc[2] != payload[length - 2] ||
699                             crc[1] != payload[length - 3] ||
700                             crc[0] != payload[length - 4])
701                                 return _FAIL;
702                 } else
703                         return _FAIL;
704         }
705         return _SUCCESS;
706 }
707
708 /* 3 =====AES related===== */
709
710 #define MAX_MSG_SIZE    2048
711 /*****************************/
712 /******** SBOX Table *********/
713 /*****************************/
714
715 static const u8 sbox_table[256] = {
716         0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
717         0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
718         0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
719         0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
720         0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
721         0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
722         0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
723         0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
724         0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
725         0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
726         0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
727         0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
728         0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
729         0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
730         0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
731         0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
732         0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
733         0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
734         0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
735         0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
736         0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
737         0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
738         0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
739         0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
740         0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
741         0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
742         0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
743         0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
744         0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
745         0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
746         0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
747         0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
748 };
749
750 /****************************************/
751 /* aes128k128d()                        */
752 /* Performs a 128 bit AES encrypt with  */
753 /* 128 bit data.                        */
754 /****************************************/
755 static void xor_128(u8 *a, u8 *b, u8 *out)
756 {
757         sint i;
758
759         for (i = 0; i < 16; i++)
760                 out[i] = a[i] ^ b[i];
761 }
762
763 static void xor_32(u8 *a, u8 *b, u8 *out)
764 {
765         sint i;
766
767         for (i = 0; i < 4; i++)
768                 out[i] = a[i] ^ b[i];
769 }
770
771 static u8 sbox(u8 a)
772 {
773         return sbox_table[(sint)a];
774 }
775
776 static void next_key(u8 *key, sint round)
777 {
778         u8 rcon;
779         u8 sbox_key[4];
780         u8 rcon_table[12] = {
781                 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
782                 0x1b, 0x36, 0x36, 0x36
783         };
784
785         sbox_key[0] = sbox(key[13]);
786         sbox_key[1] = sbox(key[14]);
787         sbox_key[2] = sbox(key[15]);
788         sbox_key[3] = sbox(key[12]);
789         rcon = rcon_table[round];
790         xor_32(&key[0], sbox_key, &key[0]);
791         key[0] = key[0] ^ rcon;
792         xor_32(&key[4], &key[0], &key[4]);
793         xor_32(&key[8], &key[4], &key[8]);
794         xor_32(&key[12], &key[8], &key[12]);
795 }
796
797 static void byte_sub(u8 *in, u8 *out)
798 {
799         sint i;
800
801         for (i = 0; i < 16; i++)
802                 out[i] = sbox(in[i]);
803 }
804
805 static void shift_row(u8 *in, u8 *out)
806 {
807         out[0] =  in[0];
808         out[1] =  in[5];
809         out[2] =  in[10];
810         out[3] =  in[15];
811         out[4] =  in[4];
812         out[5] =  in[9];
813         out[6] =  in[14];
814         out[7] =  in[3];
815         out[8] =  in[8];
816         out[9] =  in[13];
817         out[10] = in[2];
818         out[11] = in[7];
819         out[12] = in[12];
820         out[13] = in[1];
821         out[14] = in[6];
822         out[15] = in[11];
823 }
824
825 static void mix_column(u8 *in, u8 *out)
826 {
827         sint i;
828         u8 add1b[4];
829         u8 add1bf7[4];
830         u8 rotl[4];
831         u8 swap_halfs[4];
832         u8 andf7[4];
833         u8 rotr[4];
834         u8 temp[4];
835         u8 tempb[4];
836
837         for (i = 0; i < 4; i++) {
838                 if ((in[i] & 0x80) == 0x80)
839                         add1b[i] = 0x1b;
840                 else
841                         add1b[i] = 0x00;
842         }
843         swap_halfs[0] = in[2];    /* Swap halves */
844         swap_halfs[1] = in[3];
845         swap_halfs[2] = in[0];
846         swap_halfs[3] = in[1];
847         rotl[0] = in[3];        /* Rotate left 8 bits */
848         rotl[1] = in[0];
849         rotl[2] = in[1];
850         rotl[3] = in[2];
851         andf7[0] = in[0] & 0x7f;
852         andf7[1] = in[1] & 0x7f;
853         andf7[2] = in[2] & 0x7f;
854         andf7[3] = in[3] & 0x7f;
855         for (i = 3; i > 0; i--) {   /* logical shift left 1 bit */
856                 andf7[i] = andf7[i] << 1;
857                 if ((andf7[i-1] & 0x80) == 0x80)
858                         andf7[i] = (andf7[i] | 0x01);
859         }
860         andf7[0] = andf7[0] << 1;
861         andf7[0] = andf7[0] & 0xfe;
862         xor_32(add1b, andf7, add1bf7);
863         xor_32(in, add1bf7, rotr);
864         temp[0] = rotr[0];         /* Rotate right 8 bits */
865         rotr[0] = rotr[1];
866         rotr[1] = rotr[2];
867         rotr[2] = rotr[3];
868         rotr[3] = temp[0];
869         xor_32(add1bf7, rotr, temp);
870         xor_32(swap_halfs, rotl, tempb);
871         xor_32(temp, tempb, out);
872 }
873
874 static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
875 {
876         sint round;
877         sint i;
878         u8 intermediatea[16];
879         u8 intermediateb[16];
880         u8 round_key[16];
881
882         for (i = 0; i < 16; i++)
883                 round_key[i] = key[i];
884         for (round = 0; round < 11; round++) {
885                 if (round == 0) {
886                         xor_128(round_key, data, ciphertext);
887                         next_key(round_key, round);
888                 } else if (round == 10) {
889                         byte_sub(ciphertext, intermediatea);
890                         shift_row(intermediatea, intermediateb);
891                         xor_128(intermediateb, round_key, ciphertext);
892                 } else {   /* 1 - 9 */
893                         byte_sub(ciphertext, intermediatea);
894                         shift_row(intermediatea, intermediateb);
895                         mix_column(&intermediateb[0], &intermediatea[0]);
896                         mix_column(&intermediateb[4], &intermediatea[4]);
897                         mix_column(&intermediateb[8], &intermediatea[8]);
898                         mix_column(&intermediateb[12], &intermediatea[12]);
899                         xor_128(intermediatea, round_key, ciphertext);
900                         next_key(round_key, round);
901                 }
902         }
903 }
904
905 /************************************************/
906 /* construct_mic_iv()                           */
907 /* Builds the MIC IV from header fields and PN  */
908 /************************************************/
909 static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists,
910                              u8 *mpdu, uint payload_length, u8 *pn_vector)
911 {
912         sint i;
913
914         mic_iv[0] = 0x59;
915         if (qc_exists && a4_exists)
916                 mic_iv[1] = mpdu[30] & 0x0f;    /* QoS_TC           */
917         if (qc_exists && !a4_exists)
918                 mic_iv[1] = mpdu[24] & 0x0f;   /* mute bits 7-4    */
919         if (!qc_exists)
920                 mic_iv[1] = 0x00;
921         for (i = 2; i < 8; i++)
922                 mic_iv[i] = mpdu[i + 8];
923         for (i = 8; i < 14; i++)
924                 mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
925         mic_iv[14] = (unsigned char) (payload_length / 256);
926         mic_iv[15] = (unsigned char) (payload_length % 256);
927 }
928
929 /************************************************/
930 /* construct_mic_header1()                      */
931 /* Builds the first MIC header block from       */
932 /* header fields.                               */
933 /************************************************/
934 static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu)
935 {
936         mic_header1[0] = (u8)((header_length - 2) / 256);
937         mic_header1[1] = (u8)((header_length - 2) % 256);
938         mic_header1[2] = mpdu[0] & 0xcf;    /* Mute CF poll & CF ack bits */
939         /* Mute retry, more data and pwr mgt bits */
940         mic_header1[3] = mpdu[1] & 0xc7;
941         mic_header1[4] = mpdu[4];       /* A1 */
942         mic_header1[5] = mpdu[5];
943         mic_header1[6] = mpdu[6];
944         mic_header1[7] = mpdu[7];
945         mic_header1[8] = mpdu[8];
946         mic_header1[9] = mpdu[9];
947         mic_header1[10] = mpdu[10];     /* A2 */
948         mic_header1[11] = mpdu[11];
949         mic_header1[12] = mpdu[12];
950         mic_header1[13] = mpdu[13];
951         mic_header1[14] = mpdu[14];
952         mic_header1[15] = mpdu[15];
953 }
954
955 /************************************************/
956 /* construct_mic_header2()                      */
957 /* Builds the last MIC header block from        */
958 /* header fields.                               */
959 /************************************************/
960 static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists,
961                            sint qc_exists)
962 {
963         sint i;
964
965         for (i = 0; i < 16; i++)
966                 mic_header2[i] = 0x00;
967         mic_header2[0] = mpdu[16];    /* A3 */
968         mic_header2[1] = mpdu[17];
969         mic_header2[2] = mpdu[18];
970         mic_header2[3] = mpdu[19];
971         mic_header2[4] = mpdu[20];
972         mic_header2[5] = mpdu[21];
973         mic_header2[6] = 0x00;
974         mic_header2[7] = 0x00; /* mpdu[23]; */
975         if (!qc_exists && a4_exists)
976                 for (i = 0; i < 6; i++)
977                         mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
978         if (qc_exists && !a4_exists) {
979                 mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
980                 mic_header2[9] = mpdu[25] & 0x00;
981         }
982         if (qc_exists && a4_exists) {
983                 for (i = 0; i < 6; i++)
984                         mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
985                 mic_header2[14] = mpdu[30] & 0x0f;
986                 mic_header2[15] = mpdu[31] & 0x00;
987         }
988 }
989
990 /************************************************/
991 /* construct_mic_header2()                      */
992 /* Builds the last MIC header block from        */
993 /* header fields.                               */
994 /************************************************/
995 static void construct_ctr_preload(u8 *ctr_preload, sint a4_exists, sint qc_exists,
996                            u8 *mpdu, u8 *pn_vector, sint c)
997 {
998         sint i;
999
1000         for (i = 0; i < 16; i++)
1001                 ctr_preload[i] = 0x00;
1002         i = 0;
1003         ctr_preload[0] = 0x01;    /* flag */
1004         if (qc_exists && a4_exists)
1005                 ctr_preload[1] = mpdu[30] & 0x0f;
1006         if (qc_exists && !a4_exists)
1007                 ctr_preload[1] = mpdu[24] & 0x0f;
1008         for (i = 2; i < 8; i++)
1009                 ctr_preload[i] = mpdu[i + 8];
1010         for (i = 8; i < 14; i++)
1011                 ctr_preload[i] = pn_vector[13 - i];
1012         ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */
1013         ctr_preload[15] = (unsigned char) (c % 256);
1014 }
1015
1016 /************************************/
1017 /* bitwise_xor()                    */
1018 /* A 128 bit, bitwise exclusive or  */
1019 /************************************/
1020 static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
1021 {
1022         sint i;
1023
1024         for (i = 0; i < 16; i++)
1025                 out[i] = ina[i] ^ inb[i];
1026 }
1027
1028 static sint aes_cipher(u8 *key, uint    hdrlen,
1029                         u8 *pframe, uint plen)
1030 {
1031         uint qc_exists, a4_exists, i, j, payload_remainder;
1032         uint num_blocks, payload_index;
1033
1034         u8 pn_vector[6];
1035         u8 mic_iv[16];
1036         u8 mic_header1[16];
1037         u8 mic_header2[16];
1038         u8 ctr_preload[16];
1039
1040         /* Intermediate Buffers */
1041         u8 chain_buffer[16];
1042         u8 aes_out[16];
1043         u8 padded_buffer[16];
1044         u8 mic[8];
1045         uint    frtype  = GetFrameType(pframe);
1046         uint    frsubtype  = GetFrameSubType(pframe);
1047
1048         frsubtype >>= 4;
1049         memset((void *)mic_iv, 0, 16);
1050         memset((void *)mic_header1, 0, 16);
1051         memset((void *)mic_header2, 0, 16);
1052         memset((void *)ctr_preload, 0, 16);
1053         memset((void *)chain_buffer, 0, 16);
1054         memset((void *)aes_out, 0, 16);
1055         memset((void *)padded_buffer, 0, 16);
1056
1057         if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1058                 a4_exists = 0;
1059         else
1060                 a4_exists = 1;
1061
1062         if ((frtype == WIFI_DATA_CFACK) ||
1063              (frtype == WIFI_DATA_CFPOLL) ||
1064              (frtype == WIFI_DATA_CFACKPOLL)) {
1065                         qc_exists = 1;
1066                         if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1067                                 hdrlen += 2;
1068         } else if ((frsubtype == 0x08) ||
1069                    (frsubtype == 0x09) ||
1070                    (frsubtype == 0x0a) ||
1071                    (frsubtype == 0x0b)) {
1072                         if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1073                                 hdrlen += 2;
1074                         qc_exists = 1;
1075         } else
1076                 qc_exists = 0;
1077         pn_vector[0] = pframe[hdrlen];
1078         pn_vector[1] = pframe[hdrlen+1];
1079         pn_vector[2] = pframe[hdrlen+4];
1080         pn_vector[3] = pframe[hdrlen+5];
1081         pn_vector[4] = pframe[hdrlen+6];
1082         pn_vector[5] = pframe[hdrlen+7];
1083         construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector);
1084         construct_mic_header1(mic_header1, hdrlen, pframe);
1085         construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists);
1086         payload_remainder = plen % 16;
1087         num_blocks = plen / 16;
1088         /* Find start of payload */
1089         payload_index = hdrlen + 8;
1090         /* Calculate MIC */
1091         aes128k128d(key, mic_iv, aes_out);
1092         bitwise_xor(aes_out, mic_header1, chain_buffer);
1093         aes128k128d(key, chain_buffer, aes_out);
1094         bitwise_xor(aes_out, mic_header2, chain_buffer);
1095         aes128k128d(key, chain_buffer, aes_out);
1096         for (i = 0; i < num_blocks; i++) {
1097                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1098                 payload_index += 16;
1099                 aes128k128d(key, chain_buffer, aes_out);
1100         }
1101         /* Add on the final payload block if it needs padding */
1102         if (payload_remainder > 0) {
1103                 for (j = 0; j < 16; j++)
1104                         padded_buffer[j] = 0x00;
1105                 for (j = 0; j < payload_remainder; j++)
1106                         padded_buffer[j] = pframe[payload_index++];
1107                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1108                 aes128k128d(key, chain_buffer, aes_out);
1109         }
1110         for (j = 0; j < 8; j++)
1111                 mic[j] = aes_out[j];
1112         /* Insert MIC into payload */
1113         for (j = 0; j < 8; j++)
1114                 pframe[payload_index+j] = mic[j];
1115         payload_index = hdrlen + 8;
1116         for (i = 0; i < num_blocks; i++) {
1117                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1118                                       pframe, pn_vector, i + 1);
1119                 aes128k128d(key, ctr_preload, aes_out);
1120                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1121                 for (j = 0; j < 16; j++)
1122                         pframe[payload_index++] = chain_buffer[j];
1123         }
1124         if (payload_remainder > 0) {  /* If short final block, then pad it,*/
1125                                       /* encrypt and copy unpadded part back */
1126                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1127                                       pframe, pn_vector, num_blocks+1);
1128                 for (j = 0; j < 16; j++)
1129                         padded_buffer[j] = 0x00;
1130                 for (j = 0; j < payload_remainder; j++)
1131                         padded_buffer[j] = pframe[payload_index+j];
1132                 aes128k128d(key, ctr_preload, aes_out);
1133                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1134                 for (j = 0; j < payload_remainder; j++)
1135                         pframe[payload_index++] = chain_buffer[j];
1136         }
1137         /* Encrypt the MIC */
1138         construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1139                               pframe, pn_vector, 0);
1140         for (j = 0; j < 16; j++)
1141                 padded_buffer[j] = 0x00;
1142         for (j = 0; j < 8; j++)
1143                 padded_buffer[j] = pframe[j+hdrlen+8+plen];
1144         aes128k128d(key, ctr_preload, aes_out);
1145         bitwise_xor(aes_out, padded_buffer, chain_buffer);
1146         for (j = 0; j < 8; j++)
1147                 pframe[payload_index++] = chain_buffer[j];
1148         return _SUCCESS;
1149 }
1150
1151 u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe)
1152 {       /* exclude ICV */
1153         /* Intermediate Buffers */
1154         sint    curfragnum, length;
1155         u8      *pframe, *prwskey;
1156         struct  sta_info *stainfo;
1157         struct  pkt_attrib  *pattrib = &((struct xmit_frame *)
1158                                        pxmitframe)->attrib;
1159         struct  xmit_priv *pxmitpriv = &padapter->xmitpriv;
1160         u32 res = _SUCCESS;
1161
1162         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
1163                 return _FAIL;
1164         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
1165         /* 4 start to encrypt each fragment */
1166         if (pattrib->encrypt == _AES_) {
1167                 if (pattrib->psta)
1168                         stainfo = pattrib->psta;
1169                 else
1170                         stainfo = r8712_get_stainfo(&padapter->stapriv,
1171                                   &pattrib->ra[0]);
1172                 if (stainfo != NULL) {
1173                         prwskey = &stainfo->x_UncstKey.skey[0];
1174                         for (curfragnum = 0; curfragnum < pattrib->nr_frags;
1175                              curfragnum++) {
1176                                 if ((curfragnum + 1) == pattrib->nr_frags) {
1177                                         length = pattrib->last_txcmdsz -
1178                                                  pattrib->hdrlen -
1179                                                  pattrib->iv_len -
1180                                                  pattrib->icv_len;
1181                                         aes_cipher(prwskey, pattrib->
1182                                                   hdrlen, pframe, length);
1183                                 } else {
1184                                         length = pxmitpriv->frag_len -
1185                                                  pattrib->hdrlen -
1186                                                  pattrib->iv_len -
1187                                                  pattrib->icv_len;
1188                                         aes_cipher(prwskey, pattrib->
1189                                                    hdrlen, pframe, length);
1190                                         pframe += pxmitpriv->frag_len;
1191                                         pframe = (u8 *)RND4((addr_t)(pframe));
1192                                 }
1193                         }
1194                 } else
1195                         res = _FAIL;
1196         }
1197         return res;
1198 }
1199
1200 static sint aes_decipher(u8 *key, uint  hdrlen,
1201                         u8 *pframe, uint plen)
1202 {
1203         static u8 message[MAX_MSG_SIZE];
1204         uint qc_exists, a4_exists, i, j, payload_remainder;
1205         uint num_blocks, payload_index;
1206         u8 pn_vector[6];
1207         u8 mic_iv[16];
1208         u8 mic_header1[16];
1209         u8 mic_header2[16];
1210         u8 ctr_preload[16];
1211         /* Intermediate Buffers */
1212         u8 chain_buffer[16];
1213         u8 aes_out[16];
1214         u8 padded_buffer[16];
1215         u8 mic[8];
1216         uint frtype  = GetFrameType(pframe);
1217         uint frsubtype  = GetFrameSubType(pframe);
1218
1219         frsubtype >>= 4;
1220         memset((void *)mic_iv, 0, 16);
1221         memset((void *)mic_header1, 0, 16);
1222         memset((void *)mic_header2, 0, 16);
1223         memset((void *)ctr_preload, 0, 16);
1224         memset((void *)chain_buffer, 0, 16);
1225         memset((void *)aes_out, 0, 16);
1226         memset((void *)padded_buffer, 0, 16);
1227         /* start to decrypt the payload */
1228         /*(plen including llc, payload and mic) */
1229         num_blocks = (plen - 8) / 16;
1230         payload_remainder = (plen-8) % 16;
1231         pn_vector[0] = pframe[hdrlen];
1232         pn_vector[1] = pframe[hdrlen+1];
1233         pn_vector[2] = pframe[hdrlen+4];
1234         pn_vector[3] = pframe[hdrlen+5];
1235         pn_vector[4] = pframe[hdrlen+6];
1236         pn_vector[5] = pframe[hdrlen+7];
1237         if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1238                 a4_exists = 0;
1239         else
1240                 a4_exists = 1;
1241         if ((frtype == WIFI_DATA_CFACK) ||
1242             (frtype == WIFI_DATA_CFPOLL) ||
1243             (frtype == WIFI_DATA_CFACKPOLL)) {
1244                 qc_exists = 1;
1245                 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1246                         hdrlen += 2;
1247         } else if ((frsubtype == 0x08) ||
1248                    (frsubtype == 0x09) ||
1249                    (frsubtype == 0x0a) ||
1250                    (frsubtype == 0x0b)) {
1251                 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1252                         hdrlen += 2;
1253                 qc_exists = 1;
1254         } else {
1255                 qc_exists = 0;
1256         }
1257         /* now, decrypt pframe with hdrlen offset and plen long */
1258         payload_index = hdrlen + 8; /* 8 is for extiv */
1259         for (i = 0; i < num_blocks; i++) {
1260                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1261                                       pframe, pn_vector, i + 1);
1262                 aes128k128d(key, ctr_preload, aes_out);
1263                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1264                 for (j = 0; j < 16; j++)
1265                         pframe[payload_index++] = chain_buffer[j];
1266         }
1267         if (payload_remainder > 0) {  /* If short final block, pad it,*/
1268                 /* encrypt it and copy the unpadded part back   */
1269                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1270                                       pframe, pn_vector, num_blocks+1);
1271                 for (j = 0; j < 16; j++)
1272                         padded_buffer[j] = 0x00;
1273                 for (j = 0; j < payload_remainder; j++)
1274                         padded_buffer[j] = pframe[payload_index + j];
1275                 aes128k128d(key, ctr_preload, aes_out);
1276                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1277                 for (j = 0; j < payload_remainder; j++)
1278                         pframe[payload_index++] = chain_buffer[j];
1279         }
1280         /* start to calculate the mic */
1281         memcpy((void *)message, pframe, (hdrlen + plen + 8));
1282         pn_vector[0] = pframe[hdrlen];
1283         pn_vector[1] = pframe[hdrlen+1];
1284         pn_vector[2] = pframe[hdrlen+4];
1285         pn_vector[3] = pframe[hdrlen+5];
1286         pn_vector[4] = pframe[hdrlen+6];
1287         pn_vector[5] = pframe[hdrlen+7];
1288         construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen-8,
1289                          pn_vector);
1290         construct_mic_header1(mic_header1, hdrlen, message);
1291         construct_mic_header2(mic_header2, message, a4_exists, qc_exists);
1292         payload_remainder = (plen - 8) % 16;
1293         num_blocks = (plen - 8) / 16;
1294         /* Find start of payload */
1295         payload_index = hdrlen + 8;
1296         /* Calculate MIC */
1297         aes128k128d(key, mic_iv, aes_out);
1298         bitwise_xor(aes_out, mic_header1, chain_buffer);
1299         aes128k128d(key, chain_buffer, aes_out);
1300         bitwise_xor(aes_out, mic_header2, chain_buffer);
1301         aes128k128d(key, chain_buffer, aes_out);
1302         for (i = 0; i < num_blocks; i++) {
1303                 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1304                 payload_index += 16;
1305                 aes128k128d(key, chain_buffer, aes_out);
1306         }
1307         /* Add on the final payload block if it needs padding */
1308         if (payload_remainder > 0) {
1309                 for (j = 0; j < 16; j++)
1310                         padded_buffer[j] = 0x00;
1311                 for (j = 0; j < payload_remainder; j++)
1312                         padded_buffer[j] = message[payload_index++];
1313                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1314                 aes128k128d(key, chain_buffer, aes_out);
1315         }
1316         for (j = 0; j < 8; j++)
1317                 mic[j] = aes_out[j];
1318         /* Insert MIC into payload */
1319         for (j = 0; j < 8; j++)
1320                 message[payload_index+j] = mic[j];
1321         payload_index = hdrlen + 8;
1322         for (i = 0; i < num_blocks; i++) {
1323                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1324                                       message, pn_vector, i + 1);
1325                 aes128k128d(key, ctr_preload, aes_out);
1326                 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1327                 for (j = 0; j < 16; j++)
1328                         message[payload_index++] = chain_buffer[j];
1329         }
1330         if (payload_remainder > 0) { /* If short final block, pad it,*/
1331                                      /* encrypt and copy unpadded part back */
1332                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1333                                       message, pn_vector, num_blocks+1);
1334                 for (j = 0; j < 16; j++)
1335                         padded_buffer[j] = 0x00;
1336                 for (j = 0; j < payload_remainder; j++)
1337                         padded_buffer[j] = message[payload_index + j];
1338                 aes128k128d(key, ctr_preload, aes_out);
1339                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1340                 for (j = 0; j < payload_remainder; j++)
1341                         message[payload_index++] = chain_buffer[j];
1342         }
1343         /* Encrypt the MIC */
1344         construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message,
1345                               pn_vector, 0);
1346         for (j = 0; j < 16; j++)
1347                 padded_buffer[j] = 0x00;
1348         for (j = 0; j < 8; j++)
1349                 padded_buffer[j] = message[j + hdrlen + plen];
1350         aes128k128d(key, ctr_preload, aes_out);
1351         bitwise_xor(aes_out, padded_buffer, chain_buffer);
1352         for (j = 0; j < 8; j++)
1353                 message[payload_index++] = chain_buffer[j];
1354         /* compare the mic */
1355         return _SUCCESS;
1356 }
1357
1358 u32 r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe)
1359 {       /* exclude ICV */
1360         /* Intermediate Buffers */
1361         sint            length;
1362         u8      *pframe, *prwskey, *iv, idx;
1363         struct  sta_info *stainfo;
1364         struct  rx_pkt_attrib *prxattrib = &((union recv_frame *)
1365                                            precvframe)->u.hdr.attrib;
1366         struct  security_priv *psecuritypriv = &padapter->securitypriv;
1367
1368         pframe = (unsigned char *)((union recv_frame *)precvframe)->
1369                  u.hdr.rx_data;
1370         /* 4 start to encrypt each fragment */
1371         if (prxattrib->encrypt == _AES_) {
1372                 stainfo = r8712_get_stainfo(&padapter->stapriv,
1373                                             &prxattrib->ta[0]);
1374                 if (stainfo != NULL) {
1375                         if (IS_MCAST(prxattrib->ra)) {
1376                                 iv = pframe+prxattrib->hdrlen;
1377                                 idx = iv[3];
1378                                 prwskey = &psecuritypriv->XGrpKey[
1379                                           ((idx >> 6) & 0x3) - 1].skey[0];
1380                                 if (psecuritypriv->binstallGrpkey == false)
1381                                         return _FAIL;
1382
1383                         } else
1384                                 prwskey = &stainfo->x_UncstKey.skey[0];
1385                         length = ((union recv_frame *)precvframe)->
1386                                  u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
1387                         aes_decipher(prwskey, prxattrib->hdrlen, pframe,
1388                                      length);
1389                 } else
1390                         return _FAIL;
1391         }
1392         return _SUCCESS;
1393 }
1394
1395 void r8712_use_tkipkey_handler(unsigned long data)
1396 {
1397         struct _adapter *padapter = (struct _adapter *)data;
1398
1399         padapter->securitypriv.busetkipkey = true;
1400 }