These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / staging / rdma / hfi1 / sdma.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/seqlock.h>
53 #include <linux/netdevice.h>
54 #include <linux/moduleparam.h>
55 #include <linux/bitops.h>
56 #include <linux/timer.h>
57 #include <linux/vmalloc.h>
58 #include <linux/highmem.h>
59
60 #include "hfi.h"
61 #include "common.h"
62 #include "qp.h"
63 #include "sdma.h"
64 #include "iowait.h"
65 #include "trace.h"
66
67 /* must be a power of 2 >= 64 <= 32768 */
68 #define SDMA_DESCQ_CNT 2048
69 #define SDMA_DESC_INTR 64
70 #define INVALID_TAIL 0xffff
71
72 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
73 module_param(sdma_descq_cnt, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
75
76 static uint sdma_idle_cnt = 250;
77 module_param(sdma_idle_cnt, uint, S_IRUGO);
78 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
79
80 uint mod_num_sdma;
81 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
82 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
83
84 static uint sdma_desct_intr = SDMA_DESC_INTR;
85 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
87
88 #define SDMA_WAIT_BATCH_SIZE 20
89 /* max wait time for a SDMA engine to indicate it has halted */
90 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
91 /* all SDMA engine errors that cause a halt */
92
93 #define SD(name) SEND_DMA_##name
94 #define ALL_SDMA_ENG_HALT_ERRS \
95         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
110         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
111         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
112         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
113
114 /* sdma_sendctrl operations */
115 #define SDMA_SENDCTRL_OP_ENABLE    (1U << 0)
116 #define SDMA_SENDCTRL_OP_INTENABLE (1U << 1)
117 #define SDMA_SENDCTRL_OP_HALT      (1U << 2)
118 #define SDMA_SENDCTRL_OP_CLEANUP   (1U << 3)
119
120 /* handle long defines */
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
123 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
124 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
125
126 static const char * const sdma_state_names[] = {
127         [sdma_state_s00_hw_down]                = "s00_HwDown",
128         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
129         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
130         [sdma_state_s20_idle]                   = "s20_Idle",
131         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
132         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
133         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
134         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
135         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
136         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
137         [sdma_state_s99_running]                = "s99_Running",
138 };
139
140 static const char * const sdma_event_names[] = {
141         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
142         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
143         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
144         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
145         [sdma_event_e30_go_running]   = "e30_GoRunning",
146         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
147         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
148         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
149         [sdma_event_e70_go_idle]      = "e70_GoIdle",
150         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
151         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
152         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
153         [sdma_event_e85_link_down]    = "e85_LinkDown",
154         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
155 };
156
157 static const struct sdma_set_state_action sdma_action_table[] = {
158         [sdma_state_s00_hw_down] = {
159                 .go_s99_running_tofalse = 1,
160                 .op_enable = 0,
161                 .op_intenable = 0,
162                 .op_halt = 0,
163                 .op_cleanup = 0,
164         },
165         [sdma_state_s10_hw_start_up_halt_wait] = {
166                 .op_enable = 0,
167                 .op_intenable = 0,
168                 .op_halt = 1,
169                 .op_cleanup = 0,
170         },
171         [sdma_state_s15_hw_start_up_clean_wait] = {
172                 .op_enable = 0,
173                 .op_intenable = 1,
174                 .op_halt = 0,
175                 .op_cleanup = 1,
176         },
177         [sdma_state_s20_idle] = {
178                 .op_enable = 0,
179                 .op_intenable = 1,
180                 .op_halt = 0,
181                 .op_cleanup = 0,
182         },
183         [sdma_state_s30_sw_clean_up_wait] = {
184                 .op_enable = 0,
185                 .op_intenable = 0,
186                 .op_halt = 0,
187                 .op_cleanup = 0,
188         },
189         [sdma_state_s40_hw_clean_up_wait] = {
190                 .op_enable = 0,
191                 .op_intenable = 0,
192                 .op_halt = 0,
193                 .op_cleanup = 1,
194         },
195         [sdma_state_s50_hw_halt_wait] = {
196                 .op_enable = 0,
197                 .op_intenable = 0,
198                 .op_halt = 0,
199                 .op_cleanup = 0,
200         },
201         [sdma_state_s60_idle_halt_wait] = {
202                 .go_s99_running_tofalse = 1,
203                 .op_enable = 0,
204                 .op_intenable = 0,
205                 .op_halt = 1,
206                 .op_cleanup = 0,
207         },
208         [sdma_state_s80_hw_freeze] = {
209                 .op_enable = 0,
210                 .op_intenable = 0,
211                 .op_halt = 0,
212                 .op_cleanup = 0,
213         },
214         [sdma_state_s82_freeze_sw_clean] = {
215                 .op_enable = 0,
216                 .op_intenable = 0,
217                 .op_halt = 0,
218                 .op_cleanup = 0,
219         },
220         [sdma_state_s99_running] = {
221                 .op_enable = 1,
222                 .op_intenable = 1,
223                 .op_halt = 0,
224                 .op_cleanup = 0,
225                 .go_s99_running_totrue = 1,
226         },
227 };
228
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref *);
233 static void sdma_finalput(struct sdma_state *);
234 static void sdma_get(struct sdma_state *);
235 static void sdma_hw_clean_up_task(unsigned long);
236 static void sdma_put(struct sdma_state *);
237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238 static void sdma_start_hw_clean_up(struct sdma_engine *);
239 static void sdma_start_sw_clean_up(struct sdma_engine *);
240 static void sdma_sw_clean_up_task(unsigned long);
241 static void sdma_sendctrl(struct sdma_engine *, unsigned);
242 static void init_sdma_regs(struct sdma_engine *, u32, uint);
243 static void sdma_process_event(
244         struct sdma_engine *sde,
245         enum sdma_events event);
246 static void __sdma_process_event(
247         struct sdma_engine *sde,
248         enum sdma_events event);
249 static void dump_sdma_state(struct sdma_engine *sde);
250 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
251 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
252 static void sdma_flush_descq(struct sdma_engine *sde);
253
254 /**
255  * sdma_state_name() - return state string from enum
256  * @state: state
257  */
258 static const char *sdma_state_name(enum sdma_states state)
259 {
260         return sdma_state_names[state];
261 }
262
263 static void sdma_get(struct sdma_state *ss)
264 {
265         kref_get(&ss->kref);
266 }
267
268 static void sdma_complete(struct kref *kref)
269 {
270         struct sdma_state *ss =
271                 container_of(kref, struct sdma_state, kref);
272
273         complete(&ss->comp);
274 }
275
276 static void sdma_put(struct sdma_state *ss)
277 {
278         kref_put(&ss->kref, sdma_complete);
279 }
280
281 static void sdma_finalput(struct sdma_state *ss)
282 {
283         sdma_put(ss);
284         wait_for_completion(&ss->comp);
285 }
286
287 static inline void write_sde_csr(
288         struct sdma_engine *sde,
289         u32 offset0,
290         u64 value)
291 {
292         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
293 }
294
295 static inline u64 read_sde_csr(
296         struct sdma_engine *sde,
297         u32 offset0)
298 {
299         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
300 }
301
302 /*
303  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
304  * sdma engine 'sde' to drop to 0.
305  */
306 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
307                                         int pause)
308 {
309         u64 off = 8 * sde->this_idx;
310         struct hfi1_devdata *dd = sde->dd;
311         int lcnt = 0;
312         u64 reg_prev;
313         u64 reg = 0;
314
315         while (1) {
316                 reg_prev = reg;
317                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
318
319                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
320                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
321                 if (reg == 0)
322                         break;
323                 /* counter is reest if accupancy count changes */
324                 if (reg != reg_prev)
325                         lcnt = 0;
326                 if (lcnt++ > 500) {
327                         /* timed out - bounce the link */
328                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
329                                   __func__, sde->this_idx, (u32)reg);
330                         queue_work(dd->pport->hfi1_wq,
331                                 &dd->pport->link_bounce_work);
332                         break;
333                 }
334                 udelay(1);
335         }
336 }
337
338 /*
339  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
340  * and pause for credit return.
341  */
342 void sdma_wait(struct hfi1_devdata *dd)
343 {
344         int i;
345
346         for (i = 0; i < dd->num_sdma; i++) {
347                 struct sdma_engine *sde = &dd->per_sdma[i];
348
349                 sdma_wait_for_packet_egress(sde, 0);
350         }
351 }
352
353 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
354 {
355         u64 reg;
356
357         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
358                 return;
359         reg = cnt;
360         reg &= SD(DESC_CNT_CNT_MASK);
361         reg <<= SD(DESC_CNT_CNT_SHIFT);
362         write_sde_csr(sde, SD(DESC_CNT), reg);
363 }
364
365 /*
366  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
367  *
368  * Depending on timing there can be txreqs in two places:
369  * - in the descq ring
370  * - in the flush list
371  *
372  * To avoid ordering issues the descq ring needs to be flushed
373  * first followed by the flush list.
374  *
375  * This routine is called from two places
376  * - From a work queue item
377  * - Directly from the state machine just before setting the
378  *   state to running
379  *
380  * Must be called with head_lock held
381  *
382  */
383 static void sdma_flush(struct sdma_engine *sde)
384 {
385         struct sdma_txreq *txp, *txp_next;
386         LIST_HEAD(flushlist);
387         unsigned long flags;
388
389         /* flush from head to tail */
390         sdma_flush_descq(sde);
391         spin_lock_irqsave(&sde->flushlist_lock, flags);
392         /* copy flush list */
393         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
394                 list_del_init(&txp->list);
395                 list_add_tail(&txp->list, &flushlist);
396         }
397         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
398         /* flush from flush list */
399         list_for_each_entry_safe(txp, txp_next, &flushlist, list) {
400                 int drained = 0;
401                 /* protect against complete modifying */
402                 struct iowait *wait = txp->wait;
403
404                 list_del_init(&txp->list);
405 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
406                 trace_hfi1_sdma_out_sn(sde, txp->sn);
407                 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
408                         dd_dev_err(sde->dd, "expected %llu got %llu\n",
409                                 sde->head_sn, txp->sn);
410                 sde->head_sn++;
411 #endif
412                 sdma_txclean(sde->dd, txp);
413                 if (wait)
414                         drained = atomic_dec_and_test(&wait->sdma_busy);
415                 if (txp->complete)
416                         (*txp->complete)(txp, SDMA_TXREQ_S_ABORTED, drained);
417                 if (wait && drained)
418                         iowait_drain_wakeup(wait);
419         }
420 }
421
422 /*
423  * Fields a work request for flushing the descq ring
424  * and the flush list
425  *
426  * If the engine has been brought to running during
427  * the scheduling delay, the flush is ignored, assuming
428  * that the process of bringing the engine to running
429  * would have done this flush prior to going to running.
430  *
431  */
432 static void sdma_field_flush(struct work_struct *work)
433 {
434         unsigned long flags;
435         struct sdma_engine *sde =
436                 container_of(work, struct sdma_engine, flush_worker);
437
438         write_seqlock_irqsave(&sde->head_lock, flags);
439         if (!__sdma_running(sde))
440                 sdma_flush(sde);
441         write_sequnlock_irqrestore(&sde->head_lock, flags);
442 }
443
444 static void sdma_err_halt_wait(struct work_struct *work)
445 {
446         struct sdma_engine *sde = container_of(work, struct sdma_engine,
447                                                 err_halt_worker);
448         u64 statuscsr;
449         unsigned long timeout;
450
451         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
452         while (1) {
453                 statuscsr = read_sde_csr(sde, SD(STATUS));
454                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
455                 if (statuscsr)
456                         break;
457                 if (time_after(jiffies, timeout)) {
458                         dd_dev_err(sde->dd,
459                                 "SDMA engine %d - timeout waiting for engine to halt\n",
460                                 sde->this_idx);
461                         /*
462                          * Continue anyway.  This could happen if there was
463                          * an uncorrectable error in the wrong spot.
464                          */
465                         break;
466                 }
467                 usleep_range(80, 120);
468         }
469
470         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
471 }
472
473 static void sdma_start_err_halt_wait(struct sdma_engine *sde)
474 {
475         schedule_work(&sde->err_halt_worker);
476 }
477
478
479 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
480 {
481         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
482
483                 unsigned index;
484                 struct hfi1_devdata *dd = sde->dd;
485
486                 for (index = 0; index < dd->num_sdma; index++) {
487                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
488
489                         if (curr_sdma != sde)
490                                 curr_sdma->progress_check_head =
491                                                         curr_sdma->descq_head;
492                 }
493                 dd_dev_err(sde->dd,
494                            "SDMA engine %d - check scheduled\n",
495                                 sde->this_idx);
496                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
497         }
498 }
499
500 static void sdma_err_progress_check(unsigned long data)
501 {
502         unsigned index;
503         struct sdma_engine *sde = (struct sdma_engine *)data;
504
505         dd_dev_err(sde->dd, "SDE progress check event\n");
506         for (index = 0; index < sde->dd->num_sdma; index++) {
507                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
508                 unsigned long flags;
509
510                 /* check progress on each engine except the current one */
511                 if (curr_sde == sde)
512                         continue;
513                 /*
514                  * We must lock interrupts when acquiring sde->lock,
515                  * to avoid a deadlock if interrupt triggers and spins on
516                  * the same lock on same CPU
517                  */
518                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
519                 write_seqlock(&curr_sde->head_lock);
520
521                 /* skip non-running queues */
522                 if (curr_sde->state.current_state != sdma_state_s99_running) {
523                         write_sequnlock(&curr_sde->head_lock);
524                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
525                         continue;
526                 }
527
528                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
529                     (curr_sde->descq_head ==
530                                 curr_sde->progress_check_head))
531                         __sdma_process_event(curr_sde,
532                                              sdma_event_e90_sw_halted);
533                 write_sequnlock(&curr_sde->head_lock);
534                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
535         }
536         schedule_work(&sde->err_halt_worker);
537 }
538
539 static void sdma_hw_clean_up_task(unsigned long opaque)
540 {
541         struct sdma_engine *sde = (struct sdma_engine *) opaque;
542         u64 statuscsr;
543
544         while (1) {
545 #ifdef CONFIG_SDMA_VERBOSITY
546                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
547                            sde->this_idx, slashstrip(__FILE__), __LINE__,
548                         __func__);
549 #endif
550                 statuscsr = read_sde_csr(sde, SD(STATUS));
551                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
552                 if (statuscsr)
553                         break;
554                 udelay(10);
555         }
556
557         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
558 }
559
560 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
561 {
562         smp_read_barrier_depends(); /* see sdma_update_tail() */
563         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
564 }
565
566 /*
567  * flush ring for recovery
568  */
569 static void sdma_flush_descq(struct sdma_engine *sde)
570 {
571         u16 head, tail;
572         int progress = 0;
573         struct sdma_txreq *txp = get_txhead(sde);
574
575         /* The reason for some of the complexity of this code is that
576          * not all descriptors have corresponding txps.  So, we have to
577          * be able to skip over descs until we wander into the range of
578          * the next txp on the list.
579          */
580         head = sde->descq_head & sde->sdma_mask;
581         tail = sde->descq_tail & sde->sdma_mask;
582         while (head != tail) {
583                 /* advance head, wrap if needed */
584                 head = ++sde->descq_head & sde->sdma_mask;
585                 /* if now past this txp's descs, do the callback */
586                 if (txp && txp->next_descq_idx == head) {
587                         int drained = 0;
588                         /* protect against complete modifying */
589                         struct iowait *wait = txp->wait;
590
591                         /* remove from list */
592                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
593                         if (wait)
594                                 drained = atomic_dec_and_test(&wait->sdma_busy);
595 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
596                         trace_hfi1_sdma_out_sn(sde, txp->sn);
597                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
598                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
599                                         sde->head_sn, txp->sn);
600                         sde->head_sn++;
601 #endif
602                         sdma_txclean(sde->dd, txp);
603                         trace_hfi1_sdma_progress(sde, head, tail, txp);
604                         if (txp->complete)
605                                 (*txp->complete)(
606                                         txp,
607                                         SDMA_TXREQ_S_ABORTED,
608                                         drained);
609                         if (wait && drained)
610                                 iowait_drain_wakeup(wait);
611                         /* see if there is another txp */
612                         txp = get_txhead(sde);
613                 }
614                 progress++;
615         }
616         if (progress)
617                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
618 }
619
620 static void sdma_sw_clean_up_task(unsigned long opaque)
621 {
622         struct sdma_engine *sde = (struct sdma_engine *) opaque;
623         unsigned long flags;
624
625         spin_lock_irqsave(&sde->tail_lock, flags);
626         write_seqlock(&sde->head_lock);
627
628         /*
629          * At this point, the following should always be true:
630          * - We are halted, so no more descriptors are getting retired.
631          * - We are not running, so no one is submitting new work.
632          * - Only we can send the e40_sw_cleaned, so we can't start
633          *   running again until we say so.  So, the active list and
634          *   descq are ours to play with.
635          */
636
637
638         /*
639          * In the error clean up sequence, software clean must be called
640          * before the hardware clean so we can use the hardware head in
641          * the progress routine.  A hardware clean or SPC unfreeze will
642          * reset the hardware head.
643          *
644          * Process all retired requests. The progress routine will use the
645          * latest physical hardware head - we are not running so speed does
646          * not matter.
647          */
648         sdma_make_progress(sde, 0);
649
650         sdma_flush(sde);
651
652         /*
653          * Reset our notion of head and tail.
654          * Note that the HW registers have been reset via an earlier
655          * clean up.
656          */
657         sde->descq_tail = 0;
658         sde->descq_head = 0;
659         sde->desc_avail = sdma_descq_freecnt(sde);
660         *sde->head_dma = 0;
661
662         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
663
664         write_sequnlock(&sde->head_lock);
665         spin_unlock_irqrestore(&sde->tail_lock, flags);
666 }
667
668 static void sdma_sw_tear_down(struct sdma_engine *sde)
669 {
670         struct sdma_state *ss = &sde->state;
671
672         /* Releasing this reference means the state machine has stopped. */
673         sdma_put(ss);
674
675         /* stop waiting for all unfreeze events to complete */
676         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
677         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
678 }
679
680 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
681 {
682         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
683 }
684
685 static void sdma_start_sw_clean_up(struct sdma_engine *sde)
686 {
687         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
688 }
689
690 static void sdma_set_state(struct sdma_engine *sde,
691         enum sdma_states next_state)
692 {
693         struct sdma_state *ss = &sde->state;
694         const struct sdma_set_state_action *action = sdma_action_table;
695         unsigned op = 0;
696
697         trace_hfi1_sdma_state(
698                 sde,
699                 sdma_state_names[ss->current_state],
700                 sdma_state_names[next_state]);
701
702         /* debugging bookkeeping */
703         ss->previous_state = ss->current_state;
704         ss->previous_op = ss->current_op;
705         ss->current_state = next_state;
706
707         if (ss->previous_state != sdma_state_s99_running
708                 && next_state == sdma_state_s99_running)
709                 sdma_flush(sde);
710
711         if (action[next_state].op_enable)
712                 op |= SDMA_SENDCTRL_OP_ENABLE;
713
714         if (action[next_state].op_intenable)
715                 op |= SDMA_SENDCTRL_OP_INTENABLE;
716
717         if (action[next_state].op_halt)
718                 op |= SDMA_SENDCTRL_OP_HALT;
719
720         if (action[next_state].op_cleanup)
721                 op |= SDMA_SENDCTRL_OP_CLEANUP;
722
723         if (action[next_state].go_s99_running_tofalse)
724                 ss->go_s99_running = 0;
725
726         if (action[next_state].go_s99_running_totrue)
727                 ss->go_s99_running = 1;
728
729         ss->current_op = op;
730         sdma_sendctrl(sde, ss->current_op);
731 }
732
733 /**
734  * sdma_get_descq_cnt() - called when device probed
735  *
736  * Return a validated descq count.
737  *
738  * This is currently only used in the verbs initialization to build the tx
739  * list.
740  *
741  * This will probably be deleted in favor of a more scalable approach to
742  * alloc tx's.
743  *
744  */
745 u16 sdma_get_descq_cnt(void)
746 {
747         u16 count = sdma_descq_cnt;
748
749         if (!count)
750                 return SDMA_DESCQ_CNT;
751         /* count must be a power of 2 greater than 64 and less than
752          * 32768.   Otherwise return default.
753          */
754         if (!is_power_of_2(count))
755                 return SDMA_DESCQ_CNT;
756         if (count < 64 || count > 32768)
757                 return SDMA_DESCQ_CNT;
758         return count;
759 }
760
761 /**
762  * sdma_select_engine_vl() - select sdma engine
763  * @dd: devdata
764  * @selector: a spreading factor
765  * @vl: this vl
766  *
767  *
768  * This function returns an engine based on the selector and a vl.  The
769  * mapping fields are protected by RCU.
770  */
771 struct sdma_engine *sdma_select_engine_vl(
772         struct hfi1_devdata *dd,
773         u32 selector,
774         u8 vl)
775 {
776         struct sdma_vl_map *m;
777         struct sdma_map_elem *e;
778         struct sdma_engine *rval;
779
780         if (WARN_ON(vl > 8))
781                 return NULL;
782
783         rcu_read_lock();
784         m = rcu_dereference(dd->sdma_map);
785         if (unlikely(!m)) {
786                 rcu_read_unlock();
787                 return NULL;
788         }
789         e = m->map[vl & m->mask];
790         rval = e->sde[selector & e->mask];
791         rcu_read_unlock();
792
793         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
794         return rval;
795 }
796
797 /**
798  * sdma_select_engine_sc() - select sdma engine
799  * @dd: devdata
800  * @selector: a spreading factor
801  * @sc5: the 5 bit sc
802  *
803  *
804  * This function returns an engine based on the selector and an sc.
805  */
806 struct sdma_engine *sdma_select_engine_sc(
807         struct hfi1_devdata *dd,
808         u32 selector,
809         u8 sc5)
810 {
811         u8 vl = sc_to_vlt(dd, sc5);
812
813         return sdma_select_engine_vl(dd, selector, vl);
814 }
815
816 /*
817  * Free the indicated map struct
818  */
819 static void sdma_map_free(struct sdma_vl_map *m)
820 {
821         int i;
822
823         for (i = 0; m && i < m->actual_vls; i++)
824                 kfree(m->map[i]);
825         kfree(m);
826 }
827
828 /*
829  * Handle RCU callback
830  */
831 static void sdma_map_rcu_callback(struct rcu_head *list)
832 {
833         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
834
835         sdma_map_free(m);
836 }
837
838 /**
839  * sdma_map_init - called when # vls change
840  * @dd: hfi1_devdata
841  * @port: port number
842  * @num_vls: number of vls
843  * @vl_engines: per vl engine mapping (optional)
844  *
845  * This routine changes the mapping based on the number of vls.
846  *
847  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
848  * implies auto computing the loading and giving each VLs a uniform
849  * distribution of engines per VL.
850  *
851  * The auto algorithm computes the sde_per_vl and the number of extra
852  * engines.  Any extra engines are added from the last VL on down.
853  *
854  * rcu locking is used here to control access to the mapping fields.
855  *
856  * If either the num_vls or num_sdma are non-power of 2, the array sizes
857  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
858  * up to the next highest power of 2 and the first entry is reused
859  * in a round robin fashion.
860  *
861  * If an error occurs the map change is not done and the mapping is
862  * not changed.
863  *
864  */
865 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
866 {
867         int i, j;
868         int extra, sde_per_vl;
869         int engine = 0;
870         u8 lvl_engines[OPA_MAX_VLS];
871         struct sdma_vl_map *oldmap, *newmap;
872
873         if (!(dd->flags & HFI1_HAS_SEND_DMA))
874                 return 0;
875
876         if (!vl_engines) {
877                 /* truncate divide */
878                 sde_per_vl = dd->num_sdma / num_vls;
879                 /* extras */
880                 extra = dd->num_sdma % num_vls;
881                 vl_engines = lvl_engines;
882                 /* add extras from last vl down */
883                 for (i = num_vls - 1; i >= 0; i--, extra--)
884                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
885         }
886         /* build new map */
887         newmap = kzalloc(
888                 sizeof(struct sdma_vl_map) +
889                         roundup_pow_of_two(num_vls) *
890                         sizeof(struct sdma_map_elem *),
891                 GFP_KERNEL);
892         if (!newmap)
893                 goto bail;
894         newmap->actual_vls = num_vls;
895         newmap->vls = roundup_pow_of_two(num_vls);
896         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
897         for (i = 0; i < newmap->vls; i++) {
898                 /* save for wrap around */
899                 int first_engine = engine;
900
901                 if (i < newmap->actual_vls) {
902                         int sz = roundup_pow_of_two(vl_engines[i]);
903
904                         /* only allocate once */
905                         newmap->map[i] = kzalloc(
906                                 sizeof(struct sdma_map_elem) +
907                                         sz * sizeof(struct sdma_engine *),
908                                 GFP_KERNEL);
909                         if (!newmap->map[i])
910                                 goto bail;
911                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
912                         /* assign engines */
913                         for (j = 0; j < sz; j++) {
914                                 newmap->map[i]->sde[j] =
915                                         &dd->per_sdma[engine];
916                                 if (++engine >= first_engine + vl_engines[i])
917                                         /* wrap back to first engine */
918                                         engine = first_engine;
919                         }
920                 } else {
921                         /* just re-use entry without allocating */
922                         newmap->map[i] = newmap->map[i % num_vls];
923                 }
924                 engine = first_engine + vl_engines[i];
925         }
926         /* newmap in hand, save old map */
927         spin_lock_irq(&dd->sde_map_lock);
928         oldmap = rcu_dereference_protected(dd->sdma_map,
929                         lockdep_is_held(&dd->sde_map_lock));
930
931         /* publish newmap */
932         rcu_assign_pointer(dd->sdma_map, newmap);
933
934         spin_unlock_irq(&dd->sde_map_lock);
935         /* success, free any old map after grace period */
936         if (oldmap)
937                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
938         return 0;
939 bail:
940         /* free any partial allocation */
941         sdma_map_free(newmap);
942         return -ENOMEM;
943 }
944
945 /*
946  * Clean up allocated memory.
947  *
948  * This routine is can be called regardless of the success of sdma_init()
949  *
950  */
951 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
952 {
953         size_t i;
954         struct sdma_engine *sde;
955
956         if (dd->sdma_pad_dma) {
957                 dma_free_coherent(&dd->pcidev->dev, 4,
958                                   (void *)dd->sdma_pad_dma,
959                                   dd->sdma_pad_phys);
960                 dd->sdma_pad_dma = NULL;
961                 dd->sdma_pad_phys = 0;
962         }
963         if (dd->sdma_heads_dma) {
964                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
965                                   (void *)dd->sdma_heads_dma,
966                                   dd->sdma_heads_phys);
967                 dd->sdma_heads_dma = NULL;
968                 dd->sdma_heads_phys = 0;
969         }
970         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
971                 sde = &dd->per_sdma[i];
972
973                 sde->head_dma = NULL;
974                 sde->head_phys = 0;
975
976                 if (sde->descq) {
977                         dma_free_coherent(
978                                 &dd->pcidev->dev,
979                                 sde->descq_cnt * sizeof(u64[2]),
980                                 sde->descq,
981                                 sde->descq_phys
982                         );
983                         sde->descq = NULL;
984                         sde->descq_phys = 0;
985                 }
986                 kvfree(sde->tx_ring);
987                 sde->tx_ring = NULL;
988         }
989         spin_lock_irq(&dd->sde_map_lock);
990         kfree(rcu_access_pointer(dd->sdma_map));
991         RCU_INIT_POINTER(dd->sdma_map, NULL);
992         spin_unlock_irq(&dd->sde_map_lock);
993         synchronize_rcu();
994         kfree(dd->per_sdma);
995         dd->per_sdma = NULL;
996 }
997
998 /**
999  * sdma_init() - called when device probed
1000  * @dd: hfi1_devdata
1001  * @port: port number (currently only zero)
1002  *
1003  * sdma_init initializes the specified number of engines.
1004  *
1005  * The code initializes each sde, its csrs.  Interrupts
1006  * are not required to be enabled.
1007  *
1008  * Returns:
1009  * 0 - success, -errno on failure
1010  */
1011 int sdma_init(struct hfi1_devdata *dd, u8 port)
1012 {
1013         unsigned this_idx;
1014         struct sdma_engine *sde;
1015         u16 descq_cnt;
1016         void *curr_head;
1017         struct hfi1_pportdata *ppd = dd->pport + port;
1018         u32 per_sdma_credits;
1019         uint idle_cnt = sdma_idle_cnt;
1020         size_t num_engines = dd->chip_sdma_engines;
1021
1022         if (!HFI1_CAP_IS_KSET(SDMA)) {
1023                 HFI1_CAP_CLEAR(SDMA_AHG);
1024                 return 0;
1025         }
1026         if (mod_num_sdma &&
1027                 /* can't exceed chip support */
1028                 mod_num_sdma <= dd->chip_sdma_engines &&
1029                 /* count must be >= vls */
1030                 mod_num_sdma >= num_vls)
1031                 num_engines = mod_num_sdma;
1032
1033         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1034         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1035         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1036                 dd->chip_sdma_mem_size);
1037
1038         per_sdma_credits =
1039                 dd->chip_sdma_mem_size/(num_engines * SDMA_BLOCK_SIZE);
1040
1041         /* set up freeze waitqueue */
1042         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1043         atomic_set(&dd->sdma_unfreeze_count, 0);
1044
1045         descq_cnt = sdma_get_descq_cnt();
1046         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1047                 num_engines, descq_cnt);
1048
1049         /* alloc memory for array of send engines */
1050         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1051         if (!dd->per_sdma)
1052                 return -ENOMEM;
1053
1054         idle_cnt = ns_to_cclock(dd, idle_cnt);
1055         if (!sdma_desct_intr)
1056                 sdma_desct_intr = SDMA_DESC_INTR;
1057
1058         /* Allocate memory for SendDMA descriptor FIFOs */
1059         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1060                 sde = &dd->per_sdma[this_idx];
1061                 sde->dd = dd;
1062                 sde->ppd = ppd;
1063                 sde->this_idx = this_idx;
1064                 sde->descq_cnt = descq_cnt;
1065                 sde->desc_avail = sdma_descq_freecnt(sde);
1066                 sde->sdma_shift = ilog2(descq_cnt);
1067                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1068                 sde->descq_full_count = 0;
1069
1070                 /* Create a mask for all 3 chip interrupt sources */
1071                 sde->imask = (u64)1 << (0*TXE_NUM_SDMA_ENGINES + this_idx)
1072                         | (u64)1 << (1*TXE_NUM_SDMA_ENGINES + this_idx)
1073                         | (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1074                 /* Create a mask specifically for sdma_idle */
1075                 sde->idle_mask =
1076                         (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1077                 /* Create a mask specifically for sdma_progress */
1078                 sde->progress_mask =
1079                         (u64)1 << (TXE_NUM_SDMA_ENGINES + this_idx);
1080                 spin_lock_init(&sde->tail_lock);
1081                 seqlock_init(&sde->head_lock);
1082                 spin_lock_init(&sde->senddmactrl_lock);
1083                 spin_lock_init(&sde->flushlist_lock);
1084                 /* insure there is always a zero bit */
1085                 sde->ahg_bits = 0xfffffffe00000000ULL;
1086
1087                 sdma_set_state(sde, sdma_state_s00_hw_down);
1088
1089                 /* set up reference counting */
1090                 kref_init(&sde->state.kref);
1091                 init_completion(&sde->state.comp);
1092
1093                 INIT_LIST_HEAD(&sde->flushlist);
1094                 INIT_LIST_HEAD(&sde->dmawait);
1095
1096                 sde->tail_csr =
1097                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1098
1099                 if (idle_cnt)
1100                         dd->default_desc1 =
1101                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1102                 else
1103                         dd->default_desc1 =
1104                                 SDMA_DESC1_INT_REQ_FLAG;
1105
1106                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1107                         (unsigned long)sde);
1108
1109                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1110                         (unsigned long)sde);
1111                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1112                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1113
1114                 sde->progress_check_head = 0;
1115
1116                 setup_timer(&sde->err_progress_check_timer,
1117                             sdma_err_progress_check, (unsigned long)sde);
1118
1119                 sde->descq = dma_zalloc_coherent(
1120                         &dd->pcidev->dev,
1121                         descq_cnt * sizeof(u64[2]),
1122                         &sde->descq_phys,
1123                         GFP_KERNEL
1124                 );
1125                 if (!sde->descq)
1126                         goto bail;
1127                 sde->tx_ring =
1128                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1129                                 GFP_KERNEL);
1130                 if (!sde->tx_ring)
1131                         sde->tx_ring =
1132                                 vzalloc(
1133                                         sizeof(struct sdma_txreq *) *
1134                                         descq_cnt);
1135                 if (!sde->tx_ring)
1136                         goto bail;
1137         }
1138
1139         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1140         /* Allocate memory for DMA of head registers to memory */
1141         dd->sdma_heads_dma = dma_zalloc_coherent(
1142                 &dd->pcidev->dev,
1143                 dd->sdma_heads_size,
1144                 &dd->sdma_heads_phys,
1145                 GFP_KERNEL
1146         );
1147         if (!dd->sdma_heads_dma) {
1148                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1149                 goto bail;
1150         }
1151
1152         /* Allocate memory for pad */
1153         dd->sdma_pad_dma = dma_zalloc_coherent(
1154                 &dd->pcidev->dev,
1155                 sizeof(u32),
1156                 &dd->sdma_pad_phys,
1157                 GFP_KERNEL
1158         );
1159         if (!dd->sdma_pad_dma) {
1160                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1161                 goto bail;
1162         }
1163
1164         /* assign each engine to different cacheline and init registers */
1165         curr_head = (void *)dd->sdma_heads_dma;
1166         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1167                 unsigned long phys_offset;
1168
1169                 sde = &dd->per_sdma[this_idx];
1170
1171                 sde->head_dma = curr_head;
1172                 curr_head += L1_CACHE_BYTES;
1173                 phys_offset = (unsigned long)sde->head_dma -
1174                               (unsigned long)dd->sdma_heads_dma;
1175                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1176                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1177         }
1178         dd->flags |= HFI1_HAS_SEND_DMA;
1179         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1180         dd->num_sdma = num_engines;
1181         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1182                 goto bail;
1183         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1184         return 0;
1185
1186 bail:
1187         sdma_clean(dd, num_engines);
1188         return -ENOMEM;
1189 }
1190
1191 /**
1192  * sdma_all_running() - called when the link goes up
1193  * @dd: hfi1_devdata
1194  *
1195  * This routine moves all engines to the running state.
1196  */
1197 void sdma_all_running(struct hfi1_devdata *dd)
1198 {
1199         struct sdma_engine *sde;
1200         unsigned int i;
1201
1202         /* move all engines to running */
1203         for (i = 0; i < dd->num_sdma; ++i) {
1204                 sde = &dd->per_sdma[i];
1205                 sdma_process_event(sde, sdma_event_e30_go_running);
1206         }
1207 }
1208
1209 /**
1210  * sdma_all_idle() - called when the link goes down
1211  * @dd: hfi1_devdata
1212  *
1213  * This routine moves all engines to the idle state.
1214  */
1215 void sdma_all_idle(struct hfi1_devdata *dd)
1216 {
1217         struct sdma_engine *sde;
1218         unsigned int i;
1219
1220         /* idle all engines */
1221         for (i = 0; i < dd->num_sdma; ++i) {
1222                 sde = &dd->per_sdma[i];
1223                 sdma_process_event(sde, sdma_event_e70_go_idle);
1224         }
1225 }
1226
1227 /**
1228  * sdma_start() - called to kick off state processing for all engines
1229  * @dd: hfi1_devdata
1230  *
1231  * This routine is for kicking off the state processing for all required
1232  * sdma engines.  Interrupts need to be working at this point.
1233  *
1234  */
1235 void sdma_start(struct hfi1_devdata *dd)
1236 {
1237         unsigned i;
1238         struct sdma_engine *sde;
1239
1240         /* kick off the engines state processing */
1241         for (i = 0; i < dd->num_sdma; ++i) {
1242                 sde = &dd->per_sdma[i];
1243                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1244         }
1245 }
1246
1247 /**
1248  * sdma_exit() - used when module is removed
1249  * @dd: hfi1_devdata
1250  */
1251 void sdma_exit(struct hfi1_devdata *dd)
1252 {
1253         unsigned this_idx;
1254         struct sdma_engine *sde;
1255
1256         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1257                         ++this_idx) {
1258
1259                 sde = &dd->per_sdma[this_idx];
1260                 if (!list_empty(&sde->dmawait))
1261                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1262                                 sde->this_idx);
1263                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1264
1265                 del_timer_sync(&sde->err_progress_check_timer);
1266
1267                 /*
1268                  * This waits for the state machine to exit so it is not
1269                  * necessary to kill the sdma_sw_clean_up_task to make sure
1270                  * it is not running.
1271                  */
1272                 sdma_finalput(&sde->state);
1273         }
1274         sdma_clean(dd, dd->num_sdma);
1275 }
1276
1277 /*
1278  * unmap the indicated descriptor
1279  */
1280 static inline void sdma_unmap_desc(
1281         struct hfi1_devdata *dd,
1282         struct sdma_desc *descp)
1283 {
1284         switch (sdma_mapping_type(descp)) {
1285         case SDMA_MAP_SINGLE:
1286                 dma_unmap_single(
1287                         &dd->pcidev->dev,
1288                         sdma_mapping_addr(descp),
1289                         sdma_mapping_len(descp),
1290                         DMA_TO_DEVICE);
1291                 break;
1292         case SDMA_MAP_PAGE:
1293                 dma_unmap_page(
1294                         &dd->pcidev->dev,
1295                         sdma_mapping_addr(descp),
1296                         sdma_mapping_len(descp),
1297                         DMA_TO_DEVICE);
1298                 break;
1299         }
1300 }
1301
1302 /*
1303  * return the mode as indicated by the first
1304  * descriptor in the tx.
1305  */
1306 static inline u8 ahg_mode(struct sdma_txreq *tx)
1307 {
1308         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1309                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1310 }
1311
1312 /**
1313  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1314  * @dd: hfi1_devdata for unmapping
1315  * @tx: tx request to clean
1316  *
1317  * This is used in the progress routine to clean the tx or
1318  * by the ULP to toss an in-process tx build.
1319  *
1320  * The code can be called multiple times without issue.
1321  *
1322  */
1323 void sdma_txclean(
1324         struct hfi1_devdata *dd,
1325         struct sdma_txreq *tx)
1326 {
1327         u16 i;
1328
1329         if (tx->num_desc) {
1330                 u8 skip = 0, mode = ahg_mode(tx);
1331
1332                 /* unmap first */
1333                 sdma_unmap_desc(dd, &tx->descp[0]);
1334                 /* determine number of AHG descriptors to skip */
1335                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1336                         skip = mode >> 1;
1337                 for (i = 1 + skip; i < tx->num_desc; i++)
1338                         sdma_unmap_desc(dd, &tx->descp[i]);
1339                 tx->num_desc = 0;
1340         }
1341         kfree(tx->coalesce_buf);
1342         tx->coalesce_buf = NULL;
1343         /* kmalloc'ed descp */
1344         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1345                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1346                 kfree(tx->descp);
1347         }
1348 }
1349
1350 static inline u16 sdma_gethead(struct sdma_engine *sde)
1351 {
1352         struct hfi1_devdata *dd = sde->dd;
1353         int use_dmahead;
1354         u16 hwhead;
1355
1356 #ifdef CONFIG_SDMA_VERBOSITY
1357         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1358                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1359 #endif
1360
1361 retry:
1362         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1363                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1364         hwhead = use_dmahead ?
1365                 (u16) le64_to_cpu(*sde->head_dma) :
1366                 (u16) read_sde_csr(sde, SD(HEAD));
1367
1368         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1369                 u16 cnt;
1370                 u16 swtail;
1371                 u16 swhead;
1372                 int sane;
1373
1374                 swhead = sde->descq_head & sde->sdma_mask;
1375                 /* this code is really bad for cache line trading */
1376                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1377                 cnt = sde->descq_cnt;
1378
1379                 if (swhead < swtail)
1380                         /* not wrapped */
1381                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1382                 else if (swhead > swtail)
1383                         /* wrapped around */
1384                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1385                                 (hwhead <= swtail);
1386                 else
1387                         /* empty */
1388                         sane = (hwhead == swhead);
1389
1390                 if (unlikely(!sane)) {
1391                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1392                                 sde->this_idx,
1393                                 use_dmahead ? "dma" : "kreg",
1394                                 hwhead, swhead, swtail, cnt);
1395                         if (use_dmahead) {
1396                                 /* try one more time, using csr */
1397                                 use_dmahead = 0;
1398                                 goto retry;
1399                         }
1400                         /* proceed as if no progress */
1401                         hwhead = swhead;
1402                 }
1403         }
1404         return hwhead;
1405 }
1406
1407 /*
1408  * This is called when there are send DMA descriptors that might be
1409  * available.
1410  *
1411  * This is called with head_lock held.
1412  */
1413 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1414 {
1415         struct iowait *wait, *nw;
1416         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1417         unsigned i, n = 0, seq;
1418         struct sdma_txreq *stx;
1419         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1420
1421 #ifdef CONFIG_SDMA_VERBOSITY
1422         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1423                    slashstrip(__FILE__), __LINE__, __func__);
1424         dd_dev_err(sde->dd, "avail: %u\n", avail);
1425 #endif
1426
1427         do {
1428                 seq = read_seqbegin(&dev->iowait_lock);
1429                 if (!list_empty(&sde->dmawait)) {
1430                         /* at least one item */
1431                         write_seqlock(&dev->iowait_lock);
1432                         /* Harvest waiters wanting DMA descriptors */
1433                         list_for_each_entry_safe(
1434                                         wait,
1435                                         nw,
1436                                         &sde->dmawait,
1437                                         list) {
1438                                 u16 num_desc = 0;
1439
1440                                 if (!wait->wakeup)
1441                                         continue;
1442                                 if (n == ARRAY_SIZE(waits))
1443                                         break;
1444                                 if (!list_empty(&wait->tx_head)) {
1445                                         stx = list_first_entry(
1446                                                 &wait->tx_head,
1447                                                 struct sdma_txreq,
1448                                                 list);
1449                                         num_desc = stx->num_desc;
1450                                 }
1451                                 if (num_desc > avail)
1452                                         break;
1453                                 avail -= num_desc;
1454                                 list_del_init(&wait->list);
1455                                 waits[n++] = wait;
1456                         }
1457                         write_sequnlock(&dev->iowait_lock);
1458                         break;
1459                 }
1460         } while (read_seqretry(&dev->iowait_lock, seq));
1461
1462         for (i = 0; i < n; i++)
1463                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1464 }
1465
1466 /* head_lock must be held */
1467 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1468 {
1469         struct sdma_txreq *txp = NULL;
1470         int progress = 0;
1471         u16 hwhead, swhead, swtail;
1472         int idle_check_done = 0;
1473
1474         hwhead = sdma_gethead(sde);
1475
1476         /* The reason for some of the complexity of this code is that
1477          * not all descriptors have corresponding txps.  So, we have to
1478          * be able to skip over descs until we wander into the range of
1479          * the next txp on the list.
1480          */
1481
1482 retry:
1483         txp = get_txhead(sde);
1484         swhead = sde->descq_head & sde->sdma_mask;
1485         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1486         while (swhead != hwhead) {
1487                 /* advance head, wrap if needed */
1488                 swhead = ++sde->descq_head & sde->sdma_mask;
1489
1490                 /* if now past this txp's descs, do the callback */
1491                 if (txp && txp->next_descq_idx == swhead) {
1492                         int drained = 0;
1493                         /* protect against complete modifying */
1494                         struct iowait *wait = txp->wait;
1495
1496                         /* remove from list */
1497                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1498                         if (wait)
1499                                 drained = atomic_dec_and_test(&wait->sdma_busy);
1500 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1501                         trace_hfi1_sdma_out_sn(sde, txp->sn);
1502                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
1503                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
1504                                         sde->head_sn, txp->sn);
1505                         sde->head_sn++;
1506 #endif
1507                         sdma_txclean(sde->dd, txp);
1508                         if (txp->complete)
1509                                 (*txp->complete)(
1510                                         txp,
1511                                         SDMA_TXREQ_S_OK,
1512                                         drained);
1513                         if (wait && drained)
1514                                 iowait_drain_wakeup(wait);
1515                         /* see if there is another txp */
1516                         txp = get_txhead(sde);
1517                 }
1518                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1519                 progress++;
1520         }
1521
1522         /*
1523          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1524          * to updates to the the dma_head location in host memory. The head
1525          * value read might not be fully up to date. If there are pending
1526          * descriptors and the SDMA idle interrupt fired then read from the
1527          * CSR SDMA head instead to get the latest value from the hardware.
1528          * The hardware SDMA head should be read at most once in this invocation
1529          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1530          */
1531         if ((status & sde->idle_mask) && !idle_check_done) {
1532                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1533                 if (swtail != hwhead) {
1534                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1535                         idle_check_done = 1;
1536                         goto retry;
1537                 }
1538         }
1539
1540         sde->last_status = status;
1541         if (progress)
1542                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1543 }
1544
1545 /*
1546  * sdma_engine_interrupt() - interrupt handler for engine
1547  * @sde: sdma engine
1548  * @status: sdma interrupt reason
1549  *
1550  * Status is a mask of the 3 possible interrupts for this engine.  It will
1551  * contain bits _only_ for this SDMA engine.  It will contain at least one
1552  * bit, it may contain more.
1553  */
1554 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1555 {
1556         trace_hfi1_sdma_engine_interrupt(sde, status);
1557         write_seqlock(&sde->head_lock);
1558         sdma_set_desc_cnt(sde, sdma_desct_intr);
1559         sdma_make_progress(sde, status);
1560         write_sequnlock(&sde->head_lock);
1561 }
1562
1563 /**
1564  * sdma_engine_error() - error handler for engine
1565  * @sde: sdma engine
1566  * @status: sdma interrupt reason
1567  */
1568 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1569 {
1570         unsigned long flags;
1571
1572 #ifdef CONFIG_SDMA_VERBOSITY
1573         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1574                    sde->this_idx,
1575                    (unsigned long long)status,
1576                    sdma_state_names[sde->state.current_state]);
1577 #endif
1578         spin_lock_irqsave(&sde->tail_lock, flags);
1579         write_seqlock(&sde->head_lock);
1580         if (status & ALL_SDMA_ENG_HALT_ERRS)
1581                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1582         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1583                 dd_dev_err(sde->dd,
1584                         "SDMA (%u) engine error: 0x%llx state %s\n",
1585                         sde->this_idx,
1586                         (unsigned long long)status,
1587                         sdma_state_names[sde->state.current_state]);
1588                 dump_sdma_state(sde);
1589         }
1590         write_sequnlock(&sde->head_lock);
1591         spin_unlock_irqrestore(&sde->tail_lock, flags);
1592 }
1593
1594 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1595 {
1596         u64 set_senddmactrl = 0;
1597         u64 clr_senddmactrl = 0;
1598         unsigned long flags;
1599
1600 #ifdef CONFIG_SDMA_VERBOSITY
1601         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1602                    sde->this_idx,
1603                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1604                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1605                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1606                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1607 #endif
1608
1609         if (op & SDMA_SENDCTRL_OP_ENABLE)
1610                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1611         else
1612                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1613
1614         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1615                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1616         else
1617                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1618
1619         if (op & SDMA_SENDCTRL_OP_HALT)
1620                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1621         else
1622                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1623
1624         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1625
1626         sde->p_senddmactrl |= set_senddmactrl;
1627         sde->p_senddmactrl &= ~clr_senddmactrl;
1628
1629         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1630                 write_sde_csr(sde, SD(CTRL),
1631                         sde->p_senddmactrl |
1632                         SD(CTRL_SDMA_CLEANUP_SMASK));
1633         else
1634                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1635
1636         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1637
1638 #ifdef CONFIG_SDMA_VERBOSITY
1639         sdma_dumpstate(sde);
1640 #endif
1641 }
1642
1643 static void sdma_setlengen(struct sdma_engine *sde)
1644 {
1645 #ifdef CONFIG_SDMA_VERBOSITY
1646         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1647                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1648 #endif
1649
1650         /*
1651          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1652          * count to enable generation checking and load the internal
1653          * generation counter.
1654          */
1655         write_sde_csr(sde, SD(LEN_GEN),
1656                 (sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT)
1657         );
1658         write_sde_csr(sde, SD(LEN_GEN),
1659                 ((sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT))
1660                 | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))
1661         );
1662 }
1663
1664 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1665 {
1666         /* Commit writes to memory and advance the tail on the chip */
1667         smp_wmb(); /* see get_txhead() */
1668         writeq(tail, sde->tail_csr);
1669 }
1670
1671 /*
1672  * This is called when changing to state s10_hw_start_up_halt_wait as
1673  * a result of send buffer errors or send DMA descriptor errors.
1674  */
1675 static void sdma_hw_start_up(struct sdma_engine *sde)
1676 {
1677         u64 reg;
1678
1679 #ifdef CONFIG_SDMA_VERBOSITY
1680         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1681                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1682 #endif
1683
1684         sdma_setlengen(sde);
1685         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1686         *sde->head_dma = 0;
1687
1688         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1689               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1690         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1691 }
1692
1693 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1694 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1695
1696 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1697 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1698 /*
1699  * set_sdma_integrity
1700  *
1701  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1702  */
1703 static void set_sdma_integrity(struct sdma_engine *sde)
1704 {
1705         struct hfi1_devdata *dd = sde->dd;
1706         u64 reg;
1707
1708         if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1709                 return;
1710
1711         reg = hfi1_pkt_base_sdma_integrity(dd);
1712
1713         if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1714                 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1715         else
1716                 SET_STATIC_RATE_CONTROL_SMASK(reg);
1717
1718         write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1719 }
1720
1721
1722 static void init_sdma_regs(
1723         struct sdma_engine *sde,
1724         u32 credits,
1725         uint idle_cnt)
1726 {
1727         u8 opval, opmask;
1728 #ifdef CONFIG_SDMA_VERBOSITY
1729         struct hfi1_devdata *dd = sde->dd;
1730
1731         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1732                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1733 #endif
1734
1735         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1736         sdma_setlengen(sde);
1737         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1738         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1739         write_sde_csr(sde, SD(DESC_CNT), 0);
1740         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1741         write_sde_csr(sde, SD(MEMORY),
1742                 ((u64)credits <<
1743                         SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1744                 ((u64)(credits * sde->this_idx) <<
1745                         SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1746         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1747         set_sdma_integrity(sde);
1748         opmask = OPCODE_CHECK_MASK_DISABLED;
1749         opval = OPCODE_CHECK_VAL_DISABLED;
1750         write_sde_csr(sde, SD(CHECK_OPCODE),
1751                 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1752                 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1753 }
1754
1755 #ifdef CONFIG_SDMA_VERBOSITY
1756
1757 #define sdma_dumpstate_helper0(reg) do { \
1758                 csr = read_csr(sde->dd, reg); \
1759                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1760         } while (0)
1761
1762 #define sdma_dumpstate_helper(reg) do { \
1763                 csr = read_sde_csr(sde, reg); \
1764                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1765                         #reg, sde->this_idx, csr); \
1766         } while (0)
1767
1768 #define sdma_dumpstate_helper2(reg) do { \
1769                 csr = read_csr(sde->dd, reg + (8 * i)); \
1770                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1771                                 #reg, i, csr); \
1772         } while (0)
1773
1774 void sdma_dumpstate(struct sdma_engine *sde)
1775 {
1776         u64 csr;
1777         unsigned i;
1778
1779         sdma_dumpstate_helper(SD(CTRL));
1780         sdma_dumpstate_helper(SD(STATUS));
1781         sdma_dumpstate_helper0(SD(ERR_STATUS));
1782         sdma_dumpstate_helper0(SD(ERR_MASK));
1783         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1784         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1785
1786         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1787                 sdma_dumpstate_helper2(CCE_INT_STATUS);
1788                 sdma_dumpstate_helper2(CCE_INT_MASK);
1789                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1790         }
1791
1792         sdma_dumpstate_helper(SD(TAIL));
1793         sdma_dumpstate_helper(SD(HEAD));
1794         sdma_dumpstate_helper(SD(PRIORITY_THLD));
1795         sdma_dumpstate_helper(SD(IDLE_CNT));
1796         sdma_dumpstate_helper(SD(RELOAD_CNT));
1797         sdma_dumpstate_helper(SD(DESC_CNT));
1798         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1799         sdma_dumpstate_helper(SD(MEMORY));
1800         sdma_dumpstate_helper0(SD(ENGINES));
1801         sdma_dumpstate_helper0(SD(MEM_SIZE));
1802         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1803         sdma_dumpstate_helper(SD(BASE_ADDR));
1804         sdma_dumpstate_helper(SD(LEN_GEN));
1805         sdma_dumpstate_helper(SD(HEAD_ADDR));
1806         sdma_dumpstate_helper(SD(CHECK_ENABLE));
1807         sdma_dumpstate_helper(SD(CHECK_VL));
1808         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1809         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1810         sdma_dumpstate_helper(SD(CHECK_SLID));
1811         sdma_dumpstate_helper(SD(CHECK_OPCODE));
1812 }
1813 #endif
1814
1815 static void dump_sdma_state(struct sdma_engine *sde)
1816 {
1817         struct hw_sdma_desc *descq;
1818         struct hw_sdma_desc *descqp;
1819         u64 desc[2];
1820         u64 addr;
1821         u8 gen;
1822         u16 len;
1823         u16 head, tail, cnt;
1824
1825         head = sde->descq_head & sde->sdma_mask;
1826         tail = sde->descq_tail & sde->sdma_mask;
1827         cnt = sdma_descq_freecnt(sde);
1828         descq = sde->descq;
1829
1830         dd_dev_err(sde->dd,
1831                 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1832                 sde->this_idx,
1833                 head,
1834                 tail,
1835                 cnt,
1836                 !list_empty(&sde->flushlist));
1837
1838         /* print info for each entry in the descriptor queue */
1839         while (head != tail) {
1840                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1841
1842                 descqp = &sde->descq[head];
1843                 desc[0] = le64_to_cpu(descqp->qw[0]);
1844                 desc[1] = le64_to_cpu(descqp->qw[1]);
1845                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1846                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1847                                 'H' : '-';
1848                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1849                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1850                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1851                         & SDMA_DESC0_PHY_ADDR_MASK;
1852                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1853                         & SDMA_DESC1_GENERATION_MASK;
1854                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1855                         & SDMA_DESC0_BYTE_COUNT_MASK;
1856                 dd_dev_err(sde->dd,
1857                         "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1858                          head, flags, addr, gen, len);
1859                 dd_dev_err(sde->dd,
1860                         "\tdesc0:0x%016llx desc1 0x%016llx\n",
1861                          desc[0], desc[1]);
1862                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1863                         dd_dev_err(sde->dd,
1864                                 "\taidx: %u amode: %u alen: %u\n",
1865                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1866                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1867                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1868                                         >> SDMA_DESC1_HEADER_MODE_SHIFT),
1869                                 (u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK)
1870                                         >> SDMA_DESC1_HEADER_DWS_SHIFT));
1871                 head++;
1872                 head &= sde->sdma_mask;
1873         }
1874 }
1875
1876 #define SDE_FMT \
1877         "SDE %u STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1878 /**
1879  * sdma_seqfile_dump_sde() - debugfs dump of sde
1880  * @s: seq file
1881  * @sde: send dma engine to dump
1882  *
1883  * This routine dumps the sde to the indicated seq file.
1884  */
1885 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1886 {
1887         u16 head, tail;
1888         struct hw_sdma_desc *descqp;
1889         u64 desc[2];
1890         u64 addr;
1891         u8 gen;
1892         u16 len;
1893
1894         head = sde->descq_head & sde->sdma_mask;
1895         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1896         seq_printf(s, SDE_FMT, sde->this_idx,
1897                 sdma_state_name(sde->state.current_state),
1898                 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1899                 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1900                 (unsigned long long)read_sde_csr(sde,
1901                         SD(ENG_ERR_STATUS)),
1902                 (unsigned long long)read_sde_csr(sde, SD(TAIL)),
1903                 tail,
1904                 (unsigned long long)read_sde_csr(sde, SD(HEAD)),
1905                 head,
1906                 (unsigned long long)le64_to_cpu(*sde->head_dma),
1907                 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1908                 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1909                 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1910                 (unsigned long long)sde->last_status,
1911                 (unsigned long long)sde->ahg_bits,
1912                 sde->tx_tail,
1913                 sde->tx_head,
1914                 sde->descq_tail,
1915                 sde->descq_head,
1916                    !list_empty(&sde->flushlist),
1917                 sde->descq_full_count,
1918                 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1919
1920         /* print info for each entry in the descriptor queue */
1921         while (head != tail) {
1922                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1923
1924                 descqp = &sde->descq[head];
1925                 desc[0] = le64_to_cpu(descqp->qw[0]);
1926                 desc[1] = le64_to_cpu(descqp->qw[1]);
1927                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1928                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1929                                 'H' : '-';
1930                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1931                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1932                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1933                         & SDMA_DESC0_PHY_ADDR_MASK;
1934                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1935                         & SDMA_DESC1_GENERATION_MASK;
1936                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1937                         & SDMA_DESC0_BYTE_COUNT_MASK;
1938                 seq_printf(s,
1939                         "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1940                         head, flags, addr, gen, len);
1941                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1942                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1943                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1944                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1945                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1946                                         >> SDMA_DESC1_HEADER_MODE_SHIFT));
1947                 head = (head + 1) & sde->sdma_mask;
1948         }
1949 }
1950
1951 /*
1952  * add the generation number into
1953  * the qw1 and return
1954  */
1955 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1956 {
1957         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1958
1959         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1960         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1961                         << SDMA_DESC1_GENERATION_SHIFT;
1962         return qw1;
1963 }
1964
1965 /*
1966  * This routine submits the indicated tx
1967  *
1968  * Space has already been guaranteed and
1969  * tail side of ring is locked.
1970  *
1971  * The hardware tail update is done
1972  * in the caller and that is facilitated
1973  * by returning the new tail.
1974  *
1975  * There is special case logic for ahg
1976  * to not add the generation number for
1977  * up to 2 descriptors that follow the
1978  * first descriptor.
1979  *
1980  */
1981 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1982 {
1983         int i;
1984         u16 tail;
1985         struct sdma_desc *descp = tx->descp;
1986         u8 skip = 0, mode = ahg_mode(tx);
1987
1988         tail = sde->descq_tail & sde->sdma_mask;
1989         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1990         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1991         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1992                                    tail, &sde->descq[tail]);
1993         tail = ++sde->descq_tail & sde->sdma_mask;
1994         descp++;
1995         if (mode > SDMA_AHG_APPLY_UPDATE1)
1996                 skip = mode >> 1;
1997         for (i = 1; i < tx->num_desc; i++, descp++) {
1998                 u64 qw1;
1999
2000                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2001                 if (skip) {
2002                         /* edits don't have generation */
2003                         qw1 = descp->qw[1];
2004                         skip--;
2005                 } else {
2006                         /* replace generation with real one for non-edits */
2007                         qw1 = add_gen(sde, descp->qw[1]);
2008                 }
2009                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2010                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2011                                            tail, &sde->descq[tail]);
2012                 tail = ++sde->descq_tail & sde->sdma_mask;
2013         }
2014         tx->next_descq_idx = tail;
2015 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2016         tx->sn = sde->tail_sn++;
2017         trace_hfi1_sdma_in_sn(sde, tx->sn);
2018         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2019 #endif
2020         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2021         sde->desc_avail -= tx->num_desc;
2022         return tail;
2023 }
2024
2025 /*
2026  * Check for progress
2027  */
2028 static int sdma_check_progress(
2029         struct sdma_engine *sde,
2030         struct iowait *wait,
2031         struct sdma_txreq *tx)
2032 {
2033         int ret;
2034
2035         sde->desc_avail = sdma_descq_freecnt(sde);
2036         if (tx->num_desc <= sde->desc_avail)
2037                 return -EAGAIN;
2038         /* pulse the head_lock */
2039         if (wait && wait->sleep) {
2040                 unsigned seq;
2041
2042                 seq = raw_seqcount_begin(
2043                         (const seqcount_t *)&sde->head_lock.seqcount);
2044                 ret = wait->sleep(sde, wait, tx, seq);
2045                 if (ret == -EAGAIN)
2046                         sde->desc_avail = sdma_descq_freecnt(sde);
2047         } else
2048                 ret = -EBUSY;
2049         return ret;
2050 }
2051
2052 /**
2053  * sdma_send_txreq() - submit a tx req to ring
2054  * @sde: sdma engine to use
2055  * @wait: wait structure to use when full (may be NULL)
2056  * @tx: sdma_txreq to submit
2057  *
2058  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2059  * the packet will be queued to the list in wait.
2060  *
2061  * Return:
2062  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2063  * ring (wait == NULL)
2064  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2065  */
2066 int sdma_send_txreq(struct sdma_engine *sde,
2067                     struct iowait *wait,
2068                     struct sdma_txreq *tx)
2069 {
2070         int ret = 0;
2071         u16 tail;
2072         unsigned long flags;
2073
2074         /* user should have supplied entire packet */
2075         if (unlikely(tx->tlen))
2076                 return -EINVAL;
2077         tx->wait = wait;
2078         spin_lock_irqsave(&sde->tail_lock, flags);
2079 retry:
2080         if (unlikely(!__sdma_running(sde)))
2081                 goto unlock_noconn;
2082         if (unlikely(tx->num_desc > sde->desc_avail))
2083                 goto nodesc;
2084         tail = submit_tx(sde, tx);
2085         if (wait)
2086                 atomic_inc(&wait->sdma_busy);
2087         sdma_update_tail(sde, tail);
2088 unlock:
2089         spin_unlock_irqrestore(&sde->tail_lock, flags);
2090         return ret;
2091 unlock_noconn:
2092         if (wait)
2093                 atomic_inc(&wait->sdma_busy);
2094         tx->next_descq_idx = 0;
2095 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2096         tx->sn = sde->tail_sn++;
2097         trace_hfi1_sdma_in_sn(sde, tx->sn);
2098 #endif
2099         spin_lock(&sde->flushlist_lock);
2100         list_add_tail(&tx->list, &sde->flushlist);
2101         spin_unlock(&sde->flushlist_lock);
2102         if (wait) {
2103                 wait->tx_count++;
2104                 wait->count += tx->num_desc;
2105         }
2106         schedule_work(&sde->flush_worker);
2107         ret = -ECOMM;
2108         goto unlock;
2109 nodesc:
2110         ret = sdma_check_progress(sde, wait, tx);
2111         if (ret == -EAGAIN) {
2112                 ret = 0;
2113                 goto retry;
2114         }
2115         sde->descq_full_count++;
2116         goto unlock;
2117 }
2118
2119 /**
2120  * sdma_send_txlist() - submit a list of tx req to ring
2121  * @sde: sdma engine to use
2122  * @wait: wait structure to use when full (may be NULL)
2123  * @tx_list: list of sdma_txreqs to submit
2124  *
2125  * The call submits the list into the ring.
2126  *
2127  * If the iowait structure is non-NULL and not equal to the iowait list
2128  * the unprocessed part of the list  will be appended to the list in wait.
2129  *
2130  * In all cases, the tx_list will be updated so the head of the tx_list is
2131  * the list of descriptors that have yet to be transmitted.
2132  *
2133  * The intent of this call is to provide a more efficient
2134  * way of submitting multiple packets to SDMA while holding the tail
2135  * side locking.
2136  *
2137  * Return:
2138  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring
2139  * (wait == NULL)
2140  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2141  */
2142 int sdma_send_txlist(struct sdma_engine *sde,
2143                     struct iowait *wait,
2144                     struct list_head *tx_list)
2145 {
2146         struct sdma_txreq *tx, *tx_next;
2147         int ret = 0;
2148         unsigned long flags;
2149         u16 tail = INVALID_TAIL;
2150         int count = 0;
2151
2152         spin_lock_irqsave(&sde->tail_lock, flags);
2153 retry:
2154         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2155                 tx->wait = wait;
2156                 if (unlikely(!__sdma_running(sde)))
2157                         goto unlock_noconn;
2158                 if (unlikely(tx->num_desc > sde->desc_avail))
2159                         goto nodesc;
2160                 if (unlikely(tx->tlen)) {
2161                         ret = -EINVAL;
2162                         goto update_tail;
2163                 }
2164                 list_del_init(&tx->list);
2165                 tail = submit_tx(sde, tx);
2166                 count++;
2167                 if (tail != INVALID_TAIL &&
2168                     (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2169                         sdma_update_tail(sde, tail);
2170                         tail = INVALID_TAIL;
2171                 }
2172         }
2173 update_tail:
2174         if (wait)
2175                 atomic_add(count, &wait->sdma_busy);
2176         if (tail != INVALID_TAIL)
2177                 sdma_update_tail(sde, tail);
2178         spin_unlock_irqrestore(&sde->tail_lock, flags);
2179         return ret;
2180 unlock_noconn:
2181         spin_lock(&sde->flushlist_lock);
2182         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2183                 tx->wait = wait;
2184                 list_del_init(&tx->list);
2185                 if (wait)
2186                         atomic_inc(&wait->sdma_busy);
2187                 tx->next_descq_idx = 0;
2188 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2189                 tx->sn = sde->tail_sn++;
2190                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2191 #endif
2192                 list_add_tail(&tx->list, &sde->flushlist);
2193                 if (wait) {
2194                         wait->tx_count++;
2195                         wait->count += tx->num_desc;
2196                 }
2197         }
2198         spin_unlock(&sde->flushlist_lock);
2199         schedule_work(&sde->flush_worker);
2200         ret = -ECOMM;
2201         goto update_tail;
2202 nodesc:
2203         ret = sdma_check_progress(sde, wait, tx);
2204         if (ret == -EAGAIN) {
2205                 ret = 0;
2206                 goto retry;
2207         }
2208         sde->descq_full_count++;
2209         goto update_tail;
2210 }
2211
2212 static void sdma_process_event(struct sdma_engine *sde,
2213         enum sdma_events event)
2214 {
2215         unsigned long flags;
2216
2217         spin_lock_irqsave(&sde->tail_lock, flags);
2218         write_seqlock(&sde->head_lock);
2219
2220         __sdma_process_event(sde, event);
2221
2222         if (sde->state.current_state == sdma_state_s99_running)
2223                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2224
2225         write_sequnlock(&sde->head_lock);
2226         spin_unlock_irqrestore(&sde->tail_lock, flags);
2227 }
2228
2229 static void __sdma_process_event(struct sdma_engine *sde,
2230         enum sdma_events event)
2231 {
2232         struct sdma_state *ss = &sde->state;
2233         int need_progress = 0;
2234
2235         /* CONFIG SDMA temporary */
2236 #ifdef CONFIG_SDMA_VERBOSITY
2237         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2238                    sdma_state_names[ss->current_state],
2239                    sdma_event_names[event]);
2240 #endif
2241
2242         switch (ss->current_state) {
2243         case sdma_state_s00_hw_down:
2244                 switch (event) {
2245                 case sdma_event_e00_go_hw_down:
2246                         break;
2247                 case sdma_event_e30_go_running:
2248                         /*
2249                          * If down, but running requested (usually result
2250                          * of link up, then we need to start up.
2251                          * This can happen when hw down is requested while
2252                          * bringing the link up with traffic active on
2253                          * 7220, e.g. */
2254                         ss->go_s99_running = 1;
2255                         /* fall through and start dma engine */
2256                 case sdma_event_e10_go_hw_start:
2257                         /* This reference means the state machine is started */
2258                         sdma_get(&sde->state);
2259                         sdma_set_state(sde,
2260                                 sdma_state_s10_hw_start_up_halt_wait);
2261                         break;
2262                 case sdma_event_e15_hw_halt_done:
2263                         break;
2264                 case sdma_event_e25_hw_clean_up_done:
2265                         break;
2266                 case sdma_event_e40_sw_cleaned:
2267                         sdma_sw_tear_down(sde);
2268                         break;
2269                 case sdma_event_e50_hw_cleaned:
2270                         break;
2271                 case sdma_event_e60_hw_halted:
2272                         break;
2273                 case sdma_event_e70_go_idle:
2274                         break;
2275                 case sdma_event_e80_hw_freeze:
2276                         break;
2277                 case sdma_event_e81_hw_frozen:
2278                         break;
2279                 case sdma_event_e82_hw_unfreeze:
2280                         break;
2281                 case sdma_event_e85_link_down:
2282                         break;
2283                 case sdma_event_e90_sw_halted:
2284                         break;
2285                 }
2286                 break;
2287
2288         case sdma_state_s10_hw_start_up_halt_wait:
2289                 switch (event) {
2290                 case sdma_event_e00_go_hw_down:
2291                         sdma_set_state(sde, sdma_state_s00_hw_down);
2292                         sdma_sw_tear_down(sde);
2293                         break;
2294                 case sdma_event_e10_go_hw_start:
2295                         break;
2296                 case sdma_event_e15_hw_halt_done:
2297                         sdma_set_state(sde,
2298                                 sdma_state_s15_hw_start_up_clean_wait);
2299                         sdma_start_hw_clean_up(sde);
2300                         break;
2301                 case sdma_event_e25_hw_clean_up_done:
2302                         break;
2303                 case sdma_event_e30_go_running:
2304                         ss->go_s99_running = 1;
2305                         break;
2306                 case sdma_event_e40_sw_cleaned:
2307                         break;
2308                 case sdma_event_e50_hw_cleaned:
2309                         break;
2310                 case sdma_event_e60_hw_halted:
2311                         sdma_start_err_halt_wait(sde);
2312                         break;
2313                 case sdma_event_e70_go_idle:
2314                         ss->go_s99_running = 0;
2315                         break;
2316                 case sdma_event_e80_hw_freeze:
2317                         break;
2318                 case sdma_event_e81_hw_frozen:
2319                         break;
2320                 case sdma_event_e82_hw_unfreeze:
2321                         break;
2322                 case sdma_event_e85_link_down:
2323                         break;
2324                 case sdma_event_e90_sw_halted:
2325                         break;
2326                 }
2327                 break;
2328
2329         case sdma_state_s15_hw_start_up_clean_wait:
2330                 switch (event) {
2331                 case sdma_event_e00_go_hw_down:
2332                         sdma_set_state(sde, sdma_state_s00_hw_down);
2333                         sdma_sw_tear_down(sde);
2334                         break;
2335                 case sdma_event_e10_go_hw_start:
2336                         break;
2337                 case sdma_event_e15_hw_halt_done:
2338                         break;
2339                 case sdma_event_e25_hw_clean_up_done:
2340                         sdma_hw_start_up(sde);
2341                         sdma_set_state(sde, ss->go_s99_running ?
2342                                        sdma_state_s99_running :
2343                                        sdma_state_s20_idle);
2344                         break;
2345                 case sdma_event_e30_go_running:
2346                         ss->go_s99_running = 1;
2347                         break;
2348                 case sdma_event_e40_sw_cleaned:
2349                         break;
2350                 case sdma_event_e50_hw_cleaned:
2351                         break;
2352                 case sdma_event_e60_hw_halted:
2353                         break;
2354                 case sdma_event_e70_go_idle:
2355                         ss->go_s99_running = 0;
2356                         break;
2357                 case sdma_event_e80_hw_freeze:
2358                         break;
2359                 case sdma_event_e81_hw_frozen:
2360                         break;
2361                 case sdma_event_e82_hw_unfreeze:
2362                         break;
2363                 case sdma_event_e85_link_down:
2364                         break;
2365                 case sdma_event_e90_sw_halted:
2366                         break;
2367                 }
2368                 break;
2369
2370         case sdma_state_s20_idle:
2371                 switch (event) {
2372                 case sdma_event_e00_go_hw_down:
2373                         sdma_set_state(sde, sdma_state_s00_hw_down);
2374                         sdma_sw_tear_down(sde);
2375                         break;
2376                 case sdma_event_e10_go_hw_start:
2377                         break;
2378                 case sdma_event_e15_hw_halt_done:
2379                         break;
2380                 case sdma_event_e25_hw_clean_up_done:
2381                         break;
2382                 case sdma_event_e30_go_running:
2383                         sdma_set_state(sde, sdma_state_s99_running);
2384                         ss->go_s99_running = 1;
2385                         break;
2386                 case sdma_event_e40_sw_cleaned:
2387                         break;
2388                 case sdma_event_e50_hw_cleaned:
2389                         break;
2390                 case sdma_event_e60_hw_halted:
2391                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2392                         sdma_start_err_halt_wait(sde);
2393                         break;
2394                 case sdma_event_e70_go_idle:
2395                         break;
2396                 case sdma_event_e85_link_down:
2397                         /* fall through */
2398                 case sdma_event_e80_hw_freeze:
2399                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2400                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2401                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2402                         break;
2403                 case sdma_event_e81_hw_frozen:
2404                         break;
2405                 case sdma_event_e82_hw_unfreeze:
2406                         break;
2407                 case sdma_event_e90_sw_halted:
2408                         break;
2409                 }
2410                 break;
2411
2412         case sdma_state_s30_sw_clean_up_wait:
2413                 switch (event) {
2414                 case sdma_event_e00_go_hw_down:
2415                         sdma_set_state(sde, sdma_state_s00_hw_down);
2416                         break;
2417                 case sdma_event_e10_go_hw_start:
2418                         break;
2419                 case sdma_event_e15_hw_halt_done:
2420                         break;
2421                 case sdma_event_e25_hw_clean_up_done:
2422                         break;
2423                 case sdma_event_e30_go_running:
2424                         ss->go_s99_running = 1;
2425                         break;
2426                 case sdma_event_e40_sw_cleaned:
2427                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2428                         sdma_start_hw_clean_up(sde);
2429                         break;
2430                 case sdma_event_e50_hw_cleaned:
2431                         break;
2432                 case sdma_event_e60_hw_halted:
2433                         break;
2434                 case sdma_event_e70_go_idle:
2435                         ss->go_s99_running = 0;
2436                         break;
2437                 case sdma_event_e80_hw_freeze:
2438                         break;
2439                 case sdma_event_e81_hw_frozen:
2440                         break;
2441                 case sdma_event_e82_hw_unfreeze:
2442                         break;
2443                 case sdma_event_e85_link_down:
2444                         ss->go_s99_running = 0;
2445                         break;
2446                 case sdma_event_e90_sw_halted:
2447                         break;
2448                 }
2449                 break;
2450
2451         case sdma_state_s40_hw_clean_up_wait:
2452                 switch (event) {
2453                 case sdma_event_e00_go_hw_down:
2454                         sdma_set_state(sde, sdma_state_s00_hw_down);
2455                         sdma_start_sw_clean_up(sde);
2456                         break;
2457                 case sdma_event_e10_go_hw_start:
2458                         break;
2459                 case sdma_event_e15_hw_halt_done:
2460                         break;
2461                 case sdma_event_e25_hw_clean_up_done:
2462                         sdma_hw_start_up(sde);
2463                         sdma_set_state(sde, ss->go_s99_running ?
2464                                        sdma_state_s99_running :
2465                                        sdma_state_s20_idle);
2466                         break;
2467                 case sdma_event_e30_go_running:
2468                         ss->go_s99_running = 1;
2469                         break;
2470                 case sdma_event_e40_sw_cleaned:
2471                         break;
2472                 case sdma_event_e50_hw_cleaned:
2473                         break;
2474                 case sdma_event_e60_hw_halted:
2475                         break;
2476                 case sdma_event_e70_go_idle:
2477                         ss->go_s99_running = 0;
2478                         break;
2479                 case sdma_event_e80_hw_freeze:
2480                         break;
2481                 case sdma_event_e81_hw_frozen:
2482                         break;
2483                 case sdma_event_e82_hw_unfreeze:
2484                         break;
2485                 case sdma_event_e85_link_down:
2486                         ss->go_s99_running = 0;
2487                         break;
2488                 case sdma_event_e90_sw_halted:
2489                         break;
2490                 }
2491                 break;
2492
2493         case sdma_state_s50_hw_halt_wait:
2494                 switch (event) {
2495                 case sdma_event_e00_go_hw_down:
2496                         sdma_set_state(sde, sdma_state_s00_hw_down);
2497                         sdma_start_sw_clean_up(sde);
2498                         break;
2499                 case sdma_event_e10_go_hw_start:
2500                         break;
2501                 case sdma_event_e15_hw_halt_done:
2502                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2503                         sdma_start_sw_clean_up(sde);
2504                         break;
2505                 case sdma_event_e25_hw_clean_up_done:
2506                         break;
2507                 case sdma_event_e30_go_running:
2508                         ss->go_s99_running = 1;
2509                         break;
2510                 case sdma_event_e40_sw_cleaned:
2511                         break;
2512                 case sdma_event_e50_hw_cleaned:
2513                         break;
2514                 case sdma_event_e60_hw_halted:
2515                         sdma_start_err_halt_wait(sde);
2516                         break;
2517                 case sdma_event_e70_go_idle:
2518                         ss->go_s99_running = 0;
2519                         break;
2520                 case sdma_event_e80_hw_freeze:
2521                         break;
2522                 case sdma_event_e81_hw_frozen:
2523                         break;
2524                 case sdma_event_e82_hw_unfreeze:
2525                         break;
2526                 case sdma_event_e85_link_down:
2527                         ss->go_s99_running = 0;
2528                         break;
2529                 case sdma_event_e90_sw_halted:
2530                         break;
2531                 }
2532                 break;
2533
2534         case sdma_state_s60_idle_halt_wait:
2535                 switch (event) {
2536                 case sdma_event_e00_go_hw_down:
2537                         sdma_set_state(sde, sdma_state_s00_hw_down);
2538                         sdma_start_sw_clean_up(sde);
2539                         break;
2540                 case sdma_event_e10_go_hw_start:
2541                         break;
2542                 case sdma_event_e15_hw_halt_done:
2543                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2544                         sdma_start_sw_clean_up(sde);
2545                         break;
2546                 case sdma_event_e25_hw_clean_up_done:
2547                         break;
2548                 case sdma_event_e30_go_running:
2549                         ss->go_s99_running = 1;
2550                         break;
2551                 case sdma_event_e40_sw_cleaned:
2552                         break;
2553                 case sdma_event_e50_hw_cleaned:
2554                         break;
2555                 case sdma_event_e60_hw_halted:
2556                         sdma_start_err_halt_wait(sde);
2557                         break;
2558                 case sdma_event_e70_go_idle:
2559                         ss->go_s99_running = 0;
2560                         break;
2561                 case sdma_event_e80_hw_freeze:
2562                         break;
2563                 case sdma_event_e81_hw_frozen:
2564                         break;
2565                 case sdma_event_e82_hw_unfreeze:
2566                         break;
2567                 case sdma_event_e85_link_down:
2568                         break;
2569                 case sdma_event_e90_sw_halted:
2570                         break;
2571                 }
2572                 break;
2573
2574         case sdma_state_s80_hw_freeze:
2575                 switch (event) {
2576                 case sdma_event_e00_go_hw_down:
2577                         sdma_set_state(sde, sdma_state_s00_hw_down);
2578                         sdma_start_sw_clean_up(sde);
2579                         break;
2580                 case sdma_event_e10_go_hw_start:
2581                         break;
2582                 case sdma_event_e15_hw_halt_done:
2583                         break;
2584                 case sdma_event_e25_hw_clean_up_done:
2585                         break;
2586                 case sdma_event_e30_go_running:
2587                         ss->go_s99_running = 1;
2588                         break;
2589                 case sdma_event_e40_sw_cleaned:
2590                         break;
2591                 case sdma_event_e50_hw_cleaned:
2592                         break;
2593                 case sdma_event_e60_hw_halted:
2594                         break;
2595                 case sdma_event_e70_go_idle:
2596                         ss->go_s99_running = 0;
2597                         break;
2598                 case sdma_event_e80_hw_freeze:
2599                         break;
2600                 case sdma_event_e81_hw_frozen:
2601                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2602                         sdma_start_sw_clean_up(sde);
2603                         break;
2604                 case sdma_event_e82_hw_unfreeze:
2605                         break;
2606                 case sdma_event_e85_link_down:
2607                         break;
2608                 case sdma_event_e90_sw_halted:
2609                         break;
2610                 }
2611                 break;
2612
2613         case sdma_state_s82_freeze_sw_clean:
2614                 switch (event) {
2615                 case sdma_event_e00_go_hw_down:
2616                         sdma_set_state(sde, sdma_state_s00_hw_down);
2617                         sdma_start_sw_clean_up(sde);
2618                         break;
2619                 case sdma_event_e10_go_hw_start:
2620                         break;
2621                 case sdma_event_e15_hw_halt_done:
2622                         break;
2623                 case sdma_event_e25_hw_clean_up_done:
2624                         break;
2625                 case sdma_event_e30_go_running:
2626                         ss->go_s99_running = 1;
2627                         break;
2628                 case sdma_event_e40_sw_cleaned:
2629                         /* notify caller this engine is done cleaning */
2630                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2631                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2632                         break;
2633                 case sdma_event_e50_hw_cleaned:
2634                         break;
2635                 case sdma_event_e60_hw_halted:
2636                         break;
2637                 case sdma_event_e70_go_idle:
2638                         ss->go_s99_running = 0;
2639                         break;
2640                 case sdma_event_e80_hw_freeze:
2641                         break;
2642                 case sdma_event_e81_hw_frozen:
2643                         break;
2644                 case sdma_event_e82_hw_unfreeze:
2645                         sdma_hw_start_up(sde);
2646                         sdma_set_state(sde, ss->go_s99_running ?
2647                                        sdma_state_s99_running :
2648                                        sdma_state_s20_idle);
2649                         break;
2650                 case sdma_event_e85_link_down:
2651                         break;
2652                 case sdma_event_e90_sw_halted:
2653                         break;
2654                 }
2655                 break;
2656
2657         case sdma_state_s99_running:
2658                 switch (event) {
2659                 case sdma_event_e00_go_hw_down:
2660                         sdma_set_state(sde, sdma_state_s00_hw_down);
2661                         sdma_start_sw_clean_up(sde);
2662                         break;
2663                 case sdma_event_e10_go_hw_start:
2664                         break;
2665                 case sdma_event_e15_hw_halt_done:
2666                         break;
2667                 case sdma_event_e25_hw_clean_up_done:
2668                         break;
2669                 case sdma_event_e30_go_running:
2670                         break;
2671                 case sdma_event_e40_sw_cleaned:
2672                         break;
2673                 case sdma_event_e50_hw_cleaned:
2674                         break;
2675                 case sdma_event_e60_hw_halted:
2676                         need_progress = 1;
2677                         sdma_err_progress_check_schedule(sde);
2678                 case sdma_event_e90_sw_halted:
2679                         /*
2680                         * SW initiated halt does not perform engines
2681                         * progress check
2682                         */
2683                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2684                         sdma_start_err_halt_wait(sde);
2685                         break;
2686                 case sdma_event_e70_go_idle:
2687                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2688                         break;
2689                 case sdma_event_e85_link_down:
2690                         ss->go_s99_running = 0;
2691                         /* fall through */
2692                 case sdma_event_e80_hw_freeze:
2693                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2694                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2695                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2696                         break;
2697                 case sdma_event_e81_hw_frozen:
2698                         break;
2699                 case sdma_event_e82_hw_unfreeze:
2700                         break;
2701                 }
2702                 break;
2703         }
2704
2705         ss->last_event = event;
2706         if (need_progress)
2707                 sdma_make_progress(sde, 0);
2708 }
2709
2710 /*
2711  * _extend_sdma_tx_descs() - helper to extend txreq
2712  *
2713  * This is called once the initial nominal allocation
2714  * of descriptors in the sdma_txreq is exhausted.
2715  *
2716  * The code will bump the allocation up to the max
2717  * of MAX_DESC (64) descriptors. There doesn't seem
2718  * much point in an interim step. The last descriptor
2719  * is reserved for coalesce buffer in order to support
2720  * cases where input packet has >MAX_DESC iovecs.
2721  *
2722  */
2723 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2724 {
2725         int i;
2726
2727         /* Handle last descriptor */
2728         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2729                 /* if tlen is 0, it is for padding, release last descriptor */
2730                 if (!tx->tlen) {
2731                         tx->desc_limit = MAX_DESC;
2732                 } else if (!tx->coalesce_buf) {
2733                         /* allocate coalesce buffer with space for padding */
2734                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2735                                                    GFP_ATOMIC);
2736                         if (!tx->coalesce_buf)
2737                                 return -ENOMEM;
2738
2739                         tx->coalesce_idx = 0;
2740                 }
2741                 return 0;
2742         }
2743
2744         if (unlikely(tx->num_desc == MAX_DESC))
2745                 return -ENOMEM;
2746
2747         tx->descp = kmalloc_array(
2748                         MAX_DESC,
2749                         sizeof(struct sdma_desc),
2750                         GFP_ATOMIC);
2751         if (!tx->descp)
2752                 return -ENOMEM;
2753
2754         /* reserve last descriptor for coalescing */
2755         tx->desc_limit = MAX_DESC - 1;
2756         /* copy ones already built */
2757         for (i = 0; i < tx->num_desc; i++)
2758                 tx->descp[i] = tx->descs[i];
2759         return 0;
2760 }
2761
2762 /*
2763  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2764  *
2765  * This is called once the initial nominal allocation of descriptors
2766  * in the sdma_txreq is exhausted.
2767  *
2768  * This function calls _extend_sdma_tx_descs to extend or allocate
2769  * coalesce buffer. If there is a allocated coalesce buffer, it will
2770  * copy the input packet data into the coalesce buffer. It also adds
2771  * coalesce buffer descriptor once whe whole packet is received.
2772  *
2773  * Return:
2774  * <0 - error
2775  * 0 - coalescing, don't populate descriptor
2776  * 1 - continue with populating descriptor
2777  */
2778 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2779                            int type, void *kvaddr, struct page *page,
2780                            unsigned long offset, u16 len)
2781 {
2782         int pad_len, rval;
2783         dma_addr_t addr;
2784
2785         rval = _extend_sdma_tx_descs(dd, tx);
2786         if (rval) {
2787                 sdma_txclean(dd, tx);
2788                 return rval;
2789         }
2790
2791         /* If coalesce buffer is allocated, copy data into it */
2792         if (tx->coalesce_buf) {
2793                 if (type == SDMA_MAP_NONE) {
2794                         sdma_txclean(dd, tx);
2795                         return -EINVAL;
2796                 }
2797
2798                 if (type == SDMA_MAP_PAGE) {
2799                         kvaddr = kmap(page);
2800                         kvaddr += offset;
2801                 } else if (WARN_ON(!kvaddr)) {
2802                         sdma_txclean(dd, tx);
2803                         return -EINVAL;
2804                 }
2805
2806                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2807                 tx->coalesce_idx += len;
2808                 if (type == SDMA_MAP_PAGE)
2809                         kunmap(page);
2810
2811                 /* If there is more data, return */
2812                 if (tx->tlen - tx->coalesce_idx)
2813                         return 0;
2814
2815                 /* Whole packet is received; add any padding */
2816                 pad_len = tx->packet_len & (sizeof(u32) - 1);
2817                 if (pad_len) {
2818                         pad_len = sizeof(u32) - pad_len;
2819                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2820                         /* padding is taken care of for coalescing case */
2821                         tx->packet_len += pad_len;
2822                         tx->tlen += pad_len;
2823                 }
2824
2825                 /* dma map the coalesce buffer */
2826                 addr = dma_map_single(&dd->pcidev->dev,
2827                                       tx->coalesce_buf,
2828                                       tx->tlen,
2829                                       DMA_TO_DEVICE);
2830
2831                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2832                         sdma_txclean(dd, tx);
2833                         return -ENOSPC;
2834                 }
2835
2836                 /* Add descriptor for coalesce buffer */
2837                 tx->desc_limit = MAX_DESC;
2838                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2839                                          addr, tx->tlen);
2840         }
2841
2842         return 1;
2843 }
2844
2845 /* Update sdes when the lmc changes */
2846 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2847 {
2848         struct sdma_engine *sde;
2849         int i;
2850         u64 sreg;
2851
2852         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2853                 SD(CHECK_SLID_MASK_SHIFT)) |
2854                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2855                 SD(CHECK_SLID_VALUE_SHIFT));
2856
2857         for (i = 0; i < dd->num_sdma; i++) {
2858                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2859                           i, (u32)sreg);
2860                 sde = &dd->per_sdma[i];
2861                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2862         }
2863 }
2864
2865 /* tx not dword sized - pad */
2866 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2867 {
2868         int rval = 0;
2869
2870         tx->num_desc++;
2871         if ((unlikely(tx->num_desc == tx->desc_limit))) {
2872                 rval = _extend_sdma_tx_descs(dd, tx);
2873                 if (rval) {
2874                         sdma_txclean(dd, tx);
2875                         return rval;
2876                 }
2877         }
2878         /* finish the one just added */
2879         make_tx_sdma_desc(
2880                 tx,
2881                 SDMA_MAP_NONE,
2882                 dd->sdma_pad_phys,
2883                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2884         _sdma_close_tx(dd, tx);
2885         return rval;
2886 }
2887
2888 /*
2889  * Add ahg to the sdma_txreq
2890  *
2891  * The logic will consume up to 3
2892  * descriptors at the beginning of
2893  * sdma_txreq.
2894  */
2895 void _sdma_txreq_ahgadd(
2896         struct sdma_txreq *tx,
2897         u8 num_ahg,
2898         u8 ahg_entry,
2899         u32 *ahg,
2900         u8 ahg_hlen)
2901 {
2902         u32 i, shift = 0, desc = 0;
2903         u8 mode;
2904
2905         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2906         /* compute mode */
2907         if (num_ahg == 1)
2908                 mode = SDMA_AHG_APPLY_UPDATE1;
2909         else if (num_ahg <= 5)
2910                 mode = SDMA_AHG_APPLY_UPDATE2;
2911         else
2912                 mode = SDMA_AHG_APPLY_UPDATE3;
2913         tx->num_desc++;
2914         /* initialize to consumed descriptors to zero */
2915         switch (mode) {
2916         case SDMA_AHG_APPLY_UPDATE3:
2917                 tx->num_desc++;
2918                 tx->descs[2].qw[0] = 0;
2919                 tx->descs[2].qw[1] = 0;
2920                 /* FALLTHROUGH */
2921         case SDMA_AHG_APPLY_UPDATE2:
2922                 tx->num_desc++;
2923                 tx->descs[1].qw[0] = 0;
2924                 tx->descs[1].qw[1] = 0;
2925                 break;
2926         }
2927         ahg_hlen >>= 2;
2928         tx->descs[0].qw[1] |=
2929                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2930                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2931                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2932                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
2933                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2934                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
2935                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2936                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2937         for (i = 0; i < (num_ahg - 1); i++) {
2938                 if (!shift && !(i & 2))
2939                         desc++;
2940                 tx->descs[desc].qw[!!(i & 2)] |=
2941                         (((u64)ahg[i + 1])
2942                                 << shift);
2943                 shift = (shift + 32) & 63;
2944         }
2945 }
2946
2947 /**
2948  * sdma_ahg_alloc - allocate an AHG entry
2949  * @sde: engine to allocate from
2950  *
2951  * Return:
2952  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2953  * -ENOSPC if an entry is not available
2954  */
2955 int sdma_ahg_alloc(struct sdma_engine *sde)
2956 {
2957         int nr;
2958         int oldbit;
2959
2960         if (!sde) {
2961                 trace_hfi1_ahg_allocate(sde, -EINVAL);
2962                 return -EINVAL;
2963         }
2964         while (1) {
2965                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2966                 if (nr > 31) {
2967                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
2968                         return -ENOSPC;
2969                 }
2970                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2971                 if (!oldbit)
2972                         break;
2973                 cpu_relax();
2974         }
2975         trace_hfi1_ahg_allocate(sde, nr);
2976         return nr;
2977 }
2978
2979 /**
2980  * sdma_ahg_free - free an AHG entry
2981  * @sde: engine to return AHG entry
2982  * @ahg_index: index to free
2983  *
2984  * This routine frees the indicate AHG entry.
2985  */
2986 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2987 {
2988         if (!sde)
2989                 return;
2990         trace_hfi1_ahg_deallocate(sde, ahg_index);
2991         if (ahg_index < 0 || ahg_index > 31)
2992                 return;
2993         clear_bit(ahg_index, &sde->ahg_bits);
2994 }
2995
2996 /*
2997  * SPC freeze handling for SDMA engines.  Called when the driver knows
2998  * the SPC is going into a freeze but before the freeze is fully
2999  * settled.  Generally an error interrupt.
3000  *
3001  * This event will pull the engine out of running so no more entries can be
3002  * added to the engine's queue.
3003  */
3004 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3005 {
3006         int i;
3007         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3008                                              sdma_event_e80_hw_freeze;
3009
3010         /* set up the wait but do not wait here */
3011         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3012
3013         /* tell all engines to stop running and wait */
3014         for (i = 0; i < dd->num_sdma; i++)
3015                 sdma_process_event(&dd->per_sdma[i], event);
3016
3017         /* sdma_freeze() will wait for all engines to have stopped */
3018 }
3019
3020 /*
3021  * SPC freeze handling for SDMA engines.  Called when the driver knows
3022  * the SPC is fully frozen.
3023  */
3024 void sdma_freeze(struct hfi1_devdata *dd)
3025 {
3026         int i;
3027         int ret;
3028
3029         /*
3030          * Make sure all engines have moved out of the running state before
3031          * continuing.
3032          */
3033         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3034                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3035         /* interrupted or count is negative, then unloading - just exit */
3036         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3037                 return;
3038
3039         /* set up the count for the next wait */
3040         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3041
3042         /* tell all engines that the SPC is frozen, they can start cleaning */
3043         for (i = 0; i < dd->num_sdma; i++)
3044                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3045
3046         /*
3047          * Wait for everyone to finish software clean before exiting.  The
3048          * software clean will read engine CSRs, so must be completed before
3049          * the next step, which will clear the engine CSRs.
3050          */
3051         (void) wait_event_interruptible(dd->sdma_unfreeze_wq,
3052                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3053         /* no need to check results - done no matter what */
3054 }
3055
3056 /*
3057  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3058  *
3059  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3060  * that is left is a software clean.  We could do it after the SPC is fully
3061  * frozen, but then we'd have to add another state to wait for the unfreeze.
3062  * Instead, just defer the software clean until the unfreeze step.
3063  */
3064 void sdma_unfreeze(struct hfi1_devdata *dd)
3065 {
3066         int i;
3067
3068         /* tell all engines start freeze clean up */
3069         for (i = 0; i < dd->num_sdma; i++)
3070                 sdma_process_event(&dd->per_sdma[i],
3071                                         sdma_event_e82_hw_unfreeze);
3072 }
3073
3074 /**
3075  * _sdma_engine_progress_schedule() - schedule progress on engine
3076  * @sde: sdma_engine to schedule progress
3077  *
3078  */
3079 void _sdma_engine_progress_schedule(
3080         struct sdma_engine *sde)
3081 {
3082         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3083         /* assume we have selected a good cpu */
3084         write_csr(sde->dd,
3085                   CCE_INT_FORCE + (8*(IS_SDMA_START/64)), sde->progress_mask);
3086 }