These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / staging / rdma / hfi1 / driver.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/pci.h>
53 #include <linux/io.h>
54 #include <linux/delay.h>
55 #include <linux/netdevice.h>
56 #include <linux/vmalloc.h>
57 #include <linux/module.h>
58 #include <linux/prefetch.h>
59
60 #include "hfi.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "sdma.h"
64
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
77
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is 8192");
81
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *, const struct kernel_param *);
88 static int hfi1_caps_get(char *, const struct kernel_param *);
89 static const struct kernel_param_ops cap_ops = {
90         .set = hfi1_caps_set,
91         .get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98 MODULE_VERSION(HFI1_DRIVER_VERSION);
99
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 #define EGR_HEAD_UPDATE_THRESHOLD 16
105
106 struct hfi1_ib_stats hfi1_stats;
107
108 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
109 {
110         int ret = 0;
111         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
112                 cap_mask = *cap_mask_ptr, value, diff,
113                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
114                               HFI1_CAP_WRITABLE_MASK);
115
116         ret = kstrtoul(val, 0, &value);
117         if (ret) {
118                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
119                 goto done;
120         }
121         /* Get the changed bits (except the locked bit) */
122         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
123
124         /* Remove any bits that are not allowed to change after driver load */
125         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
126                 pr_warn("Ignoring non-writable capability bits %#lx\n",
127                         diff & ~write_mask);
128                 diff &= write_mask;
129         }
130
131         /* Mask off any reserved bits */
132         diff &= ~HFI1_CAP_RESERVED_MASK;
133         /* Clear any previously set and changing bits */
134         cap_mask &= ~diff;
135         /* Update the bits with the new capability */
136         cap_mask |= (value & diff);
137         /* Check for any kernel/user restrictions */
138         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
139                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
140         cap_mask &= ~diff;
141         /* Set the bitmask to the final set */
142         *cap_mask_ptr = cap_mask;
143 done:
144         return ret;
145 }
146
147 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
148 {
149         unsigned long cap_mask = *(unsigned long *)kp->arg;
150
151         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
152         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
153
154         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
155 }
156
157 const char *get_unit_name(int unit)
158 {
159         static char iname[16];
160
161         snprintf(iname, sizeof(iname), DRIVER_NAME"_%u", unit);
162         return iname;
163 }
164
165 /*
166  * Return count of units with at least one port ACTIVE.
167  */
168 int hfi1_count_active_units(void)
169 {
170         struct hfi1_devdata *dd;
171         struct hfi1_pportdata *ppd;
172         unsigned long flags;
173         int pidx, nunits_active = 0;
174
175         spin_lock_irqsave(&hfi1_devs_lock, flags);
176         list_for_each_entry(dd, &hfi1_dev_list, list) {
177                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
178                         continue;
179                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
180                         ppd = dd->pport + pidx;
181                         if (ppd->lid && ppd->linkup) {
182                                 nunits_active++;
183                                 break;
184                         }
185                 }
186         }
187         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
188         return nunits_active;
189 }
190
191 /*
192  * Return count of all units, optionally return in arguments
193  * the number of usable (present) units, and the number of
194  * ports that are up.
195  */
196 int hfi1_count_units(int *npresentp, int *nupp)
197 {
198         int nunits = 0, npresent = 0, nup = 0;
199         struct hfi1_devdata *dd;
200         unsigned long flags;
201         int pidx;
202         struct hfi1_pportdata *ppd;
203
204         spin_lock_irqsave(&hfi1_devs_lock, flags);
205
206         list_for_each_entry(dd, &hfi1_dev_list, list) {
207                 nunits++;
208                 if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
209                         npresent++;
210                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
211                         ppd = dd->pport + pidx;
212                         if (ppd->lid && ppd->linkup)
213                                 nup++;
214                 }
215         }
216
217         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
218
219         if (npresentp)
220                 *npresentp = npresent;
221         if (nupp)
222                 *nupp = nup;
223
224         return nunits;
225 }
226
227 /*
228  * Get address of eager buffer from it's index (allocated in chunks, not
229  * contiguous).
230  */
231 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
232                                u8 *update)
233 {
234         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
235
236         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
237         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
238                         (offset * RCV_BUF_BLOCK_SIZE));
239 }
240
241 /*
242  * Validate and encode the a given RcvArray Buffer size.
243  * The function will check whether the given size falls within
244  * allowed size ranges for the respective type and, optionally,
245  * return the proper encoding.
246  */
247 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
248 {
249         if (unlikely(!IS_ALIGNED(size, PAGE_SIZE)))
250                 return 0;
251         if (unlikely(size < MIN_EAGER_BUFFER))
252                 return 0;
253         if (size >
254             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
255                 return 0;
256         if (encoded)
257                 *encoded = ilog2(size / PAGE_SIZE) + 1;
258         return 1;
259 }
260
261 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
262                        struct hfi1_packet *packet)
263 {
264         struct hfi1_message_header *rhdr = packet->hdr;
265         u32 rte = rhf_rcv_type_err(packet->rhf);
266         int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
267         struct hfi1_ibport *ibp = &ppd->ibport_data;
268
269         if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
270                 return;
271
272         if (packet->rhf & RHF_TID_ERR) {
273                 /* For TIDERR and RC QPs preemptively schedule a NAK */
274                 struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
275                 struct hfi1_other_headers *ohdr = NULL;
276                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
277                 u16 lid  = be16_to_cpu(hdr->lrh[1]);
278                 u32 qp_num;
279                 u32 rcv_flags = 0;
280
281                 /* Sanity check packet */
282                 if (tlen < 24)
283                         goto drop;
284
285                 /* Check for GRH */
286                 if (lnh == HFI1_LRH_BTH)
287                         ohdr = &hdr->u.oth;
288                 else if (lnh == HFI1_LRH_GRH) {
289                         u32 vtf;
290
291                         ohdr = &hdr->u.l.oth;
292                         if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
293                                 goto drop;
294                         vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
295                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
296                                 goto drop;
297                         rcv_flags |= HFI1_HAS_GRH;
298                 } else
299                         goto drop;
300
301                 /* Get the destination QP number. */
302                 qp_num = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
303                 if (lid < HFI1_MULTICAST_LID_BASE) {
304                         struct hfi1_qp *qp;
305                         unsigned long flags;
306
307                         rcu_read_lock();
308                         qp = hfi1_lookup_qpn(ibp, qp_num);
309                         if (!qp) {
310                                 rcu_read_unlock();
311                                 goto drop;
312                         }
313
314                         /*
315                          * Handle only RC QPs - for other QP types drop error
316                          * packet.
317                          */
318                         spin_lock_irqsave(&qp->r_lock, flags);
319
320                         /* Check for valid receive state. */
321                         if (!(ib_hfi1_state_ops[qp->state] &
322                               HFI1_PROCESS_RECV_OK)) {
323                                 ibp->n_pkt_drops++;
324                         }
325
326                         switch (qp->ibqp.qp_type) {
327                         case IB_QPT_RC:
328                                 hfi1_rc_hdrerr(
329                                         rcd,
330                                         hdr,
331                                         rcv_flags,
332                                         qp);
333                                 break;
334                         default:
335                                 /* For now don't handle any other QP types */
336                                 break;
337                         }
338
339                         spin_unlock_irqrestore(&qp->r_lock, flags);
340                         rcu_read_unlock();
341                 } /* Unicast QP */
342         } /* Valid packet with TIDErr */
343
344         /* handle "RcvTypeErr" flags */
345         switch (rte) {
346         case RHF_RTE_ERROR_OP_CODE_ERR:
347         {
348                 u32 opcode;
349                 void *ebuf = NULL;
350                 __be32 *bth = NULL;
351
352                 if (rhf_use_egr_bfr(packet->rhf))
353                         ebuf = packet->ebuf;
354
355                 if (ebuf == NULL)
356                         goto drop; /* this should never happen */
357
358                 if (lnh == HFI1_LRH_BTH)
359                         bth = (__be32 *)ebuf;
360                 else if (lnh == HFI1_LRH_GRH)
361                         bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
362                 else
363                         goto drop;
364
365                 opcode = be32_to_cpu(bth[0]) >> 24;
366                 opcode &= 0xff;
367
368                 if (opcode == IB_OPCODE_CNP) {
369                         /*
370                          * Only in pre-B0 h/w is the CNP_OPCODE handled
371                          * via this code path (errata 291394).
372                          */
373                         struct hfi1_qp *qp = NULL;
374                         u32 lqpn, rqpn;
375                         u16 rlid;
376                         u8 svc_type, sl, sc5;
377
378                         sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
379                         if (rhf_dc_info(packet->rhf))
380                                 sc5 |= 0x10;
381                         sl = ibp->sc_to_sl[sc5];
382
383                         lqpn = be32_to_cpu(bth[1]) & HFI1_QPN_MASK;
384                         rcu_read_lock();
385                         qp = hfi1_lookup_qpn(ibp, lqpn);
386                         if (qp == NULL) {
387                                 rcu_read_unlock();
388                                 goto drop;
389                         }
390
391                         switch (qp->ibqp.qp_type) {
392                         case IB_QPT_UD:
393                                 rlid = 0;
394                                 rqpn = 0;
395                                 svc_type = IB_CC_SVCTYPE_UD;
396                                 break;
397                         case IB_QPT_UC:
398                                 rlid = be16_to_cpu(rhdr->lrh[3]);
399                                 rqpn = qp->remote_qpn;
400                                 svc_type = IB_CC_SVCTYPE_UC;
401                                 break;
402                         default:
403                                 goto drop;
404                         }
405
406                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
407                         rcu_read_unlock();
408                 }
409
410                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
411                 break;
412         }
413         default:
414                 break;
415         }
416
417 drop:
418         return;
419 }
420
421 static inline void init_packet(struct hfi1_ctxtdata *rcd,
422                               struct hfi1_packet *packet)
423 {
424
425         packet->rsize = rcd->rcvhdrqentsize; /* words */
426         packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427         packet->rcd = rcd;
428         packet->updegr = 0;
429         packet->etail = -1;
430         packet->rhf_addr = get_rhf_addr(rcd);
431         packet->rhf = rhf_to_cpu(packet->rhf_addr);
432         packet->rhqoff = rcd->head;
433         packet->numpkt = 0;
434         packet->rcv_flags = 0;
435 }
436
437 #ifndef CONFIG_PRESCAN_RXQ
438 static void prescan_rxq(struct hfi1_packet *packet) {}
439 #else /* CONFIG_PRESCAN_RXQ */
440 static int prescan_receive_queue;
441
442 static void process_ecn(struct hfi1_qp *qp, struct hfi1_ib_header *hdr,
443                         struct hfi1_other_headers *ohdr,
444                         u64 rhf, struct ib_grh *grh)
445 {
446         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
447         u32 bth1;
448         u8 sc5, svc_type;
449         int is_fecn, is_becn;
450
451         switch (qp->ibqp.qp_type) {
452         case IB_QPT_UD:
453                 svc_type = IB_CC_SVCTYPE_UD;
454                 break;
455         case IB_QPT_UC: /* LATER */
456         case IB_QPT_RC: /* LATER */
457         default:
458                 return;
459         }
460
461         is_fecn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_FECN_SHIFT) &
462                         HFI1_FECN_MASK;
463         is_becn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_BECN_SHIFT) &
464                         HFI1_BECN_MASK;
465
466         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
467         if (rhf_dc_info(rhf))
468                 sc5 |= 0x10;
469
470         if (is_fecn) {
471                 u32 src_qpn = be32_to_cpu(ohdr->u.ud.deth[1]) & HFI1_QPN_MASK;
472                 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
473                 u16 dlid = be16_to_cpu(hdr->lrh[1]);
474                 u16 slid = be16_to_cpu(hdr->lrh[3]);
475
476                 return_cnp(ibp, qp, src_qpn, pkey, dlid, slid, sc5, grh);
477         }
478
479         if (is_becn) {
480                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
481                 u32 lqpn =  be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
482                 u8 sl = ibp->sc_to_sl[sc5];
483
484                 process_becn(ppd, sl, 0, lqpn, 0, svc_type);
485         }
486
487         /* turn off BECN, or FECN */
488         bth1 = be32_to_cpu(ohdr->bth[1]);
489         bth1 &= ~(HFI1_FECN_MASK << HFI1_FECN_SHIFT);
490         bth1 &= ~(HFI1_BECN_MASK << HFI1_BECN_SHIFT);
491         ohdr->bth[1] = cpu_to_be32(bth1);
492 }
493
494 struct ps_mdata {
495         struct hfi1_ctxtdata *rcd;
496         u32 rsize;
497         u32 maxcnt;
498         u32 ps_head;
499         u32 ps_tail;
500         u32 ps_seq;
501 };
502
503 static inline void init_ps_mdata(struct ps_mdata *mdata,
504                                  struct hfi1_packet *packet)
505 {
506         struct hfi1_ctxtdata *rcd = packet->rcd;
507
508         mdata->rcd = rcd;
509         mdata->rsize = packet->rsize;
510         mdata->maxcnt = packet->maxcnt;
511
512         if (rcd->ps_state.initialized == 0) {
513                 mdata->ps_head = packet->rhqoff;
514                 rcd->ps_state.initialized++;
515         } else
516                 mdata->ps_head = rcd->ps_state.ps_head;
517
518         if (HFI1_CAP_IS_KSET(DMA_RTAIL)) {
519                 mdata->ps_tail = packet->hdrqtail;
520                 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
521         } else {
522                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
523                 mdata->ps_seq = rcd->seq_cnt;
524         }
525 }
526
527 static inline int ps_done(struct ps_mdata *mdata, u64 rhf)
528 {
529         if (HFI1_CAP_IS_KSET(DMA_RTAIL))
530                 return mdata->ps_head == mdata->ps_tail;
531         return mdata->ps_seq != rhf_rcv_seq(rhf);
532 }
533
534 static inline void update_ps_mdata(struct ps_mdata *mdata)
535 {
536         struct hfi1_ctxtdata *rcd = mdata->rcd;
537
538         mdata->ps_head += mdata->rsize;
539         if (mdata->ps_head > mdata->maxcnt)
540                 mdata->ps_head = 0;
541         rcd->ps_state.ps_head = mdata->ps_head;
542         if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
543                 if (++mdata->ps_seq > 13)
544                         mdata->ps_seq = 1;
545         }
546 }
547
548 /*
549  * prescan_rxq - search through the receive queue looking for packets
550  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
551  * When an ECN is found, process the Congestion Notification, and toggle
552  * it off.
553  */
554 static void prescan_rxq(struct hfi1_packet *packet)
555 {
556         struct hfi1_ctxtdata *rcd = packet->rcd;
557         struct ps_mdata mdata;
558
559         if (!prescan_receive_queue)
560                 return;
561
562         init_ps_mdata(&mdata, packet);
563
564         while (1) {
565                 struct hfi1_devdata *dd = rcd->dd;
566                 struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
567                 __le32 *rhf_addr = (__le32 *) rcd->rcvhdrq + mdata.ps_head +
568                                          dd->rhf_offset;
569                 struct hfi1_qp *qp;
570                 struct hfi1_ib_header *hdr;
571                 struct hfi1_other_headers *ohdr;
572                 struct ib_grh *grh = NULL;
573                 u64 rhf = rhf_to_cpu(rhf_addr);
574                 u32 etype = rhf_rcv_type(rhf), qpn;
575                 int is_ecn = 0;
576                 u8 lnh;
577
578                 if (ps_done(&mdata, rhf))
579                         break;
580
581                 if (etype != RHF_RCV_TYPE_IB)
582                         goto next;
583
584                 hdr = (struct hfi1_ib_header *)
585                         hfi1_get_msgheader(dd, rhf_addr);
586                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
587
588                 if (lnh == HFI1_LRH_BTH)
589                         ohdr = &hdr->u.oth;
590                 else if (lnh == HFI1_LRH_GRH) {
591                         ohdr = &hdr->u.l.oth;
592                         grh = &hdr->u.l.grh;
593                 } else
594                         goto next; /* just in case */
595
596                 is_ecn |= be32_to_cpu(ohdr->bth[1]) &
597                         (HFI1_FECN_MASK << HFI1_FECN_SHIFT);
598                 is_ecn |= be32_to_cpu(ohdr->bth[1]) &
599                         (HFI1_BECN_MASK << HFI1_BECN_SHIFT);
600
601                 if (!is_ecn)
602                         goto next;
603
604                 qpn = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
605                 rcu_read_lock();
606                 qp = hfi1_lookup_qpn(ibp, qpn);
607
608                 if (qp == NULL) {
609                         rcu_read_unlock();
610                         goto next;
611                 }
612
613                 process_ecn(qp, hdr, ohdr, rhf, grh);
614                 rcu_read_unlock();
615 next:
616                 update_ps_mdata(&mdata);
617         }
618 }
619 #endif /* CONFIG_PRESCAN_RXQ */
620
621 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
622 {
623         int ret = RCV_PKT_OK;
624
625         packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
626                                          packet->rhf_addr);
627         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
628         packet->etype = rhf_rcv_type(packet->rhf);
629         /* total length */
630         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
631         /* retrieve eager buffer details */
632         packet->ebuf = NULL;
633         if (rhf_use_egr_bfr(packet->rhf)) {
634                 packet->etail = rhf_egr_index(packet->rhf);
635                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
636                                  &packet->updegr);
637                 /*
638                  * Prefetch the contents of the eager buffer.  It is
639                  * OK to send a negative length to prefetch_range().
640                  * The +2 is the size of the RHF.
641                  */
642                 prefetch_range(packet->ebuf,
643                         packet->tlen - ((packet->rcd->rcvhdrqentsize -
644                                   (rhf_hdrq_offset(packet->rhf)+2)) * 4));
645         }
646
647         /*
648          * Call a type specific handler for the packet. We
649          * should be able to trust that etype won't be beyond
650          * the range of valid indexes. If so something is really
651          * wrong and we can probably just let things come
652          * crashing down. There is no need to eat another
653          * comparison in this performance critical code.
654          */
655         packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
656         packet->numpkt++;
657
658         /* Set up for the next packet */
659         packet->rhqoff += packet->rsize;
660         if (packet->rhqoff >= packet->maxcnt)
661                 packet->rhqoff = 0;
662
663         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
664                 if (thread) {
665                         cond_resched();
666                 } else {
667                         ret = RCV_PKT_LIMIT;
668                         this_cpu_inc(*packet->rcd->dd->rcv_limit);
669                 }
670         }
671
672         packet->rhf_addr = (__le32 *) packet->rcd->rcvhdrq + packet->rhqoff +
673                                       packet->rcd->dd->rhf_offset;
674         packet->rhf = rhf_to_cpu(packet->rhf_addr);
675
676         return ret;
677 }
678
679 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
680 {
681         /*
682          * Update head regs etc., every 16 packets, if not last pkt,
683          * to help prevent rcvhdrq overflows, when many packets
684          * are processed and queue is nearly full.
685          * Don't request an interrupt for intermediate updates.
686          */
687         if (!last && !(packet->numpkt & 0xf)) {
688                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
689                                packet->etail, 0, 0);
690                 packet->updegr = 0;
691         }
692         packet->rcv_flags = 0;
693 }
694
695 static inline void finish_packet(struct hfi1_packet *packet)
696 {
697
698         /*
699          * Nothing we need to free for the packet.
700          *
701          * The only thing we need to do is a final update and call for an
702          * interrupt
703          */
704         update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
705                        packet->etail, rcv_intr_dynamic, packet->numpkt);
706
707 }
708
709 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
710 {
711
712         struct hfi1_ctxtdata *rcd;
713         struct hfi1_qp *qp, *nqp;
714
715         rcd = packet->rcd;
716         rcd->head = packet->rhqoff;
717
718         /*
719          * Iterate over all QPs waiting to respond.
720          * The list won't change since the IRQ is only run on one CPU.
721          */
722         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
723                 list_del_init(&qp->rspwait);
724                 if (qp->r_flags & HFI1_R_RSP_NAK) {
725                         qp->r_flags &= ~HFI1_R_RSP_NAK;
726                         hfi1_send_rc_ack(rcd, qp, 0);
727                 }
728                 if (qp->r_flags & HFI1_R_RSP_SEND) {
729                         unsigned long flags;
730
731                         qp->r_flags &= ~HFI1_R_RSP_SEND;
732                         spin_lock_irqsave(&qp->s_lock, flags);
733                         if (ib_hfi1_state_ops[qp->state] &
734                                         HFI1_PROCESS_OR_FLUSH_SEND)
735                                 hfi1_schedule_send(qp);
736                         spin_unlock_irqrestore(&qp->s_lock, flags);
737                 }
738                 if (atomic_dec_and_test(&qp->refcount))
739                         wake_up(&qp->wait);
740         }
741 }
742
743 /*
744  * Handle receive interrupts when using the no dma rtail option.
745  */
746 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
747 {
748         u32 seq;
749         int last = RCV_PKT_OK;
750         struct hfi1_packet packet;
751
752         init_packet(rcd, &packet);
753         seq = rhf_rcv_seq(packet.rhf);
754         if (seq != rcd->seq_cnt) {
755                 last = RCV_PKT_DONE;
756                 goto bail;
757         }
758
759         prescan_rxq(&packet);
760
761         while (last == RCV_PKT_OK) {
762                 last = process_rcv_packet(&packet, thread);
763                 seq = rhf_rcv_seq(packet.rhf);
764                 if (++rcd->seq_cnt > 13)
765                         rcd->seq_cnt = 1;
766                 if (seq != rcd->seq_cnt)
767                         last = RCV_PKT_DONE;
768                 process_rcv_update(last, &packet);
769         }
770         process_rcv_qp_work(&packet);
771 bail:
772         finish_packet(&packet);
773         return last;
774 }
775
776 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
777 {
778         u32 hdrqtail;
779         int last = RCV_PKT_OK;
780         struct hfi1_packet packet;
781
782         init_packet(rcd, &packet);
783         hdrqtail = get_rcvhdrtail(rcd);
784         if (packet.rhqoff == hdrqtail) {
785                 last = RCV_PKT_DONE;
786                 goto bail;
787         }
788         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
789
790         prescan_rxq(&packet);
791
792         while (last == RCV_PKT_OK) {
793                 last = process_rcv_packet(&packet, thread);
794                 hdrqtail = get_rcvhdrtail(rcd);
795                 if (packet.rhqoff == hdrqtail)
796                         last = RCV_PKT_DONE;
797                 process_rcv_update(last, &packet);
798         }
799         process_rcv_qp_work(&packet);
800 bail:
801         finish_packet(&packet);
802         return last;
803 }
804
805 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
806 {
807         int i;
808
809         for (i = 0; i < dd->first_user_ctxt; i++)
810                 dd->rcd[i]->do_interrupt =
811                         &handle_receive_interrupt_nodma_rtail;
812 }
813
814 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
815 {
816         int i;
817
818         for (i = 0; i < dd->first_user_ctxt; i++)
819                 dd->rcd[i]->do_interrupt =
820                         &handle_receive_interrupt_dma_rtail;
821 }
822
823 /*
824  * handle_receive_interrupt - receive a packet
825  * @rcd: the context
826  *
827  * Called from interrupt handler for errors or receive interrupt.
828  * This is the slow path interrupt handler.
829  */
830 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
831 {
832         struct hfi1_devdata *dd = rcd->dd;
833         u32 hdrqtail;
834         int last = RCV_PKT_OK, needset = 1;
835         struct hfi1_packet packet;
836
837         init_packet(rcd, &packet);
838
839         if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
840                 u32 seq = rhf_rcv_seq(packet.rhf);
841
842                 if (seq != rcd->seq_cnt) {
843                         last = RCV_PKT_DONE;
844                         goto bail;
845                 }
846                 hdrqtail = 0;
847         } else {
848                 hdrqtail = get_rcvhdrtail(rcd);
849                 if (packet.rhqoff == hdrqtail) {
850                         last = RCV_PKT_DONE;
851                         goto bail;
852                 }
853                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
854         }
855
856         prescan_rxq(&packet);
857
858         while (last == RCV_PKT_OK) {
859
860                 if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet,
861                         DROP_PACKET_OFF) == DROP_PACKET_ON)) {
862                         dd->do_drop = 0;
863
864                         /* On to the next packet */
865                         packet.rhqoff += packet.rsize;
866                         packet.rhf_addr = (__le32 *) rcd->rcvhdrq +
867                                           packet.rhqoff +
868                                           dd->rhf_offset;
869                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
870
871                 } else {
872                         last = process_rcv_packet(&packet, thread);
873                 }
874
875                 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
876                         u32 seq = rhf_rcv_seq(packet.rhf);
877
878                         if (++rcd->seq_cnt > 13)
879                                 rcd->seq_cnt = 1;
880                         if (seq != rcd->seq_cnt)
881                                 last = RCV_PKT_DONE;
882                         if (needset) {
883                                 dd_dev_info(dd,
884                                         "Switching to NO_DMA_RTAIL\n");
885                                 set_all_nodma_rtail(dd);
886                                 needset = 0;
887                         }
888                 } else {
889                         if (packet.rhqoff == hdrqtail)
890                                 last = RCV_PKT_DONE;
891                         if (needset) {
892                                 dd_dev_info(dd,
893                                             "Switching to DMA_RTAIL\n");
894                                 set_all_dma_rtail(dd);
895                                 needset = 0;
896                         }
897                 }
898
899                 process_rcv_update(last, &packet);
900         }
901
902         process_rcv_qp_work(&packet);
903
904 bail:
905         /*
906          * Always write head at end, and setup rcv interrupt, even
907          * if no packets were processed.
908          */
909         finish_packet(&packet);
910         return last;
911 }
912
913 /*
914  * Convert a given MTU size to the on-wire MAD packet enumeration.
915  * Return -1 if the size is invalid.
916  */
917 int mtu_to_enum(u32 mtu, int default_if_bad)
918 {
919         switch (mtu) {
920         case     0: return OPA_MTU_0;
921         case   256: return OPA_MTU_256;
922         case   512: return OPA_MTU_512;
923         case  1024: return OPA_MTU_1024;
924         case  2048: return OPA_MTU_2048;
925         case  4096: return OPA_MTU_4096;
926         case  8192: return OPA_MTU_8192;
927         case 10240: return OPA_MTU_10240;
928         }
929         return default_if_bad;
930 }
931
932 u16 enum_to_mtu(int mtu)
933 {
934         switch (mtu) {
935         case OPA_MTU_0:     return 0;
936         case OPA_MTU_256:   return 256;
937         case OPA_MTU_512:   return 512;
938         case OPA_MTU_1024:  return 1024;
939         case OPA_MTU_2048:  return 2048;
940         case OPA_MTU_4096:  return 4096;
941         case OPA_MTU_8192:  return 8192;
942         case OPA_MTU_10240: return 10240;
943         default: return 0xffff;
944         }
945 }
946
947 /*
948  * set_mtu - set the MTU
949  * @ppd: the per port data
950  *
951  * We can handle "any" incoming size, the issue here is whether we
952  * need to restrict our outgoing size.  We do not deal with what happens
953  * to programs that are already running when the size changes.
954  */
955 int set_mtu(struct hfi1_pportdata *ppd)
956 {
957         struct hfi1_devdata *dd = ppd->dd;
958         int i, drain, ret = 0, is_up = 0;
959
960         ppd->ibmtu = 0;
961         for (i = 0; i < ppd->vls_supported; i++)
962                 if (ppd->ibmtu < dd->vld[i].mtu)
963                         ppd->ibmtu = dd->vld[i].mtu;
964         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
965
966         mutex_lock(&ppd->hls_lock);
967         if (ppd->host_link_state == HLS_UP_INIT
968                         || ppd->host_link_state == HLS_UP_ARMED
969                         || ppd->host_link_state == HLS_UP_ACTIVE)
970                 is_up = 1;
971
972         drain = !is_ax(dd) && is_up;
973
974         if (drain)
975                 /*
976                  * MTU is specified per-VL. To ensure that no packet gets
977                  * stuck (due, e.g., to the MTU for the packet's VL being
978                  * reduced), empty the per-VL FIFOs before adjusting MTU.
979                  */
980                 ret = stop_drain_data_vls(dd);
981
982         if (ret) {
983                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
984                            __func__);
985                 goto err;
986         }
987
988         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
989
990         if (drain)
991                 open_fill_data_vls(dd); /* reopen all VLs */
992
993 err:
994         mutex_unlock(&ppd->hls_lock);
995
996         return ret;
997 }
998
999 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1000 {
1001         struct hfi1_devdata *dd = ppd->dd;
1002
1003         ppd->lid = lid;
1004         ppd->lmc = lmc;
1005         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1006
1007         dd_dev_info(dd, "IB%u:%u got a lid: 0x%x\n", dd->unit, ppd->port, lid);
1008
1009         return 0;
1010 }
1011
1012 /*
1013  * Following deal with the "obviously simple" task of overriding the state
1014  * of the LEDs, which normally indicate link physical and logical status.
1015  * The complications arise in dealing with different hardware mappings
1016  * and the board-dependent routine being called from interrupts.
1017  * and then there's the requirement to _flash_ them.
1018  */
1019 #define LED_OVER_FREQ_SHIFT 8
1020 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
1021 /* Below is "non-zero" to force override, but both actual LEDs are off */
1022 #define LED_OVER_BOTH_OFF (8)
1023
1024 static void run_led_override(unsigned long opaque)
1025 {
1026         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1027         struct hfi1_devdata *dd = ppd->dd;
1028         int timeoff;
1029         int ph_idx;
1030
1031         if (!(dd->flags & HFI1_INITTED))
1032                 return;
1033
1034         ph_idx = ppd->led_override_phase++ & 1;
1035         ppd->led_override = ppd->led_override_vals[ph_idx];
1036         timeoff = ppd->led_override_timeoff;
1037
1038         /*
1039          * don't re-fire the timer if user asked for it to be off; we let
1040          * it fire one more time after they turn it off to simplify
1041          */
1042         if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1043                 mod_timer(&ppd->led_override_timer, jiffies + timeoff);
1044 }
1045
1046 void hfi1_set_led_override(struct hfi1_pportdata *ppd, unsigned int val)
1047 {
1048         struct hfi1_devdata *dd = ppd->dd;
1049         int timeoff, freq;
1050
1051         if (!(dd->flags & HFI1_INITTED))
1052                 return;
1053
1054         /* First check if we are blinking. If not, use 1HZ polling */
1055         timeoff = HZ;
1056         freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
1057
1058         if (freq) {
1059                 /* For blink, set each phase from one nybble of val */
1060                 ppd->led_override_vals[0] = val & 0xF;
1061                 ppd->led_override_vals[1] = (val >> 4) & 0xF;
1062                 timeoff = (HZ << 4)/freq;
1063         } else {
1064                 /* Non-blink set both phases the same. */
1065                 ppd->led_override_vals[0] = val & 0xF;
1066                 ppd->led_override_vals[1] = val & 0xF;
1067         }
1068         ppd->led_override_timeoff = timeoff;
1069
1070         /*
1071          * If the timer has not already been started, do so. Use a "quick"
1072          * timeout so the function will be called soon, to look at our request.
1073          */
1074         if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
1075                 /* Need to start timer */
1076                 setup_timer(&ppd->led_override_timer, run_led_override,
1077                                 (unsigned long)ppd);
1078
1079                 ppd->led_override_timer.expires = jiffies + 1;
1080                 add_timer(&ppd->led_override_timer);
1081         } else {
1082                 if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1083                         mod_timer(&ppd->led_override_timer, jiffies + 1);
1084                 atomic_dec(&ppd->led_override_timer_active);
1085         }
1086 }
1087
1088 /**
1089  * hfi1_reset_device - reset the chip if possible
1090  * @unit: the device to reset
1091  *
1092  * Whether or not reset is successful, we attempt to re-initialize the chip
1093  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1094  * so that the various entry points will fail until we reinitialize.  For
1095  * now, we only allow this if no user contexts are open that use chip resources
1096  */
1097 int hfi1_reset_device(int unit)
1098 {
1099         int ret, i;
1100         struct hfi1_devdata *dd = hfi1_lookup(unit);
1101         struct hfi1_pportdata *ppd;
1102         unsigned long flags;
1103         int pidx;
1104
1105         if (!dd) {
1106                 ret = -ENODEV;
1107                 goto bail;
1108         }
1109
1110         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1111
1112         if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1113                 dd_dev_info(dd,
1114                         "Invalid unit number %u or not initialized or not present\n",
1115                         unit);
1116                 ret = -ENXIO;
1117                 goto bail;
1118         }
1119
1120         spin_lock_irqsave(&dd->uctxt_lock, flags);
1121         if (dd->rcd)
1122                 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1123                         if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1124                                 continue;
1125                         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1126                         ret = -EBUSY;
1127                         goto bail;
1128                 }
1129         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1130
1131         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1132                 ppd = dd->pport + pidx;
1133                 if (atomic_read(&ppd->led_override_timer_active)) {
1134                         /* Need to stop LED timer, _then_ shut off LEDs */
1135                         del_timer_sync(&ppd->led_override_timer);
1136                         atomic_set(&ppd->led_override_timer_active, 0);
1137                 }
1138
1139                 /* Shut off LEDs after we are sure timer is not running */
1140                 ppd->led_override = LED_OVER_BOTH_OFF;
1141         }
1142         if (dd->flags & HFI1_HAS_SEND_DMA)
1143                 sdma_exit(dd);
1144
1145         hfi1_reset_cpu_counters(dd);
1146
1147         ret = hfi1_init(dd, 1);
1148
1149         if (ret)
1150                 dd_dev_err(dd,
1151                         "Reinitialize unit %u after reset failed with %d\n",
1152                         unit, ret);
1153         else
1154                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1155                         unit);
1156
1157 bail:
1158         return ret;
1159 }
1160
1161 void handle_eflags(struct hfi1_packet *packet)
1162 {
1163         struct hfi1_ctxtdata *rcd = packet->rcd;
1164         u32 rte = rhf_rcv_type_err(packet->rhf);
1165
1166         dd_dev_err(rcd->dd,
1167                 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1168                 rcd->ctxt, packet->rhf,
1169                 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1170                 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1171                 packet->rhf & RHF_DC_ERR ? "dc " : "",
1172                 packet->rhf & RHF_TID_ERR ? "tid " : "",
1173                 packet->rhf & RHF_LEN_ERR ? "len " : "",
1174                 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1175                 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1176                 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1177                 rte);
1178
1179         rcv_hdrerr(rcd, rcd->ppd, packet);
1180 }
1181
1182 /*
1183  * The following functions are called by the interrupt handler. They are type
1184  * specific handlers for each packet type.
1185  */
1186 int process_receive_ib(struct hfi1_packet *packet)
1187 {
1188         trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1189                           packet->rcd->ctxt,
1190                           rhf_err_flags(packet->rhf),
1191                           RHF_RCV_TYPE_IB,
1192                           packet->hlen,
1193                           packet->tlen,
1194                           packet->updegr,
1195                           rhf_egr_index(packet->rhf));
1196
1197         if (unlikely(rhf_err_flags(packet->rhf))) {
1198                 handle_eflags(packet);
1199                 return RHF_RCV_CONTINUE;
1200         }
1201
1202         hfi1_ib_rcv(packet);
1203         return RHF_RCV_CONTINUE;
1204 }
1205
1206 int process_receive_bypass(struct hfi1_packet *packet)
1207 {
1208         if (unlikely(rhf_err_flags(packet->rhf)))
1209                 handle_eflags(packet);
1210
1211         dd_dev_err(packet->rcd->dd,
1212            "Bypass packets are not supported in normal operation. Dropping\n");
1213         return RHF_RCV_CONTINUE;
1214 }
1215
1216 int process_receive_error(struct hfi1_packet *packet)
1217 {
1218         handle_eflags(packet);
1219
1220         if (unlikely(rhf_err_flags(packet->rhf)))
1221                 dd_dev_err(packet->rcd->dd,
1222                            "Unhandled error packet received. Dropping.\n");
1223
1224         return RHF_RCV_CONTINUE;
1225 }
1226
1227 int kdeth_process_expected(struct hfi1_packet *packet)
1228 {
1229         if (unlikely(rhf_err_flags(packet->rhf)))
1230                 handle_eflags(packet);
1231
1232         dd_dev_err(packet->rcd->dd,
1233                    "Unhandled expected packet received. Dropping.\n");
1234         return RHF_RCV_CONTINUE;
1235 }
1236
1237 int kdeth_process_eager(struct hfi1_packet *packet)
1238 {
1239         if (unlikely(rhf_err_flags(packet->rhf)))
1240                 handle_eflags(packet);
1241
1242         dd_dev_err(packet->rcd->dd,
1243                    "Unhandled eager packet received. Dropping.\n");
1244         return RHF_RCV_CONTINUE;
1245 }
1246
1247 int process_receive_invalid(struct hfi1_packet *packet)
1248 {
1249         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1250                 rhf_rcv_type(packet->rhf));
1251         return RHF_RCV_CONTINUE;
1252 }