Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / media / lirc / lirc_serial.c
1 /*
2  * lirc_serial.c
3  *
4  * lirc_serial - Device driver that records pulse- and pause-lengths
5  *             (space-lengths) between DDCD event on a serial port.
6  *
7  * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8  * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9  * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10  * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11  * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 /*
29  * Steve's changes to improve transmission fidelity:
30  *   - for systems with the rdtsc instruction and the clock counter, a
31  *     send_pule that times the pulses directly using the counter.
32  *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33  *     not needed. Measurement shows very stable waveform, even where
34  *     PCI activity slows the access to the UART, which trips up other
35  *     versions.
36  *   - For other system, non-integer-microsecond pulse/space lengths,
37  *     done using fixed point binary. So, much more accurate carrier
38  *     frequency.
39  *   - fine tuned transmitter latency, taking advantage of fractional
40  *     microseconds in previous change
41  *   - Fixed bug in the way transmitter latency was accounted for by
42  *     tuning the pulse lengths down - the send_pulse routine ignored
43  *     this overhead as it timed the overall pulse length - so the
44  *     pulse frequency was right but overall pulse length was too
45  *     long. Fixed by accounting for latency on each pulse/space
46  *     iteration.
47  *
48  * Steve Davies <steve@daviesfam.org>  July 2001
49  */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/module.h>
54 #include <linux/errno.h>
55 #include <linux/signal.h>
56 #include <linux/sched.h>
57 #include <linux/fs.h>
58 #include <linux/interrupt.h>
59 #include <linux/ioport.h>
60 #include <linux/kernel.h>
61 #include <linux/serial_reg.h>
62 #include <linux/time.h>
63 #include <linux/string.h>
64 #include <linux/types.h>
65 #include <linux/wait.h>
66 #include <linux/mm.h>
67 #include <linux/delay.h>
68 #include <linux/poll.h>
69 #include <linux/platform_device.h>
70 #include <linux/gpio.h>
71 #include <linux/io.h>
72 #include <linux/irq.h>
73 #include <linux/fcntl.h>
74 #include <linux/spinlock.h>
75
76 /* From Intel IXP42X Developer's Manual (#252480-005): */
77 /* ftp://download.intel.com/design/network/manuals/25248005.pdf */
78 #define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
79 #define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
80
81 #include <media/lirc.h>
82 #include <media/lirc_dev.h>
83
84 #define LIRC_DRIVER_NAME "lirc_serial"
85
86 struct lirc_serial {
87         int signal_pin;
88         int signal_pin_change;
89         u8 on;
90         u8 off;
91         long (*send_pulse)(unsigned long length);
92         void (*send_space)(long length);
93         int features;
94         spinlock_t lock;
95 };
96
97 #define LIRC_HOMEBREW           0
98 #define LIRC_IRDEO              1
99 #define LIRC_IRDEO_REMOTE       2
100 #define LIRC_ANIMAX             3
101 #define LIRC_IGOR               4
102 #define LIRC_NSLU2              5
103
104 /*** module parameters ***/
105 static int type;
106 static int io;
107 static int irq;
108 static bool iommap;
109 static int ioshift;
110 static bool softcarrier = true;
111 static bool share_irq;
112 static bool debug;
113 static int sense = -1;  /* -1 = auto, 0 = active high, 1 = active low */
114 static bool txsense;    /* 0 = active high, 1 = active low */
115
116 #define dprintk(fmt, args...)                                   \
117         do {                                                    \
118                 if (debug)                                      \
119                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
120                                fmt, ## args);                   \
121         } while (0)
122
123 /* forward declarations */
124 static long send_pulse_irdeo(unsigned long length);
125 static long send_pulse_homebrew(unsigned long length);
126 static void send_space_irdeo(long length);
127 static void send_space_homebrew(long length);
128
129 static struct lirc_serial hardware[] = {
130         [LIRC_HOMEBREW] = {
131                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_HOMEBREW].lock),
132                 .signal_pin        = UART_MSR_DCD,
133                 .signal_pin_change = UART_MSR_DDCD,
134                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
135                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
136                 .send_pulse = send_pulse_homebrew,
137                 .send_space = send_space_homebrew,
138 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
139                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
140                                 LIRC_CAN_SET_SEND_CARRIER |
141                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
142 #else
143                 .features    = LIRC_CAN_REC_MODE2
144 #endif
145         },
146
147         [LIRC_IRDEO] = {
148                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO].lock),
149                 .signal_pin        = UART_MSR_DSR,
150                 .signal_pin_change = UART_MSR_DDSR,
151                 .on  = UART_MCR_OUT2,
152                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
153                 .send_pulse  = send_pulse_irdeo,
154                 .send_space  = send_space_irdeo,
155                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
156                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
157         },
158
159         [LIRC_IRDEO_REMOTE] = {
160                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO_REMOTE].lock),
161                 .signal_pin        = UART_MSR_DSR,
162                 .signal_pin_change = UART_MSR_DDSR,
163                 .on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
164                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
165                 .send_pulse  = send_pulse_irdeo,
166                 .send_space  = send_space_irdeo,
167                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
168                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
169         },
170
171         [LIRC_ANIMAX] = {
172                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_ANIMAX].lock),
173                 .signal_pin        = UART_MSR_DCD,
174                 .signal_pin_change = UART_MSR_DDCD,
175                 .on  = 0,
176                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
177                 .send_pulse = NULL,
178                 .send_space = NULL,
179                 .features   = LIRC_CAN_REC_MODE2
180         },
181
182         [LIRC_IGOR] = {
183                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IGOR].lock),
184                 .signal_pin        = UART_MSR_DSR,
185                 .signal_pin_change = UART_MSR_DDSR,
186                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
187                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
188                 .send_pulse = send_pulse_homebrew,
189                 .send_space = send_space_homebrew,
190 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
191                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
192                                 LIRC_CAN_SET_SEND_CARRIER |
193                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
194 #else
195                 .features    = LIRC_CAN_REC_MODE2
196 #endif
197         },
198 };
199
200 #define RS_ISR_PASS_LIMIT 256
201
202 /*
203  * A long pulse code from a remote might take up to 300 bytes.  The
204  * daemon should read the bytes as soon as they are generated, so take
205  * the number of keys you think you can push before the daemon runs
206  * and multiply by 300.  The driver will warn you if you overrun this
207  * buffer.  If you have a slow computer or non-busmastering IDE disks,
208  * maybe you will need to increase this.
209  */
210
211 /* This MUST be a power of two!  It has to be larger than 1 as well. */
212
213 #define RBUF_LEN 256
214
215 static struct timeval lasttv = {0, 0};
216
217 static struct lirc_buffer rbuf;
218
219 static unsigned int freq = 38000;
220 static unsigned int duty_cycle = 50;
221
222 /* Initialized in init_timing_params() */
223 static unsigned long period;
224 static unsigned long pulse_width;
225 static unsigned long space_width;
226
227 #if defined(__i386__)
228 /*
229  * From:
230  * Linux I/O port programming mini-HOWTO
231  * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
232  * v, 28 December 1997
233  *
234  * [...]
235  * Actually, a port I/O instruction on most ports in the 0-0x3ff range
236  * takes almost exactly 1 microsecond, so if you're, for example, using
237  * the parallel port directly, just do additional inb()s from that port
238  * to delay.
239  * [...]
240  */
241 /* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
242  * comment above plus trimming to match actual measured frequency.
243  * This will be sensitive to cpu speed, though hopefully most of the 1.5us
244  * is spent in the uart access.  Still - for reference test machine was a
245  * 1.13GHz Athlon system - Steve
246  */
247
248 /*
249  * changed from 400 to 450 as this works better on slower machines;
250  * faster machines will use the rdtsc code anyway
251  */
252 #define LIRC_SERIAL_TRANSMITTER_LATENCY 450
253
254 #else
255
256 /* does anybody have information on other platforms ? */
257 /* 256 = 1<<8 */
258 #define LIRC_SERIAL_TRANSMITTER_LATENCY 256
259
260 #endif  /* __i386__ */
261 /*
262  * FIXME: should we be using hrtimers instead of this
263  * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
264  */
265
266 /* fetch serial input packet (1 byte) from register offset */
267 static u8 sinp(int offset)
268 {
269         if (iommap)
270                 /* the register is memory-mapped */
271                 offset <<= ioshift;
272
273         return inb(io + offset);
274 }
275
276 /* write serial output packet (1 byte) of value to register offset */
277 static void soutp(int offset, u8 value)
278 {
279         if (iommap)
280                 /* the register is memory-mapped */
281                 offset <<= ioshift;
282
283         outb(value, io + offset);
284 }
285
286 static void on(void)
287 {
288         if (txsense)
289                 soutp(UART_MCR, hardware[type].off);
290         else
291                 soutp(UART_MCR, hardware[type].on);
292 }
293
294 static void off(void)
295 {
296         if (txsense)
297                 soutp(UART_MCR, hardware[type].on);
298         else
299                 soutp(UART_MCR, hardware[type].off);
300 }
301
302 #ifndef MAX_UDELAY_MS
303 #define MAX_UDELAY_US 5000
304 #else
305 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
306 #endif
307
308 static void safe_udelay(unsigned long usecs)
309 {
310         while (usecs > MAX_UDELAY_US) {
311                 udelay(MAX_UDELAY_US);
312                 usecs -= MAX_UDELAY_US;
313         }
314         udelay(usecs);
315 }
316
317 #ifdef USE_RDTSC
318 /*
319  * This is an overflow/precision juggle, complicated in that we can't
320  * do long long divide in the kernel
321  */
322
323 /*
324  * When we use the rdtsc instruction to measure clocks, we keep the
325  * pulse and space widths as clock cycles.  As this is CPU speed
326  * dependent, the widths must be calculated in init_port and ioctl
327  * time
328  */
329
330 /* So send_pulse can quickly convert microseconds to clocks */
331 static unsigned long conv_us_to_clocks;
332
333 static int init_timing_params(unsigned int new_duty_cycle,
334                 unsigned int new_freq)
335 {
336         __u64 loops_per_sec, work;
337
338         duty_cycle = new_duty_cycle;
339         freq = new_freq;
340
341         loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
342         loops_per_sec *= HZ;
343
344         /* How many clocks in a microsecond?, avoiding long long divide */
345         work = loops_per_sec;
346         work *= 4295;  /* 4295 = 2^32 / 1e6 */
347         conv_us_to_clocks = work >> 32;
348
349         /*
350          * Carrier period in clocks, approach good up to 32GHz clock,
351          * gets carrier frequency within 8Hz
352          */
353         period = loops_per_sec >> 3;
354         period /= (freq >> 3);
355
356         /* Derive pulse and space from the period */
357         pulse_width = period * duty_cycle / 100;
358         space_width = period - pulse_width;
359         dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
360                 "clk/jiffy=%ld, pulse=%ld, space=%ld, "
361                 "conv_us_to_clocks=%ld\n",
362                 freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
363                 pulse_width, space_width, conv_us_to_clocks);
364         return 0;
365 }
366 #else /* ! USE_RDTSC */
367 static int init_timing_params(unsigned int new_duty_cycle,
368                 unsigned int new_freq)
369 {
370 /*
371  * period, pulse/space width are kept with 8 binary places -
372  * IE multiplied by 256.
373  */
374         if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
375             LIRC_SERIAL_TRANSMITTER_LATENCY)
376                 return -EINVAL;
377         if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
378             LIRC_SERIAL_TRANSMITTER_LATENCY)
379                 return -EINVAL;
380         duty_cycle = new_duty_cycle;
381         freq = new_freq;
382         period = 256 * 1000000L / freq;
383         pulse_width = period * duty_cycle / 100;
384         space_width = period - pulse_width;
385         dprintk("in init_timing_params, freq=%d pulse=%ld, space=%ld\n",
386                 freq, pulse_width, space_width);
387         return 0;
388 }
389 #endif /* USE_RDTSC */
390
391
392 /* return value: space length delta */
393
394 static long send_pulse_irdeo(unsigned long length)
395 {
396         long rawbits, ret;
397         int i;
398         unsigned char output;
399         unsigned char chunk, shifted;
400
401         /* how many bits have to be sent ? */
402         rawbits = length * 1152 / 10000;
403         if (duty_cycle > 50)
404                 chunk = 3;
405         else
406                 chunk = 1;
407         for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
408                 shifted = chunk << (i * 3);
409                 shifted >>= 1;
410                 output &= (~shifted);
411                 i++;
412                 if (i == 3) {
413                         soutp(UART_TX, output);
414                         while (!(sinp(UART_LSR) & UART_LSR_THRE))
415                                 ;
416                         output = 0x7f;
417                         i = 0;
418                 }
419         }
420         if (i != 0) {
421                 soutp(UART_TX, output);
422                 while (!(sinp(UART_LSR) & UART_LSR_TEMT))
423                         ;
424         }
425
426         if (i == 0)
427                 ret = (-rawbits) * 10000 / 1152;
428         else
429                 ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
430
431         return ret;
432 }
433
434 #ifdef USE_RDTSC
435 /* Version that uses Pentium rdtsc instruction to measure clocks */
436
437 /*
438  * This version does sub-microsecond timing using rdtsc instruction,
439  * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
440  * Implicitly i586 architecture...  - Steve
441  */
442
443 static long send_pulse_homebrew_softcarrier(unsigned long length)
444 {
445         int flag;
446         unsigned long target, start, now;
447
448         /* Get going quick as we can */
449         rdtscl(start);
450         on();
451         /* Convert length from microseconds to clocks */
452         length *= conv_us_to_clocks;
453         /* And loop till time is up - flipping at right intervals */
454         now = start;
455         target = pulse_width;
456         flag = 1;
457         /*
458          * FIXME: This looks like a hard busy wait, without even an occasional,
459          * polite, cpu_relax() call.  There's got to be a better way?
460          *
461          * The i2c code has the result of a lot of bit-banging work, I wonder if
462          * there's something there which could be helpful here.
463          */
464         while ((now - start) < length) {
465                 /* Delay till flip time */
466                 do {
467                         rdtscl(now);
468                 } while ((now - start) < target);
469
470                 /* flip */
471                 if (flag) {
472                         rdtscl(now);
473                         off();
474                         target += space_width;
475                 } else {
476                         rdtscl(now); on();
477                         target += pulse_width;
478                 }
479                 flag = !flag;
480         }
481         rdtscl(now);
482         return ((now - start) - length) / conv_us_to_clocks;
483 }
484 #else /* ! USE_RDTSC */
485 /* Version using udelay() */
486
487 /*
488  * here we use fixed point arithmetic, with 8
489  * fractional bits.  that gets us within 0.1% or so of the right average
490  * frequency, albeit with some jitter in pulse length - Steve
491  */
492
493 /* To match 8 fractional bits used for pulse/space length */
494
495 static long send_pulse_homebrew_softcarrier(unsigned long length)
496 {
497         int flag;
498         unsigned long actual, target, d;
499
500         length <<= 8;
501
502         actual = 0; target = 0; flag = 0;
503         while (actual < length) {
504                 if (flag) {
505                         off();
506                         target += space_width;
507                 } else {
508                         on();
509                         target += pulse_width;
510                 }
511                 d = (target - actual -
512                      LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
513                 /*
514                  * Note - we've checked in ioctl that the pulse/space
515                  * widths are big enough so that d is > 0
516                  */
517                 udelay(d);
518                 actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
519                 flag = !flag;
520         }
521         return (actual-length) >> 8;
522 }
523 #endif /* USE_RDTSC */
524
525 static long send_pulse_homebrew(unsigned long length)
526 {
527         if (length <= 0)
528                 return 0;
529
530         if (softcarrier)
531                 return send_pulse_homebrew_softcarrier(length);
532
533         on();
534         safe_udelay(length);
535         return 0;
536 }
537
538 static void send_space_irdeo(long length)
539 {
540         if (length <= 0)
541                 return;
542
543         safe_udelay(length);
544 }
545
546 static void send_space_homebrew(long length)
547 {
548         off();
549         if (length <= 0)
550                 return;
551         safe_udelay(length);
552 }
553
554 static void rbwrite(int l)
555 {
556         if (lirc_buffer_full(&rbuf)) {
557                 /* no new signals will be accepted */
558                 dprintk("Buffer overrun\n");
559                 return;
560         }
561         lirc_buffer_write(&rbuf, (void *)&l);
562 }
563
564 static void frbwrite(int l)
565 {
566         /* simple noise filter */
567         static int pulse, space;
568         static unsigned int ptr;
569
570         if (ptr > 0 && (l & PULSE_BIT)) {
571                 pulse += l & PULSE_MASK;
572                 if (pulse > 250) {
573                         rbwrite(space);
574                         rbwrite(pulse | PULSE_BIT);
575                         ptr = 0;
576                         pulse = 0;
577                 }
578                 return;
579         }
580         if (!(l & PULSE_BIT)) {
581                 if (ptr == 0) {
582                         if (l > 20000) {
583                                 space = l;
584                                 ptr++;
585                                 return;
586                         }
587                 } else {
588                         if (l > 20000) {
589                                 space += pulse;
590                                 if (space > PULSE_MASK)
591                                         space = PULSE_MASK;
592                                 space += l;
593                                 if (space > PULSE_MASK)
594                                         space = PULSE_MASK;
595                                 pulse = 0;
596                                 return;
597                         }
598                         rbwrite(space);
599                         rbwrite(pulse | PULSE_BIT);
600                         ptr = 0;
601                         pulse = 0;
602                 }
603         }
604         rbwrite(l);
605 }
606
607 static irqreturn_t lirc_irq_handler(int i, void *blah)
608 {
609         struct timeval tv;
610         int counter, dcd;
611         u8 status;
612         long deltv;
613         int data;
614         static int last_dcd = -1;
615
616         if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
617                 /* not our interrupt */
618                 return IRQ_NONE;
619         }
620
621         counter = 0;
622         do {
623                 counter++;
624                 status = sinp(UART_MSR);
625                 if (counter > RS_ISR_PASS_LIMIT) {
626                         pr_warn("AIEEEE: We're caught!\n");
627                         break;
628                 }
629                 if ((status & hardware[type].signal_pin_change)
630                     && sense != -1) {
631                         /* get current time */
632                         do_gettimeofday(&tv);
633
634                         /* New mode, written by Trent Piepho
635                            <xyzzy@u.washington.edu>. */
636
637                         /*
638                          * The old format was not very portable.
639                          * We now use an int to pass pulses
640                          * and spaces to user space.
641                          *
642                          * If PULSE_BIT is set a pulse has been
643                          * received, otherwise a space has been
644                          * received.  The driver needs to know if your
645                          * receiver is active high or active low, or
646                          * the space/pulse sense could be
647                          * inverted. The bits denoted by PULSE_MASK are
648                          * the length in microseconds. Lengths greater
649                          * than or equal to 16 seconds are clamped to
650                          * PULSE_MASK.  All other bits are unused.
651                          * This is a much simpler interface for user
652                          * programs, as well as eliminating "out of
653                          * phase" errors with space/pulse
654                          * autodetection.
655                          */
656
657                         /* calc time since last interrupt in microseconds */
658                         dcd = (status & hardware[type].signal_pin) ? 1 : 0;
659
660                         if (dcd == last_dcd) {
661                                 pr_warn("ignoring spike: %d %d %lx %lx %lx %lx\n",
662                                         dcd, sense,
663                                         tv.tv_sec, lasttv.tv_sec,
664                                         (unsigned long)tv.tv_usec,
665                                         (unsigned long)lasttv.tv_usec);
666                                 continue;
667                         }
668
669                         deltv = tv.tv_sec-lasttv.tv_sec;
670                         if (tv.tv_sec < lasttv.tv_sec ||
671                             (tv.tv_sec == lasttv.tv_sec &&
672                              tv.tv_usec < lasttv.tv_usec)) {
673                                 pr_warn("AIEEEE: your clock just jumped backwards\n");
674                                 pr_warn("%d %d %lx %lx %lx %lx\n",
675                                         dcd, sense,
676                                         tv.tv_sec, lasttv.tv_sec,
677                                         (unsigned long)tv.tv_usec,
678                                         (unsigned long)lasttv.tv_usec);
679                                 data = PULSE_MASK;
680                         } else if (deltv > 15) {
681                                 data = PULSE_MASK; /* really long time */
682                                 if (!(dcd^sense)) {
683                                         /* sanity check */
684                                         pr_warn("AIEEEE: %d %d %lx %lx %lx %lx\n",
685                                                 dcd, sense,
686                                                 tv.tv_sec, lasttv.tv_sec,
687                                                 (unsigned long)tv.tv_usec,
688                                                 (unsigned long)lasttv.tv_usec);
689                                         /*
690                                          * detecting pulse while this
691                                          * MUST be a space!
692                                          */
693                                         sense = sense ? 0 : 1;
694                                 }
695                         } else
696                                 data = (int) (deltv*1000000 +
697                                                tv.tv_usec -
698                                                lasttv.tv_usec);
699                         frbwrite(dcd^sense ? data : (data|PULSE_BIT));
700                         lasttv = tv;
701                         last_dcd = dcd;
702                         wake_up_interruptible(&rbuf.wait_poll);
703                 }
704         } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
705         return IRQ_HANDLED;
706 }
707
708
709 static int hardware_init_port(void)
710 {
711         u8 scratch, scratch2, scratch3;
712
713         /*
714          * This is a simple port existence test, borrowed from the autoconfig
715          * function in drivers/serial/8250.c
716          */
717         scratch = sinp(UART_IER);
718         soutp(UART_IER, 0);
719 #ifdef __i386__
720         outb(0xff, 0x080);
721 #endif
722         scratch2 = sinp(UART_IER) & 0x0f;
723         soutp(UART_IER, 0x0f);
724 #ifdef __i386__
725         outb(0x00, 0x080);
726 #endif
727         scratch3 = sinp(UART_IER) & 0x0f;
728         soutp(UART_IER, scratch);
729         if (scratch2 != 0 || scratch3 != 0x0f) {
730                 /* we fail, there's nothing here */
731                 pr_err("port existence test failed, cannot continue\n");
732                 return -ENODEV;
733         }
734
735
736
737         /* Set DLAB 0. */
738         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
739
740         /* First of all, disable all interrupts */
741         soutp(UART_IER, sinp(UART_IER) &
742               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
743
744         /* Clear registers. */
745         sinp(UART_LSR);
746         sinp(UART_RX);
747         sinp(UART_IIR);
748         sinp(UART_MSR);
749
750         /* Set line for power source */
751         off();
752
753         /* Clear registers again to be sure. */
754         sinp(UART_LSR);
755         sinp(UART_RX);
756         sinp(UART_IIR);
757         sinp(UART_MSR);
758
759         switch (type) {
760         case LIRC_IRDEO:
761         case LIRC_IRDEO_REMOTE:
762                 /* setup port to 7N1 @ 115200 Baud */
763                 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
764
765                 /* Set DLAB 1. */
766                 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
767                 /* Set divisor to 1 => 115200 Baud */
768                 soutp(UART_DLM, 0);
769                 soutp(UART_DLL, 1);
770                 /* Set DLAB 0 +  7N1 */
771                 soutp(UART_LCR, UART_LCR_WLEN7);
772                 /* THR interrupt already disabled at this point */
773                 break;
774         default:
775                 break;
776         }
777
778         return 0;
779 }
780
781 static int lirc_serial_probe(struct platform_device *dev)
782 {
783         int i, nlow, nhigh, result;
784
785         result = devm_request_irq(&dev->dev, irq, lirc_irq_handler,
786                              (share_irq ? IRQF_SHARED : 0),
787                              LIRC_DRIVER_NAME, &hardware);
788         if (result < 0) {
789                 if (result == -EBUSY)
790                         dev_err(&dev->dev, "IRQ %d busy\n", irq);
791                 else if (result == -EINVAL)
792                         dev_err(&dev->dev, "Bad irq number or handler\n");
793                 return result;
794         }
795
796         /* Reserve io region. */
797         /*
798          * Future MMAP-Developers: Attention!
799          * For memory mapped I/O you *might* need to use ioremap() first,
800          * for the NSLU2 it's done in boot code.
801          */
802         if (((iommap)
803              && (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift,
804                                          LIRC_DRIVER_NAME) == NULL))
805            || ((!iommap)
806                && (devm_request_region(&dev->dev, io, 8,
807                                        LIRC_DRIVER_NAME) == NULL))) {
808                 dev_err(&dev->dev, "port %04x already in use\n", io);
809                 dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n");
810                 dev_warn(&dev->dev,
811                          "or compile the serial port driver as module and\n");
812                 dev_warn(&dev->dev, "make sure this module is loaded first\n");
813                 return -EBUSY;
814         }
815
816         result = hardware_init_port();
817         if (result < 0)
818                 return result;
819
820         /* Initialize pulse/space widths */
821         init_timing_params(duty_cycle, freq);
822
823         /* If pin is high, then this must be an active low receiver. */
824         if (sense == -1) {
825                 /* wait 1/2 sec for the power supply */
826                 msleep(500);
827
828                 /*
829                  * probe 9 times every 0.04s, collect "votes" for
830                  * active high/low
831                  */
832                 nlow = 0;
833                 nhigh = 0;
834                 for (i = 0; i < 9; i++) {
835                         if (sinp(UART_MSR) & hardware[type].signal_pin)
836                                 nlow++;
837                         else
838                                 nhigh++;
839                         msleep(40);
840                 }
841                 sense = nlow >= nhigh ? 1 : 0;
842                 dev_info(&dev->dev, "auto-detected active %s receiver\n",
843                          sense ? "low" : "high");
844         } else
845                 dev_info(&dev->dev, "Manually using active %s receiver\n",
846                          sense ? "low" : "high");
847
848         dprintk("Interrupt %d, port %04x obtained\n", irq, io);
849         return 0;
850 }
851
852 static int set_use_inc(void *data)
853 {
854         unsigned long flags;
855
856         /* initialize timestamp */
857         do_gettimeofday(&lasttv);
858
859         spin_lock_irqsave(&hardware[type].lock, flags);
860
861         /* Set DLAB 0. */
862         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
863
864         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
865
866         spin_unlock_irqrestore(&hardware[type].lock, flags);
867
868         return 0;
869 }
870
871 static void set_use_dec(void *data)
872 {       unsigned long flags;
873
874         spin_lock_irqsave(&hardware[type].lock, flags);
875
876         /* Set DLAB 0. */
877         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
878
879         /* First of all, disable all interrupts */
880         soutp(UART_IER, sinp(UART_IER) &
881               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
882         spin_unlock_irqrestore(&hardware[type].lock, flags);
883 }
884
885 static ssize_t lirc_write(struct file *file, const char __user *buf,
886                          size_t n, loff_t *ppos)
887 {
888         int i, count;
889         unsigned long flags;
890         long delta = 0;
891         int *wbuf;
892
893         if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
894                 return -EPERM;
895
896         count = n / sizeof(int);
897         if (n % sizeof(int) || count % 2 == 0)
898                 return -EINVAL;
899         wbuf = memdup_user(buf, n);
900         if (IS_ERR(wbuf))
901                 return PTR_ERR(wbuf);
902         spin_lock_irqsave(&hardware[type].lock, flags);
903         if (type == LIRC_IRDEO) {
904                 /* DTR, RTS down */
905                 on();
906         }
907         for (i = 0; i < count; i++) {
908                 if (i%2)
909                         hardware[type].send_space(wbuf[i] - delta);
910                 else
911                         delta = hardware[type].send_pulse(wbuf[i]);
912         }
913         off();
914         spin_unlock_irqrestore(&hardware[type].lock, flags);
915         kfree(wbuf);
916         return n;
917 }
918
919 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
920 {
921         int result;
922         u32 __user *uptr = (u32 __user *)arg;
923         u32 value;
924
925         switch (cmd) {
926         case LIRC_GET_SEND_MODE:
927                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
928                         return -ENOIOCTLCMD;
929
930                 result = put_user(LIRC_SEND2MODE
931                                   (hardware[type].features&LIRC_CAN_SEND_MASK),
932                                   uptr);
933                 if (result)
934                         return result;
935                 break;
936
937         case LIRC_SET_SEND_MODE:
938                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
939                         return -ENOIOCTLCMD;
940
941                 result = get_user(value, uptr);
942                 if (result)
943                         return result;
944                 /* only LIRC_MODE_PULSE supported */
945                 if (value != LIRC_MODE_PULSE)
946                         return -EINVAL;
947                 break;
948
949         case LIRC_GET_LENGTH:
950                 return -ENOIOCTLCMD;
951
952         case LIRC_SET_SEND_DUTY_CYCLE:
953                 dprintk("SET_SEND_DUTY_CYCLE\n");
954                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
955                         return -ENOIOCTLCMD;
956
957                 result = get_user(value, uptr);
958                 if (result)
959                         return result;
960                 if (value <= 0 || value > 100)
961                         return -EINVAL;
962                 return init_timing_params(value, freq);
963
964         case LIRC_SET_SEND_CARRIER:
965                 dprintk("SET_SEND_CARRIER\n");
966                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
967                         return -ENOIOCTLCMD;
968
969                 result = get_user(value, uptr);
970                 if (result)
971                         return result;
972                 if (value > 500000 || value < 20000)
973                         return -EINVAL;
974                 return init_timing_params(duty_cycle, value);
975
976         default:
977                 return lirc_dev_fop_ioctl(filep, cmd, arg);
978         }
979         return 0;
980 }
981
982 static const struct file_operations lirc_fops = {
983         .owner          = THIS_MODULE,
984         .write          = lirc_write,
985         .unlocked_ioctl = lirc_ioctl,
986 #ifdef CONFIG_COMPAT
987         .compat_ioctl   = lirc_ioctl,
988 #endif
989         .read           = lirc_dev_fop_read,
990         .poll           = lirc_dev_fop_poll,
991         .open           = lirc_dev_fop_open,
992         .release        = lirc_dev_fop_close,
993         .llseek         = no_llseek,
994 };
995
996 static struct lirc_driver driver = {
997         .name           = LIRC_DRIVER_NAME,
998         .minor          = -1,
999         .code_length    = 1,
1000         .sample_rate    = 0,
1001         .data           = NULL,
1002         .add_to_buf     = NULL,
1003         .rbuf           = &rbuf,
1004         .set_use_inc    = set_use_inc,
1005         .set_use_dec    = set_use_dec,
1006         .fops           = &lirc_fops,
1007         .dev            = NULL,
1008         .owner          = THIS_MODULE,
1009 };
1010
1011 static struct platform_device *lirc_serial_dev;
1012
1013 static int lirc_serial_suspend(struct platform_device *dev,
1014                                pm_message_t state)
1015 {
1016         /* Set DLAB 0. */
1017         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1018
1019         /* Disable all interrupts */
1020         soutp(UART_IER, sinp(UART_IER) &
1021               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1022
1023         /* Clear registers. */
1024         sinp(UART_LSR);
1025         sinp(UART_RX);
1026         sinp(UART_IIR);
1027         sinp(UART_MSR);
1028
1029         return 0;
1030 }
1031
1032 /* twisty maze... need a forward-declaration here... */
1033 static void lirc_serial_exit(void);
1034
1035 static int lirc_serial_resume(struct platform_device *dev)
1036 {
1037         unsigned long flags;
1038         int result;
1039
1040         result = hardware_init_port();
1041         if (result < 0)
1042                 return result;
1043
1044         spin_lock_irqsave(&hardware[type].lock, flags);
1045         /* Enable Interrupt */
1046         do_gettimeofday(&lasttv);
1047         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1048         off();
1049
1050         lirc_buffer_clear(&rbuf);
1051
1052         spin_unlock_irqrestore(&hardware[type].lock, flags);
1053
1054         return 0;
1055 }
1056
1057 static struct platform_driver lirc_serial_driver = {
1058         .probe          = lirc_serial_probe,
1059         .suspend        = lirc_serial_suspend,
1060         .resume         = lirc_serial_resume,
1061         .driver         = {
1062                 .name   = "lirc_serial",
1063         },
1064 };
1065
1066 static int __init lirc_serial_init(void)
1067 {
1068         int result;
1069
1070         /* Init read buffer. */
1071         result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1072         if (result < 0)
1073                 return result;
1074
1075         result = platform_driver_register(&lirc_serial_driver);
1076         if (result) {
1077                 printk("lirc register returned %d\n", result);
1078                 goto exit_buffer_free;
1079         }
1080
1081         lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1082         if (!lirc_serial_dev) {
1083                 result = -ENOMEM;
1084                 goto exit_driver_unregister;
1085         }
1086
1087         result = platform_device_add(lirc_serial_dev);
1088         if (result)
1089                 goto exit_device_put;
1090
1091         return 0;
1092
1093 exit_device_put:
1094         platform_device_put(lirc_serial_dev);
1095 exit_driver_unregister:
1096         platform_driver_unregister(&lirc_serial_driver);
1097 exit_buffer_free:
1098         lirc_buffer_free(&rbuf);
1099         return result;
1100 }
1101
1102 static void lirc_serial_exit(void)
1103 {
1104         platform_device_unregister(lirc_serial_dev);
1105         platform_driver_unregister(&lirc_serial_driver);
1106         lirc_buffer_free(&rbuf);
1107 }
1108
1109 static int __init lirc_serial_init_module(void)
1110 {
1111         int result;
1112
1113         switch (type) {
1114         case LIRC_HOMEBREW:
1115         case LIRC_IRDEO:
1116         case LIRC_IRDEO_REMOTE:
1117         case LIRC_ANIMAX:
1118         case LIRC_IGOR:
1119                 /* if nothing specified, use ttyS0/com1 and irq 4 */
1120                 io = io ? io : 0x3f8;
1121                 irq = irq ? irq : 4;
1122                 break;
1123         default:
1124                 return -EINVAL;
1125         }
1126         if (!softcarrier) {
1127                 switch (type) {
1128                 case LIRC_HOMEBREW:
1129                 case LIRC_IGOR:
1130                         hardware[type].features &=
1131                                 ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1132                                   LIRC_CAN_SET_SEND_CARRIER);
1133                         break;
1134                 }
1135         }
1136
1137         /* make sure sense is either -1, 0, or 1 */
1138         if (sense != -1)
1139                 sense = !!sense;
1140
1141         result = lirc_serial_init();
1142         if (result)
1143                 return result;
1144
1145         driver.features = hardware[type].features;
1146         driver.dev = &lirc_serial_dev->dev;
1147         driver.minor = lirc_register_driver(&driver);
1148         if (driver.minor < 0) {
1149                 pr_err("register_chrdev failed!\n");
1150                 lirc_serial_exit();
1151                 return driver.minor;
1152         }
1153         return 0;
1154 }
1155
1156 static void __exit lirc_serial_exit_module(void)
1157 {
1158         lirc_unregister_driver(driver.minor);
1159         lirc_serial_exit();
1160         dprintk("cleaned up module\n");
1161 }
1162
1163
1164 module_init(lirc_serial_init_module);
1165 module_exit(lirc_serial_exit_module);
1166
1167 MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1168 MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1169               "Christoph Bartelmus, Andrei Tanas");
1170 MODULE_LICENSE("GPL");
1171
1172 module_param(type, int, S_IRUGO);
1173 MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1174                  " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1175                  " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1176
1177 module_param(io, int, S_IRUGO);
1178 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1179
1180 /* some architectures (e.g. intel xscale) have memory mapped registers */
1181 module_param(iommap, bool, S_IRUGO);
1182 MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1183                 " (0 = no memory mapped io)");
1184
1185 /*
1186  * some architectures (e.g. intel xscale) align the 8bit serial registers
1187  * on 32bit word boundaries.
1188  * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out()
1189  */
1190 module_param(ioshift, int, S_IRUGO);
1191 MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1192
1193 module_param(irq, int, S_IRUGO);
1194 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1195
1196 module_param(share_irq, bool, S_IRUGO);
1197 MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1198
1199 module_param(sense, int, S_IRUGO);
1200 MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1201                  " (0 = active high, 1 = active low )");
1202
1203 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1204 module_param(txsense, bool, S_IRUGO);
1205 MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1206                  " (0 = active high, 1 = active low )");
1207 #endif
1208
1209 module_param(softcarrier, bool, S_IRUGO);
1210 MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1211
1212 module_param(debug, bool, S_IRUGO | S_IWUSR);
1213 MODULE_PARM_DESC(debug, "Enable debugging messages");