Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / media / davinci_vpfe / dm365_ipipe_hw.c
1 /*
2  * Copyright (C) 2012 Texas Instruments Inc
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16  *
17  * Contributors:
18  *      Manjunath Hadli <manjunath.hadli@ti.com>
19  *      Prabhakar Lad <prabhakar.lad@ti.com>
20  */
21
22 #include "dm365_ipipe_hw.h"
23
24 #define IPIPE_MODE_CONTINUOUS           0
25 #define IPIPE_MODE_SINGLE_SHOT          1
26
27 static void ipipe_clock_enable(void __iomem *base_addr)
28 {
29         /* enable IPIPE MMR for register write access */
30         regw_ip(base_addr, IPIPE_GCK_MMR_DEFAULT, IPIPE_GCK_MMR);
31
32         /* enable the clock wb,cfa,dfc,d2f,pre modules */
33         regw_ip(base_addr, IPIPE_GCK_PIX_DEFAULT, IPIPE_GCK_PIX);
34 }
35
36 static void
37 rsz_set_common_params(void __iomem *rsz_base, struct resizer_params *params)
38 {
39         struct rsz_common_params *rsz_common = &params->rsz_common;
40         u32 val;
41
42         /* Set mode */
43         regw_rsz(rsz_base, params->oper_mode, RSZ_SRC_MODE);
44
45         /* data source selection  and bypass */
46         val = (rsz_common->passthrough << RSZ_BYPASS_SHIFT) |
47               rsz_common->source;
48         regw_rsz(rsz_base, val, RSZ_SRC_FMT0);
49
50         /* src image selection */
51         val = (rsz_common->raw_flip & 1) |
52               (rsz_common->src_img_fmt << RSZ_SRC_IMG_FMT_SHIFT) |
53               ((rsz_common->y_c & 1) << RSZ_SRC_Y_C_SEL_SHIFT);
54         regw_rsz(rsz_base, val, RSZ_SRC_FMT1);
55
56         regw_rsz(rsz_base, rsz_common->vps & IPIPE_RSZ_VPS_MASK, RSZ_SRC_VPS);
57         regw_rsz(rsz_base, rsz_common->hps & IPIPE_RSZ_HPS_MASK, RSZ_SRC_HPS);
58         regw_rsz(rsz_base, rsz_common->vsz & IPIPE_RSZ_VSZ_MASK, RSZ_SRC_VSZ);
59         regw_rsz(rsz_base, rsz_common->hsz & IPIPE_RSZ_HSZ_MASK, RSZ_SRC_HSZ);
60         regw_rsz(rsz_base, rsz_common->yuv_y_min, RSZ_YUV_Y_MIN);
61         regw_rsz(rsz_base, rsz_common->yuv_y_max, RSZ_YUV_Y_MAX);
62         regw_rsz(rsz_base, rsz_common->yuv_c_min, RSZ_YUV_C_MIN);
63         regw_rsz(rsz_base, rsz_common->yuv_c_max, RSZ_YUV_C_MAX);
64         /* chromatic position */
65         regw_rsz(rsz_base, rsz_common->out_chr_pos, RSZ_YUV_PHS);
66 }
67
68 static void
69 rsz_set_rsz_regs(void __iomem *rsz_base, unsigned int rsz_id,
70                  struct resizer_params *params)
71 {
72         struct resizer_scale_param *rsc_params;
73         struct rsz_ext_mem_param *ext_mem;
74         struct resizer_rgb *rgb;
75         u32 reg_base;
76         u32 val;
77
78         rsc_params = &params->rsz_rsc_param[rsz_id];
79         rgb = &params->rsz2rgb[rsz_id];
80         ext_mem = &params->ext_mem_param[rsz_id];
81
82         if (rsz_id == RSZ_A) {
83                 val = rsc_params->h_flip << RSZA_H_FLIP_SHIFT;
84                 val |= rsc_params->v_flip << RSZA_V_FLIP_SHIFT;
85                 reg_base = RSZ_EN_A;
86         } else {
87                 val = rsc_params->h_flip << RSZB_H_FLIP_SHIFT;
88                 val |= rsc_params->v_flip << RSZB_V_FLIP_SHIFT;
89                 reg_base = RSZ_EN_B;
90         }
91         /* update flip settings */
92         regw_rsz(rsz_base, val, RSZ_SEQ);
93
94         regw_rsz(rsz_base, params->oper_mode, reg_base + RSZ_MODE);
95
96         val = (rsc_params->cen << RSZ_CEN_SHIFT) | rsc_params->yen;
97         regw_rsz(rsz_base, val, reg_base + RSZ_420);
98
99         regw_rsz(rsz_base, rsc_params->i_vps & RSZ_VPS_MASK,
100                  reg_base + RSZ_I_VPS);
101         regw_rsz(rsz_base, rsc_params->i_hps & RSZ_HPS_MASK,
102                  reg_base + RSZ_I_HPS);
103         regw_rsz(rsz_base, rsc_params->o_vsz & RSZ_O_VSZ_MASK,
104                  reg_base + RSZ_O_VSZ);
105         regw_rsz(rsz_base, rsc_params->o_hsz & RSZ_O_HSZ_MASK,
106                  reg_base + RSZ_O_HSZ);
107         regw_rsz(rsz_base, rsc_params->v_phs_y & RSZ_V_PHS_MASK,
108                  reg_base + RSZ_V_PHS_Y);
109         regw_rsz(rsz_base, rsc_params->v_phs_c & RSZ_V_PHS_MASK,
110                  reg_base + RSZ_V_PHS_C);
111
112         /* keep this additional adjustment to zero for now */
113         regw_rsz(rsz_base, rsc_params->v_dif & RSZ_V_DIF_MASK,
114                  reg_base + RSZ_V_DIF);
115
116         val = (rsc_params->v_typ_y & 1) |
117               ((rsc_params->v_typ_c & 1) << RSZ_TYP_C_SHIFT);
118         regw_rsz(rsz_base, val, reg_base + RSZ_V_TYP);
119
120         val = (rsc_params->v_lpf_int_y & RSZ_LPF_INT_MASK) |
121               ((rsc_params->v_lpf_int_c & RSZ_LPF_INT_MASK) <<
122               RSZ_LPF_INT_C_SHIFT);
123         regw_rsz(rsz_base, val, reg_base + RSZ_V_LPF);
124
125         regw_rsz(rsz_base, rsc_params->h_phs &
126                 RSZ_H_PHS_MASK, reg_base + RSZ_H_PHS);
127
128         regw_rsz(rsz_base, 0, reg_base + RSZ_H_PHS_ADJ);
129         regw_rsz(rsz_base, rsc_params->h_dif &
130                 RSZ_H_DIF_MASK, reg_base + RSZ_H_DIF);
131
132         val = (rsc_params->h_typ_y & 1) |
133               ((rsc_params->h_typ_c & 1) << RSZ_TYP_C_SHIFT);
134         regw_rsz(rsz_base, val, reg_base + RSZ_H_TYP);
135
136         val = (rsc_params->h_lpf_int_y & RSZ_LPF_INT_MASK) |
137                  ((rsc_params->h_lpf_int_c & RSZ_LPF_INT_MASK) <<
138                  RSZ_LPF_INT_C_SHIFT);
139         regw_rsz(rsz_base, val, reg_base + RSZ_H_LPF);
140
141         regw_rsz(rsz_base, rsc_params->dscale_en & 1, reg_base + RSZ_DWN_EN);
142
143         val = (rsc_params->h_dscale_ave_sz & RSZ_DWN_SCALE_AV_SZ_MASK) |
144               ((rsc_params->v_dscale_ave_sz & RSZ_DWN_SCALE_AV_SZ_MASK) <<
145               RSZ_DWN_SCALE_AV_SZ_V_SHIFT);
146         regw_rsz(rsz_base, val, reg_base + RSZ_DWN_AV);
147
148         /* setting rgb conversion parameters */
149         regw_rsz(rsz_base, rgb->rgb_en, reg_base + RSZ_RGB_EN);
150
151         val = (rgb->rgb_typ << RSZ_RGB_TYP_SHIFT) |
152               (rgb->rgb_msk0 << RSZ_RGB_MSK0_SHIFT) |
153               (rgb->rgb_msk1 << RSZ_RGB_MSK1_SHIFT);
154         regw_rsz(rsz_base, val, reg_base + RSZ_RGB_TYP);
155
156         regw_rsz(rsz_base, rgb->rgb_alpha_val & RSZ_RGB_ALPHA_MASK,
157                 reg_base + RSZ_RGB_BLD);
158
159         /* setting external memory parameters */
160         regw_rsz(rsz_base, ext_mem->rsz_sdr_oft_y, reg_base + RSZ_SDR_Y_OFT);
161         regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_s_y,
162                  reg_base + RSZ_SDR_Y_PTR_S);
163         regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_e_y,
164                  reg_base + RSZ_SDR_Y_PTR_E);
165         regw_rsz(rsz_base, ext_mem->rsz_sdr_oft_c, reg_base + RSZ_SDR_C_OFT);
166         regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_s_c,
167                  reg_base + RSZ_SDR_C_PTR_S);
168         regw_rsz(rsz_base, (ext_mem->rsz_sdr_ptr_e_c >> 1),
169                  reg_base + RSZ_SDR_C_PTR_E);
170 }
171
172 /*set the registers of either RSZ0 or RSZ1 */
173 static void
174 ipipe_setup_resizer(void __iomem *rsz_base, struct resizer_params *params)
175 {
176         /* enable MMR gate to write to Resizer */
177         regw_rsz(rsz_base, 1, RSZ_GCK_MMR);
178
179         /* Enable resizer if it is not in bypass mode */
180         if (params->rsz_common.passthrough)
181                 regw_rsz(rsz_base, 0, RSZ_GCK_SDR);
182         else
183                 regw_rsz(rsz_base, 1, RSZ_GCK_SDR);
184
185         rsz_set_common_params(rsz_base, params);
186
187         regw_rsz(rsz_base, params->rsz_en[RSZ_A], RSZ_EN_A);
188
189         if (params->rsz_en[RSZ_A])
190                 /*setting rescale parameters */
191                 rsz_set_rsz_regs(rsz_base, RSZ_A, params);
192
193         regw_rsz(rsz_base, params->rsz_en[RSZ_B], RSZ_EN_B);
194
195         if (params->rsz_en[RSZ_B])
196                 rsz_set_rsz_regs(rsz_base, RSZ_B, params);
197 }
198
199 static u32 ipipe_get_color_pat(u32 pix)
200 {
201         switch (pix) {
202         case MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8:
203         case MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8:
204         case MEDIA_BUS_FMT_SGRBG12_1X12:
205                 return ipipe_sgrbg_pattern;
206
207         default:
208                 return ipipe_srggb_pattern;
209         }
210 }
211
212 static int ipipe_get_data_path(struct vpfe_ipipe_device *ipipe)
213 {
214         u32 temp_pix_fmt;
215
216         switch (ipipe->formats[IPIPE_PAD_SINK].code) {
217         case MEDIA_BUS_FMT_SBGGR8_1X8:
218         case MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8:
219         case MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8:
220         case MEDIA_BUS_FMT_SGRBG12_1X12:
221                 temp_pix_fmt = MEDIA_BUS_FMT_SGRBG12_1X12;
222                 break;
223
224         default:
225                 temp_pix_fmt = MEDIA_BUS_FMT_UYVY8_2X8;
226         }
227
228         if (temp_pix_fmt == MEDIA_BUS_FMT_SGRBG12_1X12) {
229                 if (ipipe->formats[IPIPE_PAD_SOURCE].code ==
230                         MEDIA_BUS_FMT_SGRBG12_1X12)
231                         return IPIPE_RAW2RAW;
232                 return IPIPE_RAW2YUV;
233         }
234
235         return IPIPE_YUV2YUV;
236 }
237
238 static int get_ipipe_mode(struct vpfe_ipipe_device *ipipe)
239 {
240         struct vpfe_device *vpfe_dev = to_vpfe_device(ipipe);
241         u16 ipipeif_sink = vpfe_dev->vpfe_ipipeif.input;
242
243         if (ipipeif_sink == IPIPEIF_INPUT_MEMORY)
244                 return IPIPE_MODE_SINGLE_SHOT;
245         else if (ipipeif_sink == IPIPEIF_INPUT_ISIF)
246                 return IPIPE_MODE_CONTINUOUS;
247
248         return -EINVAL;
249 }
250
251 int config_ipipe_hw(struct vpfe_ipipe_device *ipipe)
252 {
253         struct vpfe_ipipe_input_config *config = &ipipe->config.input_config;
254         void __iomem *ipipe_base = ipipe->base_addr;
255         struct v4l2_mbus_framefmt *outformat;
256         u32 color_pat;
257         u32 ipipe_mode;
258         u32 data_path;
259
260         /* enable clock to IPIPE */
261         vpss_enable_clock(VPSS_IPIPE_CLOCK, 1);
262         ipipe_clock_enable(ipipe_base);
263
264         if (ipipe->input == IPIPE_INPUT_NONE) {
265                 regw_ip(ipipe_base, 0, IPIPE_SRC_EN);
266                 return 0;
267         }
268
269         ipipe_mode = get_ipipe_mode(ipipe);
270         if (ipipe_mode < 0) {
271                 pr_err("Failed to get ipipe mode");
272                 return -EINVAL;
273         }
274         regw_ip(ipipe_base, ipipe_mode, IPIPE_SRC_MODE);
275
276         data_path = ipipe_get_data_path(ipipe);
277         regw_ip(ipipe_base, data_path, IPIPE_SRC_FMT);
278
279         regw_ip(ipipe_base, config->vst & IPIPE_RSZ_VPS_MASK, IPIPE_SRC_VPS);
280         regw_ip(ipipe_base, config->hst & IPIPE_RSZ_HPS_MASK, IPIPE_SRC_HPS);
281
282         outformat = &ipipe->formats[IPIPE_PAD_SOURCE];
283         regw_ip(ipipe_base, (outformat->height + 1) & IPIPE_RSZ_VSZ_MASK,
284                 IPIPE_SRC_VSZ);
285         regw_ip(ipipe_base, (outformat->width + 1) & IPIPE_RSZ_HSZ_MASK,
286                 IPIPE_SRC_HSZ);
287
288         if (data_path == IPIPE_RAW2YUV ||
289             data_path == IPIPE_RAW2RAW) {
290                 color_pat =
291                 ipipe_get_color_pat(ipipe->formats[IPIPE_PAD_SINK].code);
292                 regw_ip(ipipe_base, color_pat, IPIPE_SRC_COL);
293         }
294
295         return 0;
296 }
297
298 /*
299  * config_rsz_hw() - Performs hardware setup of resizer.
300  */
301 int config_rsz_hw(struct vpfe_resizer_device *resizer,
302                   struct resizer_params *config)
303 {
304         struct vpfe_device *vpfe_dev = to_vpfe_device(resizer);
305         void __iomem *ipipe_base = vpfe_dev->vpfe_ipipe.base_addr;
306         void __iomem *rsz_base = vpfe_dev->vpfe_resizer.base_addr;
307
308         /* enable VPSS clock */
309         vpss_enable_clock(VPSS_IPIPE_CLOCK, 1);
310         ipipe_clock_enable(ipipe_base);
311
312         ipipe_setup_resizer(rsz_base, config);
313
314         return 0;
315 }
316
317 static void
318 rsz_set_y_address(void __iomem *rsz_base, unsigned int address,
319                   unsigned int offset)
320 {
321         u32 val;
322
323         val = address & SET_LOW_ADDR;
324         regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_BAD_L);
325         regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_SAD_L);
326
327         val = (address & SET_HIGH_ADDR) >> 16;
328         regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_BAD_H);
329         regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_SAD_H);
330 }
331
332 static void
333 rsz_set_c_address(void __iomem *rsz_base, unsigned int address,
334                   unsigned int offset)
335 {
336         u32 val;
337
338         val = address & SET_LOW_ADDR;
339         regw_rsz(rsz_base, val, offset + RSZ_SDR_C_BAD_L);
340         regw_rsz(rsz_base, val, offset + RSZ_SDR_C_SAD_L);
341
342         val = (address & SET_HIGH_ADDR) >> 16;
343         regw_rsz(rsz_base, val, offset + RSZ_SDR_C_BAD_H);
344         regw_rsz(rsz_base, val, offset + RSZ_SDR_C_SAD_H);
345 }
346
347 /*
348  * resizer_set_outaddr() - set the address for given resize_no
349  * @rsz_base: resizer base address
350  * @params: pointer to ipipe_params structure
351  * @resize_no: 0 - Resizer-A, 1 - Resizer B
352  * @address: the address to set
353  */
354 int
355 resizer_set_outaddr(void __iomem *rsz_base, struct resizer_params *params,
356                     int resize_no, unsigned int address)
357 {
358         struct resizer_scale_param *rsc_param;
359         struct rsz_ext_mem_param *mem_param;
360         struct rsz_common_params *rsz_common;
361         unsigned int rsz_start_add;
362         unsigned int val;
363
364         if (resize_no != RSZ_A && resize_no != RSZ_B)
365                 return -EINVAL;
366
367         mem_param = &params->ext_mem_param[resize_no];
368         rsc_param = &params->rsz_rsc_param[resize_no];
369         rsz_common = &params->rsz_common;
370
371         if (resize_no == RSZ_A)
372                 rsz_start_add = RSZ_EN_A;
373         else
374                 rsz_start_add = RSZ_EN_B;
375
376         /* y_c = 0 for y, = 1 for c */
377         if (rsz_common->src_img_fmt == RSZ_IMG_420) {
378                 if (rsz_common->y_c) {
379                         /* C channel */
380                         val = address + mem_param->flip_ofst_c;
381                         rsz_set_c_address(rsz_base, val, rsz_start_add);
382                 } else {
383                         val = address + mem_param->flip_ofst_y;
384                         rsz_set_y_address(rsz_base, val, rsz_start_add);
385                 }
386         } else {
387                 if (rsc_param->cen && rsc_param->yen) {
388                         /* 420 */
389                         val = address + mem_param->c_offset +
390                               mem_param->flip_ofst_c +
391                               mem_param->user_y_ofst +
392                               mem_param->user_c_ofst;
393                         if (resize_no == RSZ_B)
394                                 val +=
395                                 params->ext_mem_param[RSZ_A].user_y_ofst +
396                                 params->ext_mem_param[RSZ_A].user_c_ofst;
397                         /* set C address */
398                         rsz_set_c_address(rsz_base, val, rsz_start_add);
399                 }
400                 val = address + mem_param->flip_ofst_y + mem_param->user_y_ofst;
401                 if (resize_no == RSZ_B)
402                         val += params->ext_mem_param[RSZ_A].user_y_ofst +
403                                 params->ext_mem_param[RSZ_A].user_c_ofst;
404                 /* set Y address */
405                 rsz_set_y_address(rsz_base, val, rsz_start_add);
406         }
407         /* resizer must be enabled */
408         regw_rsz(rsz_base, params->rsz_en[resize_no], rsz_start_add);
409
410         return 0;
411 }
412
413 void
414 ipipe_set_lutdpc_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
415                       struct vpfe_ipipe_lutdpc *dpc)
416 {
417         u32 max_tbl_size = LUT_DPC_MAX_SIZE >> 1;
418         u32 lut_start_addr = DPC_TB0_START_ADDR;
419         u32 val;
420         u32 count;
421
422         ipipe_clock_enable(base_addr);
423         regw_ip(base_addr, dpc->en, DPC_LUT_EN);
424
425         if (dpc->en != 1)
426                 return;
427
428         val = LUTDPC_TBL_256_EN | (dpc->repl_white & 1);
429         regw_ip(base_addr, val, DPC_LUT_SEL);
430         regw_ip(base_addr, LUT_DPC_START_ADDR, DPC_LUT_ADR);
431         regw_ip(base_addr, dpc->dpc_size, DPC_LUT_SIZ & LUT_DPC_SIZE_MASK);
432
433         if (dpc->table == NULL)
434                 return;
435
436         for (count = 0; count < dpc->dpc_size; count++) {
437                 if (count >= max_tbl_size)
438                         lut_start_addr = DPC_TB1_START_ADDR;
439                 val = (dpc->table[count].horz_pos & LUT_DPC_H_POS_MASK) |
440                       ((dpc->table[count].vert_pos & LUT_DPC_V_POS_MASK) <<
441                         LUT_DPC_V_POS_SHIFT) | (dpc->table[count].method <<
442                         LUT_DPC_CORR_METH_SHIFT);
443                 w_ip_table(isp5_base_addr, val, (lut_start_addr +
444                 ((count % max_tbl_size) << 2)));
445         }
446 }
447
448 static void
449 set_dpc_thresholds(void __iomem *base_addr,
450                    struct vpfe_ipipe_otfdpc_2_0_cfg *dpc_thr)
451 {
452         regw_ip(base_addr, dpc_thr->corr_thr.r & OTFDPC_DPC2_THR_MASK,
453                 DPC_OTF_2C_THR_R);
454         regw_ip(base_addr, dpc_thr->corr_thr.gr & OTFDPC_DPC2_THR_MASK,
455                 DPC_OTF_2C_THR_GR);
456         regw_ip(base_addr, dpc_thr->corr_thr.gb & OTFDPC_DPC2_THR_MASK,
457                 DPC_OTF_2C_THR_GB);
458         regw_ip(base_addr, dpc_thr->corr_thr.b & OTFDPC_DPC2_THR_MASK,
459                 DPC_OTF_2C_THR_B);
460         regw_ip(base_addr, dpc_thr->det_thr.r & OTFDPC_DPC2_THR_MASK,
461                 DPC_OTF_2D_THR_R);
462         regw_ip(base_addr, dpc_thr->det_thr.gr & OTFDPC_DPC2_THR_MASK,
463                 DPC_OTF_2D_THR_GR);
464         regw_ip(base_addr, dpc_thr->det_thr.gb & OTFDPC_DPC2_THR_MASK,
465                 DPC_OTF_2D_THR_GB);
466         regw_ip(base_addr, dpc_thr->det_thr.b & OTFDPC_DPC2_THR_MASK,
467                 DPC_OTF_2D_THR_B);
468 }
469
470 void ipipe_set_otfdpc_regs(void __iomem *base_addr,
471                            struct vpfe_ipipe_otfdpc *otfdpc)
472 {
473         struct vpfe_ipipe_otfdpc_2_0_cfg *dpc_2_0 = &otfdpc->alg_cfg.dpc_2_0;
474         struct vpfe_ipipe_otfdpc_3_0_cfg *dpc_3_0 = &otfdpc->alg_cfg.dpc_3_0;
475         u32 val;
476
477         ipipe_clock_enable(base_addr);
478
479         regw_ip(base_addr, (otfdpc->en & 1), DPC_OTF_EN);
480         if (!otfdpc->en)
481                 return;
482
483         /* dpc enabled */
484         val = (otfdpc->det_method << OTF_DET_METHOD_SHIFT) | otfdpc->alg;
485         regw_ip(base_addr, val, DPC_OTF_TYP);
486
487         if (otfdpc->det_method == VPFE_IPIPE_DPC_OTF_MIN_MAX) {
488                 /* ALG= 0, TYP = 0, DPC_OTF_2D_THR_[x]=0
489                  * DPC_OTF_2C_THR_[x] = Maximum thresohld
490                  * MinMax method
491                  */
492                 dpc_2_0->det_thr.r = dpc_2_0->det_thr.gb =
493                 dpc_2_0->det_thr.gr = dpc_2_0->det_thr.b = 0;
494                 set_dpc_thresholds(base_addr, dpc_2_0);
495                 return;
496         }
497         /* MinMax2 */
498         if (otfdpc->alg == VPFE_IPIPE_OTFDPC_2_0) {
499                 set_dpc_thresholds(base_addr, dpc_2_0);
500                 return;
501         }
502         regw_ip(base_addr, dpc_3_0->act_adj_shf &
503                 OTF_DPC3_0_SHF_MASK, DPC_OTF_3_SHF);
504         /* Detection thresholds */
505         regw_ip(base_addr, ((dpc_3_0->det_thr & OTF_DPC3_0_THR_MASK) <<
506                 OTF_DPC3_0_THR_SHIFT), DPC_OTF_3D_THR);
507         regw_ip(base_addr, dpc_3_0->det_slp &
508                 OTF_DPC3_0_SLP_MASK, DPC_OTF_3D_SLP);
509         regw_ip(base_addr, dpc_3_0->det_thr_min &
510                 OTF_DPC3_0_DET_MASK, DPC_OTF_3D_MIN);
511         regw_ip(base_addr, dpc_3_0->det_thr_max &
512                 OTF_DPC3_0_DET_MASK, DPC_OTF_3D_MAX);
513         /* Correction thresholds */
514         regw_ip(base_addr, ((dpc_3_0->corr_thr & OTF_DPC3_0_THR_MASK) <<
515                 OTF_DPC3_0_THR_SHIFT), DPC_OTF_3C_THR);
516         regw_ip(base_addr, dpc_3_0->corr_slp &
517                 OTF_DPC3_0_SLP_MASK, DPC_OTF_3C_SLP);
518         regw_ip(base_addr, dpc_3_0->corr_thr_min &
519                 OTF_DPC3_0_CORR_MASK, DPC_OTF_3C_MIN);
520         regw_ip(base_addr, dpc_3_0->corr_thr_max &
521                 OTF_DPC3_0_CORR_MASK, DPC_OTF_3C_MAX);
522 }
523
524 /* 2D Noise filter */
525 void
526 ipipe_set_d2f_regs(void __iomem *base_addr, unsigned int id,
527                    struct vpfe_ipipe_nf *noise_filter)
528 {
529
530         u32 offset = D2F_1ST;
531         int count;
532         u32 val;
533
534         if (id == IPIPE_D2F_2ND)
535                 offset = D2F_2ND;
536
537         ipipe_clock_enable(base_addr);
538         regw_ip(base_addr, noise_filter->en & 1, offset + D2F_EN);
539         if (!noise_filter->en)
540                 return;
541
542         /*noise filter enabled */
543         /* Combine all the fields to make D2F_CFG register of IPIPE */
544         val = ((noise_filter->spread_val & D2F_SPR_VAL_MASK) <<
545                 D2F_SPR_VAL_SHIFT) | ((noise_filter->shft_val &
546                 D2F_SHFT_VAL_MASK) << D2F_SHFT_VAL_SHIFT) |
547                 (noise_filter->gr_sample_meth << D2F_SAMPLE_METH_SHIFT) |
548                 ((noise_filter->apply_lsc_gain & 1) <<
549                 D2F_APPLY_LSC_GAIN_SHIFT) | D2F_USE_SPR_REG_VAL;
550         regw_ip(base_addr, val, offset + D2F_TYP);
551
552         /* edge detection minimum */
553         regw_ip(base_addr, noise_filter->edge_det_min_thr &
554                 D2F_EDGE_DET_THR_MASK, offset + D2F_EDG_MIN);
555
556         /* edge detection maximum */
557         regw_ip(base_addr, noise_filter->edge_det_max_thr &
558                 D2F_EDGE_DET_THR_MASK, offset + D2F_EDG_MAX);
559
560         for (count = 0; count < VPFE_IPIPE_NF_STR_TABLE_SIZE; count++)
561                 regw_ip(base_addr,
562                         (noise_filter->str[count] & D2F_STR_VAL_MASK),
563                         offset + D2F_STR + count * 4);
564
565         for (count = 0; count < VPFE_IPIPE_NF_THR_TABLE_SIZE; count++)
566                 regw_ip(base_addr, noise_filter->thr[count] & D2F_THR_VAL_MASK,
567                         offset + D2F_THR + count * 4);
568 }
569
570 #define IPIPE_U8Q5(decimal, integer) \
571         (((decimal & 0x1f) | ((integer & 0x7) << 5)))
572
573 /* Green Imbalance Correction */
574 void ipipe_set_gic_regs(void __iomem *base_addr, struct vpfe_ipipe_gic *gic)
575 {
576         u32 val;
577
578         ipipe_clock_enable(base_addr);
579         regw_ip(base_addr, gic->en & 1, GIC_EN);
580
581         if (!gic->en)
582                 return;
583
584         /*gic enabled */
585         val = (gic->wt_fn_type << GIC_TYP_SHIFT) |
586               (gic->thr_sel << GIC_THR_SEL_SHIFT) |
587               ((gic->apply_lsc_gain & 1) << GIC_APPLY_LSC_GAIN_SHIFT);
588         regw_ip(base_addr, val, GIC_TYP);
589
590         regw_ip(base_addr, gic->gain & GIC_GAIN_MASK, GIC_GAN);
591
592         if (gic->gic_alg != VPFE_IPIPE_GIC_ALG_ADAPT_GAIN) {
593                 /* Constant Gain. Set threshold to maximum */
594                 regw_ip(base_addr, GIC_THR_MASK, GIC_THR);
595                 return;
596         }
597
598         if (gic->thr_sel == VPFE_IPIPE_GIC_THR_REG) {
599                 regw_ip(base_addr, gic->thr & GIC_THR_MASK, GIC_THR);
600                 regw_ip(base_addr, gic->slope & GIC_SLOPE_MASK, GIC_SLP);
601         } else {
602                 /* Use NF thresholds */
603                 val = IPIPE_U8Q5(gic->nf2_thr_gain.decimal,
604                                 gic->nf2_thr_gain.integer);
605                 regw_ip(base_addr, val, GIC_NFGAN);
606         }
607 }
608
609 #define IPIPE_U13Q9(decimal, integer) \
610         (((decimal & 0x1ff) | ((integer & 0xf) << 9)))
611 /* White balance */
612 void ipipe_set_wb_regs(void __iomem *base_addr, struct vpfe_ipipe_wb *wb)
613 {
614         u32 val;
615
616         ipipe_clock_enable(base_addr);
617         /* Ofsets. S12 */
618         regw_ip(base_addr, wb->ofst_r & WB_OFFSET_MASK, WB2_OFT_R);
619         regw_ip(base_addr, wb->ofst_gr & WB_OFFSET_MASK, WB2_OFT_GR);
620         regw_ip(base_addr, wb->ofst_gb & WB_OFFSET_MASK, WB2_OFT_GB);
621         regw_ip(base_addr, wb->ofst_b & WB_OFFSET_MASK, WB2_OFT_B);
622
623         /* Gains. U13Q9 */
624         val = IPIPE_U13Q9(wb->gain_r.decimal, wb->gain_r.integer);
625         regw_ip(base_addr, val, WB2_WGN_R);
626
627         val = IPIPE_U13Q9(wb->gain_gr.decimal, wb->gain_gr.integer);
628         regw_ip(base_addr, val, WB2_WGN_GR);
629
630         val = IPIPE_U13Q9(wb->gain_gb.decimal, wb->gain_gb.integer);
631         regw_ip(base_addr, val, WB2_WGN_GB);
632
633         val = IPIPE_U13Q9(wb->gain_b.decimal, wb->gain_b.integer);
634         regw_ip(base_addr, val, WB2_WGN_B);
635 }
636
637 /* CFA */
638 void ipipe_set_cfa_regs(void __iomem *base_addr, struct vpfe_ipipe_cfa *cfa)
639 {
640         ipipe_clock_enable(base_addr);
641
642         regw_ip(base_addr, cfa->alg, CFA_MODE);
643         regw_ip(base_addr, cfa->hpf_thr_2dir & CFA_HPF_THR_2DIR_MASK,
644                 CFA_2DIR_HPF_THR);
645         regw_ip(base_addr, cfa->hpf_slp_2dir & CFA_HPF_SLOPE_2DIR_MASK,
646                 CFA_2DIR_HPF_SLP);
647         regw_ip(base_addr, cfa->hp_mix_thr_2dir & CFA_HPF_MIX_THR_2DIR_MASK,
648                 CFA_2DIR_MIX_THR);
649         regw_ip(base_addr, cfa->hp_mix_slope_2dir & CFA_HPF_MIX_SLP_2DIR_MASK,
650                 CFA_2DIR_MIX_SLP);
651         regw_ip(base_addr, cfa->dir_thr_2dir & CFA_DIR_THR_2DIR_MASK,
652                 CFA_2DIR_DIR_THR);
653         regw_ip(base_addr, cfa->dir_slope_2dir & CFA_DIR_SLP_2DIR_MASK,
654                 CFA_2DIR_DIR_SLP);
655         regw_ip(base_addr, cfa->nd_wt_2dir & CFA_ND_WT_2DIR_MASK,
656                 CFA_2DIR_NDWT);
657         regw_ip(base_addr, cfa->hue_fract_daa & CFA_DAA_HUE_FRA_MASK,
658                 CFA_MONO_HUE_FRA);
659         regw_ip(base_addr, cfa->edge_thr_daa & CFA_DAA_EDG_THR_MASK,
660                 CFA_MONO_EDG_THR);
661         regw_ip(base_addr, cfa->thr_min_daa & CFA_DAA_THR_MIN_MASK,
662                 CFA_MONO_THR_MIN);
663         regw_ip(base_addr, cfa->thr_slope_daa & CFA_DAA_THR_SLP_MASK,
664                 CFA_MONO_THR_SLP);
665         regw_ip(base_addr, cfa->slope_min_daa & CFA_DAA_SLP_MIN_MASK,
666                 CFA_MONO_SLP_MIN);
667         regw_ip(base_addr, cfa->slope_slope_daa & CFA_DAA_SLP_SLP_MASK,
668                 CFA_MONO_SLP_SLP);
669         regw_ip(base_addr, cfa->lp_wt_daa & CFA_DAA_LP_WT_MASK,
670                 CFA_MONO_LPWT);
671 }
672
673 void
674 ipipe_set_rgb2rgb_regs(void __iomem *base_addr, unsigned int id,
675                        struct vpfe_ipipe_rgb2rgb *rgb)
676 {
677         u32 offset_mask = RGB2RGB_1_OFST_MASK;
678         u32 offset = RGB1_MUL_BASE;
679         u32 integ_mask = 0xf;
680         u32 val;
681
682         ipipe_clock_enable(base_addr);
683
684         if (id == IPIPE_RGB2RGB_2) {
685                 /* For second RGB module, gain integer is 3 bits instead
686                 of 4, offset has 11 bits insread of 13 */
687                 offset = RGB2_MUL_BASE;
688                 integ_mask = 0x7;
689                 offset_mask = RGB2RGB_2_OFST_MASK;
690         }
691         /* Gains */
692         val = (rgb->coef_rr.decimal & 0xff) |
693                 ((rgb->coef_rr.integer & integ_mask) << 8);
694         regw_ip(base_addr, val, offset + RGB_MUL_RR);
695         val = (rgb->coef_gr.decimal & 0xff) |
696                 ((rgb->coef_gr.integer & integ_mask) << 8);
697         regw_ip(base_addr, val, offset + RGB_MUL_GR);
698         val = (rgb->coef_br.decimal & 0xff) |
699                 ((rgb->coef_br.integer & integ_mask) << 8);
700         regw_ip(base_addr, val, offset + RGB_MUL_BR);
701         val = (rgb->coef_rg.decimal & 0xff) |
702                 ((rgb->coef_rg.integer & integ_mask) << 8);
703         regw_ip(base_addr, val, offset + RGB_MUL_RG);
704         val = (rgb->coef_gg.decimal & 0xff) |
705                 ((rgb->coef_gg.integer & integ_mask) << 8);
706         regw_ip(base_addr, val, offset + RGB_MUL_GG);
707         val = (rgb->coef_bg.decimal & 0xff) |
708                 ((rgb->coef_bg.integer & integ_mask) << 8);
709         regw_ip(base_addr, val, offset + RGB_MUL_BG);
710         val = (rgb->coef_rb.decimal & 0xff) |
711                 ((rgb->coef_rb.integer & integ_mask) << 8);
712         regw_ip(base_addr, val, offset + RGB_MUL_RB);
713         val = (rgb->coef_gb.decimal & 0xff) |
714                 ((rgb->coef_gb.integer & integ_mask) << 8);
715         regw_ip(base_addr, val, offset + RGB_MUL_GB);
716         val = (rgb->coef_bb.decimal & 0xff) |
717                 ((rgb->coef_bb.integer & integ_mask) << 8);
718         regw_ip(base_addr, val, offset + RGB_MUL_BB);
719
720         /* Offsets */
721         regw_ip(base_addr, rgb->out_ofst_r & offset_mask, offset + RGB_OFT_OR);
722         regw_ip(base_addr, rgb->out_ofst_g & offset_mask, offset + RGB_OFT_OG);
723         regw_ip(base_addr, rgb->out_ofst_b & offset_mask, offset + RGB_OFT_OB);
724 }
725
726 static void
727 ipipe_update_gamma_tbl(void __iomem *isp5_base_addr,
728         struct vpfe_ipipe_gamma_entry *table, int size, u32 addr)
729 {
730         int count;
731         u32 val;
732
733         for (count = 0; count < size; count++) {
734                 val = table[count].slope & GAMMA_MASK;
735                 val |= (table[count].offset & GAMMA_MASK) << GAMMA_SHIFT;
736                 w_ip_table(isp5_base_addr, val, (addr + (count * 4)));
737         }
738 }
739
740 void
741 ipipe_set_gamma_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
742                           struct vpfe_ipipe_gamma *gamma)
743 {
744         int table_size;
745         u32 val;
746
747         ipipe_clock_enable(base_addr);
748         val = (gamma->bypass_r << GAMMA_BYPR_SHIFT) |
749                 (gamma->bypass_b << GAMMA_BYPG_SHIFT) |
750                 (gamma->bypass_g << GAMMA_BYPB_SHIFT) |
751                 (gamma->tbl_sel << GAMMA_TBL_SEL_SHIFT) |
752                 (gamma->tbl_size << GAMMA_TBL_SIZE_SHIFT);
753
754         regw_ip(base_addr, val, GMM_CFG);
755
756         if (gamma->tbl_sel != VPFE_IPIPE_GAMMA_TBL_RAM)
757                 return;
758
759         table_size = gamma->tbl_size;
760
761         if (!gamma->bypass_r && gamma->table_r != NULL)
762                 ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_r,
763                         table_size, GAMMA_R_START_ADDR);
764         if (!gamma->bypass_b && gamma->table_b != NULL)
765                 ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_b,
766                         table_size, GAMMA_B_START_ADDR);
767         if (!gamma->bypass_g && gamma->table_g != NULL)
768                 ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_g,
769                         table_size, GAMMA_G_START_ADDR);
770 }
771
772 void
773 ipipe_set_3d_lut_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
774                            struct vpfe_ipipe_3d_lut *lut_3d)
775 {
776         struct vpfe_ipipe_3d_lut_entry *tbl;
777         u32 bnk_index;
778         u32 tbl_index;
779         u32 val;
780         u32 i;
781
782         ipipe_clock_enable(base_addr);
783         regw_ip(base_addr, lut_3d->en, D3LUT_EN);
784
785         if (!lut_3d->en)
786                 return;
787
788         /* lut_3d enabled */
789         if (!lut_3d->table)
790                 return;
791
792         /* valied table */
793         tbl = lut_3d->table;
794         for (i = 0; i < VPFE_IPIPE_MAX_SIZE_3D_LUT; i++) {
795                 /* Each entry has 0-9 (B), 10-19 (G) and
796                 20-29 R values */
797                 val = tbl[i].b & D3_LUT_ENTRY_MASK;
798                 val |= (tbl[i].g & D3_LUT_ENTRY_MASK) <<
799                          D3_LUT_ENTRY_G_SHIFT;
800                 val |= (tbl[i].r & D3_LUT_ENTRY_MASK) <<
801                          D3_LUT_ENTRY_R_SHIFT;
802                 bnk_index = i % 4;
803                 tbl_index = i >> 2;
804                 tbl_index <<= 2;
805                 if (bnk_index == 0)
806                         w_ip_table(isp5_base_addr, val,
807                                    tbl_index + D3L_TB0_START_ADDR);
808                 else if (bnk_index == 1)
809                         w_ip_table(isp5_base_addr, val,
810                                    tbl_index + D3L_TB1_START_ADDR);
811                 else if (bnk_index == 2)
812                         w_ip_table(isp5_base_addr, val,
813                                    tbl_index + D3L_TB2_START_ADDR);
814                 else
815                         w_ip_table(isp5_base_addr, val,
816                                    tbl_index + D3L_TB3_START_ADDR);
817         }
818 }
819
820 /* Lumina adjustments */
821 void
822 ipipe_set_lum_adj_regs(void __iomem *base_addr, struct ipipe_lum_adj *lum_adj)
823 {
824         u32 val;
825
826         ipipe_clock_enable(base_addr);
827
828         /* combine fields of YUV_ADJ to set brightness and contrast */
829         val = lum_adj->contrast << LUM_ADJ_CONTR_SHIFT |
830               lum_adj->brightness << LUM_ADJ_BRIGHT_SHIFT;
831         regw_ip(base_addr, val, YUV_ADJ);
832 }
833
834 #define IPIPE_S12Q8(decimal, integer) \
835         (((decimal & 0xff) | ((integer & 0xf) << 8)))
836
837 void ipipe_set_rgb2ycbcr_regs(void __iomem *base_addr,
838                               struct vpfe_ipipe_rgb2yuv *yuv)
839 {
840         u32 val;
841
842         /* S10Q8 */
843         ipipe_clock_enable(base_addr);
844         val = IPIPE_S12Q8(yuv->coef_ry.decimal, yuv->coef_ry.integer);
845         regw_ip(base_addr, val, YUV_MUL_RY);
846         val = IPIPE_S12Q8(yuv->coef_gy.decimal, yuv->coef_gy.integer);
847         regw_ip(base_addr, val, YUV_MUL_GY);
848         val = IPIPE_S12Q8(yuv->coef_by.decimal, yuv->coef_by.integer);
849         regw_ip(base_addr, val, YUV_MUL_BY);
850         val = IPIPE_S12Q8(yuv->coef_rcb.decimal, yuv->coef_rcb.integer);
851         regw_ip(base_addr, val, YUV_MUL_RCB);
852         val = IPIPE_S12Q8(yuv->coef_gcb.decimal, yuv->coef_gcb.integer);
853         regw_ip(base_addr, val, YUV_MUL_GCB);
854         val = IPIPE_S12Q8(yuv->coef_bcb.decimal, yuv->coef_bcb.integer);
855         regw_ip(base_addr, val, YUV_MUL_BCB);
856         val = IPIPE_S12Q8(yuv->coef_rcr.decimal, yuv->coef_rcr.integer);
857         regw_ip(base_addr, val, YUV_MUL_RCR);
858         val = IPIPE_S12Q8(yuv->coef_gcr.decimal, yuv->coef_gcr.integer);
859         regw_ip(base_addr, val, YUV_MUL_GCR);
860         val = IPIPE_S12Q8(yuv->coef_bcr.decimal, yuv->coef_bcr.integer);
861         regw_ip(base_addr, val, YUV_MUL_BCR);
862         regw_ip(base_addr, yuv->out_ofst_y & RGB2YCBCR_OFST_MASK, YUV_OFT_Y);
863         regw_ip(base_addr, yuv->out_ofst_cb & RGB2YCBCR_OFST_MASK, YUV_OFT_CB);
864         regw_ip(base_addr, yuv->out_ofst_cr & RGB2YCBCR_OFST_MASK, YUV_OFT_CR);
865 }
866
867 /* YUV 422 conversion */
868 void
869 ipipe_set_yuv422_conv_regs(void __iomem *base_addr,
870                            struct vpfe_ipipe_yuv422_conv *conv)
871 {
872         u32 val;
873
874         ipipe_clock_enable(base_addr);
875
876         /* Combine all the fields to make YUV_PHS register of IPIPE */
877         val = (conv->chrom_pos << 0) | (conv->en_chrom_lpf << 1);
878         regw_ip(base_addr, val, YUV_PHS);
879 }
880
881 void
882 ipipe_set_gbce_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
883                     struct vpfe_ipipe_gbce *gbce)
884 {
885         unsigned int count;
886         u32 mask = GBCE_Y_VAL_MASK;
887
888         if (gbce->type == VPFE_IPIPE_GBCE_GAIN_TBL)
889                 mask = GBCE_GAIN_VAL_MASK;
890
891         ipipe_clock_enable(base_addr);
892         regw_ip(base_addr, gbce->en & 1, GBCE_EN);
893
894         if (!gbce->en)
895                 return;
896
897         regw_ip(base_addr, gbce->type, GBCE_TYP);
898
899         if (!gbce->table)
900                 return;
901
902         for (count = 0; count < VPFE_IPIPE_MAX_SIZE_GBCE_LUT; count += 2)
903                 w_ip_table(isp5_base_addr, ((gbce->table[count + 1] & mask) <<
904                 GBCE_ENTRY_SHIFT) | (gbce->table[count] & mask),
905                 ((count/2) << 2) + GBCE_TB_START_ADDR);
906 }
907
908 void
909 ipipe_set_ee_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
910                   struct vpfe_ipipe_yee *ee)
911 {
912         unsigned int count;
913         u32 val;
914
915         ipipe_clock_enable(base_addr);
916         regw_ip(base_addr, ee->en, YEE_EN);
917
918         if (!ee->en)
919                 return;
920
921         val = ee->en_halo_red & 1;
922         val |= ee->merge_meth << YEE_HALO_RED_EN_SHIFT;
923         regw_ip(base_addr, val, YEE_TYP);
924
925         regw_ip(base_addr, ee->hpf_shft, YEE_SHF);
926         regw_ip(base_addr, ee->hpf_coef_00 & YEE_COEF_MASK, YEE_MUL_00);
927         regw_ip(base_addr, ee->hpf_coef_01 & YEE_COEF_MASK, YEE_MUL_01);
928         regw_ip(base_addr, ee->hpf_coef_02 & YEE_COEF_MASK, YEE_MUL_02);
929         regw_ip(base_addr, ee->hpf_coef_10 & YEE_COEF_MASK, YEE_MUL_10);
930         regw_ip(base_addr, ee->hpf_coef_11 & YEE_COEF_MASK, YEE_MUL_11);
931         regw_ip(base_addr, ee->hpf_coef_12 & YEE_COEF_MASK, YEE_MUL_12);
932         regw_ip(base_addr, ee->hpf_coef_20 & YEE_COEF_MASK, YEE_MUL_20);
933         regw_ip(base_addr, ee->hpf_coef_21 & YEE_COEF_MASK, YEE_MUL_21);
934         regw_ip(base_addr, ee->hpf_coef_22 & YEE_COEF_MASK, YEE_MUL_22);
935         regw_ip(base_addr, ee->yee_thr & YEE_THR_MASK, YEE_THR);
936         regw_ip(base_addr, ee->es_gain & YEE_ES_GAIN_MASK, YEE_E_GAN);
937         regw_ip(base_addr, ee->es_thr1 & YEE_ES_THR1_MASK, YEE_E_THR1);
938         regw_ip(base_addr, ee->es_thr2 & YEE_THR_MASK, YEE_E_THR2);
939         regw_ip(base_addr, ee->es_gain_grad & YEE_THR_MASK, YEE_G_GAN);
940         regw_ip(base_addr, ee->es_ofst_grad & YEE_THR_MASK, YEE_G_OFT);
941
942         if (ee->table == NULL)
943                 return;
944
945         for (count = 0; count < VPFE_IPIPE_MAX_SIZE_YEE_LUT; count += 2)
946                 w_ip_table(isp5_base_addr, ((ee->table[count + 1] &
947                 YEE_ENTRY_MASK) << YEE_ENTRY_SHIFT) |
948                 (ee->table[count] & YEE_ENTRY_MASK),
949                 ((count/2) << 2) + YEE_TB_START_ADDR);
950 }
951
952 /* Chromatic Artifact Correction. CAR */
953 static void ipipe_set_mf(void __iomem *base_addr)
954 {
955         /* typ to dynamic switch */
956         regw_ip(base_addr, VPFE_IPIPE_CAR_DYN_SWITCH, CAR_TYP);
957         /* Set SW0 to maximum */
958         regw_ip(base_addr, CAR_MF_THR, CAR_SW);
959 }
960
961 static void
962 ipipe_set_gain_ctrl(void __iomem *base_addr, struct vpfe_ipipe_car *car)
963 {
964         regw_ip(base_addr, VPFE_IPIPE_CAR_CHR_GAIN_CTRL, CAR_TYP);
965         regw_ip(base_addr, car->hpf, CAR_HPF_TYP);
966         regw_ip(base_addr, car->hpf_shft & CAR_HPF_SHIFT_MASK, CAR_HPF_SHF);
967         regw_ip(base_addr, car->hpf_thr, CAR_HPF_THR);
968         regw_ip(base_addr, car->gain1.gain, CAR_GN1_GAN);
969         regw_ip(base_addr, car->gain1.shft & CAR_GAIN1_SHFT_MASK, CAR_GN1_SHF);
970         regw_ip(base_addr, car->gain1.gain_min & CAR_GAIN_MIN_MASK,
971                 CAR_GN1_MIN);
972         regw_ip(base_addr, car->gain2.gain, CAR_GN2_GAN);
973         regw_ip(base_addr, car->gain2.shft & CAR_GAIN2_SHFT_MASK, CAR_GN2_SHF);
974         regw_ip(base_addr, car->gain2.gain_min & CAR_GAIN_MIN_MASK,
975                 CAR_GN2_MIN);
976 }
977
978 void ipipe_set_car_regs(void __iomem *base_addr, struct vpfe_ipipe_car *car)
979 {
980         u32 val;
981
982         ipipe_clock_enable(base_addr);
983         regw_ip(base_addr, car->en, CAR_EN);
984
985         if (!car->en)
986                 return;
987
988         switch (car->meth) {
989         case VPFE_IPIPE_CAR_MED_FLTR:
990                 ipipe_set_mf(base_addr);
991                 break;
992
993         case VPFE_IPIPE_CAR_CHR_GAIN_CTRL:
994                 ipipe_set_gain_ctrl(base_addr, car);
995                 break;
996
997         default:
998                 /* Dynamic switch between MF and Gain Ctrl. */
999                 ipipe_set_mf(base_addr);
1000                 ipipe_set_gain_ctrl(base_addr, car);
1001                 /* Set the threshold for switching between
1002                   * the two Here we overwrite the MF SW0 value
1003                   */
1004                 regw_ip(base_addr, VPFE_IPIPE_CAR_DYN_SWITCH, CAR_TYP);
1005                 val = car->sw1;
1006                 val <<= CAR_SW1_SHIFT;
1007                 val |= car->sw0;
1008                 regw_ip(base_addr, val, CAR_SW);
1009         }
1010 }
1011
1012 /* Chromatic Gain Suppression */
1013 void ipipe_set_cgs_regs(void __iomem *base_addr, struct vpfe_ipipe_cgs *cgs)
1014 {
1015         ipipe_clock_enable(base_addr);
1016         regw_ip(base_addr, cgs->en, CGS_EN);
1017
1018         if (!cgs->en)
1019                 return;
1020
1021         /* Set the bright side parameters */
1022         regw_ip(base_addr, cgs->h_thr, CGS_GN1_H_THR);
1023         regw_ip(base_addr, cgs->h_slope, CGS_GN1_H_GAN);
1024         regw_ip(base_addr, cgs->h_shft & CAR_SHIFT_MASK, CGS_GN1_H_SHF);
1025         regw_ip(base_addr, cgs->h_min, CGS_GN1_H_MIN);
1026 }
1027
1028 void rsz_src_enable(void __iomem *rsz_base, int enable)
1029 {
1030         regw_rsz(rsz_base, enable, RSZ_SRC_EN);
1031 }
1032
1033 int rsz_enable(void __iomem *rsz_base, int rsz_id, int enable)
1034 {
1035         if (rsz_id == RSZ_A) {
1036                 regw_rsz(rsz_base, enable, RSZ_EN_A);
1037                 /* We always enable RSZ_A. RSZ_B is enable upon request from
1038                  * application. So enable RSZ_SRC_EN along with RSZ_A
1039                  */
1040                 regw_rsz(rsz_base, enable, RSZ_SRC_EN);
1041         } else if (rsz_id == RSZ_B) {
1042                 regw_rsz(rsz_base, enable, RSZ_EN_B);
1043         } else {
1044                 BUG();
1045         }
1046
1047         return 0;
1048 }