Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / lustre / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/ptlrpcd.c
37  */
38
39 /** \defgroup ptlrpcd PortalRPC daemon
40  *
41  * ptlrpcd is a special thread with its own set where other user might add
42  * requests when they don't want to wait for their completion.
43  * PtlRPCD will take care of sending such requests and then processing their
44  * replies and calling completion callbacks as necessary.
45  * The callbacks are called directly from ptlrpcd context.
46  * It is important to never significantly block (esp. on RPCs!) within such
47  * completion handler or a deadlock might occur where ptlrpcd enters some
48  * callback that attempts to send another RPC and wait for it to return,
49  * during which time ptlrpcd is completely blocked, so e.g. if import
50  * fails, recovery cannot progress because connection requests are also
51  * sent by ptlrpcd.
52  *
53  * @{
54  */
55
56 #define DEBUG_SUBSYSTEM S_RPC
57
58 #include "../../include/linux/libcfs/libcfs.h"
59
60 #include "../include/lustre_net.h"
61 #include "../include/lustre_lib.h"
62 #include "../include/lustre_ha.h"
63 #include "../include/obd_class.h"       /* for obd_zombie */
64 #include "../include/obd_support.h"     /* for OBD_FAIL_CHECK */
65 #include "../include/cl_object.h"       /* cl_env_{get,put}() */
66 #include "../include/lprocfs_status.h"
67
68 #include "ptlrpc_internal.h"
69
70 struct ptlrpcd {
71         int             pd_size;
72         int             pd_index;
73         int             pd_nthreads;
74         struct ptlrpcd_ctl pd_thread_rcv;
75         struct ptlrpcd_ctl pd_threads[0];
76 };
77
78 static int max_ptlrpcds;
79 module_param(max_ptlrpcds, int, 0644);
80 MODULE_PARM_DESC(max_ptlrpcds, "Max ptlrpcd thread count to be started.");
81
82 static int ptlrpcd_bind_policy = PDB_POLICY_PAIR;
83 module_param(ptlrpcd_bind_policy, int, 0644);
84 MODULE_PARM_DESC(ptlrpcd_bind_policy, "Ptlrpcd threads binding mode.");
85 static struct ptlrpcd *ptlrpcds;
86
87 struct mutex ptlrpcd_mutex;
88 static int ptlrpcd_users;
89
90 void ptlrpcd_wake(struct ptlrpc_request *req)
91 {
92         struct ptlrpc_request_set *rq_set = req->rq_set;
93
94         LASSERT(rq_set != NULL);
95
96         wake_up(&rq_set->set_waitq);
97 }
98 EXPORT_SYMBOL(ptlrpcd_wake);
99
100 static struct ptlrpcd_ctl *
101 ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index)
102 {
103         int idx = 0;
104
105         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
106                 return &ptlrpcds->pd_thread_rcv;
107
108         switch (policy) {
109         case PDL_POLICY_SAME:
110                 idx = smp_processor_id() % ptlrpcds->pd_nthreads;
111                 break;
112         case PDL_POLICY_LOCAL:
113                 /* Before CPU partition patches available, process it the same
114                  * as "PDL_POLICY_ROUND". */
115 # ifdef CFS_CPU_MODE_NUMA
116 # warning "fix this code to use new CPU partition APIs"
117 # endif
118                 /* Fall through to PDL_POLICY_ROUND until the CPU
119                  * CPU partition patches are available. */
120                 index = -1;
121         case PDL_POLICY_PREFERRED:
122                 if (index >= 0 && index < num_online_cpus()) {
123                         idx = index % ptlrpcds->pd_nthreads;
124                         break;
125                 }
126                 /* Fall through to PDL_POLICY_ROUND for bad index. */
127         default:
128                 /* Fall through to PDL_POLICY_ROUND for unknown policy. */
129         case PDL_POLICY_ROUND:
130                 /* We do not care whether it is strict load balance. */
131                 idx = ptlrpcds->pd_index + 1;
132                 if (idx == smp_processor_id())
133                         idx++;
134                 idx %= ptlrpcds->pd_nthreads;
135                 ptlrpcds->pd_index = idx;
136                 break;
137         }
138
139         return &ptlrpcds->pd_threads[idx];
140 }
141
142 /**
143  * Move all request from an existing request set to the ptlrpcd queue.
144  * All requests from the set must be in phase RQ_PHASE_NEW.
145  */
146 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
147 {
148         struct list_head *tmp, *pos;
149         struct ptlrpcd_ctl *pc;
150         struct ptlrpc_request_set *new;
151         int count, i;
152
153         pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1);
154         new = pc->pc_set;
155
156         list_for_each_safe(pos, tmp, &set->set_requests) {
157                 struct ptlrpc_request *req =
158                         list_entry(pos, struct ptlrpc_request,
159                                        rq_set_chain);
160
161                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
162                 req->rq_set = new;
163                 req->rq_queued_time = cfs_time_current();
164         }
165
166         spin_lock(&new->set_new_req_lock);
167         list_splice_init(&set->set_requests, &new->set_new_requests);
168         i = atomic_read(&set->set_remaining);
169         count = atomic_add_return(i, &new->set_new_count);
170         atomic_set(&set->set_remaining, 0);
171         spin_unlock(&new->set_new_req_lock);
172         if (count == i) {
173                 wake_up(&new->set_waitq);
174
175                 /* XXX: It maybe unnecessary to wakeup all the partners. But to
176                  *      guarantee the async RPC can be processed ASAP, we have
177                  *      no other better choice. It maybe fixed in future. */
178                 for (i = 0; i < pc->pc_npartners; i++)
179                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
180         }
181 }
182 EXPORT_SYMBOL(ptlrpcd_add_rqset);
183
184 /**
185  * Return transferred RPCs count.
186  */
187 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
188                                struct ptlrpc_request_set *src)
189 {
190         struct list_head *tmp, *pos;
191         struct ptlrpc_request *req;
192         int rc = 0;
193
194         spin_lock(&src->set_new_req_lock);
195         if (likely(!list_empty(&src->set_new_requests))) {
196                 list_for_each_safe(pos, tmp, &src->set_new_requests) {
197                         req = list_entry(pos, struct ptlrpc_request,
198                                              rq_set_chain);
199                         req->rq_set = des;
200                 }
201                 list_splice_init(&src->set_new_requests,
202                                      &des->set_requests);
203                 rc = atomic_read(&src->set_new_count);
204                 atomic_add(rc, &des->set_remaining);
205                 atomic_set(&src->set_new_count, 0);
206         }
207         spin_unlock(&src->set_new_req_lock);
208         return rc;
209 }
210
211 /**
212  * Requests that are added to the ptlrpcd queue are sent via
213  * ptlrpcd_check->ptlrpc_check_set().
214  */
215 void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx)
216 {
217         struct ptlrpcd_ctl *pc;
218
219         if (req->rq_reqmsg)
220                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
221
222         spin_lock(&req->rq_lock);
223         if (req->rq_invalid_rqset) {
224                 struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
225                                                      back_to_sleep, NULL);
226
227                 req->rq_invalid_rqset = 0;
228                 spin_unlock(&req->rq_lock);
229                 l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
230         } else if (req->rq_set) {
231                 /* If we have a valid "rq_set", just reuse it to avoid double
232                  * linked. */
233                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
234                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
235
236                 /* ptlrpc_check_set will decrease the count */
237                 atomic_inc(&req->rq_set->set_remaining);
238                 spin_unlock(&req->rq_lock);
239                 wake_up(&req->rq_set->set_waitq);
240                 return;
241         } else {
242                 spin_unlock(&req->rq_lock);
243         }
244
245         pc = ptlrpcd_select_pc(req, policy, idx);
246
247         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
248                   req, pc->pc_name, pc->pc_index);
249
250         ptlrpc_set_add_new_req(pc, req);
251 }
252 EXPORT_SYMBOL(ptlrpcd_add_req);
253
254 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
255 {
256         atomic_inc(&set->set_refcount);
257 }
258
259 /**
260  * Check if there is more work to do on ptlrpcd set.
261  * Returns 1 if yes.
262  */
263 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
264 {
265         struct list_head *tmp, *pos;
266         struct ptlrpc_request *req;
267         struct ptlrpc_request_set *set = pc->pc_set;
268         int rc = 0;
269         int rc2;
270
271         if (atomic_read(&set->set_new_count)) {
272                 spin_lock(&set->set_new_req_lock);
273                 if (likely(!list_empty(&set->set_new_requests))) {
274                         list_splice_init(&set->set_new_requests,
275                                              &set->set_requests);
276                         atomic_add(atomic_read(&set->set_new_count),
277                                        &set->set_remaining);
278                         atomic_set(&set->set_new_count, 0);
279                         /*
280                          * Need to calculate its timeout.
281                          */
282                         rc = 1;
283                 }
284                 spin_unlock(&set->set_new_req_lock);
285         }
286
287         /* We should call lu_env_refill() before handling new requests to make
288          * sure that env key the requests depending on really exists.
289          */
290         rc2 = lu_env_refill(env);
291         if (rc2 != 0) {
292                 /*
293                  * XXX This is very awkward situation, because
294                  * execution can neither continue (request
295                  * interpreters assume that env is set up), nor repeat
296                  * the loop (as this potentially results in a tight
297                  * loop of -ENOMEM's).
298                  *
299                  * Fortunately, refill only ever does something when
300                  * new modules are loaded, i.e., early during boot up.
301                  */
302                 CERROR("Failure to refill session: %d\n", rc2);
303                 return rc;
304         }
305
306         if (atomic_read(&set->set_remaining))
307                 rc |= ptlrpc_check_set(env, set);
308
309         /* NB: ptlrpc_check_set has already moved completed request at the
310          * head of seq::set_requests */
311         list_for_each_safe(pos, tmp, &set->set_requests) {
312                 req = list_entry(pos, struct ptlrpc_request, rq_set_chain);
313                 if (req->rq_phase != RQ_PHASE_COMPLETE)
314                         break;
315
316                 list_del_init(&req->rq_set_chain);
317                 req->rq_set = NULL;
318                 ptlrpc_req_finished(req);
319         }
320
321         if (rc == 0) {
322                 /*
323                  * If new requests have been added, make sure to wake up.
324                  */
325                 rc = atomic_read(&set->set_new_count);
326
327                 /* If we have nothing to do, check whether we can take some
328                  * work from our partner threads. */
329                 if (rc == 0 && pc->pc_npartners > 0) {
330                         struct ptlrpcd_ctl *partner;
331                         struct ptlrpc_request_set *ps;
332                         int first = pc->pc_cursor;
333
334                         do {
335                                 partner = pc->pc_partners[pc->pc_cursor++];
336                                 if (pc->pc_cursor >= pc->pc_npartners)
337                                         pc->pc_cursor = 0;
338                                 if (partner == NULL)
339                                         continue;
340
341                                 spin_lock(&partner->pc_lock);
342                                 ps = partner->pc_set;
343                                 if (ps == NULL) {
344                                         spin_unlock(&partner->pc_lock);
345                                         continue;
346                                 }
347
348                                 ptlrpc_reqset_get(ps);
349                                 spin_unlock(&partner->pc_lock);
350
351                                 if (atomic_read(&ps->set_new_count)) {
352                                         rc = ptlrpcd_steal_rqset(set, ps);
353                                         if (rc > 0)
354                                                 CDEBUG(D_RPCTRACE, "transfer %d async RPCs [%d->%d]\n",
355                                                        rc, partner->pc_index,
356                                                        pc->pc_index);
357                                 }
358                                 ptlrpc_reqset_put(ps);
359                         } while (rc == 0 && pc->pc_cursor != first);
360                 }
361         }
362
363         return rc;
364 }
365
366 /**
367  * Main ptlrpcd thread.
368  * ptlrpc's code paths like to execute in process context, so we have this
369  * thread which spins on a set which contains the rpcs and sends them.
370  *
371  */
372 static int ptlrpcd(void *arg)
373 {
374         struct ptlrpcd_ctl *pc = arg;
375         struct ptlrpc_request_set *set = pc->pc_set;
376         struct lu_env env = { .le_ses = NULL };
377         int rc, exit = 0;
378
379         unshare_fs_struct();
380 #if defined(CONFIG_SMP)
381         if (test_bit(LIOD_BIND, &pc->pc_flags)) {
382                 int index = pc->pc_index;
383
384                 if (index >= 0 && index < num_possible_cpus()) {
385                         while (!cpu_online(index)) {
386                                 if (++index >= num_possible_cpus())
387                                         index = 0;
388                         }
389                         set_cpus_allowed_ptr(current,
390                                         cpumask_of_node(cpu_to_node(index)));
391                 }
392         }
393 #endif
394         /*
395          * XXX So far only "client" ptlrpcd uses an environment. In
396          * the future, ptlrpcd thread (or a thread-set) has to given
397          * an argument, describing its "scope".
398          */
399         rc = lu_context_init(&env.le_ctx,
400                              LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
401         complete(&pc->pc_starting);
402
403         if (rc != 0)
404                 return rc;
405
406         /*
407          * This mainloop strongly resembles ptlrpc_set_wait() except that our
408          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
409          * there are requests in the set. New requests come in on the set's
410          * new_req_list and ptlrpcd_check() moves them into the set.
411          */
412         do {
413                 struct l_wait_info lwi;
414                 int timeout;
415
416                 timeout = ptlrpc_set_next_timeout(set);
417                 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
418                                   ptlrpc_expired_set, set);
419
420                 lu_context_enter(&env.le_ctx);
421                 l_wait_event(set->set_waitq,
422                              ptlrpcd_check(&env, pc), &lwi);
423                 lu_context_exit(&env.le_ctx);
424
425                 /*
426                  * Abort inflight rpcs for forced stop case.
427                  */
428                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
429                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
430                                 ptlrpc_abort_set(set);
431                         exit++;
432                 }
433
434                 /*
435                  * Let's make one more loop to make sure that ptlrpcd_check()
436                  * copied all raced new rpcs into the set so we can kill them.
437                  */
438         } while (exit < 2);
439
440         /*
441          * Wait for inflight requests to drain.
442          */
443         if (!list_empty(&set->set_requests))
444                 ptlrpc_set_wait(set);
445         lu_context_fini(&env.le_ctx);
446
447         complete(&pc->pc_finishing);
448
449         return 0;
450 }
451
452 /* XXX: We want multiple CPU cores to share the async RPC load. So we start many
453  *      ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by
454  *      data transfer cross-CPU cores. So we bind ptlrpcd thread to specified
455  *      CPU core. But binding all ptlrpcd threads maybe cause response delay
456  *      because of some CPU core(s) busy with other loads.
457  *
458  *      For example: "ls -l", some async RPCs for statahead are assigned to
459  *      ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy
460  *      with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l"
461  *      thread, statahead thread, and ptlrpcd thread can run in parallel), under
462  *      such case, the statahead async RPCs can not be processed in time, it is
463  *      unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may
464  *      be better. But it breaks former data transfer policy.
465  *
466  *      So we shouldn't be blind for avoiding the data transfer. We make some
467  *      compromise: divide the ptlrpcd threads pool into two parts. One part is
468  *      for bound mode, each ptlrpcd thread in this part is bound to some CPU
469  *      core. The other part is for free mode, all the ptlrpcd threads in the
470  *      part can be scheduled on any CPU core. We specify some partnership
471  *      between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s),
472  *      and the async RPC load within the partners are shared.
473  *
474  *      It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd
475  *      thread can be scheduled in time), and try to guarantee the async RPC
476  *      processed ASAP (as long as the free mode ptlrpcd thread can be scheduled
477  *      on any CPU core).
478  *
479  *      As for how to specify the partnership between bound mode ptlrpcd
480  *      thread(s) and free mode ptlrpcd thread(s), the simplest way is to use
481  *      <free bound> pair. In future, we can specify some more complex
482  *      partnership based on the patches for CPU partition. But before such
483  *      patches are available, we prefer to use the simplest one.
484  */
485 # ifdef CFS_CPU_MODE_NUMA
486 # warning "fix ptlrpcd_bind() to use new CPU partition APIs"
487 # endif
488 static int ptlrpcd_bind(int index, int max)
489 {
490         struct ptlrpcd_ctl *pc;
491         int rc = 0;
492 #if defined(CONFIG_NUMA)
493         cpumask_t mask;
494 #endif
495
496         LASSERT(index <= max - 1);
497         pc = &ptlrpcds->pd_threads[index];
498         switch (ptlrpcd_bind_policy) {
499         case PDB_POLICY_NONE:
500                 pc->pc_npartners = -1;
501                 break;
502         case PDB_POLICY_FULL:
503                 pc->pc_npartners = 0;
504                 set_bit(LIOD_BIND, &pc->pc_flags);
505                 break;
506         case PDB_POLICY_PAIR:
507                 LASSERT(max % 2 == 0);
508                 pc->pc_npartners = 1;
509                 break;
510         case PDB_POLICY_NEIGHBOR:
511 #if defined(CONFIG_NUMA)
512         {
513                 int i;
514                 cpumask_copy(&mask, cpumask_of_node(cpu_to_node(index)));
515                 for (i = max; i < num_online_cpus(); i++)
516                         cpumask_clear_cpu(i, &mask);
517                 pc->pc_npartners = cpumask_weight(&mask) - 1;
518                 set_bit(LIOD_BIND, &pc->pc_flags);
519         }
520 #else
521                 LASSERT(max >= 3);
522                 pc->pc_npartners = 2;
523 #endif
524                 break;
525         default:
526                 CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy);
527                 rc = -EINVAL;
528         }
529
530         if (rc == 0 && pc->pc_npartners > 0) {
531                 OBD_ALLOC(pc->pc_partners,
532                           sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
533                 if (pc->pc_partners == NULL) {
534                         pc->pc_npartners = 0;
535                         rc = -ENOMEM;
536                 } else {
537                         switch (ptlrpcd_bind_policy) {
538                         case PDB_POLICY_PAIR:
539                                 if (index & 0x1) {
540                                         set_bit(LIOD_BIND, &pc->pc_flags);
541                                         pc->pc_partners[0] = &ptlrpcds->
542                                                 pd_threads[index - 1];
543                                         ptlrpcds->pd_threads[index - 1].
544                                                 pc_partners[0] = pc;
545                                 }
546                                 break;
547                         case PDB_POLICY_NEIGHBOR:
548 #if defined(CONFIG_NUMA)
549                         {
550                                 struct ptlrpcd_ctl *ppc;
551                                 int i, pidx;
552                                 /* partners are cores in the same NUMA node.
553                                  * setup partnership only with ptlrpcd threads
554                                  * that are already initialized
555                                  */
556                                 for (pidx = 0, i = 0; i < index; i++) {
557                                         if (cpumask_test_cpu(i, &mask)) {
558                                                 ppc = &ptlrpcds->pd_threads[i];
559                                                 pc->pc_partners[pidx++] = ppc;
560                                                 ppc->pc_partners[ppc->
561                                                           pc_npartners++] = pc;
562                                         }
563                                 }
564                                 /* adjust number of partners to the number
565                                  * of partnership really setup */
566                                 pc->pc_npartners = pidx;
567                         }
568 #else
569                                 if (index & 0x1)
570                                         set_bit(LIOD_BIND, &pc->pc_flags);
571                                 if (index > 0) {
572                                         pc->pc_partners[0] = &ptlrpcds->
573                                                 pd_threads[index - 1];
574                                         ptlrpcds->pd_threads[index - 1].
575                                                 pc_partners[1] = pc;
576                                         if (index == max - 1) {
577                                                 pc->pc_partners[1] =
578                                                 &ptlrpcds->pd_threads[0];
579                                                 ptlrpcds->pd_threads[0].
580                                                 pc_partners[0] = pc;
581                                         }
582                                 }
583 #endif
584                                 break;
585                         }
586                 }
587         }
588
589         return rc;
590 }
591
592
593 int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc)
594 {
595         int rc;
596
597         /*
598          * Do not allow start second thread for one pc.
599          */
600         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
601                 CWARN("Starting second thread (%s) for same pc %p\n",
602                       name, pc);
603                 return 0;
604         }
605
606         pc->pc_index = index;
607         init_completion(&pc->pc_starting);
608         init_completion(&pc->pc_finishing);
609         spin_lock_init(&pc->pc_lock);
610         strlcpy(pc->pc_name, name, sizeof(pc->pc_name));
611         pc->pc_set = ptlrpc_prep_set();
612         if (pc->pc_set == NULL) {
613                 rc = -ENOMEM;
614                 goto out;
615         }
616
617         /*
618          * So far only "client" ptlrpcd uses an environment. In the future,
619          * ptlrpcd thread (or a thread-set) has to be given an argument,
620          * describing its "scope".
621          */
622         rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
623         if (rc != 0)
624                 goto out_set;
625
626         {
627                 struct task_struct *task;
628                 if (index >= 0) {
629                         rc = ptlrpcd_bind(index, max);
630                         if (rc < 0)
631                                 goto out_env;
632                 }
633
634                 task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
635                 if (IS_ERR(task)) {
636                         rc = PTR_ERR(task);
637                         goto out_env;
638                 }
639
640                 wait_for_completion(&pc->pc_starting);
641         }
642         return 0;
643
644 out_env:
645         lu_context_fini(&pc->pc_env.le_ctx);
646
647 out_set:
648         if (pc->pc_set != NULL) {
649                 struct ptlrpc_request_set *set = pc->pc_set;
650
651                 spin_lock(&pc->pc_lock);
652                 pc->pc_set = NULL;
653                 spin_unlock(&pc->pc_lock);
654                 ptlrpc_set_destroy(set);
655         }
656         clear_bit(LIOD_BIND, &pc->pc_flags);
657
658 out:
659         clear_bit(LIOD_START, &pc->pc_flags);
660         return rc;
661 }
662
663 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
664 {
665         if (!test_bit(LIOD_START, &pc->pc_flags)) {
666                 CWARN("Thread for pc %p was not started\n", pc);
667                 return;
668         }
669
670         set_bit(LIOD_STOP, &pc->pc_flags);
671         if (force)
672                 set_bit(LIOD_FORCE, &pc->pc_flags);
673         wake_up(&pc->pc_set->set_waitq);
674 }
675
676 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
677 {
678         struct ptlrpc_request_set *set = pc->pc_set;
679
680         if (!test_bit(LIOD_START, &pc->pc_flags)) {
681                 CWARN("Thread for pc %p was not started\n", pc);
682                 goto out;
683         }
684
685         wait_for_completion(&pc->pc_finishing);
686         lu_context_fini(&pc->pc_env.le_ctx);
687
688         spin_lock(&pc->pc_lock);
689         pc->pc_set = NULL;
690         spin_unlock(&pc->pc_lock);
691         ptlrpc_set_destroy(set);
692
693         clear_bit(LIOD_START, &pc->pc_flags);
694         clear_bit(LIOD_STOP, &pc->pc_flags);
695         clear_bit(LIOD_FORCE, &pc->pc_flags);
696         clear_bit(LIOD_BIND, &pc->pc_flags);
697
698 out:
699         if (pc->pc_npartners > 0) {
700                 LASSERT(pc->pc_partners != NULL);
701
702                 OBD_FREE(pc->pc_partners,
703                          sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
704                 pc->pc_partners = NULL;
705         }
706         pc->pc_npartners = 0;
707 }
708
709 static void ptlrpcd_fini(void)
710 {
711         int i;
712
713         if (ptlrpcds != NULL) {
714                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
715                         ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0);
716                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
717                         ptlrpcd_free(&ptlrpcds->pd_threads[i]);
718                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
719                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
720                 OBD_FREE(ptlrpcds, ptlrpcds->pd_size);
721                 ptlrpcds = NULL;
722         }
723 }
724
725 static int ptlrpcd_init(void)
726 {
727         int nthreads = num_online_cpus();
728         char name[16];
729         int size, i = -1, j, rc = 0;
730
731         if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads)
732                 nthreads = max_ptlrpcds;
733         if (nthreads < 2)
734                 nthreads = 2;
735         if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR)
736                 ptlrpcd_bind_policy = PDB_POLICY_PAIR;
737         else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR)
738                 nthreads &= ~1; /* make sure it is even */
739
740         size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
741         OBD_ALLOC(ptlrpcds, size);
742         if (ptlrpcds == NULL) {
743                 rc = -ENOMEM;
744                 goto out;
745         }
746
747         snprintf(name, sizeof(name), "ptlrpcd_rcv");
748         set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags);
749         rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv);
750         if (rc < 0)
751                 goto out;
752
753         /* XXX: We start nthreads ptlrpc daemons. Each of them can process any
754          *      non-recovery async RPC to improve overall async RPC efficiency.
755          *
756          *      But there are some issues with async I/O RPCs and async non-I/O
757          *      RPCs processed in the same set under some cases. The ptlrpcd may
758          *      be blocked by some async I/O RPC(s), then will cause other async
759          *      non-I/O RPC(s) can not be processed in time.
760          *
761          *      Maybe we should distinguish blocked async RPCs from non-blocked
762          *      async RPCs, and process them in different ptlrpcd sets to avoid
763          *      unnecessary dependency. But how to distribute async RPCs load
764          *      among all the ptlrpc daemons becomes another trouble. */
765         for (i = 0; i < nthreads; i++) {
766                 snprintf(name, sizeof(name), "ptlrpcd_%d", i);
767                 rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]);
768                 if (rc < 0)
769                         goto out;
770         }
771
772         ptlrpcds->pd_size = size;
773         ptlrpcds->pd_index = 0;
774         ptlrpcds->pd_nthreads = nthreads;
775
776 out:
777         if (rc != 0 && ptlrpcds != NULL) {
778                 for (j = 0; j <= i; j++)
779                         ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0);
780                 for (j = 0; j <= i; j++)
781                         ptlrpcd_free(&ptlrpcds->pd_threads[j]);
782                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
783                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
784                 OBD_FREE(ptlrpcds, size);
785                 ptlrpcds = NULL;
786         }
787
788         return 0;
789 }
790
791 int ptlrpcd_addref(void)
792 {
793         int rc = 0;
794
795         mutex_lock(&ptlrpcd_mutex);
796         if (++ptlrpcd_users == 1)
797                 rc = ptlrpcd_init();
798         mutex_unlock(&ptlrpcd_mutex);
799         return rc;
800 }
801 EXPORT_SYMBOL(ptlrpcd_addref);
802
803 void ptlrpcd_decref(void)
804 {
805         mutex_lock(&ptlrpcd_mutex);
806         if (--ptlrpcd_users == 0)
807                 ptlrpcd_fini();
808         mutex_unlock(&ptlrpcd_mutex);
809 }
810 EXPORT_SYMBOL(ptlrpcd_decref);
811 /** @} ptlrpcd */