Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / lustre / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include "../../include/linux/libcfs/libcfs.h"
48
49 # include <linux/module.h>
50
51 /* hash_long() */
52 #include "../../include/linux/libcfs/libcfs_hash.h"
53 #include "../include/obd_class.h"
54 #include "../include/obd_support.h"
55 #include "../include/lustre_disk.h"
56 #include "../include/lustre_fid.h"
57 #include "../include/lu_object.h"
58 #include "../include/lu_ref.h"
59 #include <linux/list.h>
60
61 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
62
63 /**
64  * Decrease reference counter on object. If last reference is freed, return
65  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
66  * case, free object immediately.
67  */
68 void lu_object_put(const struct lu_env *env, struct lu_object *o)
69 {
70         struct lu_site_bkt_data *bkt;
71         struct lu_object_header *top;
72         struct lu_site    *site;
73         struct lu_object        *orig;
74         struct cfs_hash_bd          bd;
75         const struct lu_fid     *fid;
76
77         top  = o->lo_header;
78         site = o->lo_dev->ld_site;
79         orig = o;
80
81         /*
82          * till we have full fids-on-OST implemented anonymous objects
83          * are possible in OSP. such an object isn't listed in the site
84          * so we should not remove it from the site.
85          */
86         fid = lu_object_fid(o);
87         if (fid_is_zero(fid)) {
88                 LASSERT(top->loh_hash.next == NULL
89                         && top->loh_hash.pprev == NULL);
90                 LASSERT(list_empty(&top->loh_lru));
91                 if (!atomic_dec_and_test(&top->loh_ref))
92                         return;
93                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
94                         if (o->lo_ops->loo_object_release != NULL)
95                                 o->lo_ops->loo_object_release(env, o);
96                 }
97                 lu_object_free(env, orig);
98                 return;
99         }
100
101         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
102         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
103
104         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
105                 if (lu_object_is_dying(top)) {
106
107                         /*
108                          * somebody may be waiting for this, currently only
109                          * used for cl_object, see cl_object_put_last().
110                          */
111                         wake_up_all(&bkt->lsb_marche_funebre);
112                 }
113                 return;
114         }
115
116         LASSERT(bkt->lsb_busy > 0);
117         bkt->lsb_busy--;
118         /*
119          * When last reference is released, iterate over object
120          * layers, and notify them that object is no longer busy.
121          */
122         list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
123                 if (o->lo_ops->loo_object_release != NULL)
124                         o->lo_ops->loo_object_release(env, o);
125         }
126
127         if (!lu_object_is_dying(top)) {
128                 LASSERT(list_empty(&top->loh_lru));
129                 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
130                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
131                 return;
132         }
133
134         /*
135          * If object is dying (will not be cached), removed it
136          * from hash table and LRU.
137          *
138          * This is done with hash table and LRU lists locked. As the only
139          * way to acquire first reference to previously unreferenced
140          * object is through hash-table lookup (lu_object_find()),
141          * or LRU scanning (lu_site_purge()), that are done under hash-table
142          * and LRU lock, no race with concurrent object lookup is possible
143          * and we can safely destroy object below.
144          */
145         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
146                 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
147         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
148         /*
149          * Object was already removed from hash and lru above, can
150          * kill it.
151          */
152         lu_object_free(env, orig);
153 }
154 EXPORT_SYMBOL(lu_object_put);
155
156 /**
157  * Put object and don't keep in cache. This is temporary solution for
158  * multi-site objects when its layering is not constant.
159  */
160 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
161 {
162         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
163         return lu_object_put(env, o);
164 }
165 EXPORT_SYMBOL(lu_object_put_nocache);
166
167 /**
168  * Kill the object and take it out of LRU cache.
169  * Currently used by client code for layout change.
170  */
171 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
172 {
173         struct lu_object_header *top;
174
175         top = o->lo_header;
176         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
177         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
178                 struct cfs_hash *obj_hash = o->lo_dev->ld_site->ls_obj_hash;
179                 struct cfs_hash_bd bd;
180
181                 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
182                 list_del_init(&top->loh_lru);
183                 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
184                 cfs_hash_bd_unlock(obj_hash, &bd, 1);
185         }
186 }
187 EXPORT_SYMBOL(lu_object_unhash);
188
189 /**
190  * Allocate new object.
191  *
192  * This follows object creation protocol, described in the comment within
193  * struct lu_device_operations definition.
194  */
195 static struct lu_object *lu_object_alloc(const struct lu_env *env,
196                                          struct lu_device *dev,
197                                          const struct lu_fid *f,
198                                          const struct lu_object_conf *conf)
199 {
200         struct lu_object *scan;
201         struct lu_object *top;
202         struct list_head *layers;
203         unsigned int init_mask = 0;
204         unsigned int init_flag;
205         int clean;
206         int result;
207
208         /*
209          * Create top-level object slice. This will also create
210          * lu_object_header.
211          */
212         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
213         if (top == NULL)
214                 return ERR_PTR(-ENOMEM);
215         if (IS_ERR(top))
216                 return top;
217         /*
218          * This is the only place where object fid is assigned. It's constant
219          * after this point.
220          */
221         top->lo_header->loh_fid = *f;
222         layers = &top->lo_header->loh_layers;
223
224         do {
225                 /*
226                  * Call ->loo_object_init() repeatedly, until no more new
227                  * object slices are created.
228                  */
229                 clean = 1;
230                 init_flag = 1;
231                 list_for_each_entry(scan, layers, lo_linkage) {
232                         if (init_mask & init_flag)
233                                 goto next;
234                         clean = 0;
235                         scan->lo_header = top->lo_header;
236                         result = scan->lo_ops->loo_object_init(env, scan, conf);
237                         if (result != 0) {
238                                 lu_object_free(env, top);
239                                 return ERR_PTR(result);
240                         }
241                         init_mask |= init_flag;
242 next:
243                         init_flag <<= 1;
244                 }
245         } while (!clean);
246
247         list_for_each_entry_reverse(scan, layers, lo_linkage) {
248                 if (scan->lo_ops->loo_object_start != NULL) {
249                         result = scan->lo_ops->loo_object_start(env, scan);
250                         if (result != 0) {
251                                 lu_object_free(env, top);
252                                 return ERR_PTR(result);
253                         }
254                 }
255         }
256
257         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
258         return top;
259 }
260
261 /**
262  * Free an object.
263  */
264 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
265 {
266         struct lu_site_bkt_data *bkt;
267         struct lu_site    *site;
268         struct lu_object        *scan;
269         struct list_head              *layers;
270         struct list_head               splice;
271
272         site   = o->lo_dev->ld_site;
273         layers = &o->lo_header->loh_layers;
274         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
275         /*
276          * First call ->loo_object_delete() method to release all resources.
277          */
278         list_for_each_entry_reverse(scan, layers, lo_linkage) {
279                 if (scan->lo_ops->loo_object_delete != NULL)
280                         scan->lo_ops->loo_object_delete(env, scan);
281         }
282
283         /*
284          * Then, splice object layers into stand-alone list, and call
285          * ->loo_object_free() on all layers to free memory. Splice is
286          * necessary, because lu_object_header is freed together with the
287          * top-level slice.
288          */
289         INIT_LIST_HEAD(&splice);
290         list_splice_init(layers, &splice);
291         while (!list_empty(&splice)) {
292                 /*
293                  * Free layers in bottom-to-top order, so that object header
294                  * lives as long as possible and ->loo_object_free() methods
295                  * can look at its contents.
296                  */
297                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
298                 list_del_init(&o->lo_linkage);
299                 LASSERT(o->lo_ops->loo_object_free != NULL);
300                 o->lo_ops->loo_object_free(env, o);
301         }
302
303         if (waitqueue_active(&bkt->lsb_marche_funebre))
304                 wake_up_all(&bkt->lsb_marche_funebre);
305 }
306
307 /**
308  * Free \a nr objects from the cold end of the site LRU list.
309  */
310 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
311 {
312         struct lu_object_header *h;
313         struct lu_object_header *temp;
314         struct lu_site_bkt_data *bkt;
315         struct cfs_hash_bd          bd;
316         struct cfs_hash_bd          bd2;
317         struct list_head               dispose;
318         int                   did_sth;
319         int                   start;
320         int                   count;
321         int                   bnr;
322         int                   i;
323
324         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
325                 return 0;
326
327         INIT_LIST_HEAD(&dispose);
328         /*
329          * Under LRU list lock, scan LRU list and move unreferenced objects to
330          * the dispose list, removing them from LRU and hash table.
331          */
332         start = s->ls_purge_start;
333         bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
334  again:
335         did_sth = 0;
336         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
337                 if (i < start)
338                         continue;
339                 count = bnr;
340                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
341                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
342
343                 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
344                         LASSERT(atomic_read(&h->loh_ref) == 0);
345
346                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
347                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
348
349                         cfs_hash_bd_del_locked(s->ls_obj_hash,
350                                                &bd2, &h->loh_hash);
351                         list_move(&h->loh_lru, &dispose);
352                         if (did_sth == 0)
353                                 did_sth = 1;
354
355                         if (nr != ~0 && --nr == 0)
356                                 break;
357
358                         if (count > 0 && --count == 0)
359                                 break;
360
361                 }
362                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
363                 cond_resched();
364                 /*
365                  * Free everything on the dispose list. This is safe against
366                  * races due to the reasons described in lu_object_put().
367                  */
368                 while (!list_empty(&dispose)) {
369                         h = container_of0(dispose.next,
370                                           struct lu_object_header, loh_lru);
371                         list_del_init(&h->loh_lru);
372                         lu_object_free(env, lu_object_top(h));
373                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
374                 }
375
376                 if (nr == 0)
377                         break;
378         }
379
380         if (nr != 0 && did_sth && start != 0) {
381                 start = 0; /* restart from the first bucket */
382                 goto again;
383         }
384         /* race on s->ls_purge_start, but nobody cares */
385         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
386
387         return nr;
388 }
389 EXPORT_SYMBOL(lu_site_purge);
390
391 /*
392  * Object printing.
393  *
394  * Code below has to jump through certain loops to output object description
395  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
396  * composes object description from strings that are parts of _lines_ of
397  * output (i.e., strings that are not terminated by newline). This doesn't fit
398  * very well into libcfs_debug_msg() interface that assumes that each message
399  * supplied to it is a self-contained output line.
400  *
401  * To work around this, strings are collected in a temporary buffer
402  * (implemented as a value of lu_cdebug_key key), until terminating newline
403  * character is detected.
404  *
405  */
406
407 enum {
408         /**
409          * Maximal line size.
410          *
411          * XXX overflow is not handled correctly.
412          */
413         LU_CDEBUG_LINE = 512
414 };
415
416 struct lu_cdebug_data {
417         /**
418          * Temporary buffer.
419          */
420         char lck_area[LU_CDEBUG_LINE];
421 };
422
423 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
424 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
425
426 /**
427  * Key, holding temporary buffer. This key is registered very early by
428  * lu_global_init().
429  */
430 struct lu_context_key lu_global_key = {
431         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
432                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
433         .lct_init = lu_global_key_init,
434         .lct_fini = lu_global_key_fini
435 };
436
437 /**
438  * Printer function emitting messages through libcfs_debug_msg().
439  */
440 int lu_cdebug_printer(const struct lu_env *env,
441                       void *cookie, const char *format, ...)
442 {
443         struct libcfs_debug_msg_data *msgdata = cookie;
444         struct lu_cdebug_data   *key;
445         int used;
446         int complete;
447         va_list args;
448
449         va_start(args, format);
450
451         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
452         LASSERT(key != NULL);
453
454         used = strlen(key->lck_area);
455         complete = format[strlen(format) - 1] == '\n';
456         /*
457          * Append new chunk to the buffer.
458          */
459         vsnprintf(key->lck_area + used,
460                   ARRAY_SIZE(key->lck_area) - used, format, args);
461         if (complete) {
462                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
463                         libcfs_debug_msg(msgdata, "%s", key->lck_area);
464                 key->lck_area[0] = 0;
465         }
466         va_end(args);
467         return 0;
468 }
469 EXPORT_SYMBOL(lu_cdebug_printer);
470
471 /**
472  * Print object header.
473  */
474 void lu_object_header_print(const struct lu_env *env, void *cookie,
475                             lu_printer_t printer,
476                             const struct lu_object_header *hdr)
477 {
478         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
479                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
480                    PFID(&hdr->loh_fid),
481                    hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
482                    list_empty((struct list_head *)&hdr->loh_lru) ? \
483                    "" : " lru",
484                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
485 }
486 EXPORT_SYMBOL(lu_object_header_print);
487
488 /**
489  * Print human readable representation of the \a o to the \a printer.
490  */
491 void lu_object_print(const struct lu_env *env, void *cookie,
492                      lu_printer_t printer, const struct lu_object *o)
493 {
494         static const char ruler[] = "........................................";
495         struct lu_object_header *top;
496         int depth = 4;
497
498         top = o->lo_header;
499         lu_object_header_print(env, cookie, printer, top);
500         (*printer)(env, cookie, "{\n");
501
502         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
503                 /*
504                  * print `.' \a depth times followed by type name and address
505                  */
506                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
507                            o->lo_dev->ld_type->ldt_name, o);
508
509                 if (o->lo_ops->loo_object_print != NULL)
510                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
511
512                 (*printer)(env, cookie, "\n");
513         }
514
515         (*printer)(env, cookie, "} header@%p\n", top);
516 }
517 EXPORT_SYMBOL(lu_object_print);
518
519 /**
520  * Check object consistency.
521  */
522 int lu_object_invariant(const struct lu_object *o)
523 {
524         struct lu_object_header *top;
525
526         top = o->lo_header;
527         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
528                 if (o->lo_ops->loo_object_invariant != NULL &&
529                     !o->lo_ops->loo_object_invariant(o))
530                         return 0;
531         }
532         return 1;
533 }
534 EXPORT_SYMBOL(lu_object_invariant);
535
536 static struct lu_object *htable_lookup(struct lu_site *s,
537                                        struct cfs_hash_bd *bd,
538                                        const struct lu_fid *f,
539                                        wait_queue_t *waiter,
540                                        __u64 *version)
541 {
542         struct lu_site_bkt_data *bkt;
543         struct lu_object_header *h;
544         struct hlist_node       *hnode;
545         __u64  ver = cfs_hash_bd_version_get(bd);
546
547         if (*version == ver)
548                 return ERR_PTR(-ENOENT);
549
550         *version = ver;
551         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
552         /* cfs_hash_bd_peek_locked is a somehow "internal" function
553          * of cfs_hash, it doesn't add refcount on object. */
554         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
555         if (hnode == NULL) {
556                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
557                 return ERR_PTR(-ENOENT);
558         }
559
560         h = container_of0(hnode, struct lu_object_header, loh_hash);
561         if (likely(!lu_object_is_dying(h))) {
562                 cfs_hash_get(s->ls_obj_hash, hnode);
563                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
564                 list_del_init(&h->loh_lru);
565                 return lu_object_top(h);
566         }
567
568         /*
569          * Lookup found an object being destroyed this object cannot be
570          * returned (to assure that references to dying objects are eventually
571          * drained), and moreover, lookup has to wait until object is freed.
572          */
573
574         init_waitqueue_entry(waiter, current);
575         add_wait_queue(&bkt->lsb_marche_funebre, waiter);
576         set_current_state(TASK_UNINTERRUPTIBLE);
577         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
578         return ERR_PTR(-EAGAIN);
579 }
580
581 /**
582  * Search cache for an object with the fid \a f. If such object is found,
583  * return it. Otherwise, create new object, insert it into cache and return
584  * it. In any case, additional reference is acquired on the returned object.
585  */
586 struct lu_object *lu_object_find(const struct lu_env *env,
587                                  struct lu_device *dev, const struct lu_fid *f,
588                                  const struct lu_object_conf *conf)
589 {
590         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
591 }
592 EXPORT_SYMBOL(lu_object_find);
593
594 static struct lu_object *lu_object_new(const struct lu_env *env,
595                                        struct lu_device *dev,
596                                        const struct lu_fid *f,
597                                        const struct lu_object_conf *conf)
598 {
599         struct lu_object        *o;
600         struct cfs_hash       *hs;
601         struct cfs_hash_bd          bd;
602         struct lu_site_bkt_data *bkt;
603
604         o = lu_object_alloc(env, dev, f, conf);
605         if (unlikely(IS_ERR(o)))
606                 return o;
607
608         hs = dev->ld_site->ls_obj_hash;
609         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
610         bkt = cfs_hash_bd_extra_get(hs, &bd);
611         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
612         bkt->lsb_busy++;
613         cfs_hash_bd_unlock(hs, &bd, 1);
614         return o;
615 }
616
617 /**
618  * Core logic of lu_object_find*() functions.
619  */
620 static struct lu_object *lu_object_find_try(const struct lu_env *env,
621                                             struct lu_device *dev,
622                                             const struct lu_fid *f,
623                                             const struct lu_object_conf *conf,
624                                             wait_queue_t *waiter)
625 {
626         struct lu_object      *o;
627         struct lu_object      *shadow;
628         struct lu_site  *s;
629         struct cfs_hash     *hs;
630         struct cfs_hash_bd        bd;
631         __u64             version = 0;
632
633         /*
634          * This uses standard index maintenance protocol:
635          *
636          *     - search index under lock, and return object if found;
637          *     - otherwise, unlock index, allocate new object;
638          *     - lock index and search again;
639          *     - if nothing is found (usual case), insert newly created
640          *       object into index;
641          *     - otherwise (race: other thread inserted object), free
642          *       object just allocated.
643          *     - unlock index;
644          *     - return object.
645          *
646          * For "LOC_F_NEW" case, we are sure the object is new established.
647          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
648          * just alloc and insert directly.
649          *
650          * If dying object is found during index search, add @waiter to the
651          * site wait-queue and return ERR_PTR(-EAGAIN).
652          */
653         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
654                 return lu_object_new(env, dev, f, conf);
655
656         s  = dev->ld_site;
657         hs = s->ls_obj_hash;
658         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
659         o = htable_lookup(s, &bd, f, waiter, &version);
660         cfs_hash_bd_unlock(hs, &bd, 1);
661         if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
662                 return o;
663
664         /*
665          * Allocate new object. This may result in rather complicated
666          * operations, including fld queries, inode loading, etc.
667          */
668         o = lu_object_alloc(env, dev, f, conf);
669         if (unlikely(IS_ERR(o)))
670                 return o;
671
672         LASSERT(lu_fid_eq(lu_object_fid(o), f));
673
674         cfs_hash_bd_lock(hs, &bd, 1);
675
676         shadow = htable_lookup(s, &bd, f, waiter, &version);
677         if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
678                 struct lu_site_bkt_data *bkt;
679
680                 bkt = cfs_hash_bd_extra_get(hs, &bd);
681                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
682                 bkt->lsb_busy++;
683                 cfs_hash_bd_unlock(hs, &bd, 1);
684                 return o;
685         }
686
687         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
688         cfs_hash_bd_unlock(hs, &bd, 1);
689         lu_object_free(env, o);
690         return shadow;
691 }
692
693 /**
694  * Much like lu_object_find(), but top level device of object is specifically
695  * \a dev rather than top level device of the site. This interface allows
696  * objects of different "stacking" to be created within the same site.
697  */
698 struct lu_object *lu_object_find_at(const struct lu_env *env,
699                                     struct lu_device *dev,
700                                     const struct lu_fid *f,
701                                     const struct lu_object_conf *conf)
702 {
703         struct lu_site_bkt_data *bkt;
704         struct lu_object        *obj;
705         wait_queue_t       wait;
706
707         while (1) {
708                 obj = lu_object_find_try(env, dev, f, conf, &wait);
709                 if (obj != ERR_PTR(-EAGAIN))
710                         return obj;
711                 /*
712                  * lu_object_find_try() already added waiter into the
713                  * wait queue.
714                  */
715                 schedule();
716                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
717                 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
718         }
719 }
720 EXPORT_SYMBOL(lu_object_find_at);
721
722 /**
723  * Find object with given fid, and return its slice belonging to given device.
724  */
725 struct lu_object *lu_object_find_slice(const struct lu_env *env,
726                                        struct lu_device *dev,
727                                        const struct lu_fid *f,
728                                        const struct lu_object_conf *conf)
729 {
730         struct lu_object *top;
731         struct lu_object *obj;
732
733         top = lu_object_find(env, dev, f, conf);
734         if (!IS_ERR(top)) {
735                 obj = lu_object_locate(top->lo_header, dev->ld_type);
736                 if (obj == NULL)
737                         lu_object_put(env, top);
738         } else
739                 obj = top;
740         return obj;
741 }
742 EXPORT_SYMBOL(lu_object_find_slice);
743
744 /**
745  * Global list of all device types.
746  */
747 static LIST_HEAD(lu_device_types);
748
749 int lu_device_type_init(struct lu_device_type *ldt)
750 {
751         int result = 0;
752
753         INIT_LIST_HEAD(&ldt->ldt_linkage);
754         if (ldt->ldt_ops->ldto_init)
755                 result = ldt->ldt_ops->ldto_init(ldt);
756         if (result == 0)
757                 list_add(&ldt->ldt_linkage, &lu_device_types);
758         return result;
759 }
760 EXPORT_SYMBOL(lu_device_type_init);
761
762 void lu_device_type_fini(struct lu_device_type *ldt)
763 {
764         list_del_init(&ldt->ldt_linkage);
765         if (ldt->ldt_ops->ldto_fini)
766                 ldt->ldt_ops->ldto_fini(ldt);
767 }
768 EXPORT_SYMBOL(lu_device_type_fini);
769
770 void lu_types_stop(void)
771 {
772         struct lu_device_type *ldt;
773
774         list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
775                 if (ldt->ldt_device_nr == 0 && ldt->ldt_ops->ldto_stop)
776                         ldt->ldt_ops->ldto_stop(ldt);
777         }
778 }
779 EXPORT_SYMBOL(lu_types_stop);
780
781 /**
782  * Global list of all sites on this node
783  */
784 static LIST_HEAD(lu_sites);
785 static DEFINE_MUTEX(lu_sites_guard);
786
787 /**
788  * Global environment used by site shrinker.
789  */
790 static struct lu_env lu_shrink_env;
791
792 struct lu_site_print_arg {
793         struct lu_env   *lsp_env;
794         void        *lsp_cookie;
795         lu_printer_t     lsp_printer;
796 };
797
798 static int
799 lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
800                   struct hlist_node *hnode, void *data)
801 {
802         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
803         struct lu_object_header  *h;
804
805         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
806         if (!list_empty(&h->loh_layers)) {
807                 const struct lu_object *o;
808
809                 o = lu_object_top(h);
810                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
811                                 arg->lsp_printer, o);
812         } else {
813                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
814                                        arg->lsp_printer, h);
815         }
816         return 0;
817 }
818
819 /**
820  * Print all objects in \a s.
821  */
822 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
823                    lu_printer_t printer)
824 {
825         struct lu_site_print_arg arg = {
826                 .lsp_env     = (struct lu_env *)env,
827                 .lsp_cookie  = cookie,
828                 .lsp_printer = printer,
829         };
830
831         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
832 }
833 EXPORT_SYMBOL(lu_site_print);
834
835 enum {
836         LU_CACHE_PERCENT_MAX     = 50,
837         LU_CACHE_PERCENT_DEFAULT = 20
838 };
839
840 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
841 module_param(lu_cache_percent, int, 0644);
842 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
843
844 /**
845  * Return desired hash table order.
846  */
847 static int lu_htable_order(void)
848 {
849         unsigned long cache_size;
850         int bits;
851
852         /*
853          * Calculate hash table size, assuming that we want reasonable
854          * performance when 20% of total memory is occupied by cache of
855          * lu_objects.
856          *
857          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
858          */
859         cache_size = totalram_pages;
860
861 #if BITS_PER_LONG == 32
862         /* limit hashtable size for lowmem systems to low RAM */
863         if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
864                 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
865 #endif
866
867         /* clear off unreasonable cache setting. */
868         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
869                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in the range of (0, %u]. Will use default value: %u.\n",
870                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
871                       LU_CACHE_PERCENT_DEFAULT);
872
873                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
874         }
875         cache_size = cache_size / 100 * lu_cache_percent *
876                 (PAGE_CACHE_SIZE / 1024);
877
878         for (bits = 1; (1 << bits) < cache_size; ++bits) {
879                 ;
880         }
881         return bits;
882 }
883
884 static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
885                                 const void *key, unsigned mask)
886 {
887         struct lu_fid  *fid = (struct lu_fid *)key;
888         __u32      hash;
889
890         hash = fid_flatten32(fid);
891         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
892         hash = hash_long(hash, hs->hs_bkt_bits);
893
894         /* give me another random factor */
895         hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
896
897         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
898         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
899
900         return hash & mask;
901 }
902
903 static void *lu_obj_hop_object(struct hlist_node *hnode)
904 {
905         return hlist_entry(hnode, struct lu_object_header, loh_hash);
906 }
907
908 static void *lu_obj_hop_key(struct hlist_node *hnode)
909 {
910         struct lu_object_header *h;
911
912         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
913         return &h->loh_fid;
914 }
915
916 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
917 {
918         struct lu_object_header *h;
919
920         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
921         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
922 }
923
924 static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
925 {
926         struct lu_object_header *h;
927
928         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
929         if (atomic_add_return(1, &h->loh_ref) == 1) {
930                 struct lu_site_bkt_data *bkt;
931                 struct cfs_hash_bd          bd;
932
933                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
934                 bkt = cfs_hash_bd_extra_get(hs, &bd);
935                 bkt->lsb_busy++;
936         }
937 }
938
939 static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
940 {
941         LBUG(); /* we should never called it */
942 }
943
944 cfs_hash_ops_t lu_site_hash_ops = {
945         .hs_hash        = lu_obj_hop_hash,
946         .hs_key  = lu_obj_hop_key,
947         .hs_keycmp      = lu_obj_hop_keycmp,
948         .hs_object      = lu_obj_hop_object,
949         .hs_get  = lu_obj_hop_get,
950         .hs_put_locked  = lu_obj_hop_put_locked,
951 };
952
953 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
954 {
955         spin_lock(&s->ls_ld_lock);
956         if (list_empty(&d->ld_linkage))
957                 list_add(&d->ld_linkage, &s->ls_ld_linkage);
958         spin_unlock(&s->ls_ld_lock);
959 }
960 EXPORT_SYMBOL(lu_dev_add_linkage);
961
962 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
963 {
964         spin_lock(&s->ls_ld_lock);
965         list_del_init(&d->ld_linkage);
966         spin_unlock(&s->ls_ld_lock);
967 }
968 EXPORT_SYMBOL(lu_dev_del_linkage);
969
970 /**
971  * Initialize site \a s, with \a d as the top level device.
972  */
973 #define LU_SITE_BITS_MIN    12
974 #define LU_SITE_BITS_MAX    24
975 /**
976  * total 256 buckets, we don't want too many buckets because:
977  * - consume too much memory
978  * - avoid unbalanced LRU list
979  */
980 #define LU_SITE_BKT_BITS    8
981
982 int lu_site_init(struct lu_site *s, struct lu_device *top)
983 {
984         struct lu_site_bkt_data *bkt;
985         struct cfs_hash_bd bd;
986         char name[16];
987         int bits;
988         int i;
989
990         memset(s, 0, sizeof(*s));
991         bits = lu_htable_order();
992         snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
993         for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
994              bits >= LU_SITE_BITS_MIN; bits--) {
995                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
996                                                  bits - LU_SITE_BKT_BITS,
997                                                  sizeof(*bkt), 0, 0,
998                                                  &lu_site_hash_ops,
999                                                  CFS_HASH_SPIN_BKTLOCK |
1000                                                  CFS_HASH_NO_ITEMREF |
1001                                                  CFS_HASH_DEPTH |
1002                                                  CFS_HASH_ASSERT_EMPTY);
1003                 if (s->ls_obj_hash != NULL)
1004                         break;
1005         }
1006
1007         if (s->ls_obj_hash == NULL) {
1008                 CERROR("failed to create lu_site hash with bits: %d\n", bits);
1009                 return -ENOMEM;
1010         }
1011
1012         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1013                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1014                 INIT_LIST_HEAD(&bkt->lsb_lru);
1015                 init_waitqueue_head(&bkt->lsb_marche_funebre);
1016         }
1017
1018         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1019         if (s->ls_stats == NULL) {
1020                 cfs_hash_putref(s->ls_obj_hash);
1021                 s->ls_obj_hash = NULL;
1022                 return -ENOMEM;
1023         }
1024
1025         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1026                              0, "created", "created");
1027         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1028                              0, "cache_hit", "cache_hit");
1029         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1030                              0, "cache_miss", "cache_miss");
1031         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1032                              0, "cache_race", "cache_race");
1033         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1034                              0, "cache_death_race", "cache_death_race");
1035         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1036                              0, "lru_purged", "lru_purged");
1037
1038         INIT_LIST_HEAD(&s->ls_linkage);
1039         s->ls_top_dev = top;
1040         top->ld_site = s;
1041         lu_device_get(top);
1042         lu_ref_add(&top->ld_reference, "site-top", s);
1043
1044         INIT_LIST_HEAD(&s->ls_ld_linkage);
1045         spin_lock_init(&s->ls_ld_lock);
1046
1047         lu_dev_add_linkage(s, top);
1048
1049         return 0;
1050 }
1051 EXPORT_SYMBOL(lu_site_init);
1052
1053 /**
1054  * Finalize \a s and release its resources.
1055  */
1056 void lu_site_fini(struct lu_site *s)
1057 {
1058         mutex_lock(&lu_sites_guard);
1059         list_del_init(&s->ls_linkage);
1060         mutex_unlock(&lu_sites_guard);
1061
1062         if (s->ls_obj_hash != NULL) {
1063                 cfs_hash_putref(s->ls_obj_hash);
1064                 s->ls_obj_hash = NULL;
1065         }
1066
1067         if (s->ls_top_dev != NULL) {
1068                 s->ls_top_dev->ld_site = NULL;
1069                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1070                 lu_device_put(s->ls_top_dev);
1071                 s->ls_top_dev = NULL;
1072         }
1073
1074         if (s->ls_stats != NULL)
1075                 lprocfs_free_stats(&s->ls_stats);
1076 }
1077 EXPORT_SYMBOL(lu_site_fini);
1078
1079 /**
1080  * Called when initialization of stack for this site is completed.
1081  */
1082 int lu_site_init_finish(struct lu_site *s)
1083 {
1084         int result;
1085         mutex_lock(&lu_sites_guard);
1086         result = lu_context_refill(&lu_shrink_env.le_ctx);
1087         if (result == 0)
1088                 list_add(&s->ls_linkage, &lu_sites);
1089         mutex_unlock(&lu_sites_guard);
1090         return result;
1091 }
1092 EXPORT_SYMBOL(lu_site_init_finish);
1093
1094 /**
1095  * Acquire additional reference on device \a d
1096  */
1097 void lu_device_get(struct lu_device *d)
1098 {
1099         atomic_inc(&d->ld_ref);
1100 }
1101 EXPORT_SYMBOL(lu_device_get);
1102
1103 /**
1104  * Release reference on device \a d.
1105  */
1106 void lu_device_put(struct lu_device *d)
1107 {
1108         LASSERT(atomic_read(&d->ld_ref) > 0);
1109         atomic_dec(&d->ld_ref);
1110 }
1111 EXPORT_SYMBOL(lu_device_put);
1112
1113 /**
1114  * Initialize device \a d of type \a t.
1115  */
1116 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1117 {
1118         if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1119                 t->ldt_ops->ldto_start(t);
1120         memset(d, 0, sizeof(*d));
1121         atomic_set(&d->ld_ref, 0);
1122         d->ld_type = t;
1123         lu_ref_init(&d->ld_reference);
1124         INIT_LIST_HEAD(&d->ld_linkage);
1125         return 0;
1126 }
1127 EXPORT_SYMBOL(lu_device_init);
1128
1129 /**
1130  * Finalize device \a d.
1131  */
1132 void lu_device_fini(struct lu_device *d)
1133 {
1134         struct lu_device_type *t;
1135
1136         t = d->ld_type;
1137         if (d->ld_obd != NULL) {
1138                 d->ld_obd->obd_lu_dev = NULL;
1139                 d->ld_obd = NULL;
1140         }
1141
1142         lu_ref_fini(&d->ld_reference);
1143         LASSERTF(atomic_read(&d->ld_ref) == 0,
1144                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1145         LASSERT(t->ldt_device_nr > 0);
1146         if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1147                 t->ldt_ops->ldto_stop(t);
1148 }
1149 EXPORT_SYMBOL(lu_device_fini);
1150
1151 /**
1152  * Initialize object \a o that is part of compound object \a h and was created
1153  * by device \a d.
1154  */
1155 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1156                    struct lu_device *d)
1157 {
1158         memset(o, 0, sizeof(*o));
1159         o->lo_header = h;
1160         o->lo_dev = d;
1161         lu_device_get(d);
1162         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1163         INIT_LIST_HEAD(&o->lo_linkage);
1164
1165         return 0;
1166 }
1167 EXPORT_SYMBOL(lu_object_init);
1168
1169 /**
1170  * Finalize object and release its resources.
1171  */
1172 void lu_object_fini(struct lu_object *o)
1173 {
1174         struct lu_device *dev = o->lo_dev;
1175
1176         LASSERT(list_empty(&o->lo_linkage));
1177
1178         if (dev != NULL) {
1179                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1180                               "lu_object", o);
1181                 lu_device_put(dev);
1182                 o->lo_dev = NULL;
1183         }
1184 }
1185 EXPORT_SYMBOL(lu_object_fini);
1186
1187 /**
1188  * Add object \a o as first layer of compound object \a h
1189  *
1190  * This is typically called by the ->ldo_object_alloc() method of top-level
1191  * device.
1192  */
1193 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1194 {
1195         list_move(&o->lo_linkage, &h->loh_layers);
1196 }
1197 EXPORT_SYMBOL(lu_object_add_top);
1198
1199 /**
1200  * Add object \a o as a layer of compound object, going after \a before.
1201  *
1202  * This is typically called by the ->ldo_object_alloc() method of \a
1203  * before->lo_dev.
1204  */
1205 void lu_object_add(struct lu_object *before, struct lu_object *o)
1206 {
1207         list_move(&o->lo_linkage, &before->lo_linkage);
1208 }
1209 EXPORT_SYMBOL(lu_object_add);
1210
1211 /**
1212  * Initialize compound object.
1213  */
1214 int lu_object_header_init(struct lu_object_header *h)
1215 {
1216         memset(h, 0, sizeof(*h));
1217         atomic_set(&h->loh_ref, 1);
1218         INIT_HLIST_NODE(&h->loh_hash);
1219         INIT_LIST_HEAD(&h->loh_lru);
1220         INIT_LIST_HEAD(&h->loh_layers);
1221         lu_ref_init(&h->loh_reference);
1222         return 0;
1223 }
1224 EXPORT_SYMBOL(lu_object_header_init);
1225
1226 /**
1227  * Finalize compound object.
1228  */
1229 void lu_object_header_fini(struct lu_object_header *h)
1230 {
1231         LASSERT(list_empty(&h->loh_layers));
1232         LASSERT(list_empty(&h->loh_lru));
1233         LASSERT(hlist_unhashed(&h->loh_hash));
1234         lu_ref_fini(&h->loh_reference);
1235 }
1236 EXPORT_SYMBOL(lu_object_header_fini);
1237
1238 /**
1239  * Given a compound object, find its slice, corresponding to the device type
1240  * \a dtype.
1241  */
1242 struct lu_object *lu_object_locate(struct lu_object_header *h,
1243                                    const struct lu_device_type *dtype)
1244 {
1245         struct lu_object *o;
1246
1247         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1248                 if (o->lo_dev->ld_type == dtype)
1249                         return o;
1250         }
1251         return NULL;
1252 }
1253 EXPORT_SYMBOL(lu_object_locate);
1254
1255
1256
1257 /**
1258  * Finalize and free devices in the device stack.
1259  *
1260  * Finalize device stack by purging object cache, and calling
1261  * lu_device_type_operations::ldto_device_fini() and
1262  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1263  */
1264 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1265 {
1266         struct lu_site   *site = top->ld_site;
1267         struct lu_device *scan;
1268         struct lu_device *next;
1269
1270         lu_site_purge(env, site, ~0);
1271         for (scan = top; scan != NULL; scan = next) {
1272                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1273                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1274                 lu_device_put(scan);
1275         }
1276
1277         /* purge again. */
1278         lu_site_purge(env, site, ~0);
1279
1280         for (scan = top; scan != NULL; scan = next) {
1281                 const struct lu_device_type *ldt = scan->ld_type;
1282                 struct obd_type      *type;
1283
1284                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1285                 type = ldt->ldt_obd_type;
1286                 if (type != NULL) {
1287                         type->typ_refcnt--;
1288                         class_put_type(type);
1289                 }
1290         }
1291 }
1292 EXPORT_SYMBOL(lu_stack_fini);
1293
1294 enum {
1295         /**
1296          * Maximal number of tld slots.
1297          */
1298         LU_CONTEXT_KEY_NR = 40
1299 };
1300
1301 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1302
1303 static DEFINE_SPINLOCK(lu_keys_guard);
1304
1305 /**
1306  * Global counter incremented whenever key is registered, unregistered,
1307  * revived or quiesced. This is used to void unnecessary calls to
1308  * lu_context_refill(). No locking is provided, as initialization and shutdown
1309  * are supposed to be externally serialized.
1310  */
1311 static unsigned key_set_version;
1312
1313 /**
1314  * Register new key.
1315  */
1316 int lu_context_key_register(struct lu_context_key *key)
1317 {
1318         int result;
1319         int i;
1320
1321         LASSERT(key->lct_init != NULL);
1322         LASSERT(key->lct_fini != NULL);
1323         LASSERT(key->lct_tags != 0);
1324
1325         result = -ENFILE;
1326         spin_lock(&lu_keys_guard);
1327         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1328                 if (lu_keys[i] == NULL) {
1329                         key->lct_index = i;
1330                         atomic_set(&key->lct_used, 1);
1331                         lu_keys[i] = key;
1332                         lu_ref_init(&key->lct_reference);
1333                         result = 0;
1334                         ++key_set_version;
1335                         break;
1336                 }
1337         }
1338         spin_unlock(&lu_keys_guard);
1339         return result;
1340 }
1341 EXPORT_SYMBOL(lu_context_key_register);
1342
1343 static void key_fini(struct lu_context *ctx, int index)
1344 {
1345         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1346                 struct lu_context_key *key;
1347
1348                 key = lu_keys[index];
1349                 LASSERT(key != NULL);
1350                 LASSERT(key->lct_fini != NULL);
1351                 LASSERT(atomic_read(&key->lct_used) > 1);
1352
1353                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1354                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1355                 atomic_dec(&key->lct_used);
1356
1357                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1358 #ifdef CONFIG_MODULE_UNLOAD
1359                         LINVRNT(module_refcount(key->lct_owner) > 0);
1360 #endif
1361                         module_put(key->lct_owner);
1362                 }
1363                 ctx->lc_value[index] = NULL;
1364         }
1365 }
1366
1367 /**
1368  * Deregister key.
1369  */
1370 void lu_context_key_degister(struct lu_context_key *key)
1371 {
1372         LASSERT(atomic_read(&key->lct_used) >= 1);
1373         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1374
1375         lu_context_key_quiesce(key);
1376
1377         ++key_set_version;
1378         spin_lock(&lu_keys_guard);
1379         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1380         if (lu_keys[key->lct_index]) {
1381                 lu_keys[key->lct_index] = NULL;
1382                 lu_ref_fini(&key->lct_reference);
1383         }
1384         spin_unlock(&lu_keys_guard);
1385
1386         LASSERTF(atomic_read(&key->lct_used) == 1,
1387                  "key has instances: %d\n",
1388                  atomic_read(&key->lct_used));
1389 }
1390 EXPORT_SYMBOL(lu_context_key_degister);
1391
1392 /**
1393  * Register a number of keys. This has to be called after all keys have been
1394  * initialized by a call to LU_CONTEXT_KEY_INIT().
1395  */
1396 int lu_context_key_register_many(struct lu_context_key *k, ...)
1397 {
1398         struct lu_context_key *key = k;
1399         va_list args;
1400         int result;
1401
1402         va_start(args, k);
1403         do {
1404                 result = lu_context_key_register(key);
1405                 if (result)
1406                         break;
1407                 key = va_arg(args, struct lu_context_key *);
1408         } while (key != NULL);
1409         va_end(args);
1410
1411         if (result != 0) {
1412                 va_start(args, k);
1413                 while (k != key) {
1414                         lu_context_key_degister(k);
1415                         k = va_arg(args, struct lu_context_key *);
1416                 }
1417                 va_end(args);
1418         }
1419
1420         return result;
1421 }
1422 EXPORT_SYMBOL(lu_context_key_register_many);
1423
1424 /**
1425  * De-register a number of keys. This is a dual to
1426  * lu_context_key_register_many().
1427  */
1428 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1429 {
1430         va_list args;
1431
1432         va_start(args, k);
1433         do {
1434                 lu_context_key_degister(k);
1435                 k = va_arg(args, struct lu_context_key*);
1436         } while (k != NULL);
1437         va_end(args);
1438 }
1439 EXPORT_SYMBOL(lu_context_key_degister_many);
1440
1441 /**
1442  * Revive a number of keys.
1443  */
1444 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1445 {
1446         va_list args;
1447
1448         va_start(args, k);
1449         do {
1450                 lu_context_key_revive(k);
1451                 k = va_arg(args, struct lu_context_key*);
1452         } while (k != NULL);
1453         va_end(args);
1454 }
1455 EXPORT_SYMBOL(lu_context_key_revive_many);
1456
1457 /**
1458  * Quiescent a number of keys.
1459  */
1460 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1461 {
1462         va_list args;
1463
1464         va_start(args, k);
1465         do {
1466                 lu_context_key_quiesce(k);
1467                 k = va_arg(args, struct lu_context_key*);
1468         } while (k != NULL);
1469         va_end(args);
1470 }
1471 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1472
1473 /**
1474  * Return value associated with key \a key in context \a ctx.
1475  */
1476 void *lu_context_key_get(const struct lu_context *ctx,
1477                          const struct lu_context_key *key)
1478 {
1479         LINVRNT(ctx->lc_state == LCS_ENTERED);
1480         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1481         LASSERT(lu_keys[key->lct_index] == key);
1482         return ctx->lc_value[key->lct_index];
1483 }
1484 EXPORT_SYMBOL(lu_context_key_get);
1485
1486 /**
1487  * List of remembered contexts. XXX document me.
1488  */
1489 static LIST_HEAD(lu_context_remembered);
1490
1491 /**
1492  * Destroy \a key in all remembered contexts. This is used to destroy key
1493  * values in "shared" contexts (like service threads), when a module owning
1494  * the key is about to be unloaded.
1495  */
1496 void lu_context_key_quiesce(struct lu_context_key *key)
1497 {
1498         struct lu_context *ctx;
1499
1500         if (!(key->lct_tags & LCT_QUIESCENT)) {
1501                 /*
1502                  * XXX layering violation.
1503                  */
1504                 key->lct_tags |= LCT_QUIESCENT;
1505                 /*
1506                  * XXX memory barrier has to go here.
1507                  */
1508                 spin_lock(&lu_keys_guard);
1509                 list_for_each_entry(ctx, &lu_context_remembered,
1510                                         lc_remember)
1511                         key_fini(ctx, key->lct_index);
1512                 spin_unlock(&lu_keys_guard);
1513                 ++key_set_version;
1514         }
1515 }
1516 EXPORT_SYMBOL(lu_context_key_quiesce);
1517
1518 void lu_context_key_revive(struct lu_context_key *key)
1519 {
1520         key->lct_tags &= ~LCT_QUIESCENT;
1521         ++key_set_version;
1522 }
1523 EXPORT_SYMBOL(lu_context_key_revive);
1524
1525 static void keys_fini(struct lu_context *ctx)
1526 {
1527         int     i;
1528
1529         if (ctx->lc_value == NULL)
1530                 return;
1531
1532         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1533                 key_fini(ctx, i);
1534
1535         OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
1536         ctx->lc_value = NULL;
1537 }
1538
1539 static int keys_fill(struct lu_context *ctx)
1540 {
1541         int i;
1542
1543         LINVRNT(ctx->lc_value != NULL);
1544         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1545                 struct lu_context_key *key;
1546
1547                 key = lu_keys[i];
1548                 if (ctx->lc_value[i] == NULL && key != NULL &&
1549                     (key->lct_tags & ctx->lc_tags) &&
1550                     /*
1551                      * Don't create values for a LCT_QUIESCENT key, as this
1552                      * will pin module owning a key.
1553                      */
1554                     !(key->lct_tags & LCT_QUIESCENT)) {
1555                         void *value;
1556
1557                         LINVRNT(key->lct_init != NULL);
1558                         LINVRNT(key->lct_index == i);
1559
1560                         value = key->lct_init(ctx, key);
1561                         if (unlikely(IS_ERR(value)))
1562                                 return PTR_ERR(value);
1563
1564                         if (!(ctx->lc_tags & LCT_NOREF))
1565                                 try_module_get(key->lct_owner);
1566                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1567                         atomic_inc(&key->lct_used);
1568                         /*
1569                          * This is the only place in the code, where an
1570                          * element of ctx->lc_value[] array is set to non-NULL
1571                          * value.
1572                          */
1573                         ctx->lc_value[i] = value;
1574                         if (key->lct_exit != NULL)
1575                                 ctx->lc_tags |= LCT_HAS_EXIT;
1576                 }
1577                 ctx->lc_version = key_set_version;
1578         }
1579         return 0;
1580 }
1581
1582 static int keys_init(struct lu_context *ctx)
1583 {
1584         OBD_ALLOC(ctx->lc_value,
1585                   ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
1586         if (likely(ctx->lc_value != NULL))
1587                 return keys_fill(ctx);
1588
1589         return -ENOMEM;
1590 }
1591
1592 /**
1593  * Initialize context data-structure. Create values for all keys.
1594  */
1595 int lu_context_init(struct lu_context *ctx, __u32 tags)
1596 {
1597         int     rc;
1598
1599         memset(ctx, 0, sizeof(*ctx));
1600         ctx->lc_state = LCS_INITIALIZED;
1601         ctx->lc_tags = tags;
1602         if (tags & LCT_REMEMBER) {
1603                 spin_lock(&lu_keys_guard);
1604                 list_add(&ctx->lc_remember, &lu_context_remembered);
1605                 spin_unlock(&lu_keys_guard);
1606         } else {
1607                 INIT_LIST_HEAD(&ctx->lc_remember);
1608         }
1609
1610         rc = keys_init(ctx);
1611         if (rc != 0)
1612                 lu_context_fini(ctx);
1613
1614         return rc;
1615 }
1616 EXPORT_SYMBOL(lu_context_init);
1617
1618 /**
1619  * Finalize context data-structure. Destroy key values.
1620  */
1621 void lu_context_fini(struct lu_context *ctx)
1622 {
1623         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1624         ctx->lc_state = LCS_FINALIZED;
1625
1626         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1627                 LASSERT(list_empty(&ctx->lc_remember));
1628                 keys_fini(ctx);
1629
1630         } else { /* could race with key degister */
1631                 spin_lock(&lu_keys_guard);
1632                 keys_fini(ctx);
1633                 list_del_init(&ctx->lc_remember);
1634                 spin_unlock(&lu_keys_guard);
1635         }
1636 }
1637 EXPORT_SYMBOL(lu_context_fini);
1638
1639 /**
1640  * Called before entering context.
1641  */
1642 void lu_context_enter(struct lu_context *ctx)
1643 {
1644         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1645         ctx->lc_state = LCS_ENTERED;
1646 }
1647 EXPORT_SYMBOL(lu_context_enter);
1648
1649 /**
1650  * Called after exiting from \a ctx
1651  */
1652 void lu_context_exit(struct lu_context *ctx)
1653 {
1654         int i;
1655
1656         LINVRNT(ctx->lc_state == LCS_ENTERED);
1657         ctx->lc_state = LCS_LEFT;
1658         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1659                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1660                         if (ctx->lc_value[i] != NULL) {
1661                                 struct lu_context_key *key;
1662
1663                                 key = lu_keys[i];
1664                                 LASSERT(key != NULL);
1665                                 if (key->lct_exit != NULL)
1666                                         key->lct_exit(ctx,
1667                                                       key, ctx->lc_value[i]);
1668                         }
1669                 }
1670         }
1671 }
1672 EXPORT_SYMBOL(lu_context_exit);
1673
1674 /**
1675  * Allocate for context all missing keys that were registered after context
1676  * creation. key_set_version is only changed in rare cases when modules
1677  * are loaded and removed.
1678  */
1679 int lu_context_refill(struct lu_context *ctx)
1680 {
1681         return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1682 }
1683 EXPORT_SYMBOL(lu_context_refill);
1684
1685 /**
1686  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1687  * obd being added. Currently, this is only used on client side, specifically
1688  * for echo device client, for other stack (like ptlrpc threads), context are
1689  * predefined when the lu_device type are registered, during the module probe
1690  * phase.
1691  */
1692 __u32 lu_context_tags_default = 0;
1693 __u32 lu_session_tags_default = 0;
1694
1695 void lu_context_tags_update(__u32 tags)
1696 {
1697         spin_lock(&lu_keys_guard);
1698         lu_context_tags_default |= tags;
1699         key_set_version++;
1700         spin_unlock(&lu_keys_guard);
1701 }
1702 EXPORT_SYMBOL(lu_context_tags_update);
1703
1704 void lu_context_tags_clear(__u32 tags)
1705 {
1706         spin_lock(&lu_keys_guard);
1707         lu_context_tags_default &= ~tags;
1708         key_set_version++;
1709         spin_unlock(&lu_keys_guard);
1710 }
1711 EXPORT_SYMBOL(lu_context_tags_clear);
1712
1713 void lu_session_tags_update(__u32 tags)
1714 {
1715         spin_lock(&lu_keys_guard);
1716         lu_session_tags_default |= tags;
1717         key_set_version++;
1718         spin_unlock(&lu_keys_guard);
1719 }
1720 EXPORT_SYMBOL(lu_session_tags_update);
1721
1722 void lu_session_tags_clear(__u32 tags)
1723 {
1724         spin_lock(&lu_keys_guard);
1725         lu_session_tags_default &= ~tags;
1726         key_set_version++;
1727         spin_unlock(&lu_keys_guard);
1728 }
1729 EXPORT_SYMBOL(lu_session_tags_clear);
1730
1731 int lu_env_init(struct lu_env *env, __u32 tags)
1732 {
1733         int result;
1734
1735         env->le_ses = NULL;
1736         result = lu_context_init(&env->le_ctx, tags);
1737         if (likely(result == 0))
1738                 lu_context_enter(&env->le_ctx);
1739         return result;
1740 }
1741 EXPORT_SYMBOL(lu_env_init);
1742
1743 void lu_env_fini(struct lu_env *env)
1744 {
1745         lu_context_exit(&env->le_ctx);
1746         lu_context_fini(&env->le_ctx);
1747         env->le_ses = NULL;
1748 }
1749 EXPORT_SYMBOL(lu_env_fini);
1750
1751 int lu_env_refill(struct lu_env *env)
1752 {
1753         int result;
1754
1755         result = lu_context_refill(&env->le_ctx);
1756         if (result == 0 && env->le_ses != NULL)
1757                 result = lu_context_refill(env->le_ses);
1758         return result;
1759 }
1760 EXPORT_SYMBOL(lu_env_refill);
1761
1762 /**
1763  * Currently, this API will only be used by echo client.
1764  * Because echo client and normal lustre client will share
1765  * same cl_env cache. So echo client needs to refresh
1766  * the env context after it get one from the cache, especially
1767  * when normal client and echo client co-exist in the same client.
1768  */
1769 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1770                           __u32 stags)
1771 {
1772         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1773                 env->le_ctx.lc_version = 0;
1774                 env->le_ctx.lc_tags |= ctags;
1775         }
1776
1777         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1778                 env->le_ses->lc_version = 0;
1779                 env->le_ses->lc_tags |= stags;
1780         }
1781
1782         return lu_env_refill(env);
1783 }
1784 EXPORT_SYMBOL(lu_env_refill_by_tags);
1785
1786
1787 typedef struct lu_site_stats{
1788         unsigned        lss_populated;
1789         unsigned        lss_max_search;
1790         unsigned        lss_total;
1791         unsigned        lss_busy;
1792 } lu_site_stats_t;
1793
1794 static void lu_site_stats_get(struct cfs_hash *hs,
1795                               lu_site_stats_t *stats, int populated)
1796 {
1797         struct cfs_hash_bd bd;
1798         int        i;
1799
1800         cfs_hash_for_each_bucket(hs, &bd, i) {
1801                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1802                 struct hlist_head       *hhead;
1803
1804                 cfs_hash_bd_lock(hs, &bd, 1);
1805                 stats->lss_busy  += bkt->lsb_busy;
1806                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1807                 stats->lss_max_search = max((int)stats->lss_max_search,
1808                                             cfs_hash_bd_depmax_get(&bd));
1809                 if (!populated) {
1810                         cfs_hash_bd_unlock(hs, &bd, 1);
1811                         continue;
1812                 }
1813
1814                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1815                         if (!hlist_empty(hhead))
1816                                 stats->lss_populated++;
1817                 }
1818                 cfs_hash_bd_unlock(hs, &bd, 1);
1819         }
1820 }
1821
1822
1823 /*
1824  * There exists a potential lock inversion deadlock scenario when using
1825  * Lustre on top of ZFS. This occurs between one of ZFS's
1826  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
1827  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
1828  * while thread B will take the ht_lock and sleep on the lu_sites_guard
1829  * lock. Obviously neither thread will wake and drop their respective hold
1830  * on their lock.
1831  *
1832  * To prevent this from happening we must ensure the lu_sites_guard lock is
1833  * not taken while down this code path. ZFS reliably does not set the
1834  * __GFP_FS bit in its code paths, so this can be used to determine if it
1835  * is safe to take the lu_sites_guard lock.
1836  *
1837  * Ideally we should accurately return the remaining number of cached
1838  * objects without taking the  lu_sites_guard lock, but this is not
1839  * possible in the current implementation.
1840  */
1841 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1842                                            struct shrink_control *sc)
1843 {
1844         lu_site_stats_t stats;
1845         struct lu_site *s;
1846         struct lu_site *tmp;
1847         unsigned long cached = 0;
1848
1849         if (!(sc->gfp_mask & __GFP_FS))
1850                 return 0;
1851
1852         mutex_lock(&lu_sites_guard);
1853         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1854                 memset(&stats, 0, sizeof(stats));
1855                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1856                 cached += stats.lss_total - stats.lss_busy;
1857         }
1858         mutex_unlock(&lu_sites_guard);
1859
1860         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1861         CDEBUG(D_INODE, "%ld objects cached\n", cached);
1862         return cached;
1863 }
1864
1865 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1866                                           struct shrink_control *sc)
1867 {
1868         struct lu_site *s;
1869         struct lu_site *tmp;
1870         unsigned long remain = sc->nr_to_scan, freed = 0;
1871         LIST_HEAD(splice);
1872
1873         if (!(sc->gfp_mask & __GFP_FS))
1874                 /* We must not take the lu_sites_guard lock when
1875                  * __GFP_FS is *not* set because of the deadlock
1876                  * possibility detailed above. Additionally,
1877                  * since we cannot determine the number of
1878                  * objects in the cache without taking this
1879                  * lock, we're in a particularly tough spot. As
1880                  * a result, we'll just lie and say our cache is
1881                  * empty. This _should_ be ok, as we can't
1882                  * reclaim objects when __GFP_FS is *not* set
1883                  * anyways.
1884                  */
1885                 return SHRINK_STOP;
1886
1887         mutex_lock(&lu_sites_guard);
1888         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1889                 freed = lu_site_purge(&lu_shrink_env, s, remain);
1890                 remain -= freed;
1891                 /*
1892                  * Move just shrunk site to the tail of site list to
1893                  * assure shrinking fairness.
1894                  */
1895                 list_move_tail(&s->ls_linkage, &splice);
1896         }
1897         list_splice(&splice, lu_sites.prev);
1898         mutex_unlock(&lu_sites_guard);
1899
1900         return sc->nr_to_scan - remain;
1901 }
1902
1903 /*
1904  * Debugging stuff.
1905  */
1906
1907 /**
1908  * Environment to be used in debugger, contains all tags.
1909  */
1910 struct lu_env lu_debugging_env;
1911
1912 /**
1913  * Debugging printer function using printk().
1914  */
1915 int lu_printk_printer(const struct lu_env *env,
1916                       void *unused, const char *format, ...)
1917 {
1918         va_list args;
1919
1920         va_start(args, format);
1921         vprintk(format, args);
1922         va_end(args);
1923         return 0;
1924 }
1925
1926 static struct shrinker lu_site_shrinker = {
1927         .count_objects  = lu_cache_shrink_count,
1928         .scan_objects   = lu_cache_shrink_scan,
1929         .seeks          = DEFAULT_SEEKS,
1930 };
1931
1932 /**
1933  * Initialization of global lu_* data.
1934  */
1935 int lu_global_init(void)
1936 {
1937         int result;
1938
1939         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1940
1941         result = lu_ref_global_init();
1942         if (result != 0)
1943                 return result;
1944
1945         LU_CONTEXT_KEY_INIT(&lu_global_key);
1946         result = lu_context_key_register(&lu_global_key);
1947         if (result != 0)
1948                 return result;
1949
1950         /*
1951          * At this level, we don't know what tags are needed, so allocate them
1952          * conservatively. This should not be too bad, because this
1953          * environment is global.
1954          */
1955         mutex_lock(&lu_sites_guard);
1956         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1957         mutex_unlock(&lu_sites_guard);
1958         if (result != 0)
1959                 return result;
1960
1961         /*
1962          * seeks estimation: 3 seeks to read a record from oi, one to read
1963          * inode, one for ea. Unfortunately setting this high value results in
1964          * lu_object/inode cache consuming all the memory.
1965          */
1966         register_shrinker(&lu_site_shrinker);
1967
1968         return result;
1969 }
1970
1971 /**
1972  * Dual to lu_global_init().
1973  */
1974 void lu_global_fini(void)
1975 {
1976         unregister_shrinker(&lu_site_shrinker);
1977         lu_context_key_degister(&lu_global_key);
1978
1979         /*
1980          * Tear shrinker environment down _after_ de-registering
1981          * lu_global_key, because the latter has a value in the former.
1982          */
1983         mutex_lock(&lu_sites_guard);
1984         lu_env_fini(&lu_shrink_env);
1985         mutex_unlock(&lu_sites_guard);
1986
1987         lu_ref_global_fini();
1988 }
1989
1990 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1991 {
1992 #if defined (CONFIG_PROC_FS)
1993         struct lprocfs_counter ret;
1994
1995         lprocfs_stats_collect(stats, idx, &ret);
1996         return (__u32)ret.lc_count;
1997 #else
1998         return 0;
1999 #endif
2000 }
2001
2002 /**
2003  * Output site statistical counters into a buffer. Suitable for
2004  * lprocfs_rd_*()-style functions.
2005  */
2006 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m)
2007 {
2008         lu_site_stats_t stats;
2009
2010         memset(&stats, 0, sizeof(stats));
2011         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2012
2013         seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2014                    stats.lss_busy,
2015                    stats.lss_total,
2016                    stats.lss_populated,
2017                    CFS_HASH_NHLIST(s->ls_obj_hash),
2018                    stats.lss_max_search,
2019                    ls_stats_read(s->ls_stats, LU_SS_CREATED),
2020                    ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2021                    ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2022                    ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2023                    ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2024                    ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2025         return 0;
2026 }
2027 EXPORT_SYMBOL(lu_site_stats_print);
2028
2029 /**
2030  * Helper function to initialize a number of kmem slab caches at once.
2031  */
2032 int lu_kmem_init(struct lu_kmem_descr *caches)
2033 {
2034         int result;
2035         struct lu_kmem_descr *iter = caches;
2036
2037         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2038                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2039                                                         iter->ckd_size,
2040                                                         0, 0, NULL);
2041                 if (*iter->ckd_cache == NULL) {
2042                         result = -ENOMEM;
2043                         /* free all previously allocated caches */
2044                         lu_kmem_fini(caches);
2045                         break;
2046                 }
2047         }
2048         return result;
2049 }
2050 EXPORT_SYMBOL(lu_kmem_init);
2051
2052 /**
2053  * Helper function to finalize a number of kmem slab cached at once. Dual to
2054  * lu_kmem_init().
2055  */
2056 void lu_kmem_fini(struct lu_kmem_descr *caches)
2057 {
2058         for (; caches->ckd_cache != NULL; ++caches) {
2059                 if (*caches->ckd_cache != NULL) {
2060                         kmem_cache_destroy(*caches->ckd_cache);
2061                         *caches->ckd_cache = NULL;
2062                 }
2063         }
2064 }
2065 EXPORT_SYMBOL(lu_kmem_fini);
2066
2067 /**
2068  * Temporary solution to be able to assign fid in ->do_create()
2069  * till we have fully-functional OST fids
2070  */
2071 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2072                           const struct lu_fid *fid)
2073 {
2074         struct lu_site          *s = o->lo_dev->ld_site;
2075         struct lu_fid           *old = &o->lo_header->loh_fid;
2076         struct lu_site_bkt_data *bkt;
2077         struct lu_object        *shadow;
2078         wait_queue_t             waiter;
2079         struct cfs_hash         *hs;
2080         struct cfs_hash_bd       bd;
2081         __u64                    version = 0;
2082
2083         LASSERT(fid_is_zero(old));
2084
2085         hs = s->ls_obj_hash;
2086         cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2087         shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2088         /* supposed to be unique */
2089         LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
2090         *old = *fid;
2091         bkt = cfs_hash_bd_extra_get(hs, &bd);
2092         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2093         bkt->lsb_busy++;
2094         cfs_hash_bd_unlock(hs, &bd, 1);
2095 }
2096 EXPORT_SYMBOL(lu_object_assign_fid);
2097
2098 /**
2099  * allocates object with 0 (non-assigned) fid
2100  * XXX: temporary solution to be able to assign fid in ->do_create()
2101  *      till we have fully-functional OST fids
2102  */
2103 struct lu_object *lu_object_anon(const struct lu_env *env,
2104                                  struct lu_device *dev,
2105                                  const struct lu_object_conf *conf)
2106 {
2107         struct lu_fid     fid;
2108         struct lu_object *o;
2109
2110         fid_zero(&fid);
2111         o = lu_object_alloc(env, dev, &fid, conf);
2112
2113         return o;
2114 }
2115 EXPORT_SYMBOL(lu_object_anon);
2116
2117 struct lu_buf LU_BUF_NULL = {
2118         .lb_buf = NULL,
2119         .lb_len = 0
2120 };
2121 EXPORT_SYMBOL(LU_BUF_NULL);
2122
2123 void lu_buf_free(struct lu_buf *buf)
2124 {
2125         LASSERT(buf);
2126         if (buf->lb_buf) {
2127                 LASSERT(buf->lb_len > 0);
2128                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2129                 buf->lb_buf = NULL;
2130                 buf->lb_len = 0;
2131         }
2132 }
2133 EXPORT_SYMBOL(lu_buf_free);
2134
2135 void lu_buf_alloc(struct lu_buf *buf, int size)
2136 {
2137         LASSERT(buf);
2138         LASSERT(buf->lb_buf == NULL);
2139         LASSERT(buf->lb_len == 0);
2140         OBD_ALLOC_LARGE(buf->lb_buf, size);
2141         if (likely(buf->lb_buf))
2142                 buf->lb_len = size;
2143 }
2144 EXPORT_SYMBOL(lu_buf_alloc);
2145
2146 void lu_buf_realloc(struct lu_buf *buf, int size)
2147 {
2148         lu_buf_free(buf);
2149         lu_buf_alloc(buf, size);
2150 }
2151 EXPORT_SYMBOL(lu_buf_realloc);
2152
2153 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len)
2154 {
2155         if (buf->lb_buf == NULL && buf->lb_len == 0)
2156                 lu_buf_alloc(buf, len);
2157
2158         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2159                 lu_buf_realloc(buf, len);
2160
2161         return buf;
2162 }
2163 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2164
2165 /**
2166  * Increase the size of the \a buf.
2167  * preserves old data in buffer
2168  * old buffer remains unchanged on error
2169  * \retval 0 or -ENOMEM
2170  */
2171 int lu_buf_check_and_grow(struct lu_buf *buf, int len)
2172 {
2173         char *ptr;
2174
2175         if (len <= buf->lb_len)
2176                 return 0;
2177
2178         OBD_ALLOC_LARGE(ptr, len);
2179         if (ptr == NULL)
2180                 return -ENOMEM;
2181
2182         /* Free the old buf */
2183         if (buf->lb_buf != NULL) {
2184                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2185                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2186         }
2187
2188         buf->lb_buf = ptr;
2189         buf->lb_len = len;
2190         return 0;
2191 }
2192 EXPORT_SYMBOL(lu_buf_check_and_grow);