Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / lustre / lustre / llite / rw26.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/lustre/llite/rw26.c
37  *
38  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
39  */
40
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/uaccess.h>
48
49 #include <linux/migrate.h>
50 #include <linux/fs.h>
51 #include <linux/buffer_head.h>
52 #include <linux/mpage.h>
53 #include <linux/writeback.h>
54 #include <linux/pagemap.h>
55
56 #define DEBUG_SUBSYSTEM S_LLITE
57
58 #include "../include/lustre_lite.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61
62 /**
63  * Implements Linux VM address_space::invalidatepage() method. This method is
64  * called when the page is truncate from a file, either as a result of
65  * explicit truncate, or when inode is removed from memory (as a result of
66  * final iput(), umount, or memory pressure induced icache shrinking).
67  *
68  * [0, offset] bytes of the page remain valid (this is for a case of not-page
69  * aligned truncate). Lustre leaves partially truncated page in the cache,
70  * relying on struct inode::i_size to limit further accesses.
71  */
72 static void ll_invalidatepage(struct page *vmpage, unsigned int offset,
73                               unsigned int length)
74 {
75         struct inode     *inode;
76         struct lu_env    *env;
77         struct cl_page   *page;
78         struct cl_object *obj;
79
80         int refcheck;
81
82         LASSERT(PageLocked(vmpage));
83         LASSERT(!PageWriteback(vmpage));
84
85         /*
86          * It is safe to not check anything in invalidatepage/releasepage
87          * below because they are run with page locked and all our io is
88          * happening with locked page too
89          */
90         if (offset == 0 && length == PAGE_CACHE_SIZE) {
91                 env = cl_env_get(&refcheck);
92                 if (!IS_ERR(env)) {
93                         inode = vmpage->mapping->host;
94                         obj = ll_i2info(inode)->lli_clob;
95                         if (obj != NULL) {
96                                 page = cl_vmpage_page(vmpage, obj);
97                                 if (page != NULL) {
98                                         lu_ref_add(&page->cp_reference,
99                                                    "delete", vmpage);
100                                         cl_page_delete(env, page);
101                                         lu_ref_del(&page->cp_reference,
102                                                    "delete", vmpage);
103                                         cl_page_put(env, page);
104                                 }
105                         } else
106                                 LASSERT(vmpage->private == 0);
107                         cl_env_put(env, &refcheck);
108                 }
109         }
110 }
111
112 #ifdef HAVE_RELEASEPAGE_WITH_INT
113 #define RELEASEPAGE_ARG_TYPE int
114 #else
115 #define RELEASEPAGE_ARG_TYPE gfp_t
116 #endif
117 static int ll_releasepage(struct page *vmpage, RELEASEPAGE_ARG_TYPE gfp_mask)
118 {
119         struct cl_env_nest nest;
120         struct lu_env     *env;
121         struct cl_object  *obj;
122         struct cl_page    *page;
123         struct address_space *mapping;
124         int result;
125
126         LASSERT(PageLocked(vmpage));
127         if (PageWriteback(vmpage) || PageDirty(vmpage))
128                 return 0;
129
130         mapping = vmpage->mapping;
131         if (mapping == NULL)
132                 return 1;
133
134         obj = ll_i2info(mapping->host)->lli_clob;
135         if (obj == NULL)
136                 return 1;
137
138         /* 1 for page allocator, 1 for cl_page and 1 for page cache */
139         if (page_count(vmpage) > 3)
140                 return 0;
141
142         /* TODO: determine what gfp should be used by @gfp_mask. */
143         env = cl_env_nested_get(&nest);
144         if (IS_ERR(env))
145                 /* If we can't allocate an env we won't call cl_page_put()
146                  * later on which further means it's impossible to drop
147                  * page refcount by cl_page, so ask kernel to not free
148                  * this page. */
149                 return 0;
150
151         page = cl_vmpage_page(vmpage, obj);
152         result = page == NULL;
153         if (page != NULL) {
154                 if (!cl_page_in_use(page)) {
155                         result = 1;
156                         cl_page_delete(env, page);
157                 }
158                 cl_page_put(env, page);
159         }
160         cl_env_nested_put(&nest, env);
161         return result;
162 }
163
164 static int ll_set_page_dirty(struct page *vmpage)
165 {
166 #if 0
167         struct cl_page    *page = vvp_vmpage_page_transient(vmpage);
168         struct vvp_object *obj  = cl_inode2vvp(vmpage->mapping->host);
169         struct vvp_page   *cpg;
170
171         /*
172          * XXX should page method be called here?
173          */
174         LASSERT(&obj->co_cl == page->cp_obj);
175         cpg = cl2vvp_page(cl_page_at(page, &vvp_device_type));
176         /*
177          * XXX cannot do much here, because page is possibly not locked:
178          * sys_munmap()->...
179          *     ->unmap_page_range()->zap_pte_range()->set_page_dirty().
180          */
181         vvp_write_pending(obj, cpg);
182 #endif
183         return __set_page_dirty_nobuffers(vmpage);
184 }
185
186 #define MAX_DIRECTIO_SIZE (2*1024*1024*1024UL)
187
188 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
189                                     size_t size, struct page ***pages,
190                                     int *max_pages)
191 {
192         int result = -ENOMEM;
193
194         /* set an arbitrary limit to prevent arithmetic overflow */
195         if (size > MAX_DIRECTIO_SIZE) {
196                 *pages = NULL;
197                 return -EFBIG;
198         }
199
200         *max_pages = (user_addr + size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
201         *max_pages -= user_addr >> PAGE_CACHE_SHIFT;
202
203         OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages));
204         if (*pages) {
205                 result = get_user_pages_fast(user_addr, *max_pages,
206                                              (rw == READ), *pages);
207                 if (unlikely(result <= 0))
208                         OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages));
209         }
210
211         return result;
212 }
213
214 /*  ll_free_user_pages - tear down page struct array
215  *  @pages: array of page struct pointers underlying target buffer */
216 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
217 {
218         int i;
219
220         for (i = 0; i < npages; i++) {
221                 if (do_dirty)
222                         set_page_dirty_lock(pages[i]);
223                 page_cache_release(pages[i]);
224         }
225         kvfree(pages);
226 }
227
228 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
229                            int rw, struct inode *inode,
230                            struct ll_dio_pages *pv)
231 {
232         struct cl_page    *clp;
233         struct cl_2queue  *queue;
234         struct cl_object  *obj = io->ci_obj;
235         int i;
236         ssize_t rc = 0;
237         loff_t file_offset  = pv->ldp_start_offset;
238         long size          = pv->ldp_size;
239         int page_count      = pv->ldp_nr;
240         struct page **pages = pv->ldp_pages;
241         long page_size      = cl_page_size(obj);
242         bool do_io;
243         int  io_pages       = 0;
244
245         queue = &io->ci_queue;
246         cl_2queue_init(queue);
247         for (i = 0; i < page_count; i++) {
248                 if (pv->ldp_offsets)
249                     file_offset = pv->ldp_offsets[i];
250
251                 LASSERT(!(file_offset & (page_size - 1)));
252                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
253                                    pv->ldp_pages[i], CPT_TRANSIENT);
254                 if (IS_ERR(clp)) {
255                         rc = PTR_ERR(clp);
256                         break;
257                 }
258
259                 rc = cl_page_own(env, io, clp);
260                 if (rc) {
261                         LASSERT(clp->cp_state == CPS_FREEING);
262                         cl_page_put(env, clp);
263                         break;
264                 }
265
266                 do_io = true;
267
268                 /* check the page type: if the page is a host page, then do
269                  * write directly */
270                 if (clp->cp_type == CPT_CACHEABLE) {
271                         struct page *vmpage = cl_page_vmpage(env, clp);
272                         struct page *src_page;
273                         struct page *dst_page;
274                         void       *src;
275                         void       *dst;
276
277                         src_page = (rw == WRITE) ? pages[i] : vmpage;
278                         dst_page = (rw == WRITE) ? vmpage : pages[i];
279
280                         src = kmap_atomic(src_page);
281                         dst = kmap_atomic(dst_page);
282                         memcpy(dst, src, min(page_size, size));
283                         kunmap_atomic(dst);
284                         kunmap_atomic(src);
285
286                         /* make sure page will be added to the transfer by
287                          * cl_io_submit()->...->vvp_page_prep_write(). */
288                         if (rw == WRITE)
289                                 set_page_dirty(vmpage);
290
291                         if (rw == READ) {
292                                 /* do not issue the page for read, since it
293                                  * may reread a ra page which has NOT uptodate
294                                  * bit set. */
295                                 cl_page_disown(env, io, clp);
296                                 do_io = false;
297                         }
298                 }
299
300                 if (likely(do_io)) {
301                         cl_2queue_add(queue, clp);
302
303                         /*
304                          * Set page clip to tell transfer formation engine
305                          * that page has to be sent even if it is beyond KMS.
306                          */
307                         cl_page_clip(env, clp, 0, min(size, page_size));
308
309                         ++io_pages;
310                 }
311
312                 /* drop the reference count for cl_page_find */
313                 cl_page_put(env, clp);
314                 size -= page_size;
315                 file_offset += page_size;
316         }
317
318         if (rc == 0 && io_pages) {
319                 rc = cl_io_submit_sync(env, io,
320                                        rw == READ ? CRT_READ : CRT_WRITE,
321                                        queue, 0);
322         }
323         if (rc == 0)
324                 rc = pv->ldp_size;
325
326         cl_2queue_discard(env, io, queue);
327         cl_2queue_disown(env, io, queue);
328         cl_2queue_fini(env, queue);
329         return rc;
330 }
331 EXPORT_SYMBOL(ll_direct_rw_pages);
332
333 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
334                                    int rw, struct inode *inode,
335                                    struct address_space *mapping,
336                                    size_t size, loff_t file_offset,
337                                    struct page **pages, int page_count)
338 {
339     struct ll_dio_pages pvec = { .ldp_pages     = pages,
340                                  .ldp_nr           = page_count,
341                                  .ldp_size       = size,
342                                  .ldp_offsets      = NULL,
343                                  .ldp_start_offset = file_offset
344                                };
345
346     return ll_direct_rw_pages(env, io, rw, inode, &pvec);
347 }
348
349 #ifdef KMALLOC_MAX_SIZE
350 #define MAX_MALLOC KMALLOC_MAX_SIZE
351 #else
352 #define MAX_MALLOC (128 * 1024)
353 #endif
354
355 /* This is the maximum size of a single O_DIRECT request, based on the
356  * kmalloc limit.  We need to fit all of the brw_page structs, each one
357  * representing PAGE_SIZE worth of user data, into a single buffer, and
358  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
359  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */
360 #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * PAGE_CACHE_SIZE) & \
361                       ~(DT_MAX_BRW_SIZE - 1))
362 static ssize_t ll_direct_IO_26(struct kiocb *iocb, struct iov_iter *iter,
363                                loff_t file_offset)
364 {
365         struct lu_env *env;
366         struct cl_io *io;
367         struct file *file = iocb->ki_filp;
368         struct inode *inode = file->f_mapping->host;
369         struct ccc_object *obj = cl_inode2ccc(inode);
370         ssize_t count = iov_iter_count(iter);
371         ssize_t tot_bytes = 0, result = 0;
372         struct ll_inode_info *lli = ll_i2info(inode);
373         long size = MAX_DIO_SIZE;
374         int refcheck;
375
376         if (!lli->lli_has_smd)
377                 return -EBADF;
378
379         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
380         if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
381                 return -EINVAL;
382
383         CDEBUG(D_VFSTRACE,
384                "VFS Op:inode=%lu/%u(%p), size=%zd (max %lu), offset=%lld=%llx, pages %zd (max %lu)\n",
385                inode->i_ino, inode->i_generation, inode, count, MAX_DIO_SIZE,
386                file_offset, file_offset, count >> PAGE_CACHE_SHIFT,
387                MAX_DIO_SIZE >> PAGE_CACHE_SHIFT);
388
389         /* Check that all user buffers are aligned as well */
390         if (iov_iter_alignment(iter) & ~CFS_PAGE_MASK)
391                 return -EINVAL;
392
393         env = cl_env_get(&refcheck);
394         LASSERT(!IS_ERR(env));
395         io = ccc_env_io(env)->cui_cl.cis_io;
396         LASSERT(io != NULL);
397
398         /* 0. Need locking between buffered and direct access. and race with
399          *    size changing by concurrent truncates and writes.
400          * 1. Need inode mutex to operate transient pages.
401          */
402         if (iov_iter_rw(iter) == READ)
403                 mutex_lock(&inode->i_mutex);
404
405         LASSERT(obj->cob_transient_pages == 0);
406         while (iov_iter_count(iter)) {
407                 struct page **pages;
408                 size_t offs;
409
410                 count = min_t(size_t, iov_iter_count(iter), size);
411                 if (iov_iter_rw(iter) == READ) {
412                         if (file_offset >= i_size_read(inode))
413                                 break;
414                         if (file_offset + count > i_size_read(inode))
415                                 count = i_size_read(inode) - file_offset;
416                 }
417
418                 result = iov_iter_get_pages_alloc(iter, &pages, count, &offs);
419                 if (likely(result > 0)) {
420                         int n = DIV_ROUND_UP(result + offs, PAGE_SIZE);
421                         result = ll_direct_IO_26_seg(env, io, iov_iter_rw(iter),
422                                                      inode, file->f_mapping,
423                                                      result, file_offset, pages,
424                                                      n);
425                         ll_free_user_pages(pages, n, iov_iter_rw(iter) == READ);
426                 }
427                 if (unlikely(result <= 0)) {
428                         /* If we can't allocate a large enough buffer
429                          * for the request, shrink it to a smaller
430                          * PAGE_SIZE multiple and try again.
431                          * We should always be able to kmalloc for a
432                          * page worth of page pointers = 4MB on i386. */
433                         if (result == -ENOMEM &&
434                             size > (PAGE_CACHE_SIZE / sizeof(*pages)) *
435                                    PAGE_CACHE_SIZE) {
436                                 size = ((((size / 2) - 1) |
437                                          ~CFS_PAGE_MASK) + 1) &
438                                         CFS_PAGE_MASK;
439                                 CDEBUG(D_VFSTRACE, "DIO size now %lu\n",
440                                        size);
441                                 continue;
442                         }
443
444                         goto out;
445                 }
446                 iov_iter_advance(iter, result);
447                 tot_bytes += result;
448                 file_offset += result;
449         }
450 out:
451         LASSERT(obj->cob_transient_pages == 0);
452         if (iov_iter_rw(iter) == READ)
453                 mutex_unlock(&inode->i_mutex);
454
455         if (tot_bytes > 0) {
456                 if (iov_iter_rw(iter) == WRITE) {
457                         struct lov_stripe_md *lsm;
458
459                         lsm = ccc_inode_lsm_get(inode);
460                         LASSERT(lsm != NULL);
461                         lov_stripe_lock(lsm);
462                         obd_adjust_kms(ll_i2dtexp(inode), lsm, file_offset, 0);
463                         lov_stripe_unlock(lsm);
464                         ccc_inode_lsm_put(inode, lsm);
465                 }
466         }
467
468         cl_env_put(env, &refcheck);
469         return tot_bytes ? : result;
470 }
471
472 static int ll_write_begin(struct file *file, struct address_space *mapping,
473                          loff_t pos, unsigned len, unsigned flags,
474                          struct page **pagep, void **fsdata)
475 {
476         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
477         struct page *page;
478         int rc;
479         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
480
481         page = grab_cache_page_write_begin(mapping, index, flags);
482         if (!page)
483                 return -ENOMEM;
484
485         *pagep = page;
486
487         rc = ll_prepare_write(file, page, from, from + len);
488         if (rc) {
489                 unlock_page(page);
490                 page_cache_release(page);
491         }
492         return rc;
493 }
494
495 static int ll_write_end(struct file *file, struct address_space *mapping,
496                         loff_t pos, unsigned len, unsigned copied,
497                         struct page *page, void *fsdata)
498 {
499         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
500         int rc;
501
502         rc = ll_commit_write(file, page, from, from + copied);
503         unlock_page(page);
504         page_cache_release(page);
505
506         return rc ?: copied;
507 }
508
509 #ifdef CONFIG_MIGRATION
510 static int ll_migratepage(struct address_space *mapping,
511                          struct page *newpage, struct page *page,
512                          enum migrate_mode mode
513                 )
514 {
515         /* Always fail page migration until we have a proper implementation */
516         return -EIO;
517 }
518 #endif
519
520 #ifndef MS_HAS_NEW_AOPS
521 const struct address_space_operations ll_aops = {
522         .readpage       = ll_readpage,
523         .direct_IO      = ll_direct_IO_26,
524         .writepage      = ll_writepage,
525         .writepages     = ll_writepages,
526         .set_page_dirty = ll_set_page_dirty,
527         .write_begin    = ll_write_begin,
528         .write_end      = ll_write_end,
529         .invalidatepage = ll_invalidatepage,
530         .releasepage    = (void *)ll_releasepage,
531 #ifdef CONFIG_MIGRATION
532         .migratepage    = ll_migratepage,
533 #endif
534 };
535 #else
536 const struct address_space_operations_ext ll_aops = {
537         .orig_aops.readpage       = ll_readpage,
538 /*      .orig_aops.readpages      = ll_readpages, */
539         .orig_aops.direct_IO      = ll_direct_IO_26,
540         .orig_aops.writepage      = ll_writepage,
541         .orig_aops.writepages     = ll_writepages,
542         .orig_aops.set_page_dirty = ll_set_page_dirty,
543         .orig_aops.prepare_write  = ll_prepare_write,
544         .orig_aops.commit_write   = ll_commit_write,
545         .orig_aops.invalidatepage = ll_invalidatepage,
546         .orig_aops.releasepage    = ll_releasepage,
547 #ifdef CONFIG_MIGRATION
548         .orig_aops.migratepage    = ll_migratepage,
549 #endif
550         .write_begin    = ll_write_begin,
551         .write_end      = ll_write_end
552 };
553 #endif