These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / staging / lustre / lnet / lnet / nidstrings.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lnet/lnet/nidstrings.c
37  *
38  * Author: Phil Schwan <phil@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LNET
42
43 #include "../../include/linux/libcfs/libcfs.h"
44 #include "../../include/linux/lnet/lnet.h"
45
46 /* max value for numeric network address */
47 #define MAX_NUMERIC_VALUE 0xffffffff
48
49 #define IPSTRING_LENGTH 16
50
51 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
52  * consistent in all conversion functions.  Some code fragments are copied
53  * around for the sake of clarity...
54  */
55
56 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
57  * Choose the number of nidstrings to support the MAXIMUM expected number of
58  * concurrent users.  If there are more, the returned string will be volatile.
59  * NB this number must allow for a process to be descheduled for a timeslice
60  * between getting its string and using it.
61  */
62
63 static char      libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
64 static int       libcfs_nidstring_idx;
65
66 static DEFINE_SPINLOCK(libcfs_nidstring_lock);
67
68 static struct netstrfns *libcfs_namenum2netstrfns(const char *name);
69
70 char *
71 libcfs_next_nidstring(void)
72 {
73         char *str;
74         unsigned long flags;
75
76         spin_lock_irqsave(&libcfs_nidstring_lock, flags);
77
78         str = libcfs_nidstrings[libcfs_nidstring_idx++];
79         if (libcfs_nidstring_idx == ARRAY_SIZE(libcfs_nidstrings))
80                 libcfs_nidstring_idx = 0;
81
82         spin_unlock_irqrestore(&libcfs_nidstring_lock, flags);
83         return str;
84 }
85 EXPORT_SYMBOL(libcfs_next_nidstring);
86
87 /**
88  * Nid range list syntax.
89  * \verbatim
90  *
91  * <nidlist>         :== <nidrange> [ ' ' <nidrange> ]
92  * <nidrange>        :== <addrrange> '@' <net>
93  * <addrrange>       :== '*' |
94  *                       <ipaddr_range> |
95  *                       <cfs_expr_list>
96  * <ipaddr_range>    :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
97  *                       <cfs_expr_list>
98  * <cfs_expr_list>   :== <number> |
99  *                       <expr_list>
100  * <expr_list>       :== '[' <range_expr> [ ',' <range_expr>] ']'
101  * <range_expr>      :== <number> |
102  *                       <number> '-' <number> |
103  *                       <number> '-' <number> '/' <number>
104  * <net>             :== <netname> | <netname><number>
105  * <netname>         :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
106  *                       "vib" | "ra" | "elan" | "mx" | "ptl"
107  * \endverbatim
108  */
109
110 /**
111  * Structure to represent \<nidrange\> token of the syntax.
112  *
113  * One of this is created for each \<net\> parsed.
114  */
115 struct nidrange {
116         /**
117          * Link to list of this structures which is built on nid range
118          * list parsing.
119          */
120         struct list_head nr_link;
121         /**
122          * List head for addrrange::ar_link.
123          */
124         struct list_head nr_addrranges;
125         /**
126          * Flag indicating that *@<net> is found.
127          */
128         int nr_all;
129         /**
130          * Pointer to corresponding element of libcfs_netstrfns.
131          */
132         struct netstrfns *nr_netstrfns;
133         /**
134          * Number of network. E.g. 5 if \<net\> is "elan5".
135          */
136         int nr_netnum;
137 };
138
139 /**
140  * Structure to represent \<addrrange\> token of the syntax.
141  */
142 struct addrrange {
143         /**
144          * Link to nidrange::nr_addrranges.
145          */
146         struct list_head ar_link;
147         /**
148          * List head for cfs_expr_list::el_list.
149          */
150         struct list_head ar_numaddr_ranges;
151 };
152
153 /**
154  * Parses \<addrrange\> token on the syntax.
155  *
156  * Allocates struct addrrange and links to \a nidrange via
157  * (nidrange::nr_addrranges)
158  *
159  * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
160  * \retval -errno otherwise
161  */
162 static int
163 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
164 {
165         struct addrrange *addrrange;
166
167         if (src->ls_len == 1 && src->ls_str[0] == '*') {
168                 nidrange->nr_all = 1;
169                 return 0;
170         }
171
172         LIBCFS_ALLOC(addrrange, sizeof(struct addrrange));
173         if (addrrange == NULL)
174                 return -ENOMEM;
175         list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
176         INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
177
178         return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
179                                                 src->ls_len,
180                                                 &addrrange->ar_numaddr_ranges);
181 }
182
183 /**
184  * Finds or creates struct nidrange.
185  *
186  * Checks if \a src is a valid network name, looks for corresponding
187  * nidrange on the ist of nidranges (\a nidlist), creates new struct
188  * nidrange if it is not found.
189  *
190  * \retval pointer to struct nidrange matching network specified via \a src
191  * \retval NULL if \a src does not match any network
192  */
193 static struct nidrange *
194 add_nidrange(const struct cfs_lstr *src,
195              struct list_head *nidlist)
196 {
197         struct netstrfns *nf;
198         struct nidrange *nr;
199         int endlen;
200         unsigned netnum;
201
202         if (src->ls_len >= LNET_NIDSTR_SIZE)
203                 return NULL;
204
205         nf = libcfs_namenum2netstrfns(src->ls_str);
206         if (nf == NULL)
207                 return NULL;
208         endlen = src->ls_len - strlen(nf->nf_name);
209         if (endlen == 0)
210                 /* network name only, e.g. "elan" or "tcp" */
211                 netnum = 0;
212         else {
213                 /* e.g. "elan25" or "tcp23", refuse to parse if
214                  * network name is not appended with decimal or
215                  * hexadecimal number */
216                 if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
217                                        endlen, &netnum, 0, MAX_NUMERIC_VALUE))
218                         return NULL;
219         }
220
221         list_for_each_entry(nr, nidlist, nr_link) {
222                 if (nr->nr_netstrfns != nf)
223                         continue;
224                 if (nr->nr_netnum != netnum)
225                         continue;
226                 return nr;
227         }
228
229         LIBCFS_ALLOC(nr, sizeof(struct nidrange));
230         if (nr == NULL)
231                 return NULL;
232         list_add_tail(&nr->nr_link, nidlist);
233         INIT_LIST_HEAD(&nr->nr_addrranges);
234         nr->nr_netstrfns = nf;
235         nr->nr_all = 0;
236         nr->nr_netnum = netnum;
237
238         return nr;
239 }
240
241 /**
242  * Parses \<nidrange\> token of the syntax.
243  *
244  * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
245  * \retval 0 otherwise
246  */
247 static int
248 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
249 {
250         struct cfs_lstr addrrange;
251         struct cfs_lstr net;
252         struct cfs_lstr tmp;
253         struct nidrange *nr;
254
255         tmp = *src;
256         if (cfs_gettok(src, '@', &addrrange) == 0)
257                 goto failed;
258
259         if (cfs_gettok(src, '@', &net) == 0 || src->ls_str != NULL)
260                 goto failed;
261
262         nr = add_nidrange(&net, nidlist);
263         if (nr == NULL)
264                 goto failed;
265
266         if (parse_addrange(&addrrange, nr) != 0)
267                 goto failed;
268
269         return 1;
270 failed:
271         CWARN("can't parse nidrange: \"%.*s\"\n", tmp.ls_len, tmp.ls_str);
272         return 0;
273 }
274
275 /**
276  * Frees addrrange structures of \a list.
277  *
278  * For each struct addrrange structure found on \a list it frees
279  * cfs_expr_list list attached to it and frees the addrrange itself.
280  *
281  * \retval none
282  */
283 static void
284 free_addrranges(struct list_head *list)
285 {
286         while (!list_empty(list)) {
287                 struct addrrange *ar;
288
289                 ar = list_entry(list->next, struct addrrange, ar_link);
290
291                 cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
292                 list_del(&ar->ar_link);
293                 LIBCFS_FREE(ar, sizeof(struct addrrange));
294         }
295 }
296
297 /**
298  * Frees nidrange strutures of \a list.
299  *
300  * For each struct nidrange structure found on \a list it frees
301  * addrrange list attached to it and frees the nidrange itself.
302  *
303  * \retval none
304  */
305 void
306 cfs_free_nidlist(struct list_head *list)
307 {
308         struct list_head *pos, *next;
309         struct nidrange *nr;
310
311         list_for_each_safe(pos, next, list) {
312                 nr = list_entry(pos, struct nidrange, nr_link);
313                 free_addrranges(&nr->nr_addrranges);
314                 list_del(pos);
315                 LIBCFS_FREE(nr, sizeof(struct nidrange));
316         }
317 }
318 EXPORT_SYMBOL(cfs_free_nidlist);
319
320 /**
321  * Parses nid range list.
322  *
323  * Parses with rigorous syntax and overflow checking \a str into
324  * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
325  * structures and links that structure to \a nidlist. The resulting
326  * list can be used to match a NID againts set of NIDS defined by \a
327  * str.
328  * \see cfs_match_nid
329  *
330  * \retval 1 on success
331  * \retval 0 otherwise
332  */
333 int
334 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
335 {
336         struct cfs_lstr src;
337         struct cfs_lstr res;
338         int rc;
339
340         src.ls_str = str;
341         src.ls_len = len;
342         INIT_LIST_HEAD(nidlist);
343         while (src.ls_str) {
344                 rc = cfs_gettok(&src, ' ', &res);
345                 if (rc == 0) {
346                         cfs_free_nidlist(nidlist);
347                         return 0;
348                 }
349                 rc = parse_nidrange(&res, nidlist);
350                 if (rc == 0) {
351                         cfs_free_nidlist(nidlist);
352                         return 0;
353                 }
354         }
355         return 1;
356 }
357 EXPORT_SYMBOL(cfs_parse_nidlist);
358
359 /**
360  * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
361  *
362  * \see cfs_parse_nidlist()
363  *
364  * \retval 1 on match
365  * \retval 0  otherwises
366  */
367 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
368 {
369         struct nidrange *nr;
370         struct addrrange *ar;
371
372         list_for_each_entry(nr, nidlist, nr_link) {
373                 if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
374                         continue;
375                 if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
376                         continue;
377                 if (nr->nr_all)
378                         return 1;
379                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
380                         if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
381                                                        &ar->ar_numaddr_ranges))
382                                 return 1;
383         }
384         return 0;
385 }
386 EXPORT_SYMBOL(cfs_match_nid);
387
388 /**
389  * Print the network part of the nidrange \a nr into the specified \a buffer.
390  *
391  * \retval number of characters written
392  */
393 static int
394 cfs_print_network(char *buffer, int count, struct nidrange *nr)
395 {
396         struct netstrfns *nf = nr->nr_netstrfns;
397
398         if (nr->nr_netnum == 0)
399                 return scnprintf(buffer, count, "@%s", nf->nf_name);
400         else
401                 return scnprintf(buffer, count, "@%s%u",
402                                  nf->nf_name, nr->nr_netnum);
403 }
404
405 /**
406  * Print a list of addrrange (\a addrranges) into the specified \a buffer.
407  * At max \a count characters can be printed into \a buffer.
408  *
409  * \retval number of characters written
410  */
411 static int
412 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
413                      struct nidrange *nr)
414 {
415         int i = 0;
416         struct addrrange *ar;
417         struct netstrfns *nf = nr->nr_netstrfns;
418
419         list_for_each_entry(ar, addrranges, ar_link) {
420                 if (i != 0)
421                         i += scnprintf(buffer + i, count - i, " ");
422                 i += nf->nf_print_addrlist(buffer + i, count - i,
423                                            &ar->ar_numaddr_ranges);
424                 i += cfs_print_network(buffer + i, count - i, nr);
425         }
426         return i;
427 }
428
429 /**
430  * Print a list of nidranges (\a nidlist) into the specified \a buffer.
431  * At max \a count characters can be printed into \a buffer.
432  * Nidranges are separated by a space character.
433  *
434  * \retval number of characters written
435  */
436 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
437 {
438         int i = 0;
439         struct nidrange *nr;
440
441         if (count <= 0)
442                 return 0;
443
444         list_for_each_entry(nr, nidlist, nr_link) {
445                 if (i != 0)
446                         i += scnprintf(buffer + i, count - i, " ");
447
448                 if (nr->nr_all != 0) {
449                         LASSERT(list_empty(&nr->nr_addrranges));
450                         i += scnprintf(buffer + i, count - i, "*");
451                         i += cfs_print_network(buffer + i, count - i, nr);
452                 } else {
453                         i += cfs_print_addrranges(buffer + i, count - i,
454                                                   &nr->nr_addrranges, nr);
455                 }
456         }
457         return i;
458 }
459 EXPORT_SYMBOL(cfs_print_nidlist);
460
461 /**
462  * Determines minimum and maximum addresses for a single
463  * numeric address range
464  *
465  * \param       ar
466  * \param       min_nid
467  * \param       max_nid
468  */
469 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
470                               __u32 *max_nid)
471 {
472         struct cfs_expr_list *el;
473         struct cfs_range_expr *re;
474         __u32 tmp_ip_addr = 0;
475         unsigned int min_ip[4] = {0};
476         unsigned int max_ip[4] = {0};
477         int re_count = 0;
478
479         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
480                 list_for_each_entry(re, &el->el_exprs, re_link) {
481                         min_ip[re_count] = re->re_lo;
482                         max_ip[re_count] = re->re_hi;
483                         re_count++;
484                 }
485         }
486
487         tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
488                        (min_ip[2] << 8) | min_ip[3]);
489
490         if (min_nid != NULL)
491                 *min_nid = tmp_ip_addr;
492
493         tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
494                        (max_ip[2] << 8) | max_ip[3]);
495
496         if (max_nid != NULL)
497                 *max_nid = tmp_ip_addr;
498 }
499
500 /**
501  * Determines minimum and maximum addresses for a single
502  * numeric address range
503  *
504  * \param       ar
505  * \param       min_nid
506  * \param       max_nid
507  */
508 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
509                                __u32 *max_nid)
510 {
511         struct cfs_expr_list *el;
512         struct cfs_range_expr *re;
513         unsigned int min_addr = 0;
514         unsigned int max_addr = 0;
515
516         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
517                 list_for_each_entry(re, &el->el_exprs, re_link) {
518                         if (re->re_lo < min_addr || min_addr == 0)
519                                 min_addr = re->re_lo;
520                         if (re->re_hi > max_addr)
521                                 max_addr = re->re_hi;
522                 }
523         }
524
525         if (min_nid != NULL)
526                 *min_nid = min_addr;
527         if (max_nid != NULL)
528                 *max_nid = max_addr;
529 }
530
531 /**
532  * Determines whether an expression list in an nidrange contains exactly
533  * one contiguous address range. Calls the correct netstrfns for the LND
534  *
535  * \param       *nidlist
536  *
537  * \retval      true if contiguous
538  * \retval      false if not contiguous
539  */
540 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
541 {
542         struct nidrange *nr;
543         struct netstrfns *nf = NULL;
544         char *lndname = NULL;
545         int netnum = -1;
546
547         list_for_each_entry(nr, nidlist, nr_link) {
548                 nf = nr->nr_netstrfns;
549                 if (lndname == NULL)
550                         lndname = nf->nf_name;
551                 if (netnum == -1)
552                         netnum = nr->nr_netnum;
553
554                 if (strcmp(lndname, nf->nf_name) != 0 ||
555                     netnum != nr->nr_netnum)
556                         return false;
557         }
558
559         if (nf == NULL)
560                 return false;
561
562         if (!nf->nf_is_contiguous(nidlist))
563                 return false;
564
565         return true;
566 }
567 EXPORT_SYMBOL(cfs_nidrange_is_contiguous);
568
569 /**
570  * Determines whether an expression list in an num nidrange contains exactly
571  * one contiguous address range.
572  *
573  * \param       *nidlist
574  *
575  * \retval      true if contiguous
576  * \retval      false if not contiguous
577  */
578 static bool cfs_num_is_contiguous(struct list_head *nidlist)
579 {
580         struct nidrange *nr;
581         struct addrrange *ar;
582         struct cfs_expr_list *el;
583         struct cfs_range_expr *re;
584         int last_hi = 0;
585         __u32 last_end_nid = 0;
586         __u32 current_start_nid = 0;
587         __u32 current_end_nid = 0;
588
589         list_for_each_entry(nr, nidlist, nr_link) {
590                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
591                         cfs_num_ar_min_max(ar, &current_start_nid,
592                                            &current_end_nid);
593                         if (last_end_nid != 0 &&
594                             (current_start_nid - last_end_nid != 1))
595                                 return false;
596                         last_end_nid = current_end_nid;
597                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
598                                             el_link) {
599                                 list_for_each_entry(re, &el->el_exprs,
600                                                     re_link) {
601                                         if (re->re_stride > 1)
602                                                 return false;
603                                         else if (last_hi != 0 &&
604                                                  re->re_hi - last_hi != 1)
605                                                 return false;
606                                         last_hi = re->re_hi;
607                                 }
608                         }
609                 }
610         }
611
612         return true;
613 }
614
615 /**
616  * Determines whether an expression list in an ip nidrange contains exactly
617  * one contiguous address range.
618  *
619  * \param       *nidlist
620  *
621  * \retval      true if contiguous
622  * \retval      false if not contiguous
623  */
624 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
625 {
626         struct nidrange *nr;
627         struct addrrange *ar;
628         struct cfs_expr_list *el;
629         struct cfs_range_expr *re;
630         int expr_count;
631         int last_hi = 255;
632         int last_diff = 0;
633         __u32 last_end_nid = 0;
634         __u32 current_start_nid = 0;
635         __u32 current_end_nid = 0;
636
637         list_for_each_entry(nr, nidlist, nr_link) {
638                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
639                         last_hi = 255;
640                         last_diff = 0;
641                         cfs_ip_ar_min_max(ar, &current_start_nid,
642                                           &current_end_nid);
643                         if (last_end_nid != 0 &&
644                             (current_start_nid - last_end_nid != 1))
645                                 return false;
646                         last_end_nid = current_end_nid;
647                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
648                                             el_link) {
649                                 expr_count = 0;
650                                 list_for_each_entry(re, &el->el_exprs,
651                                                     re_link) {
652                                         expr_count++;
653                                         if (re->re_stride > 1 ||
654                                             (last_diff > 0 && last_hi != 255) ||
655                                             (last_diff > 0 && last_hi == 255 &&
656                                              re->re_lo > 0))
657                                                 return false;
658                                         last_hi = re->re_hi;
659                                         last_diff = re->re_hi - re->re_lo;
660                                 }
661                         }
662                 }
663         }
664
665         return true;
666 }
667
668 /**
669  * Takes a linked list of nidrange expressions, determines the minimum
670  * and maximum nid and creates appropriate nid structures
671  *
672  * \param       *nidlist
673  * \param       *min_nid
674  * \param       *max_nid
675  */
676 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
677                                char *max_nid, size_t nidstr_length)
678 {
679         struct nidrange *nr;
680         struct netstrfns *nf = NULL;
681         int netnum = -1;
682         __u32 min_addr;
683         __u32 max_addr;
684         char *lndname = NULL;
685         char min_addr_str[IPSTRING_LENGTH];
686         char max_addr_str[IPSTRING_LENGTH];
687
688         list_for_each_entry(nr, nidlist, nr_link) {
689                 nf = nr->nr_netstrfns;
690                 lndname = nf->nf_name;
691                 if (netnum == -1)
692                         netnum = nr->nr_netnum;
693
694                 nf->nf_min_max(nidlist, &min_addr, &max_addr);
695         }
696         nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
697         nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
698
699         snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
700                  netnum);
701         snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
702                  netnum);
703 }
704 EXPORT_SYMBOL(cfs_nidrange_find_min_max);
705
706 /**
707  * Determines the min and max NID values for num LNDs
708  *
709  * \param       *nidlist
710  * \param       *min_nid
711  * \param       *max_nid
712  */
713 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
714                             __u32 *max_nid)
715 {
716         struct nidrange *nr;
717         struct addrrange *ar;
718         unsigned int tmp_min_addr = 0;
719         unsigned int tmp_max_addr = 0;
720         unsigned int min_addr = 0;
721         unsigned int max_addr = 0;
722
723         list_for_each_entry(nr, nidlist, nr_link) {
724                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
725                         cfs_num_ar_min_max(ar, &tmp_min_addr,
726                                            &tmp_max_addr);
727                         if (tmp_min_addr < min_addr || min_addr == 0)
728                                 min_addr = tmp_min_addr;
729                         if (tmp_max_addr > max_addr)
730                                 max_addr = tmp_min_addr;
731                 }
732         }
733         *max_nid = max_addr;
734         *min_nid = min_addr;
735 }
736
737 /**
738  * Takes an nidlist and determines the minimum and maximum
739  * ip addresses.
740  *
741  * \param       *nidlist
742  * \param       *min_nid
743  * \param       *max_nid
744  */
745 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
746                            __u32 *max_nid)
747 {
748         struct nidrange *nr;
749         struct addrrange *ar;
750         __u32 tmp_min_ip_addr = 0;
751         __u32 tmp_max_ip_addr = 0;
752         __u32 min_ip_addr = 0;
753         __u32 max_ip_addr = 0;
754
755         list_for_each_entry(nr, nidlist, nr_link) {
756                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
757                         cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
758                                           &tmp_max_ip_addr);
759                         if (tmp_min_ip_addr < min_ip_addr || min_ip_addr == 0)
760                                 min_ip_addr = tmp_min_ip_addr;
761                         if (tmp_max_ip_addr > max_ip_addr)
762                                 max_ip_addr = tmp_max_ip_addr;
763                 }
764         }
765
766         if (min_nid != NULL)
767                 *min_nid = min_ip_addr;
768         if (max_nid != NULL)
769                 *max_nid = max_ip_addr;
770 }
771
772 static int
773 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
774 {
775         *addr = 0;
776         return 1;
777 }
778
779 static void
780 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
781 {
782         snprintf(str, size, "%u.%u.%u.%u",
783                  (addr >> 24) & 0xff, (addr >> 16) & 0xff,
784                  (addr >> 8) & 0xff, addr & 0xff);
785 }
786
787 /* CAVEAT EMPTOR XscanfX
788  * I use "%n" at the end of a sscanf format to detect trailing junk.  However
789  * sscanf may return immediately if it sees the terminating '0' in a string, so
790  * I initialise the %n variable to the expected length.  If sscanf sets it;
791  * fine, if it doesn't, then the scan ended at the end of the string, which is
792  * fine too :) */
793 static int
794 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
795 {
796         unsigned int    a;
797         unsigned int    b;
798         unsigned int    c;
799         unsigned int    d;
800         int             n = nob; /* XscanfX */
801
802         /* numeric IP? */
803         if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
804             n == nob &&
805             (a & ~0xff) == 0 && (b & ~0xff) == 0 &&
806             (c & ~0xff) == 0 && (d & ~0xff) == 0) {
807                 *addr = ((a<<24)|(b<<16)|(c<<8)|d);
808                 return 1;
809         }
810
811         return 0;
812 }
813
814 /* Used by lnet/config.c so it can't be static */
815 int
816 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
817 {
818         struct cfs_expr_list *el;
819         struct cfs_lstr src;
820         int rc;
821         int i;
822
823         src.ls_str = str;
824         src.ls_len = len;
825         i = 0;
826
827         while (src.ls_str != NULL) {
828                 struct cfs_lstr res;
829
830                 if (!cfs_gettok(&src, '.', &res)) {
831                         rc = -EINVAL;
832                         goto out;
833                 }
834
835                 rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
836                 if (rc != 0)
837                         goto out;
838
839                 list_add_tail(&el->el_link, list);
840                 i++;
841         }
842
843         if (i == 4)
844                 return 0;
845
846         rc = -EINVAL;
847 out:
848         cfs_expr_list_free_list(list);
849
850         return rc;
851 }
852
853 static int
854 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
855 {
856         int i = 0, j = 0;
857         struct cfs_expr_list *el;
858
859         list_for_each_entry(el, list, el_link) {
860                 LASSERT(j++ < 4);
861                 if (i != 0)
862                         i += scnprintf(buffer + i, count - i, ".");
863                 i += cfs_expr_list_print(buffer + i, count - i, el);
864         }
865         return i;
866 }
867
868 /**
869  * Matches address (\a addr) against address set encoded in \a list.
870  *
871  * \retval 1 if \a addr matches
872  * \retval 0 otherwise
873  */
874 int
875 cfs_ip_addr_match(__u32 addr, struct list_head *list)
876 {
877         struct cfs_expr_list *el;
878         int i = 0;
879
880         list_for_each_entry_reverse(el, list, el_link) {
881                 if (!cfs_expr_list_match(addr & 0xff, el))
882                         return 0;
883                 addr >>= 8;
884                 i++;
885         }
886
887         return i == 4;
888 }
889
890 static void
891 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
892 {
893         snprintf(str, size, "%u", addr);
894 }
895
896 static int
897 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
898 {
899         int     n;
900
901         n = nob;
902         if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
903                 return 1;
904
905         n = nob;
906         if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
907                 return 1;
908
909         n = nob;
910         if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
911                 return 1;
912
913         return 0;
914 }
915
916 /**
917  * Nf_parse_addrlist method for networks using numeric addresses.
918  *
919  * Examples of such networks are gm and elan.
920  *
921  * \retval 0 if \a str parsed to numeric address
922  * \retval errno otherwise
923  */
924 static int
925 libcfs_num_parse(char *str, int len, struct list_head *list)
926 {
927         struct cfs_expr_list *el;
928         int     rc;
929
930         rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
931         if (rc == 0)
932                 list_add_tail(&el->el_link, list);
933
934         return rc;
935 }
936
937 static int
938 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
939 {
940         int i = 0, j = 0;
941         struct cfs_expr_list *el;
942
943         list_for_each_entry(el, list, el_link) {
944                 LASSERT(j++ < 1);
945                 i += cfs_expr_list_print(buffer + i, count - i, el);
946         }
947         return i;
948 }
949
950 /*
951  * Nf_match_addr method for networks using numeric addresses
952  *
953  * \retval 1 on match
954  * \retval 0 otherwise
955  */
956 static int
957 libcfs_num_match(__u32 addr, struct list_head *numaddr)
958 {
959         struct cfs_expr_list *el;
960
961         LASSERT(!list_empty(numaddr));
962         el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
963
964         return cfs_expr_list_match(addr, el);
965 }
966
967 static struct netstrfns libcfs_netstrfns[] = {
968         { .nf_type              = LOLND,
969           .nf_name              = "lo",
970           .nf_modname           = "klolnd",
971           .nf_addr2str          = libcfs_decnum_addr2str,
972           .nf_str2addr          = libcfs_lo_str2addr,
973           .nf_parse_addrlist    = libcfs_num_parse,
974           .nf_print_addrlist    = libcfs_num_addr_range_print,
975           .nf_match_addr        = libcfs_num_match,
976           .nf_is_contiguous     = cfs_num_is_contiguous,
977           .nf_min_max           = cfs_num_min_max },
978         { .nf_type              = SOCKLND,
979           .nf_name              = "tcp",
980           .nf_modname           = "ksocklnd",
981           .nf_addr2str          = libcfs_ip_addr2str,
982           .nf_str2addr          = libcfs_ip_str2addr,
983           .nf_parse_addrlist    = cfs_ip_addr_parse,
984           .nf_print_addrlist    = libcfs_ip_addr_range_print,
985           .nf_match_addr        = cfs_ip_addr_match,
986           .nf_is_contiguous     = cfs_ip_is_contiguous,
987           .nf_min_max           = cfs_ip_min_max },
988         { .nf_type              = O2IBLND,
989           .nf_name              = "o2ib",
990           .nf_modname           = "ko2iblnd",
991           .nf_addr2str          = libcfs_ip_addr2str,
992           .nf_str2addr          = libcfs_ip_str2addr,
993           .nf_parse_addrlist    = cfs_ip_addr_parse,
994           .nf_print_addrlist    = libcfs_ip_addr_range_print,
995           .nf_match_addr        = cfs_ip_addr_match,
996           .nf_is_contiguous     = cfs_ip_is_contiguous,
997           .nf_min_max           = cfs_ip_min_max },
998         { .nf_type              = GNILND,
999           .nf_name              = "gni",
1000           .nf_modname           = "kgnilnd",
1001           .nf_addr2str          = libcfs_decnum_addr2str,
1002           .nf_str2addr          = libcfs_num_str2addr,
1003           .nf_parse_addrlist    = libcfs_num_parse,
1004           .nf_print_addrlist    = libcfs_num_addr_range_print,
1005           .nf_match_addr        = libcfs_num_match,
1006           .nf_is_contiguous     = cfs_num_is_contiguous,
1007           .nf_min_max           = cfs_num_min_max },
1008         { .nf_type              = GNIIPLND,
1009           .nf_name              = "gip",
1010           .nf_modname           = "kgnilnd",
1011           .nf_addr2str          = libcfs_ip_addr2str,
1012           .nf_str2addr          = libcfs_ip_str2addr,
1013           .nf_parse_addrlist    = cfs_ip_addr_parse,
1014           .nf_print_addrlist    = libcfs_ip_addr_range_print,
1015           .nf_match_addr        = cfs_ip_addr_match,
1016           .nf_is_contiguous     = cfs_ip_is_contiguous,
1017           .nf_min_max           = cfs_ip_min_max },
1018 };
1019
1020 static const size_t libcfs_nnetstrfns = ARRAY_SIZE(libcfs_netstrfns);
1021
1022 static struct netstrfns *
1023 libcfs_lnd2netstrfns(__u32 lnd)
1024 {
1025         int i;
1026
1027         for (i = 0; i < libcfs_nnetstrfns; i++)
1028                 if (lnd == libcfs_netstrfns[i].nf_type)
1029                         return &libcfs_netstrfns[i];
1030
1031         return NULL;
1032 }
1033
1034 static struct netstrfns *
1035 libcfs_namenum2netstrfns(const char *name)
1036 {
1037         struct netstrfns *nf;
1038         int i;
1039
1040         for (i = 0; i < libcfs_nnetstrfns; i++) {
1041                 nf = &libcfs_netstrfns[i];
1042                 if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
1043                         return nf;
1044         }
1045         return NULL;
1046 }
1047
1048 static struct netstrfns *
1049 libcfs_name2netstrfns(const char *name)
1050 {
1051         int    i;
1052
1053         for (i = 0; i < libcfs_nnetstrfns; i++)
1054                 if (!strcmp(libcfs_netstrfns[i].nf_name, name))
1055                         return &libcfs_netstrfns[i];
1056
1057         return NULL;
1058 }
1059
1060 int
1061 libcfs_isknown_lnd(__u32 lnd)
1062 {
1063         return libcfs_lnd2netstrfns(lnd) != NULL;
1064 }
1065 EXPORT_SYMBOL(libcfs_isknown_lnd);
1066
1067 char *
1068 libcfs_lnd2modname(__u32 lnd)
1069 {
1070         struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
1071
1072         return (nf == NULL) ? NULL : nf->nf_modname;
1073 }
1074 EXPORT_SYMBOL(libcfs_lnd2modname);
1075
1076 int
1077 libcfs_str2lnd(const char *str)
1078 {
1079         struct netstrfns *nf = libcfs_name2netstrfns(str);
1080
1081         if (nf != NULL)
1082                 return nf->nf_type;
1083
1084         return -1;
1085 }
1086 EXPORT_SYMBOL(libcfs_str2lnd);
1087
1088 char *
1089 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
1090 {
1091         struct netstrfns *nf;
1092
1093         nf = libcfs_lnd2netstrfns(lnd);
1094         if (nf == NULL)
1095                 snprintf(buf, buf_size, "?%u?", lnd);
1096         else
1097                 snprintf(buf, buf_size, "%s", nf->nf_name);
1098
1099         return buf;
1100 }
1101 EXPORT_SYMBOL(libcfs_lnd2str_r);
1102
1103 char *
1104 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
1105 {
1106         __u32 nnum = LNET_NETNUM(net);
1107         __u32 lnd = LNET_NETTYP(net);
1108         struct netstrfns *nf;
1109
1110         nf = libcfs_lnd2netstrfns(lnd);
1111         if (nf == NULL)
1112                 snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
1113         else if (nnum == 0)
1114                 snprintf(buf, buf_size, "%s", nf->nf_name);
1115         else
1116                 snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
1117
1118         return buf;
1119 }
1120 EXPORT_SYMBOL(libcfs_net2str_r);
1121
1122 char *
1123 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
1124 {
1125         __u32 addr = LNET_NIDADDR(nid);
1126         __u32 net = LNET_NIDNET(nid);
1127         __u32 nnum = LNET_NETNUM(net);
1128         __u32 lnd = LNET_NETTYP(net);
1129         struct netstrfns *nf;
1130
1131         if (nid == LNET_NID_ANY) {
1132                 strncpy(buf, "<?>", buf_size);
1133                 buf[buf_size - 1] = '\0';
1134                 return buf;
1135         }
1136
1137         nf = libcfs_lnd2netstrfns(lnd);
1138         if (nf == NULL)
1139                 snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
1140         else {
1141                 size_t addr_len;
1142
1143                 nf->nf_addr2str(addr, buf, buf_size);
1144                 addr_len = strlen(buf);
1145                 if (nnum == 0)
1146                         snprintf(buf + addr_len, buf_size - addr_len, "@%s",
1147                                  nf->nf_name);
1148                 else
1149                         snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
1150                                  nf->nf_name, nnum);
1151         }
1152
1153         return buf;
1154 }
1155 EXPORT_SYMBOL(libcfs_nid2str_r);
1156
1157 static struct netstrfns *
1158 libcfs_str2net_internal(const char *str, __u32 *net)
1159 {
1160         struct netstrfns *uninitialized_var(nf);
1161         int nob;
1162         unsigned int netnum;
1163         int i;
1164
1165         for (i = 0; i < libcfs_nnetstrfns; i++) {
1166                 nf = &libcfs_netstrfns[i];
1167                 if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
1168                         break;
1169         }
1170
1171         if (i == libcfs_nnetstrfns)
1172                 return NULL;
1173
1174         nob = strlen(nf->nf_name);
1175
1176         if (strlen(str) == (unsigned int)nob) {
1177                 netnum = 0;
1178         } else {
1179                 if (nf->nf_type == LOLND) /* net number not allowed */
1180                         return NULL;
1181
1182                 str += nob;
1183                 i = strlen(str);
1184                 if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
1185                     i != (int)strlen(str))
1186                         return NULL;
1187         }
1188
1189         *net = LNET_MKNET(nf->nf_type, netnum);
1190         return nf;
1191 }
1192
1193 __u32
1194 libcfs_str2net(const char *str)
1195 {
1196         __u32  net;
1197
1198         if (libcfs_str2net_internal(str, &net) != NULL)
1199                 return net;
1200
1201         return LNET_NIDNET(LNET_NID_ANY);
1202 }
1203 EXPORT_SYMBOL(libcfs_str2net);
1204
1205 lnet_nid_t
1206 libcfs_str2nid(const char *str)
1207 {
1208         const char *sep = strchr(str, '@');
1209         struct netstrfns *nf;
1210         __u32 net;
1211         __u32 addr;
1212
1213         if (sep != NULL) {
1214                 nf = libcfs_str2net_internal(sep + 1, &net);
1215                 if (nf == NULL)
1216                         return LNET_NID_ANY;
1217         } else {
1218                 sep = str + strlen(str);
1219                 net = LNET_MKNET(SOCKLND, 0);
1220                 nf = libcfs_lnd2netstrfns(SOCKLND);
1221                 LASSERT(nf != NULL);
1222         }
1223
1224         if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
1225                 return LNET_NID_ANY;
1226
1227         return LNET_MKNID(net, addr);
1228 }
1229 EXPORT_SYMBOL(libcfs_str2nid);
1230
1231 char *
1232 libcfs_id2str(lnet_process_id_t id)
1233 {
1234         char *str = libcfs_next_nidstring();
1235
1236         if (id.pid == LNET_PID_ANY) {
1237                 snprintf(str, LNET_NIDSTR_SIZE,
1238                          "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
1239                 return str;
1240         }
1241
1242         snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
1243                  ((id.pid & LNET_PID_USERFLAG) != 0) ? "U" : "",
1244                  (id.pid & ~LNET_PID_USERFLAG), libcfs_nid2str(id.nid));
1245         return str;
1246 }
1247 EXPORT_SYMBOL(libcfs_id2str);
1248
1249 int
1250 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
1251 {
1252         if (!strcmp(str, "*")) {
1253                 *nidp = LNET_NID_ANY;
1254                 return 1;
1255         }
1256
1257         *nidp = libcfs_str2nid(str);
1258         return *nidp != LNET_NID_ANY;
1259 }
1260 EXPORT_SYMBOL(libcfs_str2anynid);