Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / staging / lustre / include / linux / libcfs / libcfs_private.h
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * libcfs/include/libcfs/libcfs_private.h
37  *
38  * Various defines for libcfs.
39  *
40  */
41
42 #ifndef __LIBCFS_PRIVATE_H__
43 #define __LIBCFS_PRIVATE_H__
44
45 /* XXX this layering violation is for nidstrings */
46 #include "../lnet/types.h"
47
48 #ifndef DEBUG_SUBSYSTEM
49 # define DEBUG_SUBSYSTEM S_UNDEFINED
50 #endif
51
52
53 /*
54  * When this is on, LASSERT macro includes check for assignment used instead
55  * of equality check, but doesn't have unlikely(). Turn this on from time to
56  * time to make test-builds. This shouldn't be on for production release.
57  */
58 #define LASSERT_CHECKED (0)
59
60 #define LASSERTF(cond, fmt, ...)                                        \
61 do {                                                                    \
62         if (unlikely(!(cond))) {                                        \
63                 LIBCFS_DEBUG_MSG_DATA_DECL(__msg_data, D_EMERG, NULL);  \
64                 libcfs_debug_msg(&__msg_data,                           \
65                                  "ASSERTION( %s ) failed: " fmt, #cond, \
66                                  ## __VA_ARGS__);                       \
67                 lbug_with_loc(&__msg_data);                             \
68         }                                                               \
69 } while (0)
70
71 #define LASSERT(cond) LASSERTF(cond, "\n")
72
73 #ifdef CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK
74 /**
75  * This is for more expensive checks that one doesn't want to be enabled all
76  * the time. LINVRNT() has to be explicitly enabled by
77  * CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK option.
78  */
79 # define LINVRNT(exp) LASSERT(exp)
80 #else
81 # define LINVRNT(exp) ((void)sizeof !!(exp))
82 #endif
83
84 #define KLASSERT(e) LASSERT(e)
85
86 void lbug_with_loc(struct libcfs_debug_msg_data *)__attribute__((noreturn));
87
88 #define LBUG()                                                    \
89 do {                                                                \
90         LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_EMERG, NULL);          \
91         lbug_with_loc(&msgdata);                                        \
92 } while (0)
93
94 extern atomic_t libcfs_kmemory;
95 /*
96  * Memory
97  */
98
99 # define libcfs_kmem_inc(ptr, size)             \
100 do {                                            \
101         atomic_add(size, &libcfs_kmemory);      \
102 } while (0)
103
104 # define libcfs_kmem_dec(ptr, size)             \
105 do {                                            \
106         atomic_sub(size, &libcfs_kmemory);      \
107 } while (0)
108
109 # define libcfs_kmem_read()                     \
110         atomic_read(&libcfs_kmemory)
111
112 #ifndef LIBCFS_VMALLOC_SIZE
113 #define LIBCFS_VMALLOC_SIZE     (2 << PAGE_CACHE_SHIFT) /* 2 pages */
114 #endif
115
116 #define LIBCFS_ALLOC_PRE(size, mask)                                        \
117 do {                                                                        \
118         LASSERT(!in_interrupt() ||                                          \
119                 ((size) <= LIBCFS_VMALLOC_SIZE &&                           \
120                  ((mask) & __GFP_WAIT) == 0));                              \
121 } while (0)
122
123 #define LIBCFS_ALLOC_POST(ptr, size)                                        \
124 do {                                                                        \
125         if (unlikely((ptr) == NULL)) {                                      \
126                 CERROR("LNET: out of memory at %s:%d (tried to alloc '"     \
127                        #ptr "' = %d)\n", __FILE__, __LINE__, (int)(size));  \
128                 CERROR("LNET: %d total bytes allocated by lnet\n",          \
129                        libcfs_kmem_read());                                 \
130         } else {                                                            \
131                 memset((ptr), 0, (size));                                   \
132                 libcfs_kmem_inc((ptr), (size));                             \
133                 CDEBUG(D_MALLOC, "alloc '" #ptr "': %d at %p (tot %d).\n",  \
134                        (int)(size), (ptr), libcfs_kmem_read());             \
135         }                                                                  \
136 } while (0)
137
138 /**
139  * allocate memory with GFP flags @mask
140  */
141 #define LIBCFS_ALLOC_GFP(ptr, size, mask)                                   \
142 do {                                                                        \
143         LIBCFS_ALLOC_PRE((size), (mask));                                   \
144         (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ?                             \
145                 kmalloc((size), (mask)) : vmalloc(size);            \
146         LIBCFS_ALLOC_POST((ptr), (size));                                   \
147 } while (0)
148
149 /**
150  * default allocator
151  */
152 #define LIBCFS_ALLOC(ptr, size) \
153         LIBCFS_ALLOC_GFP(ptr, size, GFP_NOFS)
154
155 /**
156  * non-sleeping allocator
157  */
158 #define LIBCFS_ALLOC_ATOMIC(ptr, size) \
159         LIBCFS_ALLOC_GFP(ptr, size, GFP_ATOMIC)
160
161 /**
162  * allocate memory for specified CPU partition
163  *   \a cptab != NULL, \a cpt is CPU partition id of \a cptab
164  *   \a cptab == NULL, \a cpt is HW NUMA node id
165  */
166 #define LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, mask)                   \
167 do {                                                                        \
168         LIBCFS_ALLOC_PRE((size), (mask));                                   \
169         (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ?                             \
170                 kmalloc_node((size), (mask), cfs_cpt_spread_node(cptab, cpt)) :\
171                 vmalloc_node(size, cfs_cpt_spread_node(cptab, cpt));        \
172         LIBCFS_ALLOC_POST((ptr), (size));                                   \
173 } while (0)
174
175 /** default numa allocator */
176 #define LIBCFS_CPT_ALLOC(ptr, cptab, cpt, size)                             \
177         LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, GFP_NOFS)
178
179 #define LIBCFS_FREE(ptr, size)                                    \
180 do {                                                                \
181         int s = (size);                                          \
182         if (unlikely((ptr) == NULL)) {                            \
183                 CERROR("LIBCFS: free NULL '" #ptr "' (%d bytes) at "    \
184                        "%s:%d\n", s, __FILE__, __LINE__);              \
185                 break;                                            \
186         }                                                              \
187         libcfs_kmem_dec((ptr), s);                                    \
188         CDEBUG(D_MALLOC, "kfreed '" #ptr "': %d at %p (tot %d).\n",     \
189                s, (ptr), libcfs_kmem_read());                           \
190         if (unlikely(s > LIBCFS_VMALLOC_SIZE))                    \
191                 vfree(ptr);                                 \
192         else                                                        \
193                 kfree(ptr);                                       \
194 } while (0)
195
196 /******************************************************************************/
197
198 /* htonl hack - either this, or compile with -O2. Stupid byteorder/generic.h */
199 #if defined(__GNUC__) && (__GNUC__ >= 2) && !defined(__OPTIMIZE__)
200 #define ___htonl(x) __cpu_to_be32(x)
201 #define ___htons(x) __cpu_to_be16(x)
202 #define ___ntohl(x) __be32_to_cpu(x)
203 #define ___ntohs(x) __be16_to_cpu(x)
204 #define htonl(x) ___htonl(x)
205 #define ntohl(x) ___ntohl(x)
206 #define htons(x) ___htons(x)
207 #define ntohs(x) ___ntohs(x)
208 #endif
209
210 void libcfs_run_upcall(char **argv);
211 void libcfs_run_lbug_upcall(struct libcfs_debug_msg_data *);
212 void libcfs_debug_dumplog(void);
213 int libcfs_debug_init(unsigned long bufsize);
214 int libcfs_debug_cleanup(void);
215 int libcfs_debug_clear_buffer(void);
216 int libcfs_debug_mark_buffer(const char *text);
217
218 void libcfs_debug_set_level(unsigned int debug_level);
219
220 /*
221  * allocate per-cpu-partition data, returned value is an array of pointers,
222  * variable can be indexed by CPU ID.
223  *      cptable != NULL: size of array is number of CPU partitions
224  *      cptable == NULL: size of array is number of HW cores
225  */
226 void *cfs_percpt_alloc(struct cfs_cpt_table *cptab, unsigned int size);
227 /*
228  * destroy per-cpu-partition variable
229  */
230 void  cfs_percpt_free(void *vars);
231 int   cfs_percpt_number(void *vars);
232 void *cfs_percpt_current(void *vars);
233 void *cfs_percpt_index(void *vars, int idx);
234
235 #define cfs_percpt_for_each(var, i, vars)               \
236         for (i = 0; i < cfs_percpt_number(vars) &&      \
237                     ((var) = (vars)[i]) != NULL; i++)
238
239 /*
240  * allocate a variable array, returned value is an array of pointers.
241  * Caller can specify length of array by count.
242  */
243 void *cfs_array_alloc(int count, unsigned int size);
244 void  cfs_array_free(void *vars);
245
246 #define LASSERT_ATOMIC_ENABLED    (1)
247
248 #if LASSERT_ATOMIC_ENABLED
249
250 /** assert value of @a is equal to @v */
251 #define LASSERT_ATOMIC_EQ(a, v)                          \
252 do {                                                        \
253         LASSERTF(atomic_read(a) == v,                  \
254                  "value: %d\n", atomic_read((a)));        \
255 } while (0)
256
257 /** assert value of @a is unequal to @v */
258 #define LASSERT_ATOMIC_NE(a, v)                          \
259 do {                                                        \
260         LASSERTF(atomic_read(a) != v,                  \
261                  "value: %d\n", atomic_read((a)));        \
262 } while (0)
263
264 /** assert value of @a is little than @v */
265 #define LASSERT_ATOMIC_LT(a, v)                          \
266 do {                                                        \
267         LASSERTF(atomic_read(a) < v,                    \
268                  "value: %d\n", atomic_read((a)));        \
269 } while (0)
270
271 /** assert value of @a is little/equal to @v */
272 #define LASSERT_ATOMIC_LE(a, v)                          \
273 do {                                                        \
274         LASSERTF(atomic_read(a) <= v,                  \
275                  "value: %d\n", atomic_read((a)));        \
276 } while (0)
277
278 /** assert value of @a is great than @v */
279 #define LASSERT_ATOMIC_GT(a, v)                          \
280 do {                                                        \
281         LASSERTF(atomic_read(a) > v,                    \
282                  "value: %d\n", atomic_read((a)));        \
283 } while (0)
284
285 /** assert value of @a is great/equal to @v */
286 #define LASSERT_ATOMIC_GE(a, v)                          \
287 do {                                                        \
288         LASSERTF(atomic_read(a) >= v,                  \
289                  "value: %d\n", atomic_read((a)));        \
290 } while (0)
291
292 /** assert value of @a is great than @v1 and little than @v2 */
293 #define LASSERT_ATOMIC_GT_LT(a, v1, v2)                  \
294 do {                                                        \
295         int __v = atomic_read(a);                          \
296         LASSERTF(__v > v1 && __v < v2, "value: %d\n", __v);     \
297 } while (0)
298
299 /** assert value of @a is great than @v1 and little/equal to @v2 */
300 #define LASSERT_ATOMIC_GT_LE(a, v1, v2)                  \
301 do {                                                        \
302         int __v = atomic_read(a);                          \
303         LASSERTF(__v > v1 && __v <= v2, "value: %d\n", __v);    \
304 } while (0)
305
306 /** assert value of @a is great/equal to @v1 and little than @v2 */
307 #define LASSERT_ATOMIC_GE_LT(a, v1, v2)                  \
308 do {                                                        \
309         int __v = atomic_read(a);                          \
310         LASSERTF(__v >= v1 && __v < v2, "value: %d\n", __v);    \
311 } while (0)
312
313 /** assert value of @a is great/equal to @v1 and little/equal to @v2 */
314 #define LASSERT_ATOMIC_GE_LE(a, v1, v2)                  \
315 do {                                                        \
316         int __v = atomic_read(a);                          \
317         LASSERTF(__v >= v1 && __v <= v2, "value: %d\n", __v);   \
318 } while (0)
319
320 #else /* !LASSERT_ATOMIC_ENABLED */
321
322 #define LASSERT_ATOMIC_EQ(a, v)          do {} while (0)
323 #define LASSERT_ATOMIC_NE(a, v)          do {} while (0)
324 #define LASSERT_ATOMIC_LT(a, v)          do {} while (0)
325 #define LASSERT_ATOMIC_LE(a, v)          do {} while (0)
326 #define LASSERT_ATOMIC_GT(a, v)          do {} while (0)
327 #define LASSERT_ATOMIC_GE(a, v)          do {} while (0)
328 #define LASSERT_ATOMIC_GT_LT(a, v1, v2)  do {} while (0)
329 #define LASSERT_ATOMIC_GT_LE(a, v1, v2)  do {} while (0)
330 #define LASSERT_ATOMIC_GE_LT(a, v1, v2)  do {} while (0)
331 #define LASSERT_ATOMIC_GE_LE(a, v1, v2)  do {} while (0)
332
333 #endif /* LASSERT_ATOMIC_ENABLED */
334
335 #define LASSERT_ATOMIC_ZERO(a)            LASSERT_ATOMIC_EQ(a, 0)
336 #define LASSERT_ATOMIC_POS(a)              LASSERT_ATOMIC_GT(a, 0)
337
338 #define CFS_ALLOC_PTR(ptr)      LIBCFS_ALLOC(ptr, sizeof(*(ptr)))
339 #define CFS_FREE_PTR(ptr)       LIBCFS_FREE(ptr, sizeof(*(ptr)))
340
341 /*
342  * percpu partition lock
343  *
344  * There are some use-cases like this in Lustre:
345  * . each CPU partition has it's own private data which is frequently changed,
346  *   and mostly by the local CPU partition.
347  * . all CPU partitions share some global data, these data are rarely changed.
348  *
349  * LNet is typical example.
350  * CPU partition lock is designed for this kind of use-cases:
351  * . each CPU partition has it's own private lock
352  * . change on private data just needs to take the private lock
353  * . read on shared data just needs to take _any_ of private locks
354  * . change on shared data needs to take _all_ private locks,
355  *   which is slow and should be really rare.
356  */
357
358 enum {
359         CFS_PERCPT_LOCK_EX      = -1, /* negative */
360 };
361
362 struct cfs_percpt_lock {
363         /* cpu-partition-table for this lock */
364         struct cfs_cpt_table    *pcl_cptab;
365         /* exclusively locked */
366         unsigned int            pcl_locked;
367         /* private lock table */
368         spinlock_t              **pcl_locks;
369 };
370
371 /* return number of private locks */
372 static inline int
373 cfs_percpt_lock_num(struct cfs_percpt_lock *pcl)
374 {
375         return cfs_cpt_number(pcl->pcl_cptab);
376 }
377
378 /*
379  * create a cpu-partition lock based on CPU partition table \a cptab,
380  * each private lock has extra \a psize bytes padding data
381  */
382 struct cfs_percpt_lock *cfs_percpt_lock_alloc(struct cfs_cpt_table *cptab);
383 /* destroy a cpu-partition lock */
384 void cfs_percpt_lock_free(struct cfs_percpt_lock *pcl);
385
386 /* lock private lock \a index of \a pcl */
387 void cfs_percpt_lock(struct cfs_percpt_lock *pcl, int index);
388 /* unlock private lock \a index of \a pcl */
389 void cfs_percpt_unlock(struct cfs_percpt_lock *pcl, int index);
390 /* create percpt (atomic) refcount based on @cptab */
391 atomic_t **cfs_percpt_atomic_alloc(struct cfs_cpt_table *cptab, int val);
392 /* destroy percpt refcount */
393 void cfs_percpt_atomic_free(atomic_t **refs);
394 /* return sum of all percpu refs */
395 int cfs_percpt_atomic_summary(atomic_t **refs);
396
397 /** Compile-time assertion.
398
399  * Check an invariant described by a constant expression at compile time by
400  * forcing a compiler error if it does not hold.  \a cond must be a constant
401  * expression as defined by the ISO C Standard:
402  *
403  *       6.8.4.2  The switch statement
404  *       ....
405  *       [#3] The expression of each case label shall be  an  integer
406  *       constant   expression  and  no  two  of  the  case  constant
407  *       expressions in the same switch statement shall have the same
408  *       value  after  conversion...
409  *
410  */
411 #define CLASSERT(cond) do {switch (42) {case (cond): case 0: break; } } while (0)
412
413 /* support decl needed both by kernel and liblustre */
414 int      libcfs_isknown_lnd(int type);
415 char       *libcfs_lnd2modname(int type);
416 char       *libcfs_lnd2str(int type);
417 int      libcfs_str2lnd(const char *str);
418 char       *libcfs_net2str(__u32 net);
419 char       *libcfs_nid2str(lnet_nid_t nid);
420 __u32       libcfs_str2net(const char *str);
421 lnet_nid_t  libcfs_str2nid(const char *str);
422 int      libcfs_str2anynid(lnet_nid_t *nid, const char *str);
423 char       *libcfs_id2str(lnet_process_id_t id);
424 void    cfs_free_nidlist(struct list_head *list);
425 int      cfs_parse_nidlist(char *str, int len, struct list_head *list);
426 int      cfs_match_nid(lnet_nid_t nid, struct list_head *list);
427
428 /** \addtogroup lnet_addr
429  * @{ */
430 /* how an LNET NID encodes net:address */
431 /** extract the address part of an lnet_nid_t */
432 #define LNET_NIDADDR(nid)      ((__u32)((nid) & 0xffffffff))
433 /** extract the network part of an lnet_nid_t */
434 #define LNET_NIDNET(nid)       ((__u32)(((nid) >> 32)) & 0xffffffff)
435 /** make an lnet_nid_t from a network part and an address part */
436 #define LNET_MKNID(net, addr)   ((((__u64)(net))<<32)|((__u64)(addr)))
437 /* how net encodes type:number */
438 #define LNET_NETNUM(net)       ((net) & 0xffff)
439 #define LNET_NETTYP(net)       (((net) >> 16) & 0xffff)
440 #define LNET_MKNET(typ, num)    ((((__u32)(typ))<<16)|((__u32)(num)))
441 /** @} lnet_addr */
442
443 /* max value for numeric network address */
444 #define MAX_NUMERIC_VALUE 0xffffffff
445
446 /* implication */
447 #define ergo(a, b) (!(a) || (b))
448 /* logical equivalence */
449 #define equi(a, b) (!!(a) == !!(b))
450
451 /* --------------------------------------------------------------------
452  * Light-weight trace
453  * Support for temporary event tracing with minimal Heisenberg effect.
454  * -------------------------------------------------------------------- */
455
456 struct libcfs_device_userstate {
457         int        ldu_memhog_pages;
458         struct page   *ldu_memhog_root_page;
459 };
460
461 #define MKSTR(ptr) ((ptr)) ? (ptr) : ""
462
463 static inline int cfs_size_round4(int val)
464 {
465         return (val + 3) & (~0x3);
466 }
467
468 #ifndef HAVE_CFS_SIZE_ROUND
469 static inline int cfs_size_round(int val)
470 {
471         return (val + 7) & (~0x7);
472 }
473
474 #define HAVE_CFS_SIZE_ROUND
475 #endif
476
477 static inline int cfs_size_round16(int val)
478 {
479         return (val + 0xf) & (~0xf);
480 }
481
482 static inline int cfs_size_round32(int val)
483 {
484         return (val + 0x1f) & (~0x1f);
485 }
486
487 static inline int cfs_size_round0(int val)
488 {
489         if (!val)
490                 return 0;
491         return (val + 1 + 7) & (~0x7);
492 }
493
494 static inline size_t cfs_round_strlen(char *fset)
495 {
496         return (size_t)cfs_size_round((int)strlen(fset) + 1);
497 }
498
499 /* roundup \a val to power2 */
500 static inline unsigned int cfs_power2_roundup(unsigned int val)
501 {
502         if (val != LOWEST_BIT_SET(val)) { /* not a power of 2 already */
503                 do {
504                         val &= ~LOWEST_BIT_SET(val);
505                 } while (val != LOWEST_BIT_SET(val));
506                 /* ...and round up */
507                 val <<= 1;
508         }
509         return val;
510 }
511
512 #define LOGL(var, len, ptr)                                    \
513 do {                                                        \
514         if (var)                                                \
515                 memcpy((char *)ptr, (const char *)var, len);    \
516         ptr += cfs_size_round(len);                          \
517 } while (0)
518
519 #define LOGU(var, len, ptr)                                    \
520 do {                                                        \
521         if (var)                                                \
522                 memcpy((char *)var, (const char *)ptr, len);    \
523         ptr += cfs_size_round(len);                          \
524 } while (0)
525
526 #define LOGL0(var, len, ptr)                          \
527 do {                                                \
528         if (!len)                                      \
529                 break;                            \
530         memcpy((char *)ptr, (const char *)var, len);    \
531         *((char *)(ptr) + len) = 0;                  \
532         ptr += cfs_size_round(len + 1);          \
533 } while (0)
534
535 /**
536  *  Lustre Network Driver types.
537  */
538 enum {
539         /* Only add to these values (i.e. don't ever change or redefine them):
540          * network addresses depend on them... */
541         QSWLND    = 1,
542         SOCKLND   = 2,
543         GMLND     = 3, /* obsolete, keep it so that libcfs_nid2str works */
544         PTLLND    = 4,
545         O2IBLND   = 5,
546         CIBLND    = 6,
547         OPENIBLND = 7,
548         IIBLND    = 8,
549         LOLND     = 9,
550         RALND     = 10,
551         VIBLND    = 11,
552         MXLND     = 12,
553         GNILND    = 13,
554 };
555
556 #endif