These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = container_of(dev,                      \
88                                               struct spi_device, dev);  \
89         return spi_statistics_##field##_show(&spi->statistics, buf);    \
90 }                                                                       \
91 static struct device_attribute dev_attr_spi_device_##field = {          \
92         .attr = { .name = file, .mode = S_IRUGO },                      \
93         .show = spi_device_##field##_show,                              \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98                                             char *buf)                  \
99 {                                                                       \
100         unsigned long flags;                                            \
101         ssize_t len;                                                    \
102         spin_lock_irqsave(&stat->lock, flags);                          \
103         len = sprintf(buf, format_string, stat->field);                 \
104         spin_unlock_irqrestore(&stat->lock, flags);                     \
105         return len;                                                     \
106 }                                                                       \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string)                       \
110         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
111                                  field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
127         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
128                                  "transfer_bytes_histo_" number,        \
129                                  transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 static struct attribute *spi_dev_attrs[] = {
149         &dev_attr_modalias.attr,
150         NULL,
151 };
152
153 static const struct attribute_group spi_dev_group = {
154         .attrs  = spi_dev_attrs,
155 };
156
157 static struct attribute *spi_device_statistics_attrs[] = {
158         &dev_attr_spi_device_messages.attr,
159         &dev_attr_spi_device_transfers.attr,
160         &dev_attr_spi_device_errors.attr,
161         &dev_attr_spi_device_timedout.attr,
162         &dev_attr_spi_device_spi_sync.attr,
163         &dev_attr_spi_device_spi_sync_immediate.attr,
164         &dev_attr_spi_device_spi_async.attr,
165         &dev_attr_spi_device_bytes.attr,
166         &dev_attr_spi_device_bytes_rx.attr,
167         &dev_attr_spi_device_bytes_tx.attr,
168         &dev_attr_spi_device_transfer_bytes_histo0.attr,
169         &dev_attr_spi_device_transfer_bytes_histo1.attr,
170         &dev_attr_spi_device_transfer_bytes_histo2.attr,
171         &dev_attr_spi_device_transfer_bytes_histo3.attr,
172         &dev_attr_spi_device_transfer_bytes_histo4.attr,
173         &dev_attr_spi_device_transfer_bytes_histo5.attr,
174         &dev_attr_spi_device_transfer_bytes_histo6.attr,
175         &dev_attr_spi_device_transfer_bytes_histo7.attr,
176         &dev_attr_spi_device_transfer_bytes_histo8.attr,
177         &dev_attr_spi_device_transfer_bytes_histo9.attr,
178         &dev_attr_spi_device_transfer_bytes_histo10.attr,
179         &dev_attr_spi_device_transfer_bytes_histo11.attr,
180         &dev_attr_spi_device_transfer_bytes_histo12.attr,
181         &dev_attr_spi_device_transfer_bytes_histo13.attr,
182         &dev_attr_spi_device_transfer_bytes_histo14.attr,
183         &dev_attr_spi_device_transfer_bytes_histo15.attr,
184         &dev_attr_spi_device_transfer_bytes_histo16.attr,
185         NULL,
186 };
187
188 static const struct attribute_group spi_device_statistics_group = {
189         .name  = "statistics",
190         .attrs  = spi_device_statistics_attrs,
191 };
192
193 static const struct attribute_group *spi_dev_groups[] = {
194         &spi_dev_group,
195         &spi_device_statistics_group,
196         NULL,
197 };
198
199 static struct attribute *spi_master_statistics_attrs[] = {
200         &dev_attr_spi_master_messages.attr,
201         &dev_attr_spi_master_transfers.attr,
202         &dev_attr_spi_master_errors.attr,
203         &dev_attr_spi_master_timedout.attr,
204         &dev_attr_spi_master_spi_sync.attr,
205         &dev_attr_spi_master_spi_sync_immediate.attr,
206         &dev_attr_spi_master_spi_async.attr,
207         &dev_attr_spi_master_bytes.attr,
208         &dev_attr_spi_master_bytes_rx.attr,
209         &dev_attr_spi_master_bytes_tx.attr,
210         &dev_attr_spi_master_transfer_bytes_histo0.attr,
211         &dev_attr_spi_master_transfer_bytes_histo1.attr,
212         &dev_attr_spi_master_transfer_bytes_histo2.attr,
213         &dev_attr_spi_master_transfer_bytes_histo3.attr,
214         &dev_attr_spi_master_transfer_bytes_histo4.attr,
215         &dev_attr_spi_master_transfer_bytes_histo5.attr,
216         &dev_attr_spi_master_transfer_bytes_histo6.attr,
217         &dev_attr_spi_master_transfer_bytes_histo7.attr,
218         &dev_attr_spi_master_transfer_bytes_histo8.attr,
219         &dev_attr_spi_master_transfer_bytes_histo9.attr,
220         &dev_attr_spi_master_transfer_bytes_histo10.attr,
221         &dev_attr_spi_master_transfer_bytes_histo11.attr,
222         &dev_attr_spi_master_transfer_bytes_histo12.attr,
223         &dev_attr_spi_master_transfer_bytes_histo13.attr,
224         &dev_attr_spi_master_transfer_bytes_histo14.attr,
225         &dev_attr_spi_master_transfer_bytes_histo15.attr,
226         &dev_attr_spi_master_transfer_bytes_histo16.attr,
227         NULL,
228 };
229
230 static const struct attribute_group spi_master_statistics_group = {
231         .name  = "statistics",
232         .attrs  = spi_master_statistics_attrs,
233 };
234
235 static const struct attribute_group *spi_master_groups[] = {
236         &spi_master_statistics_group,
237         NULL,
238 };
239
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241                                        struct spi_transfer *xfer,
242                                        struct spi_master *master)
243 {
244         unsigned long flags;
245         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246
247         if (l2len < 0)
248                 l2len = 0;
249
250         spin_lock_irqsave(&stats->lock, flags);
251
252         stats->transfers++;
253         stats->transfer_bytes_histo[l2len]++;
254
255         stats->bytes += xfer->len;
256         if ((xfer->tx_buf) &&
257             (xfer->tx_buf != master->dummy_tx))
258                 stats->bytes_tx += xfer->len;
259         if ((xfer->rx_buf) &&
260             (xfer->rx_buf != master->dummy_rx))
261                 stats->bytes_rx += xfer->len;
262
263         spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268  * and the sysfs version makes coldplug work too.
269  */
270
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272                                                 const struct spi_device *sdev)
273 {
274         while (id->name[0]) {
275                 if (!strcmp(sdev->modalias, id->name))
276                         return id;
277                 id++;
278         }
279         return NULL;
280 }
281
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285
286         return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292         const struct spi_device *spi = to_spi_device(dev);
293         const struct spi_driver *sdrv = to_spi_driver(drv);
294
295         /* Attempt an OF style match */
296         if (of_driver_match_device(dev, drv))
297                 return 1;
298
299         /* Then try ACPI */
300         if (acpi_driver_match_device(dev, drv))
301                 return 1;
302
303         if (sdrv->id_table)
304                 return !!spi_match_id(sdrv->id_table, spi);
305
306         return strcmp(spi->modalias, drv->name) == 0;
307 }
308
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311         const struct spi_device         *spi = to_spi_device(dev);
312         int rc;
313
314         rc = acpi_device_uevent_modalias(dev, env);
315         if (rc != -ENODEV)
316                 return rc;
317
318         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319         return 0;
320 }
321
322 struct bus_type spi_bus_type = {
323         .name           = "spi",
324         .dev_groups     = spi_dev_groups,
325         .match          = spi_match_device,
326         .uevent         = spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329
330
331 static int spi_drv_probe(struct device *dev)
332 {
333         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
334         struct spi_device               *spi = to_spi_device(dev);
335         int ret;
336
337         ret = of_clk_set_defaults(dev->of_node, false);
338         if (ret)
339                 return ret;
340
341         if (dev->of_node) {
342                 spi->irq = of_irq_get(dev->of_node, 0);
343                 if (spi->irq == -EPROBE_DEFER)
344                         return -EPROBE_DEFER;
345                 if (spi->irq < 0)
346                         spi->irq = 0;
347         }
348
349         ret = dev_pm_domain_attach(dev, true);
350         if (ret != -EPROBE_DEFER) {
351                 ret = sdrv->probe(spi);
352                 if (ret)
353                         dev_pm_domain_detach(dev, true);
354         }
355
356         return ret;
357 }
358
359 static int spi_drv_remove(struct device *dev)
360 {
361         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
362         int ret;
363
364         ret = sdrv->remove(to_spi_device(dev));
365         dev_pm_domain_detach(dev, true);
366
367         return ret;
368 }
369
370 static void spi_drv_shutdown(struct device *dev)
371 {
372         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
373
374         sdrv->shutdown(to_spi_device(dev));
375 }
376
377 /**
378  * __spi_register_driver - register a SPI driver
379  * @owner: owner module of the driver to register
380  * @sdrv: the driver to register
381  * Context: can sleep
382  *
383  * Return: zero on success, else a negative error code.
384  */
385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
386 {
387         sdrv->driver.owner = owner;
388         sdrv->driver.bus = &spi_bus_type;
389         if (sdrv->probe)
390                 sdrv->driver.probe = spi_drv_probe;
391         if (sdrv->remove)
392                 sdrv->driver.remove = spi_drv_remove;
393         if (sdrv->shutdown)
394                 sdrv->driver.shutdown = spi_drv_shutdown;
395         return driver_register(&sdrv->driver);
396 }
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
398
399 /*-------------------------------------------------------------------------*/
400
401 /* SPI devices should normally not be created by SPI device drivers; that
402  * would make them board-specific.  Similarly with SPI master drivers.
403  * Device registration normally goes into like arch/.../mach.../board-YYY.c
404  * with other readonly (flashable) information about mainboard devices.
405  */
406
407 struct boardinfo {
408         struct list_head        list;
409         struct spi_board_info   board_info;
410 };
411
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
414
415 /*
416  * Used to protect add/del opertion for board_info list and
417  * spi_master list, and their matching process
418  */
419 static DEFINE_MUTEX(board_lock);
420
421 /**
422  * spi_alloc_device - Allocate a new SPI device
423  * @master: Controller to which device is connected
424  * Context: can sleep
425  *
426  * Allows a driver to allocate and initialize a spi_device without
427  * registering it immediately.  This allows a driver to directly
428  * fill the spi_device with device parameters before calling
429  * spi_add_device() on it.
430  *
431  * Caller is responsible to call spi_add_device() on the returned
432  * spi_device structure to add it to the SPI master.  If the caller
433  * needs to discard the spi_device without adding it, then it should
434  * call spi_dev_put() on it.
435  *
436  * Return: a pointer to the new device, or NULL.
437  */
438 struct spi_device *spi_alloc_device(struct spi_master *master)
439 {
440         struct spi_device       *spi;
441
442         if (!spi_master_get(master))
443                 return NULL;
444
445         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446         if (!spi) {
447                 spi_master_put(master);
448                 return NULL;
449         }
450
451         spi->master = master;
452         spi->dev.parent = &master->dev;
453         spi->dev.bus = &spi_bus_type;
454         spi->dev.release = spidev_release;
455         spi->cs_gpio = -ENOENT;
456
457         spin_lock_init(&spi->statistics.lock);
458
459         device_initialize(&spi->dev);
460         return spi;
461 }
462 EXPORT_SYMBOL_GPL(spi_alloc_device);
463
464 static void spi_dev_set_name(struct spi_device *spi)
465 {
466         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
467
468         if (adev) {
469                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
470                 return;
471         }
472
473         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
474                      spi->chip_select);
475 }
476
477 static int spi_dev_check(struct device *dev, void *data)
478 {
479         struct spi_device *spi = to_spi_device(dev);
480         struct spi_device *new_spi = data;
481
482         if (spi->master == new_spi->master &&
483             spi->chip_select == new_spi->chip_select)
484                 return -EBUSY;
485         return 0;
486 }
487
488 /**
489  * spi_add_device - Add spi_device allocated with spi_alloc_device
490  * @spi: spi_device to register
491  *
492  * Companion function to spi_alloc_device.  Devices allocated with
493  * spi_alloc_device can be added onto the spi bus with this function.
494  *
495  * Return: 0 on success; negative errno on failure
496  */
497 int spi_add_device(struct spi_device *spi)
498 {
499         static DEFINE_MUTEX(spi_add_lock);
500         struct spi_master *master = spi->master;
501         struct device *dev = master->dev.parent;
502         int status;
503
504         /* Chipselects are numbered 0..max; validate. */
505         if (spi->chip_select >= master->num_chipselect) {
506                 dev_err(dev, "cs%d >= max %d\n",
507                         spi->chip_select,
508                         master->num_chipselect);
509                 return -EINVAL;
510         }
511
512         /* Set the bus ID string */
513         spi_dev_set_name(spi);
514
515         /* We need to make sure there's no other device with this
516          * chipselect **BEFORE** we call setup(), else we'll trash
517          * its configuration.  Lock against concurrent add() calls.
518          */
519         mutex_lock(&spi_add_lock);
520
521         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522         if (status) {
523                 dev_err(dev, "chipselect %d already in use\n",
524                                 spi->chip_select);
525                 goto done;
526         }
527
528         if (master->cs_gpios)
529                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
530
531         /* Drivers may modify this initial i/o setup, but will
532          * normally rely on the device being setup.  Devices
533          * using SPI_CS_HIGH can't coexist well otherwise...
534          */
535         status = spi_setup(spi);
536         if (status < 0) {
537                 dev_err(dev, "can't setup %s, status %d\n",
538                                 dev_name(&spi->dev), status);
539                 goto done;
540         }
541
542         /* Device may be bound to an active driver when this returns */
543         status = device_add(&spi->dev);
544         if (status < 0)
545                 dev_err(dev, "can't add %s, status %d\n",
546                                 dev_name(&spi->dev), status);
547         else
548                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
549
550 done:
551         mutex_unlock(&spi_add_lock);
552         return status;
553 }
554 EXPORT_SYMBOL_GPL(spi_add_device);
555
556 /**
557  * spi_new_device - instantiate one new SPI device
558  * @master: Controller to which device is connected
559  * @chip: Describes the SPI device
560  * Context: can sleep
561  *
562  * On typical mainboards, this is purely internal; and it's not needed
563  * after board init creates the hard-wired devices.  Some development
564  * platforms may not be able to use spi_register_board_info though, and
565  * this is exported so that for example a USB or parport based adapter
566  * driver could add devices (which it would learn about out-of-band).
567  *
568  * Return: the new device, or NULL.
569  */
570 struct spi_device *spi_new_device(struct spi_master *master,
571                                   struct spi_board_info *chip)
572 {
573         struct spi_device       *proxy;
574         int                     status;
575
576         /* NOTE:  caller did any chip->bus_num checks necessary.
577          *
578          * Also, unless we change the return value convention to use
579          * error-or-pointer (not NULL-or-pointer), troubleshootability
580          * suggests syslogged diagnostics are best here (ugh).
581          */
582
583         proxy = spi_alloc_device(master);
584         if (!proxy)
585                 return NULL;
586
587         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
588
589         proxy->chip_select = chip->chip_select;
590         proxy->max_speed_hz = chip->max_speed_hz;
591         proxy->mode = chip->mode;
592         proxy->irq = chip->irq;
593         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
594         proxy->dev.platform_data = (void *) chip->platform_data;
595         proxy->controller_data = chip->controller_data;
596         proxy->controller_state = NULL;
597
598         status = spi_add_device(proxy);
599         if (status < 0) {
600                 spi_dev_put(proxy);
601                 return NULL;
602         }
603
604         return proxy;
605 }
606 EXPORT_SYMBOL_GPL(spi_new_device);
607
608 static void spi_match_master_to_boardinfo(struct spi_master *master,
609                                 struct spi_board_info *bi)
610 {
611         struct spi_device *dev;
612
613         if (master->bus_num != bi->bus_num)
614                 return;
615
616         dev = spi_new_device(master, bi);
617         if (!dev)
618                 dev_err(master->dev.parent, "can't create new device for %s\n",
619                         bi->modalias);
620 }
621
622 /**
623  * spi_register_board_info - register SPI devices for a given board
624  * @info: array of chip descriptors
625  * @n: how many descriptors are provided
626  * Context: can sleep
627  *
628  * Board-specific early init code calls this (probably during arch_initcall)
629  * with segments of the SPI device table.  Any device nodes are created later,
630  * after the relevant parent SPI controller (bus_num) is defined.  We keep
631  * this table of devices forever, so that reloading a controller driver will
632  * not make Linux forget about these hard-wired devices.
633  *
634  * Other code can also call this, e.g. a particular add-on board might provide
635  * SPI devices through its expansion connector, so code initializing that board
636  * would naturally declare its SPI devices.
637  *
638  * The board info passed can safely be __initdata ... but be careful of
639  * any embedded pointers (platform_data, etc), they're copied as-is.
640  *
641  * Return: zero on success, else a negative error code.
642  */
643 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
644 {
645         struct boardinfo *bi;
646         int i;
647
648         if (!n)
649                 return -EINVAL;
650
651         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
652         if (!bi)
653                 return -ENOMEM;
654
655         for (i = 0; i < n; i++, bi++, info++) {
656                 struct spi_master *master;
657
658                 memcpy(&bi->board_info, info, sizeof(*info));
659                 mutex_lock(&board_lock);
660                 list_add_tail(&bi->list, &board_list);
661                 list_for_each_entry(master, &spi_master_list, list)
662                         spi_match_master_to_boardinfo(master, &bi->board_info);
663                 mutex_unlock(&board_lock);
664         }
665
666         return 0;
667 }
668
669 /*-------------------------------------------------------------------------*/
670
671 static void spi_set_cs(struct spi_device *spi, bool enable)
672 {
673         if (spi->mode & SPI_CS_HIGH)
674                 enable = !enable;
675
676         if (gpio_is_valid(spi->cs_gpio))
677                 gpio_set_value(spi->cs_gpio, !enable);
678         else if (spi->master->set_cs)
679                 spi->master->set_cs(spi, !enable);
680 }
681
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master *master, struct device *dev,
684                        struct sg_table *sgt, void *buf, size_t len,
685                        enum dma_data_direction dir)
686 {
687         const bool vmalloced_buf = is_vmalloc_addr(buf);
688         int desc_len;
689         int sgs;
690         struct page *vm_page;
691         void *sg_buf;
692         size_t min;
693         int i, ret;
694
695         if (vmalloced_buf) {
696                 desc_len = PAGE_SIZE;
697                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698         } else {
699                 desc_len = master->max_dma_len;
700                 sgs = DIV_ROUND_UP(len, desc_len);
701         }
702
703         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
704         if (ret != 0)
705                 return ret;
706
707         for (i = 0; i < sgs; i++) {
708
709                 if (vmalloced_buf) {
710                         min = min_t(size_t,
711                                     len, desc_len - offset_in_page(buf));
712                         vm_page = vmalloc_to_page(buf);
713                         if (!vm_page) {
714                                 sg_free_table(sgt);
715                                 return -ENOMEM;
716                         }
717                         sg_set_page(&sgt->sgl[i], vm_page,
718                                     min, offset_in_page(buf));
719                 } else {
720                         min = min_t(size_t, len, desc_len);
721                         sg_buf = buf;
722                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
723                 }
724
725
726                 buf += min;
727                 len -= min;
728         }
729
730         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
731         if (!ret)
732                 ret = -ENOMEM;
733         if (ret < 0) {
734                 sg_free_table(sgt);
735                 return ret;
736         }
737
738         sgt->nents = ret;
739
740         return 0;
741 }
742
743 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
744                           struct sg_table *sgt, enum dma_data_direction dir)
745 {
746         if (sgt->orig_nents) {
747                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
748                 sg_free_table(sgt);
749         }
750 }
751
752 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
753 {
754         struct device *tx_dev, *rx_dev;
755         struct spi_transfer *xfer;
756         int ret;
757
758         if (!master->can_dma)
759                 return 0;
760
761         if (master->dma_tx)
762                 tx_dev = master->dma_tx->device->dev;
763         else
764                 tx_dev = &master->dev;
765
766         if (master->dma_rx)
767                 rx_dev = master->dma_rx->device->dev;
768         else
769                 rx_dev = &master->dev;
770
771         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772                 if (!master->can_dma(master, msg->spi, xfer))
773                         continue;
774
775                 if (xfer->tx_buf != NULL) {
776                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
777                                           (void *)xfer->tx_buf, xfer->len,
778                                           DMA_TO_DEVICE);
779                         if (ret != 0)
780                                 return ret;
781                 }
782
783                 if (xfer->rx_buf != NULL) {
784                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
785                                           xfer->rx_buf, xfer->len,
786                                           DMA_FROM_DEVICE);
787                         if (ret != 0) {
788                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
789                                               DMA_TO_DEVICE);
790                                 return ret;
791                         }
792                 }
793         }
794
795         master->cur_msg_mapped = true;
796
797         return 0;
798 }
799
800 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
801 {
802         struct spi_transfer *xfer;
803         struct device *tx_dev, *rx_dev;
804
805         if (!master->cur_msg_mapped || !master->can_dma)
806                 return 0;
807
808         if (master->dma_tx)
809                 tx_dev = master->dma_tx->device->dev;
810         else
811                 tx_dev = &master->dev;
812
813         if (master->dma_rx)
814                 rx_dev = master->dma_rx->device->dev;
815         else
816                 rx_dev = &master->dev;
817
818         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
819                 if (!master->can_dma(master, msg->spi, xfer))
820                         continue;
821
822                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
823                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
824         }
825
826         return 0;
827 }
828 #else /* !CONFIG_HAS_DMA */
829 static inline int __spi_map_msg(struct spi_master *master,
830                                 struct spi_message *msg)
831 {
832         return 0;
833 }
834
835 static inline int __spi_unmap_msg(struct spi_master *master,
836                                   struct spi_message *msg)
837 {
838         return 0;
839 }
840 #endif /* !CONFIG_HAS_DMA */
841
842 static inline int spi_unmap_msg(struct spi_master *master,
843                                 struct spi_message *msg)
844 {
845         struct spi_transfer *xfer;
846
847         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848                 /*
849                  * Restore the original value of tx_buf or rx_buf if they are
850                  * NULL.
851                  */
852                 if (xfer->tx_buf == master->dummy_tx)
853                         xfer->tx_buf = NULL;
854                 if (xfer->rx_buf == master->dummy_rx)
855                         xfer->rx_buf = NULL;
856         }
857
858         return __spi_unmap_msg(master, msg);
859 }
860
861 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
862 {
863         struct spi_transfer *xfer;
864         void *tmp;
865         unsigned int max_tx, max_rx;
866
867         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
868                 max_tx = 0;
869                 max_rx = 0;
870
871                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
872                         if ((master->flags & SPI_MASTER_MUST_TX) &&
873                             !xfer->tx_buf)
874                                 max_tx = max(xfer->len, max_tx);
875                         if ((master->flags & SPI_MASTER_MUST_RX) &&
876                             !xfer->rx_buf)
877                                 max_rx = max(xfer->len, max_rx);
878                 }
879
880                 if (max_tx) {
881                         tmp = krealloc(master->dummy_tx, max_tx,
882                                        GFP_KERNEL | GFP_DMA);
883                         if (!tmp)
884                                 return -ENOMEM;
885                         master->dummy_tx = tmp;
886                         memset(tmp, 0, max_tx);
887                 }
888
889                 if (max_rx) {
890                         tmp = krealloc(master->dummy_rx, max_rx,
891                                        GFP_KERNEL | GFP_DMA);
892                         if (!tmp)
893                                 return -ENOMEM;
894                         master->dummy_rx = tmp;
895                 }
896
897                 if (max_tx || max_rx) {
898                         list_for_each_entry(xfer, &msg->transfers,
899                                             transfer_list) {
900                                 if (!xfer->tx_buf)
901                                         xfer->tx_buf = master->dummy_tx;
902                                 if (!xfer->rx_buf)
903                                         xfer->rx_buf = master->dummy_rx;
904                         }
905                 }
906         }
907
908         return __spi_map_msg(master, msg);
909 }
910
911 /*
912  * spi_transfer_one_message - Default implementation of transfer_one_message()
913  *
914  * This is a standard implementation of transfer_one_message() for
915  * drivers which impelment a transfer_one() operation.  It provides
916  * standard handling of delays and chip select management.
917  */
918 static int spi_transfer_one_message(struct spi_master *master,
919                                     struct spi_message *msg)
920 {
921         struct spi_transfer *xfer;
922         bool keep_cs = false;
923         int ret = 0;
924         unsigned long ms = 1;
925         struct spi_statistics *statm = &master->statistics;
926         struct spi_statistics *stats = &msg->spi->statistics;
927
928         spi_set_cs(msg->spi, true);
929
930         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
931         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
932
933         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
934                 trace_spi_transfer_start(msg, xfer);
935
936                 spi_statistics_add_transfer_stats(statm, xfer, master);
937                 spi_statistics_add_transfer_stats(stats, xfer, master);
938
939                 if (xfer->tx_buf || xfer->rx_buf) {
940                         reinit_completion(&master->xfer_completion);
941
942                         ret = master->transfer_one(master, msg->spi, xfer);
943                         if (ret < 0) {
944                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
945                                                                errors);
946                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
947                                                                errors);
948                                 dev_err(&msg->spi->dev,
949                                         "SPI transfer failed: %d\n", ret);
950                                 goto out;
951                         }
952
953                         if (ret > 0) {
954                                 ret = 0;
955                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
956                                 ms += ms + 100; /* some tolerance */
957
958                                 ms = wait_for_completion_timeout(&master->xfer_completion,
959                                                                  msecs_to_jiffies(ms));
960                         }
961
962                         if (ms == 0) {
963                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
964                                                                timedout);
965                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
966                                                                timedout);
967                                 dev_err(&msg->spi->dev,
968                                         "SPI transfer timed out\n");
969                                 msg->status = -ETIMEDOUT;
970                         }
971                 } else {
972                         if (xfer->len)
973                                 dev_err(&msg->spi->dev,
974                                         "Bufferless transfer has length %u\n",
975                                         xfer->len);
976                 }
977
978                 trace_spi_transfer_stop(msg, xfer);
979
980                 if (msg->status != -EINPROGRESS)
981                         goto out;
982
983                 if (xfer->delay_usecs)
984                         udelay(xfer->delay_usecs);
985
986                 if (xfer->cs_change) {
987                         if (list_is_last(&xfer->transfer_list,
988                                          &msg->transfers)) {
989                                 keep_cs = true;
990                         } else {
991                                 spi_set_cs(msg->spi, false);
992                                 udelay(10);
993                                 spi_set_cs(msg->spi, true);
994                         }
995                 }
996
997                 msg->actual_length += xfer->len;
998         }
999
1000 out:
1001         if (ret != 0 || !keep_cs)
1002                 spi_set_cs(msg->spi, false);
1003
1004         if (msg->status == -EINPROGRESS)
1005                 msg->status = ret;
1006
1007         if (msg->status && master->handle_err)
1008                 master->handle_err(master, msg);
1009
1010         spi_finalize_current_message(master);
1011
1012         return ret;
1013 }
1014
1015 /**
1016  * spi_finalize_current_transfer - report completion of a transfer
1017  * @master: the master reporting completion
1018  *
1019  * Called by SPI drivers using the core transfer_one_message()
1020  * implementation to notify it that the current interrupt driven
1021  * transfer has finished and the next one may be scheduled.
1022  */
1023 void spi_finalize_current_transfer(struct spi_master *master)
1024 {
1025         complete(&master->xfer_completion);
1026 }
1027 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1028
1029 /**
1030  * __spi_pump_messages - function which processes spi message queue
1031  * @master: master to process queue for
1032  * @in_kthread: true if we are in the context of the message pump thread
1033  *
1034  * This function checks if there is any spi message in the queue that
1035  * needs processing and if so call out to the driver to initialize hardware
1036  * and transfer each message.
1037  *
1038  * Note that it is called both from the kthread itself and also from
1039  * inside spi_sync(); the queue extraction handling at the top of the
1040  * function should deal with this safely.
1041  */
1042 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1043 {
1044         unsigned long flags;
1045         bool was_busy = false;
1046         int ret;
1047
1048         /* Lock queue */
1049         spin_lock_irqsave(&master->queue_lock, flags);
1050
1051         /* Make sure we are not already running a message */
1052         if (master->cur_msg) {
1053                 spin_unlock_irqrestore(&master->queue_lock, flags);
1054                 return;
1055         }
1056
1057         /* If another context is idling the device then defer */
1058         if (master->idling) {
1059                 queue_kthread_work(&master->kworker, &master->pump_messages);
1060                 spin_unlock_irqrestore(&master->queue_lock, flags);
1061                 return;
1062         }
1063
1064         /* Check if the queue is idle */
1065         if (list_empty(&master->queue) || !master->running) {
1066                 if (!master->busy) {
1067                         spin_unlock_irqrestore(&master->queue_lock, flags);
1068                         return;
1069                 }
1070
1071                 /* Only do teardown in the thread */
1072                 if (!in_kthread) {
1073                         queue_kthread_work(&master->kworker,
1074                                            &master->pump_messages);
1075                         spin_unlock_irqrestore(&master->queue_lock, flags);
1076                         return;
1077                 }
1078
1079                 master->busy = false;
1080                 master->idling = true;
1081                 spin_unlock_irqrestore(&master->queue_lock, flags);
1082
1083                 kfree(master->dummy_rx);
1084                 master->dummy_rx = NULL;
1085                 kfree(master->dummy_tx);
1086                 master->dummy_tx = NULL;
1087                 if (master->unprepare_transfer_hardware &&
1088                     master->unprepare_transfer_hardware(master))
1089                         dev_err(&master->dev,
1090                                 "failed to unprepare transfer hardware\n");
1091                 if (master->auto_runtime_pm) {
1092                         pm_runtime_mark_last_busy(master->dev.parent);
1093                         pm_runtime_put_autosuspend(master->dev.parent);
1094                 }
1095                 trace_spi_master_idle(master);
1096
1097                 spin_lock_irqsave(&master->queue_lock, flags);
1098                 master->idling = false;
1099                 spin_unlock_irqrestore(&master->queue_lock, flags);
1100                 return;
1101         }
1102
1103         /* Extract head of queue */
1104         master->cur_msg =
1105                 list_first_entry(&master->queue, struct spi_message, queue);
1106
1107         list_del_init(&master->cur_msg->queue);
1108         if (master->busy)
1109                 was_busy = true;
1110         else
1111                 master->busy = true;
1112         spin_unlock_irqrestore(&master->queue_lock, flags);
1113
1114         if (!was_busy && master->auto_runtime_pm) {
1115                 ret = pm_runtime_get_sync(master->dev.parent);
1116                 if (ret < 0) {
1117                         dev_err(&master->dev, "Failed to power device: %d\n",
1118                                 ret);
1119                         return;
1120                 }
1121         }
1122
1123         if (!was_busy)
1124                 trace_spi_master_busy(master);
1125
1126         if (!was_busy && master->prepare_transfer_hardware) {
1127                 ret = master->prepare_transfer_hardware(master);
1128                 if (ret) {
1129                         dev_err(&master->dev,
1130                                 "failed to prepare transfer hardware\n");
1131
1132                         if (master->auto_runtime_pm)
1133                                 pm_runtime_put(master->dev.parent);
1134                         return;
1135                 }
1136         }
1137
1138         trace_spi_message_start(master->cur_msg);
1139
1140         if (master->prepare_message) {
1141                 ret = master->prepare_message(master, master->cur_msg);
1142                 if (ret) {
1143                         dev_err(&master->dev,
1144                                 "failed to prepare message: %d\n", ret);
1145                         master->cur_msg->status = ret;
1146                         spi_finalize_current_message(master);
1147                         return;
1148                 }
1149                 master->cur_msg_prepared = true;
1150         }
1151
1152         ret = spi_map_msg(master, master->cur_msg);
1153         if (ret) {
1154                 master->cur_msg->status = ret;
1155                 spi_finalize_current_message(master);
1156                 return;
1157         }
1158
1159         ret = master->transfer_one_message(master, master->cur_msg);
1160         if (ret) {
1161                 dev_err(&master->dev,
1162                         "failed to transfer one message from queue\n");
1163                 return;
1164         }
1165 }
1166
1167 /**
1168  * spi_pump_messages - kthread work function which processes spi message queue
1169  * @work: pointer to kthread work struct contained in the master struct
1170  */
1171 static void spi_pump_messages(struct kthread_work *work)
1172 {
1173         struct spi_master *master =
1174                 container_of(work, struct spi_master, pump_messages);
1175
1176         __spi_pump_messages(master, true);
1177 }
1178
1179 static int spi_init_queue(struct spi_master *master)
1180 {
1181         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1182
1183         master->running = false;
1184         master->busy = false;
1185
1186         init_kthread_worker(&master->kworker);
1187         master->kworker_task = kthread_run(kthread_worker_fn,
1188                                            &master->kworker, "%s",
1189                                            dev_name(&master->dev));
1190         if (IS_ERR(master->kworker_task)) {
1191                 dev_err(&master->dev, "failed to create message pump task\n");
1192                 return PTR_ERR(master->kworker_task);
1193         }
1194         init_kthread_work(&master->pump_messages, spi_pump_messages);
1195
1196         /*
1197          * Master config will indicate if this controller should run the
1198          * message pump with high (realtime) priority to reduce the transfer
1199          * latency on the bus by minimising the delay between a transfer
1200          * request and the scheduling of the message pump thread. Without this
1201          * setting the message pump thread will remain at default priority.
1202          */
1203         if (master->rt) {
1204                 dev_info(&master->dev,
1205                         "will run message pump with realtime priority\n");
1206                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1207         }
1208
1209         return 0;
1210 }
1211
1212 /**
1213  * spi_get_next_queued_message() - called by driver to check for queued
1214  * messages
1215  * @master: the master to check for queued messages
1216  *
1217  * If there are more messages in the queue, the next message is returned from
1218  * this call.
1219  *
1220  * Return: the next message in the queue, else NULL if the queue is empty.
1221  */
1222 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1223 {
1224         struct spi_message *next;
1225         unsigned long flags;
1226
1227         /* get a pointer to the next message, if any */
1228         spin_lock_irqsave(&master->queue_lock, flags);
1229         next = list_first_entry_or_null(&master->queue, struct spi_message,
1230                                         queue);
1231         spin_unlock_irqrestore(&master->queue_lock, flags);
1232
1233         return next;
1234 }
1235 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1236
1237 /**
1238  * spi_finalize_current_message() - the current message is complete
1239  * @master: the master to return the message to
1240  *
1241  * Called by the driver to notify the core that the message in the front of the
1242  * queue is complete and can be removed from the queue.
1243  */
1244 void spi_finalize_current_message(struct spi_master *master)
1245 {
1246         struct spi_message *mesg;
1247         unsigned long flags;
1248         int ret;
1249
1250         spin_lock_irqsave(&master->queue_lock, flags);
1251         mesg = master->cur_msg;
1252         spin_unlock_irqrestore(&master->queue_lock, flags);
1253
1254         spi_unmap_msg(master, mesg);
1255
1256         if (master->cur_msg_prepared && master->unprepare_message) {
1257                 ret = master->unprepare_message(master, mesg);
1258                 if (ret) {
1259                         dev_err(&master->dev,
1260                                 "failed to unprepare message: %d\n", ret);
1261                 }
1262         }
1263
1264         spin_lock_irqsave(&master->queue_lock, flags);
1265         master->cur_msg = NULL;
1266         master->cur_msg_prepared = false;
1267         queue_kthread_work(&master->kworker, &master->pump_messages);
1268         spin_unlock_irqrestore(&master->queue_lock, flags);
1269
1270         trace_spi_message_done(mesg);
1271
1272         mesg->state = NULL;
1273         if (mesg->complete)
1274                 mesg->complete(mesg->context);
1275 }
1276 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1277
1278 static int spi_start_queue(struct spi_master *master)
1279 {
1280         unsigned long flags;
1281
1282         spin_lock_irqsave(&master->queue_lock, flags);
1283
1284         if (master->running || master->busy) {
1285                 spin_unlock_irqrestore(&master->queue_lock, flags);
1286                 return -EBUSY;
1287         }
1288
1289         master->running = true;
1290         master->cur_msg = NULL;
1291         spin_unlock_irqrestore(&master->queue_lock, flags);
1292
1293         queue_kthread_work(&master->kworker, &master->pump_messages);
1294
1295         return 0;
1296 }
1297
1298 static int spi_stop_queue(struct spi_master *master)
1299 {
1300         unsigned long flags;
1301         unsigned limit = 500;
1302         int ret = 0;
1303
1304         spin_lock_irqsave(&master->queue_lock, flags);
1305
1306         /*
1307          * This is a bit lame, but is optimized for the common execution path.
1308          * A wait_queue on the master->busy could be used, but then the common
1309          * execution path (pump_messages) would be required to call wake_up or
1310          * friends on every SPI message. Do this instead.
1311          */
1312         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1313                 spin_unlock_irqrestore(&master->queue_lock, flags);
1314                 usleep_range(10000, 11000);
1315                 spin_lock_irqsave(&master->queue_lock, flags);
1316         }
1317
1318         if (!list_empty(&master->queue) || master->busy)
1319                 ret = -EBUSY;
1320         else
1321                 master->running = false;
1322
1323         spin_unlock_irqrestore(&master->queue_lock, flags);
1324
1325         if (ret) {
1326                 dev_warn(&master->dev,
1327                          "could not stop message queue\n");
1328                 return ret;
1329         }
1330         return ret;
1331 }
1332
1333 static int spi_destroy_queue(struct spi_master *master)
1334 {
1335         int ret;
1336
1337         ret = spi_stop_queue(master);
1338
1339         /*
1340          * flush_kthread_worker will block until all work is done.
1341          * If the reason that stop_queue timed out is that the work will never
1342          * finish, then it does no good to call flush/stop thread, so
1343          * return anyway.
1344          */
1345         if (ret) {
1346                 dev_err(&master->dev, "problem destroying queue\n");
1347                 return ret;
1348         }
1349
1350         flush_kthread_worker(&master->kworker);
1351         kthread_stop(master->kworker_task);
1352
1353         return 0;
1354 }
1355
1356 static int __spi_queued_transfer(struct spi_device *spi,
1357                                  struct spi_message *msg,
1358                                  bool need_pump)
1359 {
1360         struct spi_master *master = spi->master;
1361         unsigned long flags;
1362
1363         spin_lock_irqsave(&master->queue_lock, flags);
1364
1365         if (!master->running) {
1366                 spin_unlock_irqrestore(&master->queue_lock, flags);
1367                 return -ESHUTDOWN;
1368         }
1369         msg->actual_length = 0;
1370         msg->status = -EINPROGRESS;
1371
1372         list_add_tail(&msg->queue, &master->queue);
1373         if (!master->busy && need_pump)
1374                 queue_kthread_work(&master->kworker, &master->pump_messages);
1375
1376         spin_unlock_irqrestore(&master->queue_lock, flags);
1377         return 0;
1378 }
1379
1380 /**
1381  * spi_queued_transfer - transfer function for queued transfers
1382  * @spi: spi device which is requesting transfer
1383  * @msg: spi message which is to handled is queued to driver queue
1384  *
1385  * Return: zero on success, else a negative error code.
1386  */
1387 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1388 {
1389         return __spi_queued_transfer(spi, msg, true);
1390 }
1391
1392 static int spi_master_initialize_queue(struct spi_master *master)
1393 {
1394         int ret;
1395
1396         master->transfer = spi_queued_transfer;
1397         if (!master->transfer_one_message)
1398                 master->transfer_one_message = spi_transfer_one_message;
1399
1400         /* Initialize and start queue */
1401         ret = spi_init_queue(master);
1402         if (ret) {
1403                 dev_err(&master->dev, "problem initializing queue\n");
1404                 goto err_init_queue;
1405         }
1406         master->queued = true;
1407         ret = spi_start_queue(master);
1408         if (ret) {
1409                 dev_err(&master->dev, "problem starting queue\n");
1410                 goto err_start_queue;
1411         }
1412
1413         return 0;
1414
1415 err_start_queue:
1416         spi_destroy_queue(master);
1417 err_init_queue:
1418         return ret;
1419 }
1420
1421 /*-------------------------------------------------------------------------*/
1422
1423 #if defined(CONFIG_OF)
1424 static struct spi_device *
1425 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1426 {
1427         struct spi_device *spi;
1428         int rc;
1429         u32 value;
1430
1431         /* Alloc an spi_device */
1432         spi = spi_alloc_device(master);
1433         if (!spi) {
1434                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1435                         nc->full_name);
1436                 rc = -ENOMEM;
1437                 goto err_out;
1438         }
1439
1440         /* Select device driver */
1441         rc = of_modalias_node(nc, spi->modalias,
1442                                 sizeof(spi->modalias));
1443         if (rc < 0) {
1444                 dev_err(&master->dev, "cannot find modalias for %s\n",
1445                         nc->full_name);
1446                 goto err_out;
1447         }
1448
1449         /* Device address */
1450         rc = of_property_read_u32(nc, "reg", &value);
1451         if (rc) {
1452                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1453                         nc->full_name, rc);
1454                 goto err_out;
1455         }
1456         spi->chip_select = value;
1457
1458         /* Mode (clock phase/polarity/etc.) */
1459         if (of_find_property(nc, "spi-cpha", NULL))
1460                 spi->mode |= SPI_CPHA;
1461         if (of_find_property(nc, "spi-cpol", NULL))
1462                 spi->mode |= SPI_CPOL;
1463         if (of_find_property(nc, "spi-cs-high", NULL))
1464                 spi->mode |= SPI_CS_HIGH;
1465         if (of_find_property(nc, "spi-3wire", NULL))
1466                 spi->mode |= SPI_3WIRE;
1467         if (of_find_property(nc, "spi-lsb-first", NULL))
1468                 spi->mode |= SPI_LSB_FIRST;
1469
1470         /* Device DUAL/QUAD mode */
1471         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1472                 switch (value) {
1473                 case 1:
1474                         break;
1475                 case 2:
1476                         spi->mode |= SPI_TX_DUAL;
1477                         break;
1478                 case 4:
1479                         spi->mode |= SPI_TX_QUAD;
1480                         break;
1481                 default:
1482                         dev_warn(&master->dev,
1483                                 "spi-tx-bus-width %d not supported\n",
1484                                 value);
1485                         break;
1486                 }
1487         }
1488
1489         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1490                 switch (value) {
1491                 case 1:
1492                         break;
1493                 case 2:
1494                         spi->mode |= SPI_RX_DUAL;
1495                         break;
1496                 case 4:
1497                         spi->mode |= SPI_RX_QUAD;
1498                         break;
1499                 default:
1500                         dev_warn(&master->dev,
1501                                 "spi-rx-bus-width %d not supported\n",
1502                                 value);
1503                         break;
1504                 }
1505         }
1506
1507         /* Device speed */
1508         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1509         if (rc) {
1510                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1511                         nc->full_name, rc);
1512                 goto err_out;
1513         }
1514         spi->max_speed_hz = value;
1515
1516         /* Store a pointer to the node in the device structure */
1517         of_node_get(nc);
1518         spi->dev.of_node = nc;
1519
1520         /* Register the new device */
1521         rc = spi_add_device(spi);
1522         if (rc) {
1523                 dev_err(&master->dev, "spi_device register error %s\n",
1524                         nc->full_name);
1525                 goto err_out;
1526         }
1527
1528         return spi;
1529
1530 err_out:
1531         spi_dev_put(spi);
1532         return ERR_PTR(rc);
1533 }
1534
1535 /**
1536  * of_register_spi_devices() - Register child devices onto the SPI bus
1537  * @master:     Pointer to spi_master device
1538  *
1539  * Registers an spi_device for each child node of master node which has a 'reg'
1540  * property.
1541  */
1542 static void of_register_spi_devices(struct spi_master *master)
1543 {
1544         struct spi_device *spi;
1545         struct device_node *nc;
1546
1547         if (!master->dev.of_node)
1548                 return;
1549
1550         for_each_available_child_of_node(master->dev.of_node, nc) {
1551                 spi = of_register_spi_device(master, nc);
1552                 if (IS_ERR(spi))
1553                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1554                                 nc->full_name);
1555         }
1556 }
1557 #else
1558 static void of_register_spi_devices(struct spi_master *master) { }
1559 #endif
1560
1561 #ifdef CONFIG_ACPI
1562 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1563 {
1564         struct spi_device *spi = data;
1565
1566         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1567                 struct acpi_resource_spi_serialbus *sb;
1568
1569                 sb = &ares->data.spi_serial_bus;
1570                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1571                         spi->chip_select = sb->device_selection;
1572                         spi->max_speed_hz = sb->connection_speed;
1573
1574                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1575                                 spi->mode |= SPI_CPHA;
1576                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1577                                 spi->mode |= SPI_CPOL;
1578                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1579                                 spi->mode |= SPI_CS_HIGH;
1580                 }
1581         } else if (spi->irq < 0) {
1582                 struct resource r;
1583
1584                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1585                         spi->irq = r.start;
1586         }
1587
1588         /* Always tell the ACPI core to skip this resource */
1589         return 1;
1590 }
1591
1592 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1593                                        void *data, void **return_value)
1594 {
1595         struct spi_master *master = data;
1596         struct list_head resource_list;
1597         struct acpi_device *adev;
1598         struct spi_device *spi;
1599         int ret;
1600
1601         if (acpi_bus_get_device(handle, &adev))
1602                 return AE_OK;
1603         if (acpi_bus_get_status(adev) || !adev->status.present)
1604                 return AE_OK;
1605
1606         spi = spi_alloc_device(master);
1607         if (!spi) {
1608                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1609                         dev_name(&adev->dev));
1610                 return AE_NO_MEMORY;
1611         }
1612
1613         ACPI_COMPANION_SET(&spi->dev, adev);
1614         spi->irq = -1;
1615
1616         INIT_LIST_HEAD(&resource_list);
1617         ret = acpi_dev_get_resources(adev, &resource_list,
1618                                      acpi_spi_add_resource, spi);
1619         acpi_dev_free_resource_list(&resource_list);
1620
1621         if (ret < 0 || !spi->max_speed_hz) {
1622                 spi_dev_put(spi);
1623                 return AE_OK;
1624         }
1625
1626         adev->power.flags.ignore_parent = true;
1627         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1628         if (spi_add_device(spi)) {
1629                 adev->power.flags.ignore_parent = false;
1630                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1631                         dev_name(&adev->dev));
1632                 spi_dev_put(spi);
1633         }
1634
1635         return AE_OK;
1636 }
1637
1638 static void acpi_register_spi_devices(struct spi_master *master)
1639 {
1640         acpi_status status;
1641         acpi_handle handle;
1642
1643         handle = ACPI_HANDLE(master->dev.parent);
1644         if (!handle)
1645                 return;
1646
1647         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1648                                      acpi_spi_add_device, NULL,
1649                                      master, NULL);
1650         if (ACPI_FAILURE(status))
1651                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1652 }
1653 #else
1654 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1655 #endif /* CONFIG_ACPI */
1656
1657 static void spi_master_release(struct device *dev)
1658 {
1659         struct spi_master *master;
1660
1661         master = container_of(dev, struct spi_master, dev);
1662         kfree(master);
1663 }
1664
1665 static struct class spi_master_class = {
1666         .name           = "spi_master",
1667         .owner          = THIS_MODULE,
1668         .dev_release    = spi_master_release,
1669         .dev_groups     = spi_master_groups,
1670 };
1671
1672
1673 /**
1674  * spi_alloc_master - allocate SPI master controller
1675  * @dev: the controller, possibly using the platform_bus
1676  * @size: how much zeroed driver-private data to allocate; the pointer to this
1677  *      memory is in the driver_data field of the returned device,
1678  *      accessible with spi_master_get_devdata().
1679  * Context: can sleep
1680  *
1681  * This call is used only by SPI master controller drivers, which are the
1682  * only ones directly touching chip registers.  It's how they allocate
1683  * an spi_master structure, prior to calling spi_register_master().
1684  *
1685  * This must be called from context that can sleep.
1686  *
1687  * The caller is responsible for assigning the bus number and initializing
1688  * the master's methods before calling spi_register_master(); and (after errors
1689  * adding the device) calling spi_master_put() to prevent a memory leak.
1690  *
1691  * Return: the SPI master structure on success, else NULL.
1692  */
1693 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1694 {
1695         struct spi_master       *master;
1696
1697         if (!dev)
1698                 return NULL;
1699
1700         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1701         if (!master)
1702                 return NULL;
1703
1704         device_initialize(&master->dev);
1705         master->bus_num = -1;
1706         master->num_chipselect = 1;
1707         master->dev.class = &spi_master_class;
1708         master->dev.parent = dev;
1709         spi_master_set_devdata(master, &master[1]);
1710
1711         return master;
1712 }
1713 EXPORT_SYMBOL_GPL(spi_alloc_master);
1714
1715 #ifdef CONFIG_OF
1716 static int of_spi_register_master(struct spi_master *master)
1717 {
1718         int nb, i, *cs;
1719         struct device_node *np = master->dev.of_node;
1720
1721         if (!np)
1722                 return 0;
1723
1724         nb = of_gpio_named_count(np, "cs-gpios");
1725         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1726
1727         /* Return error only for an incorrectly formed cs-gpios property */
1728         if (nb == 0 || nb == -ENOENT)
1729                 return 0;
1730         else if (nb < 0)
1731                 return nb;
1732
1733         cs = devm_kzalloc(&master->dev,
1734                           sizeof(int) * master->num_chipselect,
1735                           GFP_KERNEL);
1736         master->cs_gpios = cs;
1737
1738         if (!master->cs_gpios)
1739                 return -ENOMEM;
1740
1741         for (i = 0; i < master->num_chipselect; i++)
1742                 cs[i] = -ENOENT;
1743
1744         for (i = 0; i < nb; i++)
1745                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1746
1747         return 0;
1748 }
1749 #else
1750 static int of_spi_register_master(struct spi_master *master)
1751 {
1752         return 0;
1753 }
1754 #endif
1755
1756 /**
1757  * spi_register_master - register SPI master controller
1758  * @master: initialized master, originally from spi_alloc_master()
1759  * Context: can sleep
1760  *
1761  * SPI master controllers connect to their drivers using some non-SPI bus,
1762  * such as the platform bus.  The final stage of probe() in that code
1763  * includes calling spi_register_master() to hook up to this SPI bus glue.
1764  *
1765  * SPI controllers use board specific (often SOC specific) bus numbers,
1766  * and board-specific addressing for SPI devices combines those numbers
1767  * with chip select numbers.  Since SPI does not directly support dynamic
1768  * device identification, boards need configuration tables telling which
1769  * chip is at which address.
1770  *
1771  * This must be called from context that can sleep.  It returns zero on
1772  * success, else a negative error code (dropping the master's refcount).
1773  * After a successful return, the caller is responsible for calling
1774  * spi_unregister_master().
1775  *
1776  * Return: zero on success, else a negative error code.
1777  */
1778 int spi_register_master(struct spi_master *master)
1779 {
1780         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1781         struct device           *dev = master->dev.parent;
1782         struct boardinfo        *bi;
1783         int                     status = -ENODEV;
1784         int                     dynamic = 0;
1785
1786         if (!dev)
1787                 return -ENODEV;
1788
1789         status = of_spi_register_master(master);
1790         if (status)
1791                 return status;
1792
1793         /* even if it's just one always-selected device, there must
1794          * be at least one chipselect
1795          */
1796         if (master->num_chipselect == 0)
1797                 return -EINVAL;
1798
1799         if ((master->bus_num < 0) && master->dev.of_node)
1800                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1801
1802         /* convention:  dynamically assigned bus IDs count down from the max */
1803         if (master->bus_num < 0) {
1804                 /* FIXME switch to an IDR based scheme, something like
1805                  * I2C now uses, so we can't run out of "dynamic" IDs
1806                  */
1807                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1808                 dynamic = 1;
1809         }
1810
1811         INIT_LIST_HEAD(&master->queue);
1812         spin_lock_init(&master->queue_lock);
1813         spin_lock_init(&master->bus_lock_spinlock);
1814         mutex_init(&master->bus_lock_mutex);
1815         master->bus_lock_flag = 0;
1816         init_completion(&master->xfer_completion);
1817         if (!master->max_dma_len)
1818                 master->max_dma_len = INT_MAX;
1819
1820         /* register the device, then userspace will see it.
1821          * registration fails if the bus ID is in use.
1822          */
1823         dev_set_name(&master->dev, "spi%u", master->bus_num);
1824         status = device_add(&master->dev);
1825         if (status < 0)
1826                 goto done;
1827         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1828                         dynamic ? " (dynamic)" : "");
1829
1830         /* If we're using a queued driver, start the queue */
1831         if (master->transfer)
1832                 dev_info(dev, "master is unqueued, this is deprecated\n");
1833         else {
1834                 status = spi_master_initialize_queue(master);
1835                 if (status) {
1836                         device_del(&master->dev);
1837                         goto done;
1838                 }
1839         }
1840         /* add statistics */
1841         spin_lock_init(&master->statistics.lock);
1842
1843         mutex_lock(&board_lock);
1844         list_add_tail(&master->list, &spi_master_list);
1845         list_for_each_entry(bi, &board_list, list)
1846                 spi_match_master_to_boardinfo(master, &bi->board_info);
1847         mutex_unlock(&board_lock);
1848
1849         /* Register devices from the device tree and ACPI */
1850         of_register_spi_devices(master);
1851         acpi_register_spi_devices(master);
1852 done:
1853         return status;
1854 }
1855 EXPORT_SYMBOL_GPL(spi_register_master);
1856
1857 static void devm_spi_unregister(struct device *dev, void *res)
1858 {
1859         spi_unregister_master(*(struct spi_master **)res);
1860 }
1861
1862 /**
1863  * dev_spi_register_master - register managed SPI master controller
1864  * @dev:    device managing SPI master
1865  * @master: initialized master, originally from spi_alloc_master()
1866  * Context: can sleep
1867  *
1868  * Register a SPI device as with spi_register_master() which will
1869  * automatically be unregister
1870  *
1871  * Return: zero on success, else a negative error code.
1872  */
1873 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1874 {
1875         struct spi_master **ptr;
1876         int ret;
1877
1878         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1879         if (!ptr)
1880                 return -ENOMEM;
1881
1882         ret = spi_register_master(master);
1883         if (!ret) {
1884                 *ptr = master;
1885                 devres_add(dev, ptr);
1886         } else {
1887                 devres_free(ptr);
1888         }
1889
1890         return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1893
1894 static int __unregister(struct device *dev, void *null)
1895 {
1896         spi_unregister_device(to_spi_device(dev));
1897         return 0;
1898 }
1899
1900 /**
1901  * spi_unregister_master - unregister SPI master controller
1902  * @master: the master being unregistered
1903  * Context: can sleep
1904  *
1905  * This call is used only by SPI master controller drivers, which are the
1906  * only ones directly touching chip registers.
1907  *
1908  * This must be called from context that can sleep.
1909  */
1910 void spi_unregister_master(struct spi_master *master)
1911 {
1912         int dummy;
1913
1914         if (master->queued) {
1915                 if (spi_destroy_queue(master))
1916                         dev_err(&master->dev, "queue remove failed\n");
1917         }
1918
1919         mutex_lock(&board_lock);
1920         list_del(&master->list);
1921         mutex_unlock(&board_lock);
1922
1923         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1924         device_unregister(&master->dev);
1925 }
1926 EXPORT_SYMBOL_GPL(spi_unregister_master);
1927
1928 int spi_master_suspend(struct spi_master *master)
1929 {
1930         int ret;
1931
1932         /* Basically no-ops for non-queued masters */
1933         if (!master->queued)
1934                 return 0;
1935
1936         ret = spi_stop_queue(master);
1937         if (ret)
1938                 dev_err(&master->dev, "queue stop failed\n");
1939
1940         return ret;
1941 }
1942 EXPORT_SYMBOL_GPL(spi_master_suspend);
1943
1944 int spi_master_resume(struct spi_master *master)
1945 {
1946         int ret;
1947
1948         if (!master->queued)
1949                 return 0;
1950
1951         ret = spi_start_queue(master);
1952         if (ret)
1953                 dev_err(&master->dev, "queue restart failed\n");
1954
1955         return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(spi_master_resume);
1958
1959 static int __spi_master_match(struct device *dev, const void *data)
1960 {
1961         struct spi_master *m;
1962         const u16 *bus_num = data;
1963
1964         m = container_of(dev, struct spi_master, dev);
1965         return m->bus_num == *bus_num;
1966 }
1967
1968 /**
1969  * spi_busnum_to_master - look up master associated with bus_num
1970  * @bus_num: the master's bus number
1971  * Context: can sleep
1972  *
1973  * This call may be used with devices that are registered after
1974  * arch init time.  It returns a refcounted pointer to the relevant
1975  * spi_master (which the caller must release), or NULL if there is
1976  * no such master registered.
1977  *
1978  * Return: the SPI master structure on success, else NULL.
1979  */
1980 struct spi_master *spi_busnum_to_master(u16 bus_num)
1981 {
1982         struct device           *dev;
1983         struct spi_master       *master = NULL;
1984
1985         dev = class_find_device(&spi_master_class, NULL, &bus_num,
1986                                 __spi_master_match);
1987         if (dev)
1988                 master = container_of(dev, struct spi_master, dev);
1989         /* reference got in class_find_device */
1990         return master;
1991 }
1992 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1993
1994
1995 /*-------------------------------------------------------------------------*/
1996
1997 /* Core methods for SPI master protocol drivers.  Some of the
1998  * other core methods are currently defined as inline functions.
1999  */
2000
2001 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2002 {
2003         if (master->bits_per_word_mask) {
2004                 /* Only 32 bits fit in the mask */
2005                 if (bits_per_word > 32)
2006                         return -EINVAL;
2007                 if (!(master->bits_per_word_mask &
2008                                 SPI_BPW_MASK(bits_per_word)))
2009                         return -EINVAL;
2010         }
2011
2012         return 0;
2013 }
2014
2015 /**
2016  * spi_setup - setup SPI mode and clock rate
2017  * @spi: the device whose settings are being modified
2018  * Context: can sleep, and no requests are queued to the device
2019  *
2020  * SPI protocol drivers may need to update the transfer mode if the
2021  * device doesn't work with its default.  They may likewise need
2022  * to update clock rates or word sizes from initial values.  This function
2023  * changes those settings, and must be called from a context that can sleep.
2024  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2025  * effect the next time the device is selected and data is transferred to
2026  * or from it.  When this function returns, the spi device is deselected.
2027  *
2028  * Note that this call will fail if the protocol driver specifies an option
2029  * that the underlying controller or its driver does not support.  For
2030  * example, not all hardware supports wire transfers using nine bit words,
2031  * LSB-first wire encoding, or active-high chipselects.
2032  *
2033  * Return: zero on success, else a negative error code.
2034  */
2035 int spi_setup(struct spi_device *spi)
2036 {
2037         unsigned        bad_bits, ugly_bits;
2038         int             status;
2039
2040         /* check mode to prevent that DUAL and QUAD set at the same time
2041          */
2042         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2043                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2044                 dev_err(&spi->dev,
2045                 "setup: can not select dual and quad at the same time\n");
2046                 return -EINVAL;
2047         }
2048         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2049          */
2050         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2051                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2052                 return -EINVAL;
2053         /* help drivers fail *cleanly* when they need options
2054          * that aren't supported with their current master
2055          */
2056         bad_bits = spi->mode & ~spi->master->mode_bits;
2057         ugly_bits = bad_bits &
2058                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2059         if (ugly_bits) {
2060                 dev_warn(&spi->dev,
2061                          "setup: ignoring unsupported mode bits %x\n",
2062                          ugly_bits);
2063                 spi->mode &= ~ugly_bits;
2064                 bad_bits &= ~ugly_bits;
2065         }
2066         if (bad_bits) {
2067                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2068                         bad_bits);
2069                 return -EINVAL;
2070         }
2071
2072         if (!spi->bits_per_word)
2073                 spi->bits_per_word = 8;
2074
2075         status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2076         if (status)
2077                 return status;
2078
2079         if (!spi->max_speed_hz)
2080                 spi->max_speed_hz = spi->master->max_speed_hz;
2081
2082         if (spi->master->setup)
2083                 status = spi->master->setup(spi);
2084
2085         spi_set_cs(spi, false);
2086
2087         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2088                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2089                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2090                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2091                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2092                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2093                         spi->bits_per_word, spi->max_speed_hz,
2094                         status);
2095
2096         return status;
2097 }
2098 EXPORT_SYMBOL_GPL(spi_setup);
2099
2100 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2101 {
2102         struct spi_master *master = spi->master;
2103         struct spi_transfer *xfer;
2104         int w_size;
2105
2106         if (list_empty(&message->transfers))
2107                 return -EINVAL;
2108
2109         /* Half-duplex links include original MicroWire, and ones with
2110          * only one data pin like SPI_3WIRE (switches direction) or where
2111          * either MOSI or MISO is missing.  They can also be caused by
2112          * software limitations.
2113          */
2114         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2115                         || (spi->mode & SPI_3WIRE)) {
2116                 unsigned flags = master->flags;
2117
2118                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2119                         if (xfer->rx_buf && xfer->tx_buf)
2120                                 return -EINVAL;
2121                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2122                                 return -EINVAL;
2123                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2124                                 return -EINVAL;
2125                 }
2126         }
2127
2128         /**
2129          * Set transfer bits_per_word and max speed as spi device default if
2130          * it is not set for this transfer.
2131          * Set transfer tx_nbits and rx_nbits as single transfer default
2132          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2133          */
2134         message->frame_length = 0;
2135         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2136                 message->frame_length += xfer->len;
2137                 if (!xfer->bits_per_word)
2138                         xfer->bits_per_word = spi->bits_per_word;
2139
2140                 if (!xfer->speed_hz)
2141                         xfer->speed_hz = spi->max_speed_hz;
2142                 if (!xfer->speed_hz)
2143                         xfer->speed_hz = master->max_speed_hz;
2144
2145                 if (master->max_speed_hz &&
2146                     xfer->speed_hz > master->max_speed_hz)
2147                         xfer->speed_hz = master->max_speed_hz;
2148
2149                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2150                         return -EINVAL;
2151
2152                 /*
2153                  * SPI transfer length should be multiple of SPI word size
2154                  * where SPI word size should be power-of-two multiple
2155                  */
2156                 if (xfer->bits_per_word <= 8)
2157                         w_size = 1;
2158                 else if (xfer->bits_per_word <= 16)
2159                         w_size = 2;
2160                 else
2161                         w_size = 4;
2162
2163                 /* No partial transfers accepted */
2164                 if (xfer->len % w_size)
2165                         return -EINVAL;
2166
2167                 if (xfer->speed_hz && master->min_speed_hz &&
2168                     xfer->speed_hz < master->min_speed_hz)
2169                         return -EINVAL;
2170
2171                 if (xfer->tx_buf && !xfer->tx_nbits)
2172                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2173                 if (xfer->rx_buf && !xfer->rx_nbits)
2174                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2175                 /* check transfer tx/rx_nbits:
2176                  * 1. check the value matches one of single, dual and quad
2177                  * 2. check tx/rx_nbits match the mode in spi_device
2178                  */
2179                 if (xfer->tx_buf) {
2180                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2181                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2182                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2183                                 return -EINVAL;
2184                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2185                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2186                                 return -EINVAL;
2187                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2188                                 !(spi->mode & SPI_TX_QUAD))
2189                                 return -EINVAL;
2190                 }
2191                 /* check transfer rx_nbits */
2192                 if (xfer->rx_buf) {
2193                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2194                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2195                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2196                                 return -EINVAL;
2197                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2198                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2199                                 return -EINVAL;
2200                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2201                                 !(spi->mode & SPI_RX_QUAD))
2202                                 return -EINVAL;
2203                 }
2204         }
2205
2206         message->status = -EINPROGRESS;
2207
2208         return 0;
2209 }
2210
2211 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2212 {
2213         struct spi_master *master = spi->master;
2214
2215         message->spi = spi;
2216
2217         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2218         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2219
2220         trace_spi_message_submit(message);
2221
2222         return master->transfer(spi, message);
2223 }
2224
2225 /**
2226  * spi_async - asynchronous SPI transfer
2227  * @spi: device with which data will be exchanged
2228  * @message: describes the data transfers, including completion callback
2229  * Context: any (irqs may be blocked, etc)
2230  *
2231  * This call may be used in_irq and other contexts which can't sleep,
2232  * as well as from task contexts which can sleep.
2233  *
2234  * The completion callback is invoked in a context which can't sleep.
2235  * Before that invocation, the value of message->status is undefined.
2236  * When the callback is issued, message->status holds either zero (to
2237  * indicate complete success) or a negative error code.  After that
2238  * callback returns, the driver which issued the transfer request may
2239  * deallocate the associated memory; it's no longer in use by any SPI
2240  * core or controller driver code.
2241  *
2242  * Note that although all messages to a spi_device are handled in
2243  * FIFO order, messages may go to different devices in other orders.
2244  * Some device might be higher priority, or have various "hard" access
2245  * time requirements, for example.
2246  *
2247  * On detection of any fault during the transfer, processing of
2248  * the entire message is aborted, and the device is deselected.
2249  * Until returning from the associated message completion callback,
2250  * no other spi_message queued to that device will be processed.
2251  * (This rule applies equally to all the synchronous transfer calls,
2252  * which are wrappers around this core asynchronous primitive.)
2253  *
2254  * Return: zero on success, else a negative error code.
2255  */
2256 int spi_async(struct spi_device *spi, struct spi_message *message)
2257 {
2258         struct spi_master *master = spi->master;
2259         int ret;
2260         unsigned long flags;
2261
2262         ret = __spi_validate(spi, message);
2263         if (ret != 0)
2264                 return ret;
2265
2266         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2267
2268         if (master->bus_lock_flag)
2269                 ret = -EBUSY;
2270         else
2271                 ret = __spi_async(spi, message);
2272
2273         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2274
2275         return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(spi_async);
2278
2279 /**
2280  * spi_async_locked - version of spi_async with exclusive bus usage
2281  * @spi: device with which data will be exchanged
2282  * @message: describes the data transfers, including completion callback
2283  * Context: any (irqs may be blocked, etc)
2284  *
2285  * This call may be used in_irq and other contexts which can't sleep,
2286  * as well as from task contexts which can sleep.
2287  *
2288  * The completion callback is invoked in a context which can't sleep.
2289  * Before that invocation, the value of message->status is undefined.
2290  * When the callback is issued, message->status holds either zero (to
2291  * indicate complete success) or a negative error code.  After that
2292  * callback returns, the driver which issued the transfer request may
2293  * deallocate the associated memory; it's no longer in use by any SPI
2294  * core or controller driver code.
2295  *
2296  * Note that although all messages to a spi_device are handled in
2297  * FIFO order, messages may go to different devices in other orders.
2298  * Some device might be higher priority, or have various "hard" access
2299  * time requirements, for example.
2300  *
2301  * On detection of any fault during the transfer, processing of
2302  * the entire message is aborted, and the device is deselected.
2303  * Until returning from the associated message completion callback,
2304  * no other spi_message queued to that device will be processed.
2305  * (This rule applies equally to all the synchronous transfer calls,
2306  * which are wrappers around this core asynchronous primitive.)
2307  *
2308  * Return: zero on success, else a negative error code.
2309  */
2310 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2311 {
2312         struct spi_master *master = spi->master;
2313         int ret;
2314         unsigned long flags;
2315
2316         ret = __spi_validate(spi, message);
2317         if (ret != 0)
2318                 return ret;
2319
2320         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2321
2322         ret = __spi_async(spi, message);
2323
2324         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2325
2326         return ret;
2327
2328 }
2329 EXPORT_SYMBOL_GPL(spi_async_locked);
2330
2331
2332 /*-------------------------------------------------------------------------*/
2333
2334 /* Utility methods for SPI master protocol drivers, layered on
2335  * top of the core.  Some other utility methods are defined as
2336  * inline functions.
2337  */
2338
2339 static void spi_complete(void *arg)
2340 {
2341         complete(arg);
2342 }
2343
2344 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2345                       int bus_locked)
2346 {
2347         DECLARE_COMPLETION_ONSTACK(done);
2348         int status;
2349         struct spi_master *master = spi->master;
2350         unsigned long flags;
2351
2352         status = __spi_validate(spi, message);
2353         if (status != 0)
2354                 return status;
2355
2356         message->complete = spi_complete;
2357         message->context = &done;
2358         message->spi = spi;
2359
2360         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2361         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2362
2363         if (!bus_locked)
2364                 mutex_lock(&master->bus_lock_mutex);
2365
2366         /* If we're not using the legacy transfer method then we will
2367          * try to transfer in the calling context so special case.
2368          * This code would be less tricky if we could remove the
2369          * support for driver implemented message queues.
2370          */
2371         if (master->transfer == spi_queued_transfer) {
2372                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2373
2374                 trace_spi_message_submit(message);
2375
2376                 status = __spi_queued_transfer(spi, message, false);
2377
2378                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2379         } else {
2380                 status = spi_async_locked(spi, message);
2381         }
2382
2383         if (!bus_locked)
2384                 mutex_unlock(&master->bus_lock_mutex);
2385
2386         if (status == 0) {
2387                 /* Push out the messages in the calling context if we
2388                  * can.
2389                  */
2390                 if (master->transfer == spi_queued_transfer) {
2391                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2392                                                        spi_sync_immediate);
2393                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2394                                                        spi_sync_immediate);
2395                         __spi_pump_messages(master, false);
2396                 }
2397
2398                 wait_for_completion(&done);
2399                 status = message->status;
2400         }
2401         message->context = NULL;
2402         return status;
2403 }
2404
2405 /**
2406  * spi_sync - blocking/synchronous SPI data transfers
2407  * @spi: device with which data will be exchanged
2408  * @message: describes the data transfers
2409  * Context: can sleep
2410  *
2411  * This call may only be used from a context that may sleep.  The sleep
2412  * is non-interruptible, and has no timeout.  Low-overhead controller
2413  * drivers may DMA directly into and out of the message buffers.
2414  *
2415  * Note that the SPI device's chip select is active during the message,
2416  * and then is normally disabled between messages.  Drivers for some
2417  * frequently-used devices may want to minimize costs of selecting a chip,
2418  * by leaving it selected in anticipation that the next message will go
2419  * to the same chip.  (That may increase power usage.)
2420  *
2421  * Also, the caller is guaranteeing that the memory associated with the
2422  * message will not be freed before this call returns.
2423  *
2424  * Return: zero on success, else a negative error code.
2425  */
2426 int spi_sync(struct spi_device *spi, struct spi_message *message)
2427 {
2428         return __spi_sync(spi, message, 0);
2429 }
2430 EXPORT_SYMBOL_GPL(spi_sync);
2431
2432 /**
2433  * spi_sync_locked - version of spi_sync with exclusive bus usage
2434  * @spi: device with which data will be exchanged
2435  * @message: describes the data transfers
2436  * Context: can sleep
2437  *
2438  * This call may only be used from a context that may sleep.  The sleep
2439  * is non-interruptible, and has no timeout.  Low-overhead controller
2440  * drivers may DMA directly into and out of the message buffers.
2441  *
2442  * This call should be used by drivers that require exclusive access to the
2443  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2444  * be released by a spi_bus_unlock call when the exclusive access is over.
2445  *
2446  * Return: zero on success, else a negative error code.
2447  */
2448 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2449 {
2450         return __spi_sync(spi, message, 1);
2451 }
2452 EXPORT_SYMBOL_GPL(spi_sync_locked);
2453
2454 /**
2455  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2456  * @master: SPI bus master that should be locked for exclusive bus access
2457  * Context: can sleep
2458  *
2459  * This call may only be used from a context that may sleep.  The sleep
2460  * is non-interruptible, and has no timeout.
2461  *
2462  * This call should be used by drivers that require exclusive access to the
2463  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2464  * exclusive access is over. Data transfer must be done by spi_sync_locked
2465  * and spi_async_locked calls when the SPI bus lock is held.
2466  *
2467  * Return: always zero.
2468  */
2469 int spi_bus_lock(struct spi_master *master)
2470 {
2471         unsigned long flags;
2472
2473         mutex_lock(&master->bus_lock_mutex);
2474
2475         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2476         master->bus_lock_flag = 1;
2477         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2478
2479         /* mutex remains locked until spi_bus_unlock is called */
2480
2481         return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(spi_bus_lock);
2484
2485 /**
2486  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2487  * @master: SPI bus master that was locked for exclusive bus access
2488  * Context: can sleep
2489  *
2490  * This call may only be used from a context that may sleep.  The sleep
2491  * is non-interruptible, and has no timeout.
2492  *
2493  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2494  * call.
2495  *
2496  * Return: always zero.
2497  */
2498 int spi_bus_unlock(struct spi_master *master)
2499 {
2500         master->bus_lock_flag = 0;
2501
2502         mutex_unlock(&master->bus_lock_mutex);
2503
2504         return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2507
2508 /* portable code must never pass more than 32 bytes */
2509 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2510
2511 static u8       *buf;
2512
2513 /**
2514  * spi_write_then_read - SPI synchronous write followed by read
2515  * @spi: device with which data will be exchanged
2516  * @txbuf: data to be written (need not be dma-safe)
2517  * @n_tx: size of txbuf, in bytes
2518  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2519  * @n_rx: size of rxbuf, in bytes
2520  * Context: can sleep
2521  *
2522  * This performs a half duplex MicroWire style transaction with the
2523  * device, sending txbuf and then reading rxbuf.  The return value
2524  * is zero for success, else a negative errno status code.
2525  * This call may only be used from a context that may sleep.
2526  *
2527  * Parameters to this routine are always copied using a small buffer;
2528  * portable code should never use this for more than 32 bytes.
2529  * Performance-sensitive or bulk transfer code should instead use
2530  * spi_{async,sync}() calls with dma-safe buffers.
2531  *
2532  * Return: zero on success, else a negative error code.
2533  */
2534 int spi_write_then_read(struct spi_device *spi,
2535                 const void *txbuf, unsigned n_tx,
2536                 void *rxbuf, unsigned n_rx)
2537 {
2538         static DEFINE_MUTEX(lock);
2539
2540         int                     status;
2541         struct spi_message      message;
2542         struct spi_transfer     x[2];
2543         u8                      *local_buf;
2544
2545         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2546          * copying here, (as a pure convenience thing), but we can
2547          * keep heap costs out of the hot path unless someone else is
2548          * using the pre-allocated buffer or the transfer is too large.
2549          */
2550         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2551                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2552                                     GFP_KERNEL | GFP_DMA);
2553                 if (!local_buf)
2554                         return -ENOMEM;
2555         } else {
2556                 local_buf = buf;
2557         }
2558
2559         spi_message_init(&message);
2560         memset(x, 0, sizeof(x));
2561         if (n_tx) {
2562                 x[0].len = n_tx;
2563                 spi_message_add_tail(&x[0], &message);
2564         }
2565         if (n_rx) {
2566                 x[1].len = n_rx;
2567                 spi_message_add_tail(&x[1], &message);
2568         }
2569
2570         memcpy(local_buf, txbuf, n_tx);
2571         x[0].tx_buf = local_buf;
2572         x[1].rx_buf = local_buf + n_tx;
2573
2574         /* do the i/o */
2575         status = spi_sync(spi, &message);
2576         if (status == 0)
2577                 memcpy(rxbuf, x[1].rx_buf, n_rx);
2578
2579         if (x[0].tx_buf == buf)
2580                 mutex_unlock(&lock);
2581         else
2582                 kfree(local_buf);
2583
2584         return status;
2585 }
2586 EXPORT_SYMBOL_GPL(spi_write_then_read);
2587
2588 /*-------------------------------------------------------------------------*/
2589
2590 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2591 static int __spi_of_device_match(struct device *dev, void *data)
2592 {
2593         return dev->of_node == data;
2594 }
2595
2596 /* must call put_device() when done with returned spi_device device */
2597 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2598 {
2599         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2600                                                 __spi_of_device_match);
2601         return dev ? to_spi_device(dev) : NULL;
2602 }
2603
2604 static int __spi_of_master_match(struct device *dev, const void *data)
2605 {
2606         return dev->of_node == data;
2607 }
2608
2609 /* the spi masters are not using spi_bus, so we find it with another way */
2610 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2611 {
2612         struct device *dev;
2613
2614         dev = class_find_device(&spi_master_class, NULL, node,
2615                                 __spi_of_master_match);
2616         if (!dev)
2617                 return NULL;
2618
2619         /* reference got in class_find_device */
2620         return container_of(dev, struct spi_master, dev);
2621 }
2622
2623 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2624                          void *arg)
2625 {
2626         struct of_reconfig_data *rd = arg;
2627         struct spi_master *master;
2628         struct spi_device *spi;
2629
2630         switch (of_reconfig_get_state_change(action, arg)) {
2631         case OF_RECONFIG_CHANGE_ADD:
2632                 master = of_find_spi_master_by_node(rd->dn->parent);
2633                 if (master == NULL)
2634                         return NOTIFY_OK;       /* not for us */
2635
2636                 spi = of_register_spi_device(master, rd->dn);
2637                 put_device(&master->dev);
2638
2639                 if (IS_ERR(spi)) {
2640                         pr_err("%s: failed to create for '%s'\n",
2641                                         __func__, rd->dn->full_name);
2642                         return notifier_from_errno(PTR_ERR(spi));
2643                 }
2644                 break;
2645
2646         case OF_RECONFIG_CHANGE_REMOVE:
2647                 /* find our device by node */
2648                 spi = of_find_spi_device_by_node(rd->dn);
2649                 if (spi == NULL)
2650                         return NOTIFY_OK;       /* no? not meant for us */
2651
2652                 /* unregister takes one ref away */
2653                 spi_unregister_device(spi);
2654
2655                 /* and put the reference of the find */
2656                 put_device(&spi->dev);
2657                 break;
2658         }
2659
2660         return NOTIFY_OK;
2661 }
2662
2663 static struct notifier_block spi_of_notifier = {
2664         .notifier_call = of_spi_notify,
2665 };
2666 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667 extern struct notifier_block spi_of_notifier;
2668 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2669
2670 static int __init spi_init(void)
2671 {
2672         int     status;
2673
2674         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2675         if (!buf) {
2676                 status = -ENOMEM;
2677                 goto err0;
2678         }
2679
2680         status = bus_register(&spi_bus_type);
2681         if (status < 0)
2682                 goto err1;
2683
2684         status = class_register(&spi_master_class);
2685         if (status < 0)
2686                 goto err2;
2687
2688         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2689                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2690
2691         return 0;
2692
2693 err2:
2694         bus_unregister(&spi_bus_type);
2695 err1:
2696         kfree(buf);
2697         buf = NULL;
2698 err0:
2699         return status;
2700 }
2701
2702 /* board_info is normally registered in arch_initcall(),
2703  * but even essential drivers wait till later
2704  *
2705  * REVISIT only boardinfo really needs static linking. the rest (device and
2706  * driver registration) _could_ be dynamically linked (modular) ... costs
2707  * include needing to have boardinfo data structures be much more public.
2708  */
2709 postcore_initcall(spi_init);
2710