These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / soc / ti / knav_qmss_queue.c
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Cyril Chemparathy <cyril@ti.com>
7  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
40
41 #include "knav_qmss.h"
42
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
45
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX       0
48 #define KNAV_QUEUE_STATUS_REG_INDEX     1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
50 #define KNAV_QUEUE_REGION_REG_INDEX     3
51 #define KNAV_QUEUE_PUSH_REG_INDEX       4
52 #define KNAV_QUEUE_POP_REG_INDEX        5
53
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
59
60 #define knav_queue_idx_to_inst(kdev, idx)                       \
61         (kdev->instances + (idx << kdev->inst_shift))
62
63 #define for_each_handle_rcu(qh, inst)                   \
64         list_for_each_entry_rcu(qh, &inst->handles, list)
65
66 #define for_each_instance(idx, inst, kdev)              \
67         for (idx = 0, inst = kdev->instances;           \
68              idx < (kdev)->num_queues_in_use;                   \
69              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
76
77 /**
78  * knav_queue_notify: qmss queue notfier call
79  *
80  * @inst:               qmss queue instance like accumulator
81  */
82 void knav_queue_notify(struct knav_queue_inst *inst)
83 {
84         struct knav_queue *qh;
85
86         if (!inst)
87                 return;
88
89         rcu_read_lock();
90         for_each_handle_rcu(qh, inst) {
91                 if (atomic_read(&qh->notifier_enabled) <= 0)
92                         continue;
93                 if (WARN_ON(!qh->notifier_fn))
94                         continue;
95                 atomic_inc(&qh->stats.notifies);
96                 qh->notifier_fn(qh->notifier_fn_arg);
97         }
98         rcu_read_unlock();
99 }
100 EXPORT_SYMBOL_GPL(knav_queue_notify);
101
102 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
103 {
104         struct knav_queue_inst *inst = _instdata;
105
106         knav_queue_notify(inst);
107         return IRQ_HANDLED;
108 }
109
110 static int knav_queue_setup_irq(struct knav_range_info *range,
111                           struct knav_queue_inst *inst)
112 {
113         unsigned queue = inst->id - range->queue_base;
114         unsigned long cpu_map;
115         int ret = 0, irq;
116
117         if (range->flags & RANGE_HAS_IRQ) {
118                 irq = range->irqs[queue].irq;
119                 cpu_map = range->irqs[queue].cpu_map;
120                 ret = request_irq(irq, knav_queue_int_handler, 0,
121                                         inst->irq_name, inst);
122                 if (ret)
123                         return ret;
124                 disable_irq(irq);
125                 if (cpu_map) {
126                         ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
127                         if (ret) {
128                                 dev_warn(range->kdev->dev,
129                                          "Failed to set IRQ affinity\n");
130                                 return ret;
131                         }
132                 }
133         }
134         return ret;
135 }
136
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139         struct knav_range_info *range = inst->range;
140         unsigned queue = inst->id - inst->range->queue_base;
141         int irq;
142
143         if (range->flags & RANGE_HAS_IRQ) {
144                 irq = range->irqs[queue].irq;
145                 irq_set_affinity_hint(irq, NULL);
146                 free_irq(irq, inst);
147         }
148 }
149
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152         return !list_empty(&inst->handles);
153 }
154
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157         return inst->range->flags & RANGE_RESERVED;
158 }
159
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162         struct knav_queue *tmp;
163
164         rcu_read_lock();
165         for_each_handle_rcu(tmp, inst) {
166                 if (tmp->flags & KNAV_QUEUE_SHARED) {
167                         rcu_read_unlock();
168                         return true;
169                 }
170         }
171         rcu_read_unlock();
172         return false;
173 }
174
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176                                                 unsigned type)
177 {
178         if ((type == KNAV_QUEUE_QPEND) &&
179             (inst->range->flags & RANGE_HAS_IRQ)) {
180                 return true;
181         } else if ((type == KNAV_QUEUE_ACC) &&
182                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183                 return true;
184         } else if ((type == KNAV_QUEUE_GP) &&
185                 !(inst->range->flags &
186                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187                 return true;
188         }
189         return false;
190 }
191
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195         struct knav_queue_inst *inst;
196         int idx;
197
198         for_each_instance(idx, inst, kdev) {
199                 if (inst->id == id)
200                         return inst;
201         }
202         return NULL;
203 }
204
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207         if (kdev->base_id <= id &&
208             kdev->base_id + kdev->num_queues > id) {
209                 id -= kdev->base_id;
210                 return knav_queue_match_id_to_inst(kdev, id);
211         }
212         return NULL;
213 }
214
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216                                       const char *name, unsigned flags)
217 {
218         struct knav_queue *qh;
219         unsigned id;
220         int ret = 0;
221
222         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223         if (!qh)
224                 return ERR_PTR(-ENOMEM);
225
226         qh->flags = flags;
227         qh->inst = inst;
228         id = inst->id - inst->qmgr->start_queue;
229         qh->reg_push = &inst->qmgr->reg_push[id];
230         qh->reg_pop = &inst->qmgr->reg_pop[id];
231         qh->reg_peek = &inst->qmgr->reg_peek[id];
232
233         /* first opener? */
234         if (!knav_queue_is_busy(inst)) {
235                 struct knav_range_info *range = inst->range;
236
237                 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
238                 if (range->ops && range->ops->open_queue)
239                         ret = range->ops->open_queue(range, inst, flags);
240
241                 if (ret) {
242                         devm_kfree(inst->kdev->dev, qh);
243                         return ERR_PTR(ret);
244                 }
245         }
246         list_add_tail_rcu(&qh->list, &inst->handles);
247         return qh;
248 }
249
250 static struct knav_queue *
251 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
252 {
253         struct knav_queue_inst *inst;
254         struct knav_queue *qh;
255
256         mutex_lock(&knav_dev_lock);
257
258         qh = ERR_PTR(-ENODEV);
259         inst = knav_queue_find_by_id(id);
260         if (!inst)
261                 goto unlock_ret;
262
263         qh = ERR_PTR(-EEXIST);
264         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
265                 goto unlock_ret;
266
267         qh = ERR_PTR(-EBUSY);
268         if ((flags & KNAV_QUEUE_SHARED) &&
269             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
270                 goto unlock_ret;
271
272         qh = __knav_queue_open(inst, name, flags);
273
274 unlock_ret:
275         mutex_unlock(&knav_dev_lock);
276
277         return qh;
278 }
279
280 static struct knav_queue *knav_queue_open_by_type(const char *name,
281                                                 unsigned type, unsigned flags)
282 {
283         struct knav_queue_inst *inst;
284         struct knav_queue *qh = ERR_PTR(-EINVAL);
285         int idx;
286
287         mutex_lock(&knav_dev_lock);
288
289         for_each_instance(idx, inst, kdev) {
290                 if (knav_queue_is_reserved(inst))
291                         continue;
292                 if (!knav_queue_match_type(inst, type))
293                         continue;
294                 if (knav_queue_is_busy(inst))
295                         continue;
296                 qh = __knav_queue_open(inst, name, flags);
297                 goto unlock_ret;
298         }
299
300 unlock_ret:
301         mutex_unlock(&knav_dev_lock);
302         return qh;
303 }
304
305 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
306 {
307         struct knav_range_info *range = inst->range;
308
309         if (range->ops && range->ops->set_notify)
310                 range->ops->set_notify(range, inst, enabled);
311 }
312
313 static int knav_queue_enable_notifier(struct knav_queue *qh)
314 {
315         struct knav_queue_inst *inst = qh->inst;
316         bool first;
317
318         if (WARN_ON(!qh->notifier_fn))
319                 return -EINVAL;
320
321         /* Adjust the per handle notifier count */
322         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
323         if (!first)
324                 return 0; /* nothing to do */
325
326         /* Now adjust the per instance notifier count */
327         first = (atomic_inc_return(&inst->num_notifiers) == 1);
328         if (first)
329                 knav_queue_set_notify(inst, true);
330
331         return 0;
332 }
333
334 static int knav_queue_disable_notifier(struct knav_queue *qh)
335 {
336         struct knav_queue_inst *inst = qh->inst;
337         bool last;
338
339         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
340         if (!last)
341                 return 0; /* nothing to do */
342
343         last = (atomic_dec_return(&inst->num_notifiers) == 0);
344         if (last)
345                 knav_queue_set_notify(inst, false);
346
347         return 0;
348 }
349
350 static int knav_queue_set_notifier(struct knav_queue *qh,
351                                 struct knav_queue_notify_config *cfg)
352 {
353         knav_queue_notify_fn old_fn = qh->notifier_fn;
354
355         if (!cfg)
356                 return -EINVAL;
357
358         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
359                 return -ENOTSUPP;
360
361         if (!cfg->fn && old_fn)
362                 knav_queue_disable_notifier(qh);
363
364         qh->notifier_fn = cfg->fn;
365         qh->notifier_fn_arg = cfg->fn_arg;
366
367         if (cfg->fn && !old_fn)
368                 knav_queue_enable_notifier(qh);
369
370         return 0;
371 }
372
373 static int knav_gp_set_notify(struct knav_range_info *range,
374                                struct knav_queue_inst *inst,
375                                bool enabled)
376 {
377         unsigned queue;
378
379         if (range->flags & RANGE_HAS_IRQ) {
380                 queue = inst->id - range->queue_base;
381                 if (enabled)
382                         enable_irq(range->irqs[queue].irq);
383                 else
384                         disable_irq_nosync(range->irqs[queue].irq);
385         }
386         return 0;
387 }
388
389 static int knav_gp_open_queue(struct knav_range_info *range,
390                                 struct knav_queue_inst *inst, unsigned flags)
391 {
392         return knav_queue_setup_irq(range, inst);
393 }
394
395 static int knav_gp_close_queue(struct knav_range_info *range,
396                                 struct knav_queue_inst *inst)
397 {
398         knav_queue_free_irq(inst);
399         return 0;
400 }
401
402 struct knav_range_ops knav_gp_range_ops = {
403         .set_notify     = knav_gp_set_notify,
404         .open_queue     = knav_gp_open_queue,
405         .close_queue    = knav_gp_close_queue,
406 };
407
408
409 static int knav_queue_get_count(void *qhandle)
410 {
411         struct knav_queue *qh = qhandle;
412         struct knav_queue_inst *inst = qh->inst;
413
414         return readl_relaxed(&qh->reg_peek[0].entry_count) +
415                 atomic_read(&inst->desc_count);
416 }
417
418 static void knav_queue_debug_show_instance(struct seq_file *s,
419                                         struct knav_queue_inst *inst)
420 {
421         struct knav_device *kdev = inst->kdev;
422         struct knav_queue *qh;
423
424         if (!knav_queue_is_busy(inst))
425                 return;
426
427         seq_printf(s, "\tqueue id %d (%s)\n",
428                    kdev->base_id + inst->id, inst->name);
429         for_each_handle_rcu(qh, inst) {
430                 seq_printf(s, "\t\thandle %p: ", qh);
431                 seq_printf(s, "pushes %8d, ",
432                            atomic_read(&qh->stats.pushes));
433                 seq_printf(s, "pops %8d, ",
434                            atomic_read(&qh->stats.pops));
435                 seq_printf(s, "count %8d, ",
436                            knav_queue_get_count(qh));
437                 seq_printf(s, "notifies %8d, ",
438                            atomic_read(&qh->stats.notifies));
439                 seq_printf(s, "push errors %8d, ",
440                            atomic_read(&qh->stats.push_errors));
441                 seq_printf(s, "pop errors %8d\n",
442                            atomic_read(&qh->stats.pop_errors));
443         }
444 }
445
446 static int knav_queue_debug_show(struct seq_file *s, void *v)
447 {
448         struct knav_queue_inst *inst;
449         int idx;
450
451         mutex_lock(&knav_dev_lock);
452         seq_printf(s, "%s: %u-%u\n",
453                    dev_name(kdev->dev), kdev->base_id,
454                    kdev->base_id + kdev->num_queues - 1);
455         for_each_instance(idx, inst, kdev)
456                 knav_queue_debug_show_instance(s, inst);
457         mutex_unlock(&knav_dev_lock);
458
459         return 0;
460 }
461
462 static int knav_queue_debug_open(struct inode *inode, struct file *file)
463 {
464         return single_open(file, knav_queue_debug_show, NULL);
465 }
466
467 static const struct file_operations knav_queue_debug_ops = {
468         .open           = knav_queue_debug_open,
469         .read           = seq_read,
470         .llseek         = seq_lseek,
471         .release        = single_release,
472 };
473
474 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
475                                         u32 flags)
476 {
477         unsigned long end;
478         u32 val = 0;
479
480         end = jiffies + msecs_to_jiffies(timeout);
481         while (time_after(end, jiffies)) {
482                 val = readl_relaxed(addr);
483                 if (flags)
484                         val &= flags;
485                 if (!val)
486                         break;
487                 cpu_relax();
488         }
489         return val ? -ETIMEDOUT : 0;
490 }
491
492
493 static int knav_queue_flush(struct knav_queue *qh)
494 {
495         struct knav_queue_inst *inst = qh->inst;
496         unsigned id = inst->id - inst->qmgr->start_queue;
497
498         atomic_set(&inst->desc_count, 0);
499         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
500         return 0;
501 }
502
503 /**
504  * knav_queue_open()    - open a hardware queue
505  * @name                - name to give the queue handle
506  * @id                  - desired queue number if any or specifes the type
507  *                        of queue
508  * @flags               - the following flags are applicable to queues:
509  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
510  *                           exclusive by default.
511  *                           Subsequent attempts to open a shared queue should
512  *                           also have this flag.
513  *
514  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
515  * to check the returned value for error codes.
516  */
517 void *knav_queue_open(const char *name, unsigned id,
518                                         unsigned flags)
519 {
520         struct knav_queue *qh = ERR_PTR(-EINVAL);
521
522         switch (id) {
523         case KNAV_QUEUE_QPEND:
524         case KNAV_QUEUE_ACC:
525         case KNAV_QUEUE_GP:
526                 qh = knav_queue_open_by_type(name, id, flags);
527                 break;
528
529         default:
530                 qh = knav_queue_open_by_id(name, id, flags);
531                 break;
532         }
533         return qh;
534 }
535 EXPORT_SYMBOL_GPL(knav_queue_open);
536
537 /**
538  * knav_queue_close()   - close a hardware queue handle
539  * @qh                  - handle to close
540  */
541 void knav_queue_close(void *qhandle)
542 {
543         struct knav_queue *qh = qhandle;
544         struct knav_queue_inst *inst = qh->inst;
545
546         while (atomic_read(&qh->notifier_enabled) > 0)
547                 knav_queue_disable_notifier(qh);
548
549         mutex_lock(&knav_dev_lock);
550         list_del_rcu(&qh->list);
551         mutex_unlock(&knav_dev_lock);
552         synchronize_rcu();
553         if (!knav_queue_is_busy(inst)) {
554                 struct knav_range_info *range = inst->range;
555
556                 if (range->ops && range->ops->close_queue)
557                         range->ops->close_queue(range, inst);
558         }
559         devm_kfree(inst->kdev->dev, qh);
560 }
561 EXPORT_SYMBOL_GPL(knav_queue_close);
562
563 /**
564  * knav_queue_device_control()  - Perform control operations on a queue
565  * @qh                          - queue handle
566  * @cmd                         - control commands
567  * @arg                         - command argument
568  *
569  * Returns 0 on success, errno otherwise.
570  */
571 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
572                                 unsigned long arg)
573 {
574         struct knav_queue *qh = qhandle;
575         struct knav_queue_notify_config *cfg;
576         int ret;
577
578         switch ((int)cmd) {
579         case KNAV_QUEUE_GET_ID:
580                 ret = qh->inst->kdev->base_id + qh->inst->id;
581                 break;
582
583         case KNAV_QUEUE_FLUSH:
584                 ret = knav_queue_flush(qh);
585                 break;
586
587         case KNAV_QUEUE_SET_NOTIFIER:
588                 cfg = (void *)arg;
589                 ret = knav_queue_set_notifier(qh, cfg);
590                 break;
591
592         case KNAV_QUEUE_ENABLE_NOTIFY:
593                 ret = knav_queue_enable_notifier(qh);
594                 break;
595
596         case KNAV_QUEUE_DISABLE_NOTIFY:
597                 ret = knav_queue_disable_notifier(qh);
598                 break;
599
600         case KNAV_QUEUE_GET_COUNT:
601                 ret = knav_queue_get_count(qh);
602                 break;
603
604         default:
605                 ret = -ENOTSUPP;
606                 break;
607         }
608         return ret;
609 }
610 EXPORT_SYMBOL_GPL(knav_queue_device_control);
611
612
613
614 /**
615  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
616  * @qh                  - hardware queue handle
617  * @data                - data to push
618  * @size                - size of data to push
619  * @flags               - can be used to pass additional information
620  *
621  * Returns 0 on success, errno otherwise.
622  */
623 int knav_queue_push(void *qhandle, dma_addr_t dma,
624                                         unsigned size, unsigned flags)
625 {
626         struct knav_queue *qh = qhandle;
627         u32 val;
628
629         val = (u32)dma | ((size / 16) - 1);
630         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
631
632         atomic_inc(&qh->stats.pushes);
633         return 0;
634 }
635 EXPORT_SYMBOL_GPL(knav_queue_push);
636
637 /**
638  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
639  * @qh                  - hardware queue handle
640  * @size                - (optional) size of the data pop'ed.
641  *
642  * Returns a DMA address on success, 0 on failure.
643  */
644 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
645 {
646         struct knav_queue *qh = qhandle;
647         struct knav_queue_inst *inst = qh->inst;
648         dma_addr_t dma;
649         u32 val, idx;
650
651         /* are we accumulated? */
652         if (inst->descs) {
653                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
654                         atomic_inc(&inst->desc_count);
655                         return 0;
656                 }
657                 idx  = atomic_inc_return(&inst->desc_head);
658                 idx &= ACC_DESCS_MASK;
659                 val = inst->descs[idx];
660         } else {
661                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
662                 if (unlikely(!val))
663                         return 0;
664         }
665
666         dma = val & DESC_PTR_MASK;
667         if (size)
668                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
669
670         atomic_inc(&qh->stats.pops);
671         return dma;
672 }
673 EXPORT_SYMBOL_GPL(knav_queue_pop);
674
675 /* carve out descriptors and push into queue */
676 static void kdesc_fill_pool(struct knav_pool *pool)
677 {
678         struct knav_region *region;
679         int i;
680
681         region = pool->region;
682         pool->desc_size = region->desc_size;
683         for (i = 0; i < pool->num_desc; i++) {
684                 int index = pool->region_offset + i;
685                 dma_addr_t dma_addr;
686                 unsigned dma_size;
687                 dma_addr = region->dma_start + (region->desc_size * index);
688                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
689                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
690                                            DMA_TO_DEVICE);
691                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
692         }
693 }
694
695 /* pop out descriptors and close the queue */
696 static void kdesc_empty_pool(struct knav_pool *pool)
697 {
698         dma_addr_t dma;
699         unsigned size;
700         void *desc;
701         int i;
702
703         if (!pool->queue)
704                 return;
705
706         for (i = 0;; i++) {
707                 dma = knav_queue_pop(pool->queue, &size);
708                 if (!dma)
709                         break;
710                 desc = knav_pool_desc_dma_to_virt(pool, dma);
711                 if (!desc) {
712                         dev_dbg(pool->kdev->dev,
713                                 "couldn't unmap desc, continuing\n");
714                         continue;
715                 }
716         }
717         WARN_ON(i != pool->num_desc);
718         knav_queue_close(pool->queue);
719 }
720
721
722 /* Get the DMA address of a descriptor */
723 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
724 {
725         struct knav_pool *pool = ph;
726         return pool->region->dma_start + (virt - pool->region->virt_start);
727 }
728 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
729
730 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
731 {
732         struct knav_pool *pool = ph;
733         return pool->region->virt_start + (dma - pool->region->dma_start);
734 }
735 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
736
737 /**
738  * knav_pool_create()   - Create a pool of descriptors
739  * @name                - name to give the pool handle
740  * @num_desc            - numbers of descriptors in the pool
741  * @region_id           - QMSS region id from which the descriptors are to be
742  *                        allocated.
743  *
744  * Returns a pool handle on success.
745  * Use IS_ERR_OR_NULL() to identify error values on return.
746  */
747 void *knav_pool_create(const char *name,
748                                         int num_desc, int region_id)
749 {
750         struct knav_region *reg_itr, *region = NULL;
751         struct knav_pool *pool, *pi;
752         struct list_head *node;
753         unsigned last_offset;
754         bool slot_found;
755         int ret;
756
757         if (!kdev->dev)
758                 return ERR_PTR(-ENODEV);
759
760         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
761         if (!pool) {
762                 dev_err(kdev->dev, "out of memory allocating pool\n");
763                 return ERR_PTR(-ENOMEM);
764         }
765
766         for_each_region(kdev, reg_itr) {
767                 if (reg_itr->id != region_id)
768                         continue;
769                 region = reg_itr;
770                 break;
771         }
772
773         if (!region) {
774                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
775                 ret = -EINVAL;
776                 goto err;
777         }
778
779         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
780         if (IS_ERR_OR_NULL(pool->queue)) {
781                 dev_err(kdev->dev,
782                         "failed to open queue for pool(%s), error %ld\n",
783                         name, PTR_ERR(pool->queue));
784                 ret = PTR_ERR(pool->queue);
785                 goto err;
786         }
787
788         pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
789         pool->kdev = kdev;
790         pool->dev = kdev->dev;
791
792         mutex_lock(&knav_dev_lock);
793
794         if (num_desc > (region->num_desc - region->used_desc)) {
795                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
796                         region_id, name);
797                 ret = -ENOMEM;
798                 goto err_unlock;
799         }
800
801         /* Region maintains a sorted (by region offset) list of pools
802          * use the first free slot which is large enough to accomodate
803          * the request
804          */
805         last_offset = 0;
806         slot_found = false;
807         node = &region->pools;
808         list_for_each_entry(pi, &region->pools, region_inst) {
809                 if ((pi->region_offset - last_offset) >= num_desc) {
810                         slot_found = true;
811                         break;
812                 }
813                 last_offset = pi->region_offset + pi->num_desc;
814         }
815         node = &pi->region_inst;
816
817         if (slot_found) {
818                 pool->region = region;
819                 pool->num_desc = num_desc;
820                 pool->region_offset = last_offset;
821                 region->used_desc += num_desc;
822                 list_add_tail(&pool->list, &kdev->pools);
823                 list_add_tail(&pool->region_inst, node);
824         } else {
825                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
826                         name, region_id);
827                 ret = -ENOMEM;
828                 goto err_unlock;
829         }
830
831         mutex_unlock(&knav_dev_lock);
832         kdesc_fill_pool(pool);
833         return pool;
834
835 err_unlock:
836         mutex_unlock(&knav_dev_lock);
837 err:
838         kfree(pool->name);
839         devm_kfree(kdev->dev, pool);
840         return ERR_PTR(ret);
841 }
842 EXPORT_SYMBOL_GPL(knav_pool_create);
843
844 /**
845  * knav_pool_destroy()  - Free a pool of descriptors
846  * @pool                - pool handle
847  */
848 void knav_pool_destroy(void *ph)
849 {
850         struct knav_pool *pool = ph;
851
852         if (!pool)
853                 return;
854
855         if (!pool->region)
856                 return;
857
858         kdesc_empty_pool(pool);
859         mutex_lock(&knav_dev_lock);
860
861         pool->region->used_desc -= pool->num_desc;
862         list_del(&pool->region_inst);
863         list_del(&pool->list);
864
865         mutex_unlock(&knav_dev_lock);
866         kfree(pool->name);
867         devm_kfree(kdev->dev, pool);
868 }
869 EXPORT_SYMBOL_GPL(knav_pool_destroy);
870
871
872 /**
873  * knav_pool_desc_get() - Get a descriptor from the pool
874  * @pool                        - pool handle
875  *
876  * Returns descriptor from the pool.
877  */
878 void *knav_pool_desc_get(void *ph)
879 {
880         struct knav_pool *pool = ph;
881         dma_addr_t dma;
882         unsigned size;
883         void *data;
884
885         dma = knav_queue_pop(pool->queue, &size);
886         if (unlikely(!dma))
887                 return ERR_PTR(-ENOMEM);
888         data = knav_pool_desc_dma_to_virt(pool, dma);
889         return data;
890 }
891 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
892
893 /**
894  * knav_pool_desc_put() - return a descriptor to the pool
895  * @pool                        - pool handle
896  */
897 void knav_pool_desc_put(void *ph, void *desc)
898 {
899         struct knav_pool *pool = ph;
900         dma_addr_t dma;
901         dma = knav_pool_desc_virt_to_dma(pool, desc);
902         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
903 }
904 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
905
906 /**
907  * knav_pool_desc_map() - Map descriptor for DMA transfer
908  * @pool                        - pool handle
909  * @desc                        - address of descriptor to map
910  * @size                        - size of descriptor to map
911  * @dma                         - DMA address return pointer
912  * @dma_sz                      - adjusted return pointer
913  *
914  * Returns 0 on success, errno otherwise.
915  */
916 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
917                                         dma_addr_t *dma, unsigned *dma_sz)
918 {
919         struct knav_pool *pool = ph;
920         *dma = knav_pool_desc_virt_to_dma(pool, desc);
921         size = min(size, pool->region->desc_size);
922         size = ALIGN(size, SMP_CACHE_BYTES);
923         *dma_sz = size;
924         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
925
926         /* Ensure the descriptor reaches to the memory */
927         __iowmb();
928
929         return 0;
930 }
931 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
932
933 /**
934  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
935  * @pool                        - pool handle
936  * @dma                         - DMA address of descriptor to unmap
937  * @dma_sz                      - size of descriptor to unmap
938  *
939  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
940  * error values on return.
941  */
942 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
943 {
944         struct knav_pool *pool = ph;
945         unsigned desc_sz;
946         void *desc;
947
948         desc_sz = min(dma_sz, pool->region->desc_size);
949         desc = knav_pool_desc_dma_to_virt(pool, dma);
950         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
951         prefetch(desc);
952         return desc;
953 }
954 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
955
956 /**
957  * knav_pool_count()    - Get the number of descriptors in pool.
958  * @pool                - pool handle
959  * Returns number of elements in the pool.
960  */
961 int knav_pool_count(void *ph)
962 {
963         struct knav_pool *pool = ph;
964         return knav_queue_get_count(pool->queue);
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_count);
967
968 static void knav_queue_setup_region(struct knav_device *kdev,
969                                         struct knav_region *region)
970 {
971         unsigned hw_num_desc, hw_desc_size, size;
972         struct knav_reg_region __iomem  *regs;
973         struct knav_qmgr_info *qmgr;
974         struct knav_pool *pool;
975         int id = region->id;
976         struct page *page;
977
978         /* unused region? */
979         if (!region->num_desc) {
980                 dev_warn(kdev->dev, "unused region %s\n", region->name);
981                 return;
982         }
983
984         /* get hardware descriptor value */
985         hw_num_desc = ilog2(region->num_desc - 1) + 1;
986
987         /* did we force fit ourselves into nothingness? */
988         if (region->num_desc < 32) {
989                 region->num_desc = 0;
990                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
991                          region->name);
992                 return;
993         }
994
995         size = region->num_desc * region->desc_size;
996         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
997                                                 GFP_DMA32);
998         if (!region->virt_start) {
999                 region->num_desc = 0;
1000                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1001                         region->name);
1002                 return;
1003         }
1004         region->virt_end = region->virt_start + size;
1005         page = virt_to_page(region->virt_start);
1006
1007         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1008                                          DMA_BIDIRECTIONAL);
1009         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1010                 dev_err(kdev->dev, "dma map failed for region %s\n",
1011                         region->name);
1012                 goto fail;
1013         }
1014         region->dma_end = region->dma_start + size;
1015
1016         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1017         if (!pool) {
1018                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1019                 goto fail;
1020         }
1021         pool->num_desc = 0;
1022         pool->region_offset = region->num_desc;
1023         list_add(&pool->region_inst, &region->pools);
1024
1025         dev_dbg(kdev->dev,
1026                 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1027                 region->name, id, region->desc_size, region->num_desc,
1028                 region->link_index, region->dma_start, region->dma_end,
1029                 region->virt_start, region->virt_end);
1030
1031         hw_desc_size = (region->desc_size / 16) - 1;
1032         hw_num_desc -= 5;
1033
1034         for_each_qmgr(kdev, qmgr) {
1035                 regs = qmgr->reg_region + id;
1036                 writel_relaxed(region->dma_start, &regs->base);
1037                 writel_relaxed(region->link_index, &regs->start_index);
1038                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1039                                &regs->size_count);
1040         }
1041         return;
1042
1043 fail:
1044         if (region->dma_start)
1045                 dma_unmap_page(kdev->dev, region->dma_start, size,
1046                                 DMA_BIDIRECTIONAL);
1047         if (region->virt_start)
1048                 free_pages_exact(region->virt_start, size);
1049         region->num_desc = 0;
1050         return;
1051 }
1052
1053 static const char *knav_queue_find_name(struct device_node *node)
1054 {
1055         const char *name;
1056
1057         if (of_property_read_string(node, "label", &name) < 0)
1058                 name = node->name;
1059         if (!name)
1060                 name = "unknown";
1061         return name;
1062 }
1063
1064 static int knav_queue_setup_regions(struct knav_device *kdev,
1065                                         struct device_node *regions)
1066 {
1067         struct device *dev = kdev->dev;
1068         struct knav_region *region;
1069         struct device_node *child;
1070         u32 temp[2];
1071         int ret;
1072
1073         for_each_child_of_node(regions, child) {
1074                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1075                 if (!region) {
1076                         dev_err(dev, "out of memory allocating region\n");
1077                         return -ENOMEM;
1078                 }
1079
1080                 region->name = knav_queue_find_name(child);
1081                 of_property_read_u32(child, "id", &region->id);
1082                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1083                 if (!ret) {
1084                         region->num_desc  = temp[0];
1085                         region->desc_size = temp[1];
1086                 } else {
1087                         dev_err(dev, "invalid region info %s\n", region->name);
1088                         devm_kfree(dev, region);
1089                         continue;
1090                 }
1091
1092                 if (!of_get_property(child, "link-index", NULL)) {
1093                         dev_err(dev, "No link info for %s\n", region->name);
1094                         devm_kfree(dev, region);
1095                         continue;
1096                 }
1097                 ret = of_property_read_u32(child, "link-index",
1098                                            &region->link_index);
1099                 if (ret) {
1100                         dev_err(dev, "link index not found for %s\n",
1101                                 region->name);
1102                         devm_kfree(dev, region);
1103                         continue;
1104                 }
1105
1106                 INIT_LIST_HEAD(&region->pools);
1107                 list_add_tail(&region->list, &kdev->regions);
1108         }
1109         if (list_empty(&kdev->regions)) {
1110                 dev_err(dev, "no valid region information found\n");
1111                 return -ENODEV;
1112         }
1113
1114         /* Next, we run through the regions and set things up */
1115         for_each_region(kdev, region)
1116                 knav_queue_setup_region(kdev, region);
1117
1118         return 0;
1119 }
1120
1121 static int knav_get_link_ram(struct knav_device *kdev,
1122                                        const char *name,
1123                                        struct knav_link_ram_block *block)
1124 {
1125         struct platform_device *pdev = to_platform_device(kdev->dev);
1126         struct device_node *node = pdev->dev.of_node;
1127         u32 temp[2];
1128
1129         /*
1130          * Note: link ram resources are specified in "entry" sized units. In
1131          * reality, although entries are ~40bits in hardware, we treat them as
1132          * 64-bit entities here.
1133          *
1134          * For example, to specify the internal link ram for Keystone-I class
1135          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1136          *
1137          * This gets a bit weird when other link rams are used.  For example,
1138          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1139          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1140          * which accounts for 64-bits per entry, for 16K entries.
1141          */
1142         if (!of_property_read_u32_array(node, name , temp, 2)) {
1143                 if (temp[0]) {
1144                         /*
1145                          * queue_base specified => using internal or onchip
1146                          * link ram WARNING - we do not "reserve" this block
1147                          */
1148                         block->phys = (dma_addr_t)temp[0];
1149                         block->virt = NULL;
1150                         block->size = temp[1];
1151                 } else {
1152                         block->size = temp[1];
1153                         /* queue_base not specific => allocate requested size */
1154                         block->virt = dmam_alloc_coherent(kdev->dev,
1155                                                   8 * block->size, &block->phys,
1156                                                   GFP_KERNEL);
1157                         if (!block->virt) {
1158                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1159                                 return -ENOMEM;
1160                         }
1161                 }
1162         } else {
1163                 return -ENODEV;
1164         }
1165         return 0;
1166 }
1167
1168 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1169 {
1170         struct knav_link_ram_block *block;
1171         struct knav_qmgr_info *qmgr;
1172
1173         for_each_qmgr(kdev, qmgr) {
1174                 block = &kdev->link_rams[0];
1175                 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1176                         block->phys, block->virt, block->size);
1177                 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1178                 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1179
1180                 block++;
1181                 if (!block->size)
1182                         continue;
1183
1184                 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1185                         block->phys, block->virt, block->size);
1186                 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1187         }
1188
1189         return 0;
1190 }
1191
1192 static int knav_setup_queue_range(struct knav_device *kdev,
1193                                         struct device_node *node)
1194 {
1195         struct device *dev = kdev->dev;
1196         struct knav_range_info *range;
1197         struct knav_qmgr_info *qmgr;
1198         u32 temp[2], start, end, id, index;
1199         int ret, i;
1200
1201         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1202         if (!range) {
1203                 dev_err(dev, "out of memory allocating range\n");
1204                 return -ENOMEM;
1205         }
1206
1207         range->kdev = kdev;
1208         range->name = knav_queue_find_name(node);
1209         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1210         if (!ret) {
1211                 range->queue_base = temp[0] - kdev->base_id;
1212                 range->num_queues = temp[1];
1213         } else {
1214                 dev_err(dev, "invalid queue range %s\n", range->name);
1215                 devm_kfree(dev, range);
1216                 return -EINVAL;
1217         }
1218
1219         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1220                 struct of_phandle_args oirq;
1221
1222                 if (of_irq_parse_one(node, i, &oirq))
1223                         break;
1224
1225                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1226                 if (range->irqs[i].irq == IRQ_NONE)
1227                         break;
1228
1229                 range->num_irqs++;
1230
1231                 if (oirq.args_count == 3)
1232                         range->irqs[i].cpu_map =
1233                                 (oirq.args[2] & 0x0000ff00) >> 8;
1234         }
1235
1236         range->num_irqs = min(range->num_irqs, range->num_queues);
1237         if (range->num_irqs)
1238                 range->flags |= RANGE_HAS_IRQ;
1239
1240         if (of_get_property(node, "qalloc-by-id", NULL))
1241                 range->flags |= RANGE_RESERVED;
1242
1243         if (of_get_property(node, "accumulator", NULL)) {
1244                 ret = knav_init_acc_range(kdev, node, range);
1245                 if (ret < 0) {
1246                         devm_kfree(dev, range);
1247                         return ret;
1248                 }
1249         } else {
1250                 range->ops = &knav_gp_range_ops;
1251         }
1252
1253         /* set threshold to 1, and flush out the queues */
1254         for_each_qmgr(kdev, qmgr) {
1255                 start = max(qmgr->start_queue, range->queue_base);
1256                 end   = min(qmgr->start_queue + qmgr->num_queues,
1257                             range->queue_base + range->num_queues);
1258                 for (id = start; id < end; id++) {
1259                         index = id - qmgr->start_queue;
1260                         writel_relaxed(THRESH_GTE | 1,
1261                                        &qmgr->reg_peek[index].ptr_size_thresh);
1262                         writel_relaxed(0,
1263                                        &qmgr->reg_push[index].ptr_size_thresh);
1264                 }
1265         }
1266
1267         list_add_tail(&range->list, &kdev->queue_ranges);
1268         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1269                 range->name, range->queue_base,
1270                 range->queue_base + range->num_queues - 1,
1271                 range->num_irqs,
1272                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1273                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1274                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1275         kdev->num_queues_in_use += range->num_queues;
1276         return 0;
1277 }
1278
1279 static int knav_setup_queue_pools(struct knav_device *kdev,
1280                                    struct device_node *queue_pools)
1281 {
1282         struct device_node *type, *range;
1283         int ret;
1284
1285         for_each_child_of_node(queue_pools, type) {
1286                 for_each_child_of_node(type, range) {
1287                         ret = knav_setup_queue_range(kdev, range);
1288                         /* return value ignored, we init the rest... */
1289                 }
1290         }
1291
1292         /* ... and barf if they all failed! */
1293         if (list_empty(&kdev->queue_ranges)) {
1294                 dev_err(kdev->dev, "no valid queue range found\n");
1295                 return -ENODEV;
1296         }
1297         return 0;
1298 }
1299
1300 static void knav_free_queue_range(struct knav_device *kdev,
1301                                   struct knav_range_info *range)
1302 {
1303         if (range->ops && range->ops->free_range)
1304                 range->ops->free_range(range);
1305         list_del(&range->list);
1306         devm_kfree(kdev->dev, range);
1307 }
1308
1309 static void knav_free_queue_ranges(struct knav_device *kdev)
1310 {
1311         struct knav_range_info *range;
1312
1313         for (;;) {
1314                 range = first_queue_range(kdev);
1315                 if (!range)
1316                         break;
1317                 knav_free_queue_range(kdev, range);
1318         }
1319 }
1320
1321 static void knav_queue_free_regions(struct knav_device *kdev)
1322 {
1323         struct knav_region *region;
1324         struct knav_pool *pool, *tmp;
1325         unsigned size;
1326
1327         for (;;) {
1328                 region = first_region(kdev);
1329                 if (!region)
1330                         break;
1331                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1332                         knav_pool_destroy(pool);
1333
1334                 size = region->virt_end - region->virt_start;
1335                 if (size)
1336                         free_pages_exact(region->virt_start, size);
1337                 list_del(&region->list);
1338                 devm_kfree(kdev->dev, region);
1339         }
1340 }
1341
1342 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1343                                         struct device_node *node, int index)
1344 {
1345         struct resource res;
1346         void __iomem *regs;
1347         int ret;
1348
1349         ret = of_address_to_resource(node, index, &res);
1350         if (ret) {
1351                 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1352                         node->name, index);
1353                 return ERR_PTR(ret);
1354         }
1355
1356         regs = devm_ioremap_resource(kdev->dev, &res);
1357         if (IS_ERR(regs))
1358                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1359                         index, node->name);
1360         return regs;
1361 }
1362
1363 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1364                                         struct device_node *qmgrs)
1365 {
1366         struct device *dev = kdev->dev;
1367         struct knav_qmgr_info *qmgr;
1368         struct device_node *child;
1369         u32 temp[2];
1370         int ret;
1371
1372         for_each_child_of_node(qmgrs, child) {
1373                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1374                 if (!qmgr) {
1375                         dev_err(dev, "out of memory allocating qmgr\n");
1376                         return -ENOMEM;
1377                 }
1378
1379                 ret = of_property_read_u32_array(child, "managed-queues",
1380                                                  temp, 2);
1381                 if (!ret) {
1382                         qmgr->start_queue = temp[0];
1383                         qmgr->num_queues = temp[1];
1384                 } else {
1385                         dev_err(dev, "invalid qmgr queue range\n");
1386                         devm_kfree(dev, qmgr);
1387                         continue;
1388                 }
1389
1390                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1391                          qmgr->start_queue, qmgr->num_queues);
1392
1393                 qmgr->reg_peek =
1394                         knav_queue_map_reg(kdev, child,
1395                                            KNAV_QUEUE_PEEK_REG_INDEX);
1396                 qmgr->reg_status =
1397                         knav_queue_map_reg(kdev, child,
1398                                            KNAV_QUEUE_STATUS_REG_INDEX);
1399                 qmgr->reg_config =
1400                         knav_queue_map_reg(kdev, child,
1401                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1402                 qmgr->reg_region =
1403                         knav_queue_map_reg(kdev, child,
1404                                            KNAV_QUEUE_REGION_REG_INDEX);
1405                 qmgr->reg_push =
1406                         knav_queue_map_reg(kdev, child,
1407                                            KNAV_QUEUE_PUSH_REG_INDEX);
1408                 qmgr->reg_pop =
1409                         knav_queue_map_reg(kdev, child,
1410                                            KNAV_QUEUE_POP_REG_INDEX);
1411
1412                 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1413                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1414                     IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1415                         dev_err(dev, "failed to map qmgr regs\n");
1416                         if (!IS_ERR(qmgr->reg_peek))
1417                                 devm_iounmap(dev, qmgr->reg_peek);
1418                         if (!IS_ERR(qmgr->reg_status))
1419                                 devm_iounmap(dev, qmgr->reg_status);
1420                         if (!IS_ERR(qmgr->reg_config))
1421                                 devm_iounmap(dev, qmgr->reg_config);
1422                         if (!IS_ERR(qmgr->reg_region))
1423                                 devm_iounmap(dev, qmgr->reg_region);
1424                         if (!IS_ERR(qmgr->reg_push))
1425                                 devm_iounmap(dev, qmgr->reg_push);
1426                         if (!IS_ERR(qmgr->reg_pop))
1427                                 devm_iounmap(dev, qmgr->reg_pop);
1428                         devm_kfree(dev, qmgr);
1429                         continue;
1430                 }
1431
1432                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1433                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1434                          qmgr->start_queue, qmgr->num_queues,
1435                          qmgr->reg_peek, qmgr->reg_status,
1436                          qmgr->reg_config, qmgr->reg_region,
1437                          qmgr->reg_push, qmgr->reg_pop);
1438         }
1439         return 0;
1440 }
1441
1442 static int knav_queue_init_pdsps(struct knav_device *kdev,
1443                                         struct device_node *pdsps)
1444 {
1445         struct device *dev = kdev->dev;
1446         struct knav_pdsp_info *pdsp;
1447         struct device_node *child;
1448
1449         for_each_child_of_node(pdsps, child) {
1450                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1451                 if (!pdsp) {
1452                         dev_err(dev, "out of memory allocating pdsp\n");
1453                         return -ENOMEM;
1454                 }
1455                 pdsp->name = knav_queue_find_name(child);
1456                 pdsp->iram =
1457                         knav_queue_map_reg(kdev, child,
1458                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1459                 pdsp->regs =
1460                         knav_queue_map_reg(kdev, child,
1461                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1462                 pdsp->intd =
1463                         knav_queue_map_reg(kdev, child,
1464                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1465                 pdsp->command =
1466                         knav_queue_map_reg(kdev, child,
1467                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1468
1469                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1470                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1471                         dev_err(dev, "failed to map pdsp %s regs\n",
1472                                 pdsp->name);
1473                         if (!IS_ERR(pdsp->command))
1474                                 devm_iounmap(dev, pdsp->command);
1475                         if (!IS_ERR(pdsp->iram))
1476                                 devm_iounmap(dev, pdsp->iram);
1477                         if (!IS_ERR(pdsp->regs))
1478                                 devm_iounmap(dev, pdsp->regs);
1479                         if (!IS_ERR(pdsp->intd))
1480                                 devm_iounmap(dev, pdsp->intd);
1481                         devm_kfree(dev, pdsp);
1482                         continue;
1483                 }
1484                 of_property_read_u32(child, "id", &pdsp->id);
1485                 list_add_tail(&pdsp->list, &kdev->pdsps);
1486                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1487                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1488                         pdsp->intd);
1489         }
1490         return 0;
1491 }
1492
1493 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1494                           struct knav_pdsp_info *pdsp)
1495 {
1496         u32 val, timeout = 1000;
1497         int ret;
1498
1499         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1500         writel_relaxed(val, &pdsp->regs->control);
1501         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1502                                         PDSP_CTRL_RUNNING);
1503         if (ret < 0) {
1504                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1505                 return ret;
1506         }
1507         pdsp->loaded = false;
1508         pdsp->started = false;
1509         return 0;
1510 }
1511
1512 static int knav_queue_load_pdsp(struct knav_device *kdev,
1513                           struct knav_pdsp_info *pdsp)
1514 {
1515         int i, ret, fwlen;
1516         const struct firmware *fw;
1517         bool found = false;
1518         u32 *fwdata;
1519
1520         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1521                 if (knav_acc_firmwares[i]) {
1522                         ret = request_firmware_direct(&fw,
1523                                                       knav_acc_firmwares[i],
1524                                                       kdev->dev);
1525                         if (!ret) {
1526                                 found = true;
1527                                 break;
1528                         }
1529                 }
1530         }
1531
1532         if (!found) {
1533                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1534                 return -ENODEV;
1535         }
1536
1537         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1538                  knav_acc_firmwares[i]);
1539
1540         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1541         /* download the firmware */
1542         fwdata = (u32 *)fw->data;
1543         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1544         for (i = 0; i < fwlen; i++)
1545                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1546
1547         release_firmware(fw);
1548         return 0;
1549 }
1550
1551 static int knav_queue_start_pdsp(struct knav_device *kdev,
1552                            struct knav_pdsp_info *pdsp)
1553 {
1554         u32 val, timeout = 1000;
1555         int ret;
1556
1557         /* write a command for sync */
1558         writel_relaxed(0xffffffff, pdsp->command);
1559         while (readl_relaxed(pdsp->command) != 0xffffffff)
1560                 cpu_relax();
1561
1562         /* soft reset the PDSP */
1563         val  = readl_relaxed(&pdsp->regs->control);
1564         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1565         writel_relaxed(val, &pdsp->regs->control);
1566
1567         /* enable pdsp */
1568         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1569         writel_relaxed(val, &pdsp->regs->control);
1570
1571         /* wait for command register to clear */
1572         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1573         if (ret < 0) {
1574                 dev_err(kdev->dev,
1575                         "timed out on pdsp %s command register wait\n",
1576                         pdsp->name);
1577                 return ret;
1578         }
1579         return 0;
1580 }
1581
1582 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1583 {
1584         struct knav_pdsp_info *pdsp;
1585
1586         /* disable all pdsps */
1587         for_each_pdsp(kdev, pdsp)
1588                 knav_queue_stop_pdsp(kdev, pdsp);
1589 }
1590
1591 static int knav_queue_start_pdsps(struct knav_device *kdev)
1592 {
1593         struct knav_pdsp_info *pdsp;
1594         int ret;
1595
1596         knav_queue_stop_pdsps(kdev);
1597         /* now load them all. We return success even if pdsp
1598          * is not loaded as acc channels are optional on having
1599          * firmware availability in the system. We set the loaded
1600          * and stated flag and when initialize the acc range, check
1601          * it and init the range only if pdsp is started.
1602          */
1603         for_each_pdsp(kdev, pdsp) {
1604                 ret = knav_queue_load_pdsp(kdev, pdsp);
1605                 if (!ret)
1606                         pdsp->loaded = true;
1607         }
1608
1609         for_each_pdsp(kdev, pdsp) {
1610                 if (pdsp->loaded) {
1611                         ret = knav_queue_start_pdsp(kdev, pdsp);
1612                         if (!ret)
1613                                 pdsp->started = true;
1614                 }
1615         }
1616         return 0;
1617 }
1618
1619 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1620 {
1621         struct knav_qmgr_info *qmgr;
1622
1623         for_each_qmgr(kdev, qmgr) {
1624                 if ((id >= qmgr->start_queue) &&
1625                     (id < qmgr->start_queue + qmgr->num_queues))
1626                         return qmgr;
1627         }
1628         return NULL;
1629 }
1630
1631 static int knav_queue_init_queue(struct knav_device *kdev,
1632                                         struct knav_range_info *range,
1633                                         struct knav_queue_inst *inst,
1634                                         unsigned id)
1635 {
1636         char irq_name[KNAV_NAME_SIZE];
1637         inst->qmgr = knav_find_qmgr(id);
1638         if (!inst->qmgr)
1639                 return -1;
1640
1641         INIT_LIST_HEAD(&inst->handles);
1642         inst->kdev = kdev;
1643         inst->range = range;
1644         inst->irq_num = -1;
1645         inst->id = id;
1646         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1647         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1648
1649         if (range->ops && range->ops->init_queue)
1650                 return range->ops->init_queue(range, inst);
1651         else
1652                 return 0;
1653 }
1654
1655 static int knav_queue_init_queues(struct knav_device *kdev)
1656 {
1657         struct knav_range_info *range;
1658         int size, id, base_idx;
1659         int idx = 0, ret = 0;
1660
1661         /* how much do we need for instance data? */
1662         size = sizeof(struct knav_queue_inst);
1663
1664         /* round this up to a power of 2, keep the index to instance
1665          * arithmetic fast.
1666          * */
1667         kdev->inst_shift = order_base_2(size);
1668         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1669         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1670         if (!kdev->instances)
1671                 return -ENOMEM;
1672
1673         for_each_queue_range(kdev, range) {
1674                 if (range->ops && range->ops->init_range)
1675                         range->ops->init_range(range);
1676                 base_idx = idx;
1677                 for (id = range->queue_base;
1678                      id < range->queue_base + range->num_queues; id++, idx++) {
1679                         ret = knav_queue_init_queue(kdev, range,
1680                                         knav_queue_idx_to_inst(kdev, idx), id);
1681                         if (ret < 0)
1682                                 return ret;
1683                 }
1684                 range->queue_base_inst =
1685                         knav_queue_idx_to_inst(kdev, base_idx);
1686         }
1687         return 0;
1688 }
1689
1690 static int knav_queue_probe(struct platform_device *pdev)
1691 {
1692         struct device_node *node = pdev->dev.of_node;
1693         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1694         struct device *dev = &pdev->dev;
1695         u32 temp[2];
1696         int ret;
1697
1698         if (!node) {
1699                 dev_err(dev, "device tree info unavailable\n");
1700                 return -ENODEV;
1701         }
1702
1703         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1704         if (!kdev) {
1705                 dev_err(dev, "memory allocation failed\n");
1706                 return -ENOMEM;
1707         }
1708
1709         platform_set_drvdata(pdev, kdev);
1710         kdev->dev = dev;
1711         INIT_LIST_HEAD(&kdev->queue_ranges);
1712         INIT_LIST_HEAD(&kdev->qmgrs);
1713         INIT_LIST_HEAD(&kdev->pools);
1714         INIT_LIST_HEAD(&kdev->regions);
1715         INIT_LIST_HEAD(&kdev->pdsps);
1716
1717         pm_runtime_enable(&pdev->dev);
1718         ret = pm_runtime_get_sync(&pdev->dev);
1719         if (ret < 0) {
1720                 dev_err(dev, "Failed to enable QMSS\n");
1721                 return ret;
1722         }
1723
1724         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1725                 dev_err(dev, "queue-range not specified\n");
1726                 ret = -ENODEV;
1727                 goto err;
1728         }
1729         kdev->base_id    = temp[0];
1730         kdev->num_queues = temp[1];
1731
1732         /* Initialize queue managers using device tree configuration */
1733         qmgrs =  of_get_child_by_name(node, "qmgrs");
1734         if (!qmgrs) {
1735                 dev_err(dev, "queue manager info not specified\n");
1736                 ret = -ENODEV;
1737                 goto err;
1738         }
1739         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1740         of_node_put(qmgrs);
1741         if (ret)
1742                 goto err;
1743
1744         /* get pdsp configuration values from device tree */
1745         pdsps =  of_get_child_by_name(node, "pdsps");
1746         if (pdsps) {
1747                 ret = knav_queue_init_pdsps(kdev, pdsps);
1748                 if (ret)
1749                         goto err;
1750
1751                 ret = knav_queue_start_pdsps(kdev);
1752                 if (ret)
1753                         goto err;
1754         }
1755         of_node_put(pdsps);
1756
1757         /* get usable queue range values from device tree */
1758         queue_pools = of_get_child_by_name(node, "queue-pools");
1759         if (!queue_pools) {
1760                 dev_err(dev, "queue-pools not specified\n");
1761                 ret = -ENODEV;
1762                 goto err;
1763         }
1764         ret = knav_setup_queue_pools(kdev, queue_pools);
1765         of_node_put(queue_pools);
1766         if (ret)
1767                 goto err;
1768
1769         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1770         if (ret) {
1771                 dev_err(kdev->dev, "could not setup linking ram\n");
1772                 goto err;
1773         }
1774
1775         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1776         if (ret) {
1777                 /*
1778                  * nothing really, we have one linking ram already, so we just
1779                  * live within our means
1780                  */
1781         }
1782
1783         ret = knav_queue_setup_link_ram(kdev);
1784         if (ret)
1785                 goto err;
1786
1787         regions =  of_get_child_by_name(node, "descriptor-regions");
1788         if (!regions) {
1789                 dev_err(dev, "descriptor-regions not specified\n");
1790                 goto err;
1791         }
1792         ret = knav_queue_setup_regions(kdev, regions);
1793         of_node_put(regions);
1794         if (ret)
1795                 goto err;
1796
1797         ret = knav_queue_init_queues(kdev);
1798         if (ret < 0) {
1799                 dev_err(dev, "hwqueue initialization failed\n");
1800                 goto err;
1801         }
1802
1803         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1804                             &knav_queue_debug_ops);
1805         return 0;
1806
1807 err:
1808         knav_queue_stop_pdsps(kdev);
1809         knav_queue_free_regions(kdev);
1810         knav_free_queue_ranges(kdev);
1811         pm_runtime_put_sync(&pdev->dev);
1812         pm_runtime_disable(&pdev->dev);
1813         return ret;
1814 }
1815
1816 static int knav_queue_remove(struct platform_device *pdev)
1817 {
1818         /* TODO: Free resources */
1819         pm_runtime_put_sync(&pdev->dev);
1820         pm_runtime_disable(&pdev->dev);
1821         return 0;
1822 }
1823
1824 /* Match table for of_platform binding */
1825 static struct of_device_id keystone_qmss_of_match[] = {
1826         { .compatible = "ti,keystone-navigator-qmss", },
1827         {},
1828 };
1829 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1830
1831 static struct platform_driver keystone_qmss_driver = {
1832         .probe          = knav_queue_probe,
1833         .remove         = knav_queue_remove,
1834         .driver         = {
1835                 .name   = "keystone-navigator-qmss",
1836                 .of_match_table = keystone_qmss_of_match,
1837         },
1838 };
1839 module_platform_driver(keystone_qmss_driver);
1840
1841 MODULE_LICENSE("GPL v2");
1842 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1843 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1844 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");